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State-of-the-art climate models suggest that 20th Century ocean warming and sea-

level rise were substantially reduced by the 1883 eruption of Krakatau.  

Volcanically induced cooling of the ocean surface penetrated into deeper layers 

where it persisted for decades.  We find that volcanic eruptions have longer lasting 

effects than previously suspected1, sufficient to offset a large fraction of ocean 

warming and sea-level rise caused by anthropogenic influences over the 20th 

Century. 

We examine the latest suite of coupled ocean-atmosphere model experiments that 

include time-varying external forcings (e.g., changes in greenhouse gases, solar 

irradiance, sulfate aerosols and volcanic aerosols) for the period 1880-2000 (see 

Methods).  These models have differences in physics, resolution, initial conditions, 

“spin-up” and ocean-atmosphere coupling procedures, as well as different combinations 

of external forcings.  Uncertainties in both the applied forcings and in the model 

responses to them are therefore inherent in our investigation.  

We compare the 1880-2000 global ocean heat content (HC) evolution in six 

models that included the effects of volcanic eruptions (V) with six that did not (see 

Methods).  Observations (which are subject to uncertainties arising from incomplete, 

space- and time- varying coverage2,3) suggest that the HC  of  the upper 3000m of the 

ocean increase at a rate of 0.33×1022 J/yr over 1955-1998.  This is in closer agreement 

with the V simulations (average: 0.2×1022 J/yr, 1 s.d.: 0.16×1022 J/yr) than the 

simulations without V (average: 0.78×1022 J/yr, 1 s.d.: 0.25×1022J/yr). 

An abrupt HC drop in the V simulations (Fig. 1a) follows the 1883 Krakatau 

eruption, augmented by much smaller eruptions in 1886 and 1888.  Volcanic aerosols 

scatter sunlight and result in a cold ocean surface temperature anomaly. This is 

gradually subducted into deeper layers1,4, where it persists for decades (Fig. 1b).  While 

late 20th Century surface warming is apparent in all V simulations, a cold anomaly 

remains discernible at depth.  In spite of substantial differences in model formulations 

and applied external forcings (and, in particular, uncertainties in pre-satellite era 

volcanic forcing5, see Methods), the distinction between the simulations with and 
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without V in Fig.1 is striking.  Although solar forcing is only included in the V 

simulations, its effect is minimal. 

An oceanic response to the 1991 Pinatubo eruption, which was comparable to 

Krakatau in terms of its radiative forcing, has been identified in satellite altimetry data1.  

The simulated HC recovery after Pinatubo appears to occur much more rapidly than for 

Krakatau (Fig. 1a).  This disparity arises because the Pinatubo response is super-

imposed on a non-stationary background of large and increasing greenhouse gas 

forcing.  The HC effects of Pinatubo and other late 20th Century eruptions are offset by 

the observed warming of the upper ocean, which is primarly due to anthropogenic 

influences6. 

Ocean warming (cooling) contributes to sea-level changes via thermal expansion 

(contraction). Global-mean thermal expansion (TE) is highly correlated with HC 

changes, and thus TE comparisons between the V and non V simulations look much like 

Fig. 1a.  TE increases at the end of the 20th Century (relative to 1882, the year before 

Krakatau) are appreciably less for simulations with V (average: 1.7 cm, 1 s.d.: 1.8 cm) 

than for the simulations without V (average: 6.3 cm, 1 s.d.: 2.2 cm). 

In model simulations, Krakatua has long lasting effects, offsetting a large fraction 

of ocean heat content changes and thermal expansion caused by 20th Century 

anthropogenic influences.  These results are robust to current uncertainties in climate 

models and in the historical forcings applied to them. Inclusion of volcanic forcing from 

Krakatau (and, by implication, from even earlier eruptions) is important for a reliable 

simulation of historical increases in ocean heat content and sea-level change due to 

thermal expansion.   
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Figure Legends: 

 
 

Figure 1: Simulations (1880-2000) with and without volcanic forcing (V).  a: Global 

ocean heat content (1022 Joules). Shading represents the ± 1 s.d. range of simulations 

with V (blue) and without V (green) about the corresponding multi-simulation means 

(white lines).  b: Global ocean temperature anomalies (degrees C) as a function of depth 

(meters) for the mean of the simulations with and without V.  The inter-simulation s.d. 

(not shown) decreases with depth, increases with time, and is generally larger for the V 

simulations.  Purple shading shows an estimate of stratospheric aerosol optical depth 

changes (arbitrary scale) associated with volcanic eruptions (see Methods). 
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FIGURE 1 
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Supplementary Information  

Krakatau’s long goodbye in the ocean 

METHODS 

Coupled Model Simulations 

Climate modeling experiments now routinely employ a range of time-varying external 

forcings, including increases in greenhouse gases and sulfate aerosols and changes in 

solar variability and volcanic aerosol loadings.  Virtually all major climate modeling 

groups recently performed coupled atmosphere-ocean General Circulation Model (A-

OGCM) simulations of 20th Century climate. These experiments were proposed by the 

Working Group on Coupled Modeling (WGCM) of the World Climate Research 

Programme, and were performed in support of the Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC).  The IPCC simulations were 

archived by the Program for Climate Model Diagnosis and Intercomparison (PCMDI), 

and have been made available to the climate research community.  

The subset of models examined here represents those for which all ocean data required 

for calculating heat content and expansion changes were available at the time of the 

study.  To date several groups have submitted more than one realization to the database; 

we use only the first realization.  Table S1 summarizes the models used as well as the 

external forcings employed.  Model characteristics and experimental configuration are 

summarized for each simulation at:  

 http://www-pcmdi.llnl.gov/ipcc/model\_documentation/ipcc\_model\_documentation.php 
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Table S1. Forcings used in IPCC simulations of 20th century climate change. This Table 

was compiled using information provided by the participating modeling centers (see 

http://www-pcmdi.llnl.gov/ipcc/model.documentation). Eleven different forcings are 

listed: well-mixed greenhouse gases (G), tropospheric and stratospheric ozone (O), 

sulfate aerosol direct (SD) and indirect effects (SI), black carbon (BC) and organic 

carbon aerosols (OC), mineral dust (MD), sea salt (SS), land use/land cover (LU), solar 

irradiance (SO), and volcanic aerosols (V). “Y” denotes inclusion of a specific forcing. 

As used here, “inclusion” means specification of a time-varying forcing, with changes 

on inter-annual and longer timescales.  

 

  MODEL G O SD SI BC OC MD SS LU SO V 

1 NCAR-CCSM3 Y Y Y  Y Y    Y Y1 

2 GISS-EH Y Y Y Y Y Y Y Y Y Y Y2 

3 GISS-ER Y Y Y Y Y Y Y Y Y Y Y2 

4 GFDL-CM2.0 Y Y Y  Y Y   Y Y Y3 

5 MIROC3.2(medres) Y Y Y  Y Y Y Y Y Y Y4 

V
O

L
C

A
N

IC
 F

O
R

C
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G
 

6 UKMO-HadCM3-V Y Y Y Y       Y5 

1 CCCma-CGCM3.1(T47) Y  Y         

2 CNRM-CM3 Y Y Y  Y       

3 CSIRO-Mk3.0 Y  Y         

4 FGOALS-g1.0 Y  Y         

5 GISS-AOM Y  Y     Y    N
O

 V
O

L
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N
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FO
R
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6 UKMO-HadCM3 Y Y Y Y        

 

1 Uses S1 volcanic forcing. 
2 Uses updated version of S2 volcanic forcing (for details see S3).  
3 Uses “blend” between S2 and S4.  
4 Volcanic forcing “changed according to historical data”. Further details currently unavailable. 
5 Details of volcanic forcing in S5 
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Calculation Description: While none of the models used here employs flux 

adjustments, most still show appreciable control-run drift in ocean temperatures, 

particularly in the intermediate and deep ocean. To account for this, the signals in ocean 

heat content were defined by subtracting temporally-coincident control results from the 

perturbed-run data. The global ocean volume-integrated heat content is calculated from 

the annual mean temperature of each grid cell.  For the thermal expansion calculations 

we use the standard equation of state for seawater with values of the coefficient of 

thermal expansion taken from UNESCO, International Oceanographic Tables, vol. 4, 

Paris, 1987. As with heat content, the expansion is calculated at each grid cell.  Sea 

level changes are determined by dividing the total volume changes by the global ocean 

surface area.   Climatological salinity was used in calculating thermo-steric expansion.  

These methods and approximations have been demonstrated to be appropriate for global 

average calculations and applied by previous investigatorsS6,S7. 
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