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Synopsis 

The white shark (Carcharodon carcharias) has a complex life history that is 

characterized by large scale movements and a highly variable diet. Estimates of age and growth 

for the white shark from the eastern North Pacific Ocean indicate they have a slow growth rate 

and a relatively high longevity. Age, growth, and longevity estimates useful for stock assessment 

and fishery models, however, require some form of validation.  By counting vertebral growth 

band pairs, ages can be estimated, but because not all sharks deposit annual growth bands and 

many are not easily discernable, it is necessary to validate growth band periodicity with an 

independent method. Radiocarbon (14C) age validation uses the discrete 14C signal produced 

from thermonuclear testing in the 1950s and 1960s that is retained in skeletal structures as a 

time-specific marker. Growth band pairs in vertebrae, estimated as annual and spanning the 

1930s to 1990s, were analyzed for Δ14C and stable carbon and nitrogen isotopes (δ13C and δ15N). 

The aim of this study was to evaluate the utility of 14C age validation for a wide-ranging species 

with a complex life history and to use stable isotope measurements in vertebrae as a means of 

resolving complexity introduced into the 14C chronology by ontogenetic shifts in diet and habitat. 

Stable isotopes provided useful trophic position information; however, validation of age 

estimates was confounded by what may have been some combination of the dietary source of 

carbon to the vertebrae, large-scale movement patterns, and steep 14C gradients with depth in the 

eastern North Pacific Ocean. 



 3 

Introduction  

The life history of the white shark (Carcharodon carcharias) varies seasonally, 

geographically, and ontogenetically, making it difficult to fully characterize the lifestyle of this 

animal. The white shark is globally distributed, ranging in habitat from temperate coastal and 

shelf to pelagic waters (Compagno 2001, Boustany et al. 2002). Recent satellite tagging data 

revealed that juvenile white sharks occur in nearshore waters, whereas adults are wide-ranging, 

with extensive periods of oceanic travel and what appears to be distinct oceanic and coastal 

phases (Boustany et al. 2002, Dewar et al. 2004, Bonfil et al. 2005). Both juvenile and adult 

white sharks exhibit deep-diving behavior below the ocean’s mixed layer, with juveniles 

documented to dive to depths of 100 m (Dewar et al. 2004) and adults to 980 m (Bonfil et al. 

2005). The diet of the white shark is variable and it is often described as a scavenger, feeding 

upon a wide range of prey taxa that includes marine mammals, teleost fishes, and invertebrates 

(Compagno 2001). In addition, an ontogenetic shift in diet has been documented for the white 

shark, with diet mainly composed of fishes (for sharks less than 2 m) to a diet of marine 

mammals (for sharks > 3 m; Tricas and McCosker 1984, Klimley 1985, Compagno 2001). 

Although our understanding of the life history of the white shark is advancing, there still exists 

relatively limited knowledge of the habitat and diet of this animal over its lifetime. In addition, 

basic demographic information, including reliable age, growth, and longevity estimates, useful 

for stock assessment and fishery models, are not well defined.  

 Age determination of sharks is most commonly performed by counting growth band 

pairs in the vertebral centra that comprise the vertebral column (Ridewood 1921, Cailliet 1990). 

Vertebral centra are calcified cartilage, composed primarily of the mineral hydroxyapatite 

[Ca10(PO4)6(OH)2] deposited within an organic matrix, of which collagen is the primary 

component (Urist 1961). In most elasmobranchs, this mineralization process occurs 
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incrementally, resulting in vertebral growth bands (Cailliet 1990). One translucent and one 

opaque band comprise a band pair that is often assumed to represent one year of growth (Cailliet 

et al. 1983, Cailliet and Goldman 2004). The only age and growth study for the Pacific coast 

white shark population revealed they may have a slow growth rate and be long-lived based on 

growth band counts (Cailliet et al. 1985). However, no age validation has been successfully 

undertaken to date.  Results from the Cailliet et al. (1985) study indicated that white shark may 

mature at an age of 9 to 10 years, live up to 27 years (assuming a maximum size of 7.6 m). 

Sharks were estimated to grow at a rate of 25-30 cm/year for young animals and 22 cm/year for 

older animals. In addition to a relatively late age at maturity and a slow growth rate, life history 

characteristics such as low fecundity and hypothesized infrequent reproduction frequency 

(Mollet et al. 2000), may make the white shark particularly vulnerable to exploitation (Cailliet et 

al. 1985). Validation of age and age estimation procedures is essential because proper 

management strategies rely heavily on accurate growth rates, age, and longevity.   

Age can be estimated by counting vertebral growth band pairs; however, not all sharks 

deposit annual growth bands and many are not easily discernable. Thus, it is necessary to 

validate growth band periodicity with an independent method. Traditional age validation 

techniques, such as captive rearing, mark-recapture, and tag-recapture, can be difficult or 

impractical for these long-lived, pelagic fishes (Cailliet 1990). Marginal increment analysis and 

oxytetracycline injection of white sharks was attempted off the coast of South Africa, but results 

were inconclusive with regard to determining periodicity of growth band formation (Wintner and 

Cliff 1999). Radiometric age validation using lead-210 dating was also explored for this species, 

but results were inconclusive (Welden et al. 1987), due to failed assumptions. The irregular 

radiometric results were attributed to possible metabolic reworking of the vertebrae (likely the 

inorganic component, hydroxyapatite), or the result of an ontogenetic shift in habitat and diet of 
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individual animals. A recent captive juvenile white shark held at the Monterey Bay Aquarium 

established the longest time span and record of growth in captivity. Prior to its release, the white 

shark was shown to have increased from 5 feet (1.52 m) TL and 62 lbs (28.1 kg) to 6 feet 4.5 

inches (1.94 m) TL and 162 lbs (73.5 kg) during the 198 days of captivity 1. This shark had a 

growth rate more than double that estimated by Cailliet et al. (1985); however, this high growth 

rate is not reflective of growth rates in the wild due to the sizeable feeding regime of this animal 

in captivity. 

Measurement of the change in radiocarbon levels (Δ14C) produced by atmospheric testing 

of thermonuclear devices in the 1950s and 1960s has been established as an effective method for 

validating age estimates in calcified skeletal structures (Campana 2001). The discrete Δ14C signal 

created by this testing was incorporated into the oceans of the world and has been used as a time-

specific marker. Recent studies have correlated the changes in marine 14C over time and used this 

temporal information to either: 1) make estimates of age and growth where no reliable age 

estimations were possible (e.g. calcareous algae, invertebrates, and some fishes; Frantz et al. 

2000, Ebert and Southon 2003, Andrews et al. 2005, Frantz et al. 2005); or 2) validate estimates 

of age and growth (e.g. fishes; Kalish 1995, Kerr et al. 2005). For some Δ14C records, age and 

growth of an organism was validated with another method and used to establish a Δ14C reference 

time-series (e.g. hermatypic corals and fishes; Guilderson et al. 1998, Kerr et al. 2004, Piner and 

Wischniowski 2004). The utility of the method is dependent upon the 14C signal retained in the 

skeletal structure of marine organisms as a permanent record of the 14C present in ambient 

seawater at the time of formation. In fishes, this application is most commonly applied to the 

calcified ear bones, or otoliths. Recently, the use of this technique was expanded to shark 

vertebrae, including the school shark (Galeorhinus galeus; Kalish and Johnston 2000) and two 

                                                
1 Monterey Bay Aquarium News Release, 31 March 2005 
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lamnoid sharks (Campana et al. 2002). Results of Δ14C analyses for porbeagle (Lamna nasus) 

vertebrae indicated the Δ14C signal was conserved across growth bands through time. Therefore, 

it was concluded that metabolic reworking of the organic or cartilaginous component of the 

vertebrae was minimal (Campana et al. 2002). This notion was further supported by a 

preliminary determination of the Δ14C values for four growth bands from a single shortfin mako 

(Isurus oxyrinchus) vertebrae (Campana et al. 2002).  

Radiocarbon age validation has been successfully applied to marine teleosts and sharks 

inhabiting surface waters during the period of life sampled from the growth structure for Δ14C 

analysis. It has been noted, however, that the application of this technique can be problematic for 

species inhabiting waters below the mixed layer; due to the dependence of the 14C signal in 

deeper waters on oceanic circulation and mixing rates (Kalish 1995). Therefore, knowledge of 

both seasonal and ontogenetic movements of a study species is important for interpreting Δ14C 

values, especially in the case of elasmobranchs for which we are able to serially sample growth 

bands from vertebrae over the lifetime of the individual.  

Interpretation of vertebral Δ14C values is further complicated by the source of 14C to the 

shark vertebrae. Unlike fish otoliths, which primarily obtain 14C from ambient seawater (70 – 90 

% derived from dissolved inorganic carbon (DIC) in seawater and 10 – 30% is dietary; Kalish 

1991, Farrell and Campana 1996), shark vertebrae reflect the 14C composition of their diet 

(Kalish and Johnston 2000, Campana et al. 2002). Thus, an understanding of a species’ diet is 

also necessary for interpreting shark vertebral Δ14C values. Documented large-scale movements 

(Boustany et al. 2002, Bonfil et al. 2005) and a variable diet (Tricas and McCosker 1984, 

Klimley 1985) present complications in the application of 14C age validation to the white shark. 

We proposed to approach these complications using stable isotopes in concert with 14C 
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measurements in vertebrae to discern possible changes in life history and diet over the lifetime of 

animals. 

The objectives of this study were to: 1) measure Δ14C in aged vertebrae as a means of 

determining the validity of white shark age estimates and the periodicity of growth band 

formation, and 2) use δ13C and δ15N measurements in white shark vertebrae to better understand 

the trophic position and carbon source to the vertebrae and to aid in the interpretation of Δ14C 

values. 

 

Materials and methods 

Archived white shark vertebrae collected off the coast of central and southern California (capture 

years ranging from 1936 to 1994) were obtained from various collections for this study (sources 

included vertebrae from collections at Moss Landing Marine Laboratories, Los Angeles County 

Museum, California Academy of Sciences, Sea World San Diego, and from Leonard J.V. 

Compagno at the Shark Research Center, Iziko-Museums of Cape Town South African Museum, 

Cape Town, South Africa (Table 1).   

Age Estimation  

One whole vertebra from each specimen was transversely sectioned, using the thin-

section technique, for age estimation purposes. Sectioning was performed on a low-speed saw 

with two diamond blades separated by a spacer (2-3 mm) and polished with a Buehler® Ecomet 

III lapping wheel using 600 and 800 grit silicon-carbide wet/dry sandpaper for optimal viewing 

thickness.  Sections were examined and images captured using a Leica dissecting microscope 

with an attached Spot RT® video camera. Transmitted light was used to make growth bands 

visible for counting. A growth band pair was defined as one translucent and one opaque growth 

band. Thin section age estimates were estimated by one reader (3 independent reads) and 
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compared to whole vertebra age estimates and/or calculated age (for those vertebrae that were 

not used in the original age and growth study by Cailliet et al. 1985).  Calculated age was 

estimated with the von Bertalanffy growth function (VBGF) determined by Cailliet et al. (1985). 

Coefficient of Variation (CV) was calculated for thin section age estimates as a measure of 

ageing precision (Chang 1982). 

 

Radiocarbon analysis 

Vertebrae from nine individual white sharks were sectioned (described previously) for 

Δ14C analysis. In total, twenty-two white shark vertebra growth band pairs (one opaque and one 

translucent band), with estimated growth years ranging from the pre-bomb 1930s to the post-

bomb mid-1980s, were extracted for Δ14C analyses. The limited availability of archived 

vertebrae with known capture years restricted the selection of vertebra and growth band years to 

be analyzed for Δ14C. Individual growth band pairs were sampled from thin-sections of the 

corpus calcareum using a New Wave ® micro-milling machine with a small-scale end mill. The 

width of growth band pairs was used to guide extraction and minimize the amount of older or 

younger material incorporated in the sample. Hence the amount of material extracted decreased 

as growth slowed and band width decreased. The first growth band pair past the birth band 

(estimated as the first year of growth after birth) and one to three subsequent growth band pairs 

further up the corpus calcareum were extracted for analysis from each vertebrae. The last band 

pair, corresponding to the last year of growth, was targeted to provide a sample where time of 

formation was constrained by the collection date. In some cases, the penultimate growth band 

pair was targeted because the width of the last growth band pair provided insufficient sample 

size. Extraction of the sample with the micro-mill resulted in a solid sample of material that was 

weighed to the nearest 0.1 mg.   
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Pre-treatment of vertebral samples was performed to isolate the organic portion 

(collagen), by removing the inorganic carbon and maximizing the carbon yield from vertebrae 

(Brown et al. 1988). A process called demineralization was applied to the vertebral samples by 

soaking them in 0.25 N HCl at refrigerator temperatures (slows reaction). Treated samples were 

dried in an oven and placed in clean quartz tubes. CuO (copper oxide, oxidizing agent) and Ag 

(silver, used to remove impurities: SOx and NOx) were added to the treated organic sample. 

Three samples from individual vertebrae were replicated and analyzed for Δ14C without 

demineralization to evaluate the effect of demineralization on Δ14C measurements. Quartz tubes 

were evacuated, sealed, and heated for two hours at 900 °C to convert the organic carbon to CO2. 

Sample CO2 was converted to graphite (Vogel et al., 1984; Vogel et al., 1987) and measured for 

14C content using an Accelerator Mass Spectrometer (AMS) at the Center for Accelerator Mass 

Spectrometry, Lawrence Livermore National Laboratory. The 14C values were reported as Δ14C 

(Stuivier and Polach, 1977).   

A qualitative comparison of the white shark Δ14C record was made with existing marine 

records including two otolith-based records, the yelloweye rockfish (Sebastes ruberrimus; Kerr 

et al. 2004) and Pacific halibut (Hypoglossus stenolepis, Piner and Wischniowski 2004), and 

three vertebra-based shark records, the western North Atlantic porbeagle (Campana et al. 2002), 

western North Atlantic shortfin mako (Campana et al. 2002, Ardizzone et al. 2006.), and the 

western South Pacific school shark (Kalish and Johnstone 2000).   

 

Stable Isotope Analysis 

Stable isotope ratios (δ15N and δ13C) were measured to provide insight into trophic level 

and possible ontogenetic diet shift (Michener and Schell 1994, Burton and Koch 1999).  

Vertebrae from six individual white sharks were sectioned (described previously) for isotopic 
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analysis (δ15N and δ13C).  Four of the six vertebra samples were also analyzed for Δ14C and 

many of the growth band pairs analyzed for stable isotopes were targeted to coincide with those 

analyzed for Δ14C. In total, twenty-three white shark vertebra growth band pairs (one opaque and 

one translucent band) were extracted from the corpus calcareum using a New Wave micro-

milling machine and analyzed for δ13C and δ15N. Vertebral samples were demineralized to 

isolate collagen from the vertebrae (Brown et al. 1988). In addition, lipids were extracted from 

samples analyzed for δ13C and δ15N using a 2:1:0.8 methanol/chloroform/water mixture. Samples 

were analyzed by continuous flow Isotope Ratio Mass Spectrometer (IRMS) at University of 

California, Davis. Values are reported as δ13C and δ15N relative to standards of Pee Dee 

Belemnite limestone (13C) and atmospheric N2 (15N). 

 Trophic position (TP) of the white shark was calculated using the equation: 

TP = λ + (δ15Nconsumer - δ15Nbase) 
       Δn 

Where λ is the trophic position of the organism employed to estimate the baseline δ15N for the 

region, δ15Nconsumer is the average value of the consumer, δ15Nbase is the average value of the base 

organism, and Δn is the average enrichment per trophic level (Post 2002). The northern anchovy 

(Engraulis mordax) was chosen as a representative secondary consumer (assigned a trophic 

position (λ) of 3.0) for estimating δ15Nbase of the region and an average trophic enrichment 

(Δ15N) of 3.4 was assumed following Estrada et al. (2003). 

 

Results 

Age Estimation  

The vertebrae from white sharks were relatively difficult to age. The comparison of thin-

section age estimates with the corresponding whole vertebra estimates (Cailliet et al 1985) and 

the calculated age estimates based on the VBGF indicated there was good agreement between 
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thin-section and whole vertebrae age estimates (H0: no significant difference between 

techniques; paired t-test: P = 0.65, α = 0.05; Table 2). Thin section age estimates were, on 

average, higher than whole vertebrae age estimates. The mean CV for thin section age estimates 

was 16.0% of the individual age. Age estimates from thin sections deviated from those of whole 

vertebrae by as much as 2 years.  

 

Radiocarbon Analysis 

Radiocarbon values measured in growth band pairs from white sharks had considerable 

variation over time (Table 3). When Δ14C values were plotted against estimated growth year, the 

values produced a Δ14C time series from 1936 to 1984 (Figure 1). Overall, Δ14C values increased 

as growth year progresses into the post-bomb era. However, this increase was not synchronous 

with the characteristic bomb 14C rise and had considerably more scatter in the post-bomb period 

than could be explained by Δ14C measurement uncertainty. Replicate samples from 1956 had 

very depleted Δ14C values that were atypical of Δ14C measured in surface waters of the Pacific 

Ocean. These replicate samples differed from each other by 87.8‰. Pre-bomb Δ14C values (1936 

to approximately 1959 and excluding the 1956 outliers) had a trend similar to the pre-bomb 

record from the reference time-series, averaging –90.5 ± 5.1‰ (mean ± SD).  The first evidence 

of an increase due to atmospheric testing of thermonuclear devices was the elevated Δ14C value 

measured for the 1966 growth band pair (-72.2 ± 4.0‰). This value was the first to have a Δ 14C 

value that was significantly above pre- bomb Δ14C levels using a + 2 SD criteria (+ 10.2‰). The 

rise in Δ14C continued until 1984 (the last growth year sampled) with a maximum observed Δ14C 

value of 79.8‰ with no indication of a post-bomb decline.  

Radiocarbon values for the first year of growth from five age-1 (± 1 year) white sharks 

created a Δ14C reference time-series for this species composed of essentially known-age 
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specimens (Figure 1). The Δ14C values in these vertebrae showed a response to the bomb pulse 

that is similar in magnitude to the two otolith reference time-series from the Pacific Ocean, but 

differed by what appears to be a significant phase lag.  

Radiocarbon values from vertebral material near the known year of capture (up to minus 

2 years from date of collection) revealed a very different pattern relative to the known-age 

juvenile series (Figure 1). Compared to the juvenile white shark reference time-series Δ14C 

values in these vertebrae showed a depleted and/or delayed bomb 14C signal based on knowing 

the collection year. All other samples, for which age was estimated from growth band pair 

counts, had Δ14C values distributed between these two sets of time-constrained samples.  

Radiocarbon values for demineralized and untreated vertebral samples (these samples 

were as close to replicates as we could get based on the position in the corpus calcareum) 

indicated a difference in the Δ14C between treated and untreated samples; hence, the inorganic 

portion of the vertebrae had different Δ14C levels (Table 3). All untreated samples had elevated 

Δ14C values compared to their demineralized counterparts.  

 

Stable Isotope Analysis 

Twenty-three growth band pairs, extracted from the vertebra of six individual white 

sharks, were analyzed for δ13C and δ15N. A decreasing trend with increased age was exhibited 

for δ13C values within individual vertebrae (Figure 3). Growth band pairs ≥ age 6 in the vertebrae 

were used to discriminate between what we have termed juvenile and adult growth, a criterion 

based on a reported size at transition in diet of 3 meters documented by Compagno (2001) and 

estimated age at transition (6 years) based on the VBGF estimated from Cailliet et al. (1985). 

Mean stable isotope values associated with juvenile growth (1–5 years: δ13C: -11.81 ± 0.60‰, 

δ15N: 19.16 ± 1.01‰) and adult growth (6–18 years: δ13C: -12.73 ± 0.62‰, δ15N: 19.34 ± 
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0.93‰) showed no significant difference in δ15N (paired t-test: P = 0.70) or calculated trophic 

position (paired t-test:, P =0.70), but did exhibit a significant difference in δ13C values between 

juvenile and adult growth (paired t-test P = 0.01).  

Overall, δ15N values ranged from 17.68 to 20.84‰ (Mean: 19.24‰ ± 0.95‰) and δ13C 

values ranged from -13.31 to -11.10‰ (Mean: -12.24 ± 0.76; Table 4). Across longitudinal 

sections of individual vertebra, nitrogen values differed by a maximum of 0.51 to 2.85‰ and 

carbon values differed by a maximum 0.39 to 2.05‰ (Table 4). An approximate increase of 1‰ 

δ13C and 3–4‰ δ15N is associated with an increase in one trophic level (Michener and Schell 

1994). Four individual vertebrae exhibited differences in δ13C across longitudinal sections of 

vertebra >1‰, however no vertebrae exhibited differences in δ15N values >3‰ across 

longitudinal sections. White shark Δ14C values indicated feeding at an upper trophic level 

relative to fish and marine mammal stable isotope values from the eastern North Pacific Ocean 

(Figure 2). Trophic position calculation of the white shark based on mean δ15N value resulted in 

an estimated tropic position of 4.57 (range 4.11 to 5.04).  

 

Discussion 

Age Estimation 

The observation that thin section age estimates were, on average, higher than those from 

whole vertebrae was expected based on what we know about these two techniques. Currently, 

thin sectioning is accepted as the more accurate technique (Cailliet and Goldman 2004); and 

because growth band pairs were isolated from thin sections for Δ14C analyses, we relied on these 

age estimates in this study.  
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Radiocarbon Analysis 

It is well established that the initial rise in Δ14C is nearly synchronous in all marine 

carbonate records, but the white shark record exhibited an asynchronous Δ14C time series. The 

uncharacteristic timing of Δ14C values differed from the nearest chronologies in the region (Kerr 

et al. 2004, Piner and Wischchniowski 2004). There are three plausible mechanisms for 

explaining this uncharacteristic trend: 1) an apparent delay of the Δ14C signal due to age 

underestimation; 2) metabolic reworking of the vertebral collagen; and 3) a depletion of the Δ14C 

levels due to depleted dietary sources of carbon.  Each of these factors could explain the 

observed trend individually, but a combination of some or all of them cannot be ruled out. 

Age underestimation of white shark vertebrae would be manifested as a delayed Δ14C 

time series. The degree of age underestimation was estimated by tracing estimated growth years 

back to their appropriate place on the white shark reference curve (known-age juvenile series). 

Potential age underestimation ranged from 6–11 years (mean 9 ± 3 years). Examination of the 

residuals (estimated age vs. expected age based on the reference time series) for potential age 

underestimation indicated there was no systematic ageing bias (no significant trend observed, 

r2=0.02). If age underestimation were the sole source of the apparent delay, it would not explain 

the delay in the time constrained samples taken near the collection year. These samples alone 

strongly suggest there are other factors responsible for the observed trend. 

A more plausible explanation is that there is a metabolic reworking of the vertebrae 

through the life of the fish. The question of metabolic reworking of vertebrae has been 

hypothesized for the white shark in relation to radiometric age determination.  Analysis of 

vertebrae for lead-210 indicated this may not be a static or conserved structure with respect to the 

inorganic portion of the vertebrae (Welden et al. 1987). Unlike cancellous or “true” bone which 

undergoes remodeling over the lifetime of the animal, hydroxyapatite, the primary component of 
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shark cartilage, is thought to grow by accretion with little remodeling; therefore, recording 

conserved information for different periods of the animal’s life (Koch et al. 1994).  

Because there is no empirical evidence to support or refute the temporal stability of the 

organic portion of vertebral cartilage, we looked to isotopes for indirect evidence. Differences in 

Δ14C, δ13C, and δ15N values preserved across longitudinal sections of vertebrae, with differences 

in Δ14C as great as 235‰ (sample #WH 6), support the conclusion that vertebrae are not 

completely reworked. This is also supported by Δ14C results for the porbeagle that indicated 

metabolic reworking was minimal and the 14C signal was not transported across growth bands 

through time (Campana et al. 2002). These findings suggest that carbon in the vertebral material 

is metabolically and temporally stable (Campana et al. 2002). However, further research is 

needed to provide direct evidence to validate the assumption of shark vertebrae functioning as a 

closed-system with respect to carbon and nitrogen.  

A third possibility for the uncharacteristic trend in the white shark Δ14C signal is that 

values were depleted due to the dietary source of carbon to the vertebrae. Because the 

composition of vertebral collagen reflects dietary sources, low Δ14C values of vertebrae could be 

the result of prey consumption that has integrated a 14C depleted signal, possibly from a deep sea 

source (Campana 1999). Incorporation of 14C in the ocean is related to ocean circulation and 

mixing, with different water masses reflecting different 14C values and values becoming 

attenuated with depth (Broeker and Peng 1982). Radiocarbon enters the food web through 

photosynthetic organisms and is transferred to higher trophic levels (Pearcy and Stuvier 1983). 

Lower mesopelagic, bathypelagic and abyssopelagic animals in the northeastern Pacific Ocean, 

however, were found to have depleted Δ14C values relative to surface dwellers (1973-1976), 

indicating that surface-derived POC was not the major source of organic carbon for deep-sea fish 

(Pearcy and Stuvier 1983). 
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A steep gradient in bomb Δ14C values with depth was documented in the North Pacific 

Ocean, with Δ14C values of DIC in the North Central Pacific reaching approximately -100‰ at 

500 m (1986), and values of -150‰ in the Santa Monica Basin at about 500 m (1986-1987; 

Druffel and Williams 1990). Similarly, low DOC Δ14C values have been documented in the 

North Pacific Ocean (<-300‰ at 500 m in the North Central Pacific and -300‰ at 100 m in 

Santa Monica Basin; Druffel and Williams 1990). Druffel and Williams (1990) proposed three 

possible mechanisms for the incorporation of 14C depleted carbon into the oceanic food chain: 1) 

uptake of DOC by bacteria in the water column, or adsorption of depleted DOC through webs 

and mucous of filter feeders (e.g. larvaceans and salps), 2) chemosynthetic production of organic 

matter from DIC, and 3) resuspension of depleted sedimentary organic carbon. Druffel and 

Williams (1990) identified this depleted deep sea source of carbon as responsible for depletion of 

surface water POC Δ14C values by an average of 93‰ in these regions. This magnitude of 

depletion was strikingly similar to the average depletion of white shark vertebral values (93‰ 

±53‰).  

Until recently, white sharks in the Pacific Ocean were thought to reside in waters of the 

upper continental shelf and were not known to dive below 100 m. Satellite tagging results 

revealed the white shark are deep diving, with a bimodal depth of occurrence at 0–5 and 300–

500 m (Boustany et al. 2002). This tagging study, along with Bonfil et al. (2005), revealed that 

white sharks are wider ranging than previously thought, with extensive periods of oceanic travel 

and what appears to be distinctive oceanic and coastal phases. Based on what is now known 

about its depth of occurrence and extensive movements, consumption of deep-dwelling prey or 

prey that feed in deep waters is a strong possibility. This depleted source offers a reasonable 

explanation for the unusually low Δ14C values for replicate measures of the 1956 white shark 

samples and attenuated values measured for known collection years during the post-bomb era. In 
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addition, the degree of variation in depletion could be related to the variable diet of this pelagic 

species that inhabits both inshore and offshore habitats and consumes a wide spectrum of prey 

over the course of their lifetime.  

The reference chronology comprised of known-age juveniles reflected a more rapid 

response to the bomb pulse, most likely due to the habitat utilized during the juvenile stage. 

Satellite tagging results of a juvenile (young of the year) white shark off the coast of California 

supported by evidence of capture locations indicate that juvenile white shark remain in coastal 

waters (Klimley, 1985. Dewar et al. 2004). Juveniles inhabiting and feeding nearshore on coastal 

fish would reflect a Δ14C signal typical of coastal, surface waters and would be more 

synchronous with the reference time series.  

Employing a simple mass balance equation for Δ14C allowed us to examine the likelihood 

the observed values in white shark vertebrae were attributable to the influence of a depleted 

deepwater carbon source. The equation describing this deep-water influence is:  

Δ14Cobserved = Δ14Cexpected (x) - Δ14Cdeepwater (1-x) 

where Δ14Cobserved is the value measured in the vertebrae, Δ14Cexpected is the value expected based 

on the white shark reference curve, x is the fraction contributed from the “expected” surface 

water source, Δ14Cdeepwater is a value of a possible deepwater source based on 14C gradients off 

the coast of California (Druffel and Williams 1990), and 1-x is the fraction contributed from the 

“deepwater” source. Modeling the sensitivity of Δ14C values in shark vertebrae helped with the 

interpretation of the magnitude of depletion possible due to the incorporation of a depleted 14C 

source. As a result of this modeling, most observed Δ14C values for white shark vertebrae were 

found to be similar in value to contributions ranging from a small percent of the diet composed 

of a highly depleted 14C source (25% contribution of a -300‰ source) to a large percentage of 

the diet composed of a slightly depleted 14C source (75% contribution of a -100‰ source). Based 
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on the highly variable diet of white sharks and this modeling, it is likely that depleted values are 

attributable to a small contribution of highly depleted 14C sources in the diet. 

Factors associated with the sampling method should also be considered. There are two 

factors that may have influenced the outcome of Δ14C levels measured in white shark vertebrae: 

1) the location of sampling within the vertebrae and 2) the preparation of vertebrae for Δ14C 

analysis (demineralized vs. untreated vertebrae). The variation in replicated demineralized 

samples (WH 6: 1956 samples) from the same location within the vertebra indicated that small 

deviations in coring location can result in large deviations in Δ14C (an observed difference of 

87.8‰). This can be explained by large variations of 14C in food sources that were variably 

accreted during the period of formation. In addition, relatively little is known about the growth 

and accretion of white shark vertebrae. If growth was episodic and accretion was not uniform, 

but rather focused where material is needed from a structural perspective, this could explain 

regional variations of the Δ14C signal of the vertebrae.  

Results from untreated samples (the inorganic and organic portions) indicated the 

potential presence of carbonates in the inorganic portion of the vertebrae in two ways. First, we 

observed bubbling during the acid dissolution of the vertebrae indicating CO2 was liberated from 

the inorganic portion of the vertebral matrix. Second, the elevated levels of Δ14C in replicate 

untreated samples compared to demineralized (the organic portion) samples indicated a 14C 

source in the inorganic portion of the vertebrae. The depletion of Δ14C values in the organic 

portion of the vertebrae likely reflects the different sources of 14C to the organic and inorganic 

portions of the vertebrae. The dominant source of carbon to the organic portion of the vertebrae 

is known to be metabolic (Kalish and Johnston 2001, Campana et al. 2001). The difference 

between the demineralized and untreated vertebrae represents the addition of elevated 14C values, 

most likely from a DIC source.  Evidence of a similar trend was identified in the treatment of 
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organic (collagen) and inorganic (carbonate) portions of swordfish (Xiphias gladius) vertebrae 

(Kalish 2002). Results from the study revealed the organic component of the swordfish vertebrae 

was more 14C depleted than the inorganic component (Kalish 2002). This difference was 

attributed to the dominant source of carbon to the organic portion of the vertebrae being 

metabolically derived and the source to inorganic portion derived from DIC. Our results indicate 

this same trend is present in the white shark vertebrae. 

A comparison of the white shark Δ14C record with three other shark records indicated the 

white shark record was most temporally similar to the school shark record from the South Pacific 

Ocean (Figure 4; Kalish and Johnston 2000). The school shark Δ14C time series was delayed in 

relation to the nearest marine carbonate chronology and in this case the delay was attributed to 

age underestimation. A 3-year lag observed in the porbeagle Δ14C time series, based on 

comparison to a juvenile porbeagle reference time series, was attributed to both the mean age and 

depth of occupied by prey in the diet of porbeagle (Campana et al. 2002). All of these shark 

records show, to differing degrees, a nonconforming Δ14C signal compared to their nearest Δ14C 

chronology. In the case of the white shark, we hypothesize that there is depletion of the Δ14C 

time series due to the influence of depleted 14C sources to the vertebrae. This nonconformity 

indicates the increased complexity of interpreting Δ14C values in shark vertebrae for the purpose 

of validating age and the necessity to interpret values in the context of diet, movement, and 

regional 14C gradient information.  

 

Stable Isotope Analysis 

Stable isotope ratios can provide valuable information relative to trophic level, carbon 

flow to a consumer, and location of feeding (Vander Zanden and Rasmussen 2001). While gut 

content analysis provides a snapshot of what was most recently consumed by an animal, stable 
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isotopes (δ13C and δ15N) can provide time-integrated diet information (Vander Zanden and 

Rasmussen 2001). This application is based on predictable enrichment factors of both 13C 

(approximately 1‰ enrichment) and 15N (approximately 3-4‰ enrichment) in consumer bone 

collagen relative to prey with increasing trophic level, termed trophic fractionation (Deniro and 

Epstein 1981, Schoeniger and Deniro 1984, Vander Zanden and Rasmussen 1999). Additionally, 

δ13C can provide information relative to feeding habitat (inshore vs. offshore; France 1995). A 

caveat to this approach is that spatial and temporal variability in stable isotope ratios must be 

considered when interpreting stable isotope values. 

In general, adults are reported to feed primarily on marine mammals and juveniles on 

fishes (Le Boeuf et al. 1982, Tricas and McCosker 1984, Klimley 1985, Compagno 2001).  

Current knowledge of the white shark diet is based on stomach contents from opportunistic 

nearshore landings and observed feeding events. The main prey items of the white shark include 

marine cephalopods, crustaceans, ray-finned bony fishes, cartilaginous fishes, mammals, and 

birds (Klimley 1985, Compagno 2001). In an examination of white sharks captured off the coast 

of northern and central California, Tricas and McCosker (1984) found stomach contents to be 

comprised solely of elasmobranchs and teleosts fish that inhabit both pelagic and inshore 

habitats.  

Stable isotope values obtained in this study for white shark vertebrae, when compared 

with representative prey item values for bony fishes and mammals off the coast of California, 

indicate that the white shark is an upper trophic level consumer. δ13C values indicate enrichment 

relative to fish and most marine mammals and δ15N values indicate isotopic enrichment relative 

to fishes and similar values to mammals in the region. Differences in δ13C and δ15N values across 

longitudinal sections of individual vertebra were variable over the lifetime of individuals (Table 

4).  
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Calculated trophic position (TP) for the white shark was greater in value than trophic 

position calculated for the basking shark Cetorhinus maximus = 3.1 (primary prey: zooplankton), 

blue shark Prionace glauca = 3.8 (primary prey: fish), and shortfin mako Isurus oxyrinchus = 4.0 

(primary prey: fish) and similar to the TP calculated for the common thresher shark Alopias 

vulpinus = 4.5 (primary prey: fish and squid). The white shark, however, had similar variability 

in TP (TP ranged from 4.11 to 5.04) as calculated for the shortfin mako (TP ranged from 3.6 to 

4.5), this was attributed to migration and feeding in both inshore and offshore regions (Estrada et 

al. 2003). Calculated white shark TP for this study agrees with the determination of trophic level 

for the family Lamnidae by Cortes (1999) based on diet composition (mean = 4.3, range= 4.22 to 

4.5) and specifically the trophic level determined for the white shark (4.5) based on diet 

composition. In this analysis the mean TP of marine mammals was estimated at 4.0, placing the 

trophic level of white sharks somewhat higher than marine mammals (Cortes 1999). 

Estrada et al. (2003) contend that TP values obtained for sharks in their study do not 

support the idea put forth by Fisk et al. (2002), that retention of urea in elasmobranchs may 

lower δ15N values and therefore lead to underestimation of trophic position. Based on our limited 

data, we cannot determine whether urea retention may have affected white shark δ15N values. 

However, the similarity of calculated TP in this study to the diet analysis TP supports the idea 

that urea retention was not a problem.  

Values of δ13C measured in juvenile growth band pairs were significantly enriched 

compared to adult growth bands; which may reflect variation of 13C due to feeding location 

rather than trophic level. Isotopic signatures in mobile animals may reflect feeding in different 

environments or an actual change in diet (Michener and Schell 1994). Gradients of 13C in the 

northeast Pacific Ocean demonstrate an enriched nearshore signal (benthic-based food web) 

compared to the offshore, oceanic signal (phytoplankton-based food web) and a ~2‰ enrichment 
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in δ13C has been associated with marine mammals foraging in nearshore versus offshore waters 

of California (Burton and Koch 1999). In addition, gradients of 13C with depth have been 

observed in the northeast Pacific Ocean (off the coast of British Columbia, Canada) where the 

slope/deep ocean food web was determined to be depleted relative to the pelagic food web (4.3‰ 

depletion in δ13C based on fish larvae; Perry et al. 1999). Therefore, feeding on prey from 

offshore and deeper waters will reflect a depleted δ13C signal relative to nearshore δ13C values.   

The trend in δ13C across individual longitudinal sections of vertebra tended to decrease 

with increased age of white shark, thus perhaps reflecting an ontogenetic shift in habitat and 

foraging location. Evidence suggests that juveniles are residing and feeding in shallow inshore 

waters and adults spending increased time offshore feeding in deep oceanic waters, incorporating 

prey reflecting a depleted δ13C signal relative to nearshore surface waters. However, the decrease 

observed in δ13C is a small one (~1.5‰ difference) with respect to potential spatial and temporal 

variability of δ13C and cannot be considered as evidence alone for this behavior, but is supported 

by the tagging literature. 

