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Abstract 

 Atmospheric general circulation models (GCMs) used to project climate 

responses to increased CO2 generally omit irrigation of agricultural land. Using the 

NCAR CAM3 GCM coupled to a slab-ocean model, we find that inclusion of an extreme 

irrigation scenario has a small effect on the simulated temperature and precipitation 

response to doubled CO2 in most regions, but reduced warming by as much as 1º C in 

some agricultural regions, such as Europe and India. This interaction between CO2 and 

irrigation occurs in cases where agriculture is a major fraction of the land surface and 

where, in the absence of irrigation, soil moisture declines are projected to provide a 

positive feedback to temperature change. The reduction of warming is less than 25% of 

the temperature increase modeled for doubled CO2 in most regions; thus greenhouse 

warming will still be dominant. However, the results indicate that land use interactions 

may be an important component of climate change uncertainty in some agricultural 

regions. While irrigated lands comprise only ~2% of the land surface, they contribute 

over 40% of global food production. Climate changes in these regions are therefore 

particularly important to society despite their relatively small contribution to average 

global climate. 
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Introduction 

The value of models that project societal impacts of climate change depend 

largely on the ability to make clear and accurate statements about the uncertainties 

associated with such projections. One impact of great interest is the effect of climate 

change on regional or global crop production, and the associated changes in food 

security. Uncertainties for these impacts depend largely on uncertainties associated with 

climate model projections over agricultural regions [Parry, et al., 2005].Therefore, a 

clear understanding of climate uncertainty over agricultural regions is important for 

evaluating climate change mitigation and adaptation strategies. Irrigated systems are 

particularly relevant, as they provide roughly 40% of global food production [FAO, 2002] 

despite covering just 2% of global land surface area [FAO, 2004].  

 Quantification of climate uncertainty is commonly achieved by comparing 

outputs from several different general circulation models (GCMs) [IPCC, 2001; Palmer, 

et al., 2005]. However, this approach can only capture uncertainties due to processes that 

are represented differently in different models. As most GCMs were designed primarily 

to study global scale climate changes, they often treat very simply or entirely omit 

processes that are important in agricultural regions. For example, according to the 

documentation for the 22 models used for projection of future climate for the next 

Intergovernmental Panel on Climate Change (IPCC) report (available at www.pcmdi-

llnl.gov), only eight include some representation of land use, and none include irrigation. 

Previous work has shown that changes in irrigation extent can have substantial 

effects on local climate [Adegoke, et al., 2003; Lobell, et al., 2006]. Thus, climate 

projections in areas with expansion or retraction of irrigation are subject to uncertainties 
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related to the magnitude of, and climