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 Code Verification Results of an LLNL ASC Code on Some 

Tri-Lab Verification Test Suite Problems (U)  
 

S. R. Anderson, B. L. Bihari, K. Salari, C. S. Woodward 

Lawrence Livermore National Laboratory, Livermore, California 94550  

As scientific codes become more complex and involve larger numbers of 
developers and algorithms, chances for algorithmic implementation mistakes 
increase.  In this environment, code verification becomes essential to building 
confidence in the code implementation.  This paper will present first results of a 
new code verification effort within LLNL’s B Division.  In particular, we will 
show results of code verification of the LLNL ASC ARES code on the test 
problems:  Su Olson non-equilibrium radiation diffusion, Sod shock tube, Sedov 
point blast modeled with shock hydrodynamics, and Noh implosion.  (U) 

Introduction 
With the continued advancement of high performance computing hardware 

technologies and scalable algorithms which can efficiently solve mathematical models of 
physical phenomena, computational codes are more than ever able to deliver solutions to 
highly complex problems.  As a result, simulation is increasingly relied on as a tool for 
providing scientific insight and discovery.  Increasingly, simulation codes are developed 
by teams of scientists, mathematicians, computer scientists, and other domain specialists 
working on various modules or packages.  In addition, these codes often include new and 
intricate mathematical algorithms.  The inherent complexity in the development process 
leads to vulnerability for mistakes in code implementation. 

Code verification, or “the process by which one verifies the theoretical order-of-
accuracy of the numerical algorithms employed by the code to solve its governing 
equations” (Knupp and Salari 2003), is essential to building confidence in the correctness 
of the code implementation.  Such confidence, along with solid validation, is essential 
before one can use a simulation code for predictive purposes.   

Developers and users of simulation codes have employed a number of techniques for 
code verification.  Many of these are introduced in (Knupp and Salari 2003), and we 
refer the reader to this book and the references therein for further information.  In this 
paper, we consider order-of-accuracy verification due to its high level of rigor.  In this 
approach to code verification, one employs a number of test problems with known highly 
accurate solutions that target different segments of the code.  Systematic grid refinements 
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are then applied to extract the observed order-of-accuracy of the implemented 
discretization schemes.  

Over the last several years, astrophysicists and others have conducted accuracy 
studies using a number of benchmark problems (Brock et al., 2006, Fryxell et al., 2000, 
Timmes et al., 2005, Timmes et al., 2006).  This set of problems tests specialized cases of 
diffusion, hydrodynamic motion, and heat conduction.  This paper reports on a new effort 
in LLNL’s B Division to conduct formal code verification.  We have started with 
problems in the Tri-Lab test suite (Brock et al., 2006) as these problems tend to be well 
understood and provide a solid base for conducting verification.   

The rest of the paper is organized as follows.  In the next section we overview our 
approach to verification and order-of-accuracy evaluation.  In the following section, we 
show verification results for the ARES ASC code on the following problems: Su Olson 
non-equilibrium radiation diffusion, Sod shock tube, Sedov point blast, and Noh 
implosion modeled with shock hydrodynamics.  The last section provides a summary of 
our results to date. 

 

Methods 
For the purposes of computing order-of-accuracy of the implemented schemes, we 

make the assumption that the error in the computed solution has the following form,  

( ) ( ) ,tcxcerror rr 21
21 ∆∆ +≤       [1] 

where c1 and c2 are constants independent of the grid spacing and time step size.  Our 
goal is to estimate the exponents (r1 or r2) from the computed solutions.  Our assumption 
that Eq. 1 is an appropriate model of the discretization error relies on the fact that the grid 
spacing and time step are small enough that we are in the asymptotic regime, i.e., that the 
errors are monotonically converging to the correct solution and that the coefficients c1 
and c2 are indeed constant.  In general, when starting an analysis of a given code and 
problem, we will not know when we would expect to be in the asymptotic range, and trial 
and error is used to establish whether the solutions are converging and whether we are 
close enough to be in the asymptotic range. 