Although an ontogenetic shift in trophic level has been documented in the diet literature 

and identified through stable isotope analysis of white shark vertebrae from the western North 

Atlantic (Estrada et al. 2006), we found no significant difference between mean δ15N or 

calculated trophic position of juvenile growth and adult growth band pairs (juvenile vs. adult 

classification is based solely on an ontogenetic shift in diet documented at 3 m length). The lack 

of evidence for an ontogenetic trophic level shift based on δ15N values may reflect environmental 

(spatial and temporal) variation in δ15N (Vander Zanden & Rasmussen 1999) and/or a variable 

adult white shark diet with lower trophic items remaining an important component in the adult 

diet (Estrada et al. 2006). Because white shark migratory movements consist of coastal and 

pelagic periods (Boustany et al. 2002), lower trophic items, such as pelagic fish, could dominate 
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the diet during these pelagic phases. Although most diet studies stress the importance of 

pinnipeds in adult white shark diets, Tricas and McCosker (1984) documented the greater 

numerical importance of teleosts and elasmobranchs over marine mammals in white shark diet. If 

no change in δ15N is attributable to diet, this finding would support an increased diversity and 

size spectrum of prey consumed as white shark increase in size, as opposed a strict shift from a 

fish to a marine mammal diet (Compagno 2001). Alternatively, the time period over which 

growth bands were sampled from white shark vertebrae coincided with the decline in abundance 

of pinnipeds in the North Pacific Ocean over the last several decades (Springer et al. 2003). 

Therefore, the relatively low trophic position observed in adult white sharks, relative to juveniles 

and marine mammals, during this period may reflect the low abundance of higher trophic level 

prey (Sora Kim, personal communication).  

Conclusions 

The uncharacteristic trend in Δ14C in white shark vertebrae is most likely attributable to 

the influence of a deep-water depleted carbon source to the vertebrae. Conclusive age validation 

of vertebral age estimates of white shark was confounded by what may have been some 

combination of the dietary source of carbon to the vertebrae, large-scale movement patterns, and 

steep Δ14C gradients with depth in the eastern North Pacific Ocean. Stable isotopes provided us 

with time-integrated trophic information, reflecting the upper trophic level status of the white 

shark. No evidence of an ontogenetic shift in diet was detected, although increased movement 

into offshore, deeper waters with age was supported by a decrease in δ13C values.  

Future application of this technique is best suited to sharks with well-characterized diet 

and movement patterns, inhabiting surface waters in an area for which there is knowledge of 

regional Δ14C gradients. Sampling strategies should include both known age individuals to 

construct a reference chronology and older individuals with samples taken from growth bands 
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over the lifetime of the individual. This approach enables indirect confirmation of the stability of 

the 14C signal within vertebrae. To gain a better understanding of the chemical composition of 

shark vertebrae, the pathway of elemental uptake, and the metabolic stability of tissue more 

studies need to be done. Captive rearing studies, feeding small shark species prey with a known 

14C content and measuring the Δ14C values in blood, tissue, and vertebrae over time would 

improve our understanding of carbon pathways and turnover rates. This could be used to provide 

direct evidence for the assumption of metabolic stability of carbon in shark vertebrae, one of the 

main assumptions in the application of this technique in elasmobranchs.  
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Table 1.  Summary of data from white shark collected off the coast of California.  Sample number identifies 
the individual white shark with corresponding sex, year of capture, capture location and total length (TL). 
Application indicates if vertebrae from the individual was used for ageing (Age), stable isotope analysis (SI), 
and radiocarbon analysis (14C). The number of samples analyzed for stable isotopes or 14C for each individual 
is noted in parentheses. 

Sample # Sex Year of Capture Capture location TL (cm) Application 

WH 1 M 1978 Moss Landing, CA 393 Age, SI (5), 14C (3) 

WH 3 M 1968 Half Moon Bay, CA 234 Age, SI (2), 14C (3) 

WH 6 F 1959 Tomales Bay, CA 277.5 Age, SI (3), 14C (4) 

WH 7 F 1936 Malibu, CA 167.6 Age, 14C (1) 

WH 8 M 1981 southern CA 147.3 Age, 14C (1) 

WH 9 M 1981 southern CA 159 Age 

WH 12 ? 1977 Ventura, CA 210 Age, 14C (1) 

WH 17 M 1982 southern CA 460.9 Age, SI (4), 14C (4) 

WH 25 ? 1984 Half Moon Bay, CA 168 * Age, 14C (1) 

WH 90 M Unknown California 471 SI (4) 

WH 128 F 1994 California 534.4  SI (5) 

WH 26694 ? 1959 NE Pacific, CA 225.4 Age, 14C (1) 
      

*TL not recorded and calculated from a total length to centrum diameter regression. 
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Table 2. Age estimate comparison between values obtained from thin sections in this study, 
and whole vertebra reads and calculated age based on von Bertalanffy growth function 
(VGBF) from Cailliet et al. 1985. Age estimation error was the uncertainty associated with the 
thin section age estimates (individual coefficient of variation (CV); rounded to the nearest 
whole number). Mean CV = 16 %. 

                       Estimated age 
 

Sample # Thin section  
(± CV)      

Whole vertebrae 
(Cailliet et al 1985) 

Calculated age (VBGF) 
(Cailliet et al 1985,) 

WH 1 7 (± 1) 9 9 
WH 3 3 (± 0) 2 3 
WH 6 4  (± 1) 2 4 
WH 7 1  (± 0) 1 1 
WH 9 0  (± 0) 1 0 

WH 12 1  (± 1) 2 2 
WH 17 18 (± 1) 13 12 
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Table 3.  Summary of vertebra and Δ14C data from white shark collected off the coast of California.  
Resolved age is the final age estimate. Birth year is collection year minus the resolved age. Ageing 
error is the uncertainty associated with the age estimate (CV). Radiocarbon values for the extracted 
samples were expressed as Δ14C with the AMS analytical uncertainty.  

Sample #               
Resolved age     
(years ± age 

error) 

Capture 
Year 

Birth 
Year                            

Year Sampled for 14C 
analysis (years) 

Δ14C                                             
(‰) 

WH 7 1 ± 0 1936 1935 1936 -94.2 ± 3.5 
WH 

26694 2 ± 1 1959 1957 
1956 

(pre-birth material) -92.7 ± 3.5 

WH6   4 ± 1 1959 1955 1956 -318.2 ± 2.9 

WH 6  4 ± 1 1959 1955 1956 -230.4 ± 3.0 

WH 6*  4 ± 1 1959 1955 1956 -63.1± 3.6 

WH 6  4 ± 1 1959 1955 1957 -83.0 ± 3.5 

WH 6  4 ± 1 1959 1955 1959 -92.1 ± 4.0 

WH 3   3 ± 0 1968 1965 1966 -72.2 ± 4.0 

WH 3   3 ± 0 1968 1965 1967 -21.8 ± 3.7 

WH 3   3 ± 0 1968 1965 1968 -98.5 ± 3.7 

WH 3*   3 ± 0 1968 1965 1968 -72.9 ± 3.9 

WH 17 18 ± 1 1982 1964 1966 -74.1 ± 5.0 

WH 17 18 ± 1 1982 1964 1971 -65.6 ± 4.9 

WH 17 18 ± 1 1982 1964 1976 -29.2 ± 4.2 

WH 17 18 ± 1 1982 1964 1981 34.7 ± 4.5 

WH 1  7 ± 1 1978 1971 1972 -59.7 ± 4.2 

WH 1  7 ± 0 1978 1971 1975 -58.3 ± 3.5 

WH 1  7 ± 1 1978 1971 1978 -55.8 ± 3.6 

WH 1*  7 ± 1 1978 1971 1978 1.8 ± 3.8 

WH 12 1 ± 1 1977 1975 1975 58.2 ± 4.9 

WH 8 1 ± 0 1981 1980 1981 75.0 ± 4.2 

WH 25 1 ± 0 1984 1983 1984 79.8 ± 4.1 
 

*: indicates samples that were not demineralized.
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Table 4.  Summary of vertebra and stable isotope data from white shark collected off the coast of 
California.  Sample number identifies the individual white shark. Isotope values are reported as δ13C and 
δ15N relative to standards of Pee Dee Belemnite limestone (δ13C) and atmospheric N2 (δ15N). Overall 
difference in stable isotope ratios is the maximum difference observed across longitudinal sections of an 
individual vertebra. 

Sample # δ13C (‰) δ15N (‰) Estimated 
Age (yr) 

Overall difference in 
δ13C (‰) 

Overall difference 
in δ15N (‰) 

WH 17 -11.39 19.51 2 1.75 0.51 

WH 17 -12.88 20.03 6   

WH 17 -13.14 20.00 11   

WH 17 -13.06 19.81 16     

WH 90 -11.28 17.87 2 1.71 2.16 

WH 90 -11.74 19.51 5   

WH 90 -12.19 20.03 10   

WH 90 -12.99 18.67 18     

WH 128 -11.49 19.87 0 2.05 1.69 

WH 128 -11.73 19.48 2   

WH 128 -11.26 19.13 6   

WH 128 -12.87 18.18 10   

WH 128 -13.31 19.70 15     

WH 6 -11.92 18.31 1 0.82 0.91 

WH 6 -11.87 19.21 2   

WH 6 -11.10 18.86 4     

WH 3 -13.08 17.68 1 0.39 0.53  

WH 3 -12.69 18.21 3    

WH 1 -12.20 20.61 1 2.00 2.85 

WH 1 -11.20 20.78 4   

WH 1 -12.09 20.84 6   

WH 1 -13.01 18.41 7   

WH 1 -13.20 17.93 7     
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Figure Captions 

 

Figure 1.  Radiocarbon (Δ14C) values for white shark (Carcharodon carcharias, solid symbols) 

vertebral cores (n = 22) in relation to year.  The solid line connects values for age estimates from 

known-age juvenile white sharks, the dashed line connects values for years of formation 

associated with the known collection years of the sharks, the unconnected black circles are Δ14C 

values plotted in relation to years based on estimated age, and black triangles are replicate 

untreated samples that were analyzed for Δ14C.  Horizontal error bars represent the age estimate 

uncertainty from calculated as individual CV, year rounded to the nearest whole number, and 

vertical error bars represent the 1 σ AMS analytical uncertainty.  The white shark 14C time series 

is plotted with two regional Δ14C chronologies for the yelloweye rockfish (open circles, Kerr et 

al. 2004) and Pacific halibut otoliths (open squares, Piner and Wischniowski 2004). 

 

Figure 2.  Stable carbon isotope ratio (δ13C) for individual white shark (Carcharodon 

carcharias) vertebral cores (open circles; n = 23) in relation to stable nitrogen ratios (δ15N) 

plotted with mean marine mammal (open triangles; harbor seal (Phoca Vitulina), elephant seal, 

California sea lion (Zalophus californianus), Stellar sea lion (Eumetopias jubata; Burton et al. 

2001, Jamon et al. 1996) and fish stable isotope values (open squares; rockfishes (Sebastes spp.), 

white croaker (Genyonemus lineatus), shortraker rockfish (Sebastes brevispinis), northern 

anchovy (Engraulis mordax), and California market squid (Loligo opalescens; Toperoff 1997, 

Jarman et al. 1996)), and blue shark (crosses, Prionace glauca; R. Leaf personal 

communication). Mean (± SD) isotope ratio for juvenile growth band pairs (closed circle; n = 12, 

growth band pairs 1-5 years) and adult growth band pairs (closed square; n=11, growth band 
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pairs 6-18 years) in white shark vertebrae are shown. This distinction based on ontogenetic shift 

in diet at size 3m.   

 

Figure 3.  Stable carbon ratio (δ13C) for samples (n = 23) taken across longitudinal sections of 

six individual white shark (Carcharodon carcharias) vertebrae. Unique symbols represent δ13C 

results for samples from an individual white shark vertebra. 

 

Figure 4.  Radiocarbon (Δ14C) values from vertebral cores of white shark (Carcharodon 

carcharias; closed circles) vertebrae and three vertebra-based shark records, the northwest 

Atlantic porbeagle (open diamonds, Campana, 2002), northwest Atlantic mako shark (solid 

triangles, Campana, 2002, Ardizzone et al. 2006), and the southern Pacific school shark (open 

squares, Kalish and Johnston 2000).   
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