 To identify r1, we choose a small ∆t, run the code on a number of successively refined 
spatial grids, and compute the errors.  We then verify that making ∆t smaller does not 
change the computed errors.  This step assures us that the spatial error is dominant.  We 
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One can go through a similar process for r2, but this exponent tends to be much more 
difficult to estimate.  For hydrodynamic problems solved with explicit schemes, a 
stability condition relates the time step size to the grid spacing and limits the step size to 
be fairly small.    As a result, we can try to compute r2 by estimating the spatial error for a 
fixed grid size and varying time step size below the stability limited values.  This is an 
area of current investigation for our effort. 

In this paper, we examine both a diffusion problem with a smooth solution and 
hydrodynamic problems with shocks, or discontinuities, in the solutions.  As a result, we 
consider three norms of the error over the problem domain.  For cell-centered quantities, 
these are given as  
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where fcomp,i is the computed solution at point xi, fexact,i is the exact solution at point xi, i = 
1, …, N, and N is the number of cells in the domain.  For point-centered variables, the 
sums again go over the number of cells, but the computed and exact values at each 
endpoint of the cell are arithmetically averaged, with adjustments made for non-uniform 
grids.  The L∞ norm gives a measure of the maximum error over the computational points 
of the domain.  While this measure can be useful, for problems with shocks solved with 
methods that do not exactly capture the shock location, this norm will return values close 
to the size of the shock and may even oscillate with grid spacing depending on cell 
locations relative to shock position.  For these problems, we use the L1 norm as this norm 
tempers the error at the shock with the grid spacing.  Lastly, for smooth problems, such 
as diffusion, we apply the L2 norm.    The above norms are used to evaluate observed 
order-of-accuracy which in turn is compared to the theoretical order-of-accuracy of the 
implemented numerical schemes. This comparison will establish the degree of confidence 
in the code verification process. 

Results 
In this section, we show results of order-of-accuracy studies for the following test 

problems: Su Olson radiation diffusion, Sod shock tube, Sedov blast, and Noh implosion.  

Before beginning, we note that the code cannot be run with a constant time step size.  
In all runs, the time step is initialized to a small value and allowed to ramp up to a 
specified maximum value.  The final time step size is truncated to enforce the stop time.   
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Su Olson Problem 
The Su Olson problem (Su and Olson, 1996) is a 1D, planar, half-space Marshak 

wave using a Planckian diffusion radiative transfer model coupled to a material 
temperature model. The diffusion is single group and is driven through a mixed type 
boundary condition.  As the radiation energy increases, energy is transferred to the 
material.  The problem is solved for the time dependent dimensionless radiation energy 
density and material temperature. The analytic solution is formulated in terms of integrals 
which contain singularities and which require careful attention for accurate numerical 
integration. We employed an analytic solution code generated by F. Timmes of LANL 
(Timmes, et al., 2005). Through comparison against Mathematica calculations of the 
analytic solution, we determined that the LANL code is accurate to at least 5-6 digits.  

Su and Olson’s original specification of the problem included results for two 
coefficients on the incoming flux.  We chose to look at the case for the lesser one, ε = 
0.1. As specified, the problem has a homogeneous initial condition which we modeled 
using 10-5.  Lastly, the problem is semi-infinite, and we modeled out to 20 cm.  We 
stopped the simulation at 0.004 µs.  At this time, the wave front is not near the right 
boundary, so this domain boundary should have no effect on the presented results.  The 
code employs a second order scheme for spatial discretization of diffusion operators and 
a first order time stepping scheme.  As a result, we expect r1 = 2 and r2 =1. 

The time step history for a maximum step of 10-4 µs is given in Figure 1a.  We see 
that by making the maximum step size 10-5 µs, the code will reach that value quickly and 
maintain a constant step size thereafter. 

 

 

Figure 1a: Time history for Su Olson 
problem runs with maximum step size 
set to 1.0e-4.   

Figure 1b: Differences of computed and 
exact dimensionless energy densities for 
Su Olson problem for grids of (A) 100, (B) 
200, (C) 400, and (D) 800 cells. 
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 Figure 1b shows the differences between the computed and exact dimensionless 

energy density for 4 grids.  We see the differences decreasing with grid refinement as 
expected.  Although not shown, the dimensionless temperature variable shows the same 
trend.  Table 1 shows computed error norms and rates of spatial convergence for this 
problem with a maximum time step of 10-8 µs. We see that energy density shows a 
slightly higher than expected convergence rate, which requires further investigation, but 
the temperature gives results very close to the expected second order value.  

Table 1.  Spatial discretization results for Su Olson problem 

# Zones  100 200 400 800 

Energy Density L2-norm 5.01e-4 1.22e-4 2.72e-5 5.21e-6 
Energy Density r1  2.04 2.16 2.38 

Temperature L2-norm 5.29e-4 1.29e-4 2.88e-5 5.61e-6 

Temperature r1  2.03 2.10 2.04 
 

Table 2 shows computed error norms and rates of temporal convergence for this 
problem with 800 spatial zones.  Here we see the expected first order convergence once 
the step size is decreased below 10-6 µs.  We conclude that the time step size must be this 
small for the spatial discretization error to be dominant.  

Table 2.  Temporal discretization results for Su Olson problem 

Max. time step (µs)  10-4 10-5 10-6 10-7 

Energy Density L2-norm 2.23e-3 6.29e-4 9.18e-5 8.15e-6 
Energy Density r2  0.55 0.84 1.05 

Temperature L2-norm 2.36e-3 6.56e-4 9.61e-5 8.69e-6 

Temperature r2  0.56 0.83 1.04 
 

Sod Shock Tube 
The Sod problem (Sod 1978) is a 1D shock tube where the initial discontinuity 

includes a pressure ratio of 10 and a density ratio of 8.  The gas is at rest on both sides of 
the membrane, and the polytropic index is γ = 1.4 on both sides.  This is a purely 
hydrodynamic problem that tests the code’s ability to accurately capture the three 
important wave transitions: rarefaction waves, contact discontinuities, and shocks.   
Because the latter two waves are, in principle, true discontinuities and this is a genuinely 
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nonlinear system of equations, we expect a spatial order of accuracy no higher than first 
order. 

This problem requires the solution of the Euler equations which are a hyperbolic 
system of conservation laws.  There are three real eigenvalues, and the solution is 
constant along characteristics.  Therefore, there exists a similarity solution that depends 
only on x/t and is constant along these characteristics.  For the specific flow conditions 
outlined above, one can obtain an analytic solution by solving a system of six nonlinear 
algebraic equations with six unknowns.  These equations come from the continuity 
(invariance) of the Riemann invariants across the three wave transitions – two for each 
wave.  We employed Newton’s method in our exact solution code to solve for these 
invariants.   Once the intermediate states that connect the wave transitions are obtained, 
the exact solution is computed through an evaluation of the similarity solution along the 
characteristics.  We used a low tolerance for stopping Newton’s method (1.0e-15) and 
verified that the exact solution results were insensitive to this tolerance at this low value.   

Since the physics code cannot run a truly 1D problem, we ran the Sod problem in 2D 
mode and specified a single cell in the transverse (y) direction.  The size of the domain in 
the y -direction was kept constant (1.0 cm) throughout the refinement process in x.  The 
domain was taken to be 2.0 cm long, and runs were done to a stop time of 0.4 µs.  For all 
runs we took the time step to be 0.5 times the CFL condition.  The solution for this 
problem consists of three waves moving with speeds u, u+c and u-c, where u is the 
velocity and c is the speed of sound.  The rarefaction wave moves to the left with speed 
u-c, while the contact discontinuity and the shock move to the right with speeds u and 
u+c, respectively.  The two end boundary conditions are fixed at initial values, and the 
calculations were stopped before any wave reached the boundary.   Except for the 
expansion (rarefaction) region, the solution contains piecewise constant segments 
separated by discontinuities. 

Table 3 shows results in both the L∞ and L1 norms for running the Sod problem in 
Lagrangian mode.  We see a spatially first order accurate result in the L1 norm for density 
and pressure but not velocity in the first four grid refinements.  The convergence rate 
further deteriorates for all computed variables on the most refined grids.   This 
deterioration is an area of current investigation and could be due to a number of factors, 
including interpolation roundoff errors, roundoff stemming from very high aspect ratios, 
and implementation mistakes.   In addition, it is possible that the Lagrangian step is 
accomplished by uneven movement of grid points along the y = 0 and y = 1 boundaries 
when the grid becomes dense.  We also see that the L∞ norm is either close to constant or 
even slightly oscillatory.  This phenomenon arises due to the inability of the numerical 
scheme to exactly capture the shock position.  This behavior is typical of shocked flows 
where the scheme is not fully conservative.    



UNCLASSIFIED 
Proceedings of the NECDC 2006 
 

 

Anderson, S.R., et al. 7 

UNCLASSIFIED 
 

 

Table 3.  Spatial convergence results for Sod problem in Lagrangian mode 

# Zones  360 720 1,440 2,880 5,760 11,520 

Density L1-norm 6.24e-3 3.07e-3 1.50e-3 7.88e-4 3.99e-4 2.23e-4 
 r1   1.02 1.03 0.93 0.98 0.84 
 L∞-norm 1.72e-1 1.72e-1 1.72e-1 1.72e-1 1.72e-1 1.72e-1 
 r1  0.0 0.0 0.0 0.0 0.0 

Pressure L1-norm 3.43e-3 1.70e-3 8.51e-4 4.22e-4 2.10e-4 1.09e-4 

 r1   1.01 1.00 1.01 1.01 0.95 
 L∞-norm 6.73e-2 5.43e-2 7.52e-2 6.16e-2 6.14e-2 9.13e-2 
 r1  0.31 -0.47 0.29 0.01 -0.57 

Velocity L1-norm 7.97e-3 4.16e-3 1.76e-3 1.01e-3 4.34e-4 2.36e-4 

 r1   0.94 1.24 0.79 1.23 0.88 
 L∞-norm 5.86e-1 6.57e-1 3.2e-1 6.16e-1 2.57e-1 4.73e-1 
 r1  -0.17 1.04 -0.94 1.26 -0.88 

 

Figure 2 shows the computed density, pressure, and velocity for this problem on a 
number of grid resolutions.  Pressure and velocity are Riemann invariants across the 
contact discontinuity.  There are no visible undershoots or overshoots at the shock.  
However, there are small, but visible oscillations in the neighborhood of the contact 
discontinuity which do not seem to decrease appreciably with resolution.  The small 
oscillations near the corners of the rarefaction wave seem to be responding to grid 
refinement, however  We should note that there were no undershoots at the base of the 
shock in either density or pressure.  Lastly, we note that total energy did not change with 
time for all grids.   
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Figure 2: Computed and exact density (gm/cc), pressure (Mbars), and velocity (cm/µs) 
versus position (cm) for Sod problem on 180, 2880, and 11520 cell grids. 

Sedov Problem 
The Sedov problem (Sedov 1959) models a 1D spherical point explosion initiated by 

a set quantity of energy deposited at the origin.  The analytical solution is self-similar and 
yields pressure, density, and fluid velocity.  Generating the self-similar solution requires 
numerical integration of an ODE and a numerical root-find.  We employed an analytic 
solution code generated by F. Timmes of LANL (Timmes, et al., 2005) and verified that 
the generated solution is insensitivie to the tolerances for the root-find and numerical 
integration at the level of resolution of the physics code.  This is a purely hydrodynamic 
problem that tests the code’s ability to accurately capture the position and magnitude of 
an outward moving shock.   Due to the shock present in the solution, we again do not 
expect greater than first order spatial accuracy. 

We conducted verification studies for the Lagrangian formulation using a standard set 
of parameters for this problem.  In particular, we solved the problem on a sphere with 
radius of 1.2 cm, an initial energy of 4,935.9e12 ergs, an ideal gas with γ = 1.4, a stop 
time of 0.01 µs, and a fixed inner radius of 0.01 cm where the initial energy is deposited 
for all grid resolutions.  For all runs we took the time step to be 0.5 times the CFL 
condition. 

Figure 3 shows the computed and exact density, pressure, and velocity for running the 
Sedov problem in Lagrangian mode on a number of grid resolutions.  We see that for 
very coarse grids, the code predicts the shock location too far out.  However, the location 
continues to get closer to the exact solution with grid refinement and by the finest grids, 
we are visually close to the true solution. 

 

Pressure Density Velocity 
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Figure 3: Computed and exact density (gm/cc), pressure (Mbars), and velocity (cm/µs) 
versus position (cm) for Sedov problem in Lagrangian mode on 240, 480, 960, 1920, and 
3840 cell grids. 

Table 4 shows results in both the L∞ and L1 norms for running the Sedov problem in 
Lagrangian mode.  For both density and pressure we see that for fairly large grid 
spacings, the code is in the asymptotic regime, and we see first order spatial convergence.  
Velocity is a little slower to converge, however, but does show first order convergence by 
the fourth grid refinement.  As with the Sod problem, we also see that the L∞ norm is 
close to constant.  As can be seen from Figure 3, the norm is just reflecting the size of the 
shock since the computed solutions are approaching the exact solution from the right.   

Table 4.  Spatial convergence results for the Sedov problem in Lagrangian mode 

# Zones  240 480 960 1,920 3,840 

Density L1-norm 5.70e-2 2.63e-2 1.31e-2 6.50e-3 3.01e-3 
 r1   1.12 1.01 1.01 1.11 
 L∞-norm 2.88 2.94 2.97 2.98 2.99 

Pressure L1-norm 18.6 8.44 4.15 2.05 9.10e-1 
 r1   1.14 1.02 1.02 1.17 
 L∞-norm 1.20e3 1.20e3 1.20e3 1.20e3 1.20e3 

Velocity L1-norm 4.09e-1 1.81e-1 1.13e-1 5.52e-2 2.57e-2 
 r1   1.18 0.67 1.04 1.10 
 L∞-norm 30.1 30.0 30.0 30.0 30.1 

% Change in Total Energy  4.37 1.91 0.98 0.46 0.21 
 

We noted above that the behavior of schemes to miss the shock position is typical of 
shocked flows where the scheme is not fully conservative.  Figure 4 shows total energy 
versus time for the Sedov problem, and from it we can see that the scheme is indeed not 

Pressure Density Velocity 
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fully conservative.  We see for all cases that the total energy increases shortly after the 
simulation begins.  As the grid is refined, however, we also see that the amount of 
increase in energy decreases and appears to be converging to a small number.  We would 
expect this convergence given the above quantitative results indicating that the solution is 
significantly improving with grid refinement.  In fact, as we saw above, the solution is 
converging about linearly with grid refinement, and we see this same trend in the percent 
change of total energy given in Table 4. 

 

Figure 4: Total energy (1012 erg) versus time (µs) for the Sedov problem in Lagrangian 
mode on various grids: (A) 240, (B) 480, (C) 960, (D) 1,920, (E) 3,840. 

We conducted a second study with the Sedov problem using the Eulerian mode.  Here 
we used different problem specifications corresponding to a set of parameters received 
from the code group.  In particular, we solved the problem on a sphere with radius of 1.2 
cm, an initial energy of 1.0e12 ergs, an ideal gas with γ = 1.4, a stop time of 0.12 µs, and 
a fixed inner radius of 0.01 cm where the initial energy is deposited for all grid 
resolutions.  For all runs we took the time step to be 0.5 of that given by the CFL 
condition. 

Figure 5 shows the computed and exact density, pressure, and velocity for running the 
Sedov problem in Eulerian mode on a number of grid resolutions.  We see here that the 
shock is generally in the correct position, but the scheme in the code diffuses it too much 
on coarse grids.  With grid refinement, however, we see the front get sharper, and by the 
finest grids, we are visually close to the exact solution. 

 

Total Energy vs. Time 
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Figure 5: Computed and exact density (gm/cc), pressure (Mbars), and velocity (cm/µs) 
versus position (cm) for Sedov in Eulerian mode on 400, 800, 1600, and 3200 cell grids. 

Table 5 shows results in both the L∞ and L1 norms for running this problem in 
Eulerian mode.  From this data, we can see that we are not yet in the asymptotic regime, 
as the convergence rates have not fully “settled down” to a steady value.  Thus, we 
cannot say yet whether we see the expected first order convergence in the L1 norm for 
density, pressure, and velocity.  We do see that both pressure and velocity seem to be 
approaching the first order convergence, and we would expect to see this rate with further 
refinement.  At this time, we do not have a definite explanation for why the velocity is 
not showing signs of convergence, and we are actively investigating possible causes.   

Table 5.  Spatial convergence results for the Sedov problem in Eulerian mode 

# Zones  200 400 800 1,600 3,200 

Density L1-norm 2.25e-2 2.24e-2 2.00e-2 8.42e-3 4.00e-3 

 r1   0.00 0.17 1.25 1.07 
 L∞-norm 1.61 3.42 4.63 4.50 3.76 
 r1  -1.08 -0.44 0.04 0.26 

Pressure L1-norm 1.21e-2 4.97e-3 4.27e-3 3.46e-3 1.54e-3 

 r1   1.28 0.22 0.30 1.17 
 L∞-norm 1.25 6.03e-1 1.32 1.74 1.53 
 r1  1.06 -1.13 -0.40 0.19 

Velocity L1-norm 9.51e-3 4.13e-3 1.26e-3 7.01e-4 7.36e-4 

 r1   1.20 1.72 0.84 -0.07 
 L∞-norm 1.02 9.66e-1 5.88e-1 4.80e-1 8.01e-1 
 r1  0.08 0.71 0.29 -0.74 

% Change in Total Energy  2.30 -2.45 -1.96 -1.31 -0.71 
 

Pressure Density Velocity 
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Unlike the previous two problems, we see that the L∞ norm is oscillatory for all 
quantities.  These oscillations are due to the fact that the computed solution has the shock 
very close to the correct position, but, since we do not have nested grids, computed errors 
near the shock may increase or decrease as cell centers are changed. 

Figure 6 shows the total energy versus time for these runs.  We see that total energy 
decreases near the beginning of the run and that this decrease gets smaller with grid 
refinement below 400 cells.  For very coarse grids, the energy actually increases then 
levels out.  This trend can be seen from the percent change in energy in Table 5.  For 
more refined grids, convergence of total energy conservation is still getting significantly 
better with grid refinement, and we conclude that we are not yet fully in the asymptotic 
regime where we would expect to be very close to the solution.   

 

Figure 6: Total energy (1012 erg) versus time (µs) for the Eulerian mode on varying grid 
resolutions: (A) 400, (B) 800, (C) 1600, and (D) 3200. 

Noh Problem 
The Noh problem (Noh, 1987) models a 1D spherical hydrodynamic shock initiated 

in an ideal gas with a uniform, radially inward fluid flow. The shock forms at the origin 
and propagates outward as the flow stagnates.  The analytic solutions for density, 
pressure, and fluid velocity are straightforward.  Only algebraic computations are needed 
and no numerical integrations or root-finds are required.   Again, due to the presence of a 
shock in the solution, we do not expect greater than first order spatial accuracy. 

For this problem, we conducted verification studies for the Lagrangian formulation 
using a standard set of parameters.  In particular, we solved the problem on a sphere with 
radius of 1.0 cm, an initial velocity of -1.0 cm/µs, an ideal gas with γ = 5/3, a stop time of 
0.6 µs, and a reference density of 1.0 gm/cm3.  For all runs we took the time step to be 0.5 
times the CFL condition. 

Total Energy vs. Time 
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Table 6 shows results in both the L∞ and L1 norms for running the Noh problem in 
Lagrangian mode.  For both velocity and pressure we see that for fairly coarse grids, the 
code is in the asymptotic regime, and we see the expected first order spatial convergence.  
Density is converging but at a slower rate.  Although not shown here, the L∞ norm is 
close to constant for all solution variables, and we again conclude that this just reflects 
the size of the shock. 

Table 6.  Spatial convergence results for the Noh problem in Lagrangian mode 

# Zones  200 400 800 1,600 3,200 

Density L1-norm 9.34e-1 5.22e-1 2.88e-1 1.58e-1 8.55e-2 

 r1  0.84 0.86 0.87 0.88 

Pressure L1-norm 9.65e-2 4.87e-2 2.44e-2 1.24e-2 6.11e-3 

 r1  0.99 1.00 0.98 1.02 

Velocity L1-norm 4.98e-3 2.50e-3 1.25e-3 6.26e-4 3.15e-4 

 r1  0.99 1.00 1.00 0.99 

% Change in Total Energy  -0.172 -0.085 -0.042 -0.021 -0.011 
  

Figure 7a shows computed and exact densities for varying grid sizes.  As expected 
from the above data, the computed solutions are indeed converging to the exact solution.  
We also see that the most significant deviations from the exact solution are nearest the 
“wall” or left boundary, as would be consistent with wall heating.  Figure 7b shows total 
energy as a function of time for the 4 most refined grids.  As with the other test problems, 
we see that total energy is not conserved.  The difference here is that the scheme slowly 
loses energy over time as opposed to suffering a loss at the start and conserving from that 
point forward.  We also see that as the grid is refined, energy conservation improves 
significantly.  We note on this problem that the code developers choose a discretization 
scheme that more accurately handles compression as a trade-off to more precisely 
conserving energy.   
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Figure 7a: Computed and exact density 
as a function of radius for the Noh 
problem for varying grids: (A) 400, (B) 
800, (C) 1600, (D) 3200, and (E) exact.   

Figure 7b: Total energy versus time for 
the Noh problem for varying grids: (A) 
400, (B) 800, (C) 1600, and (D) 3200. 

    

Summary 
We have shown initial results of code verification studies of an LLNL ASC code on 

some Tri-Lab Test Suite problems.  Results on the Su Olson diffusion test problem show 
that the code is giving at least the expected rates of convergence for both the spatial and 
temporal discretizations.  The Sod shock tube problem revealed first order spatial 
convergence in the L1-norm as expected with minor degradation for very refined meshes.  
We saw good first order spatial convergence in the L1-norm for the Sedov problem with 
Lagrangian mode, but not as good results in Eulerian mode.   Lastly, we also saw first 
order spatial convergence for pressure and velocity for the Noh problem, but a rate of 
only about 0.88 for the density.  These results for the Noh problem potentially highlight a 
modification of the scheme that still is correct but with lower order-of-accuracy for the 
density or a possible coding mistake. The L∞-norm for these problems showed no 
convergence, but this was expected since algorithms implemented in the code reflect a 
tradeoff of energy conservation for other properties.  If a scheme does not precisely 
conserve energy, the shock position will not be computed perfectly and the L∞-norm will 
reflect the shock size.  In light of this last issue, it should be noted that the algorithms in 
the code should be considered in choosing the norms for order-of-accuracy assessments.   
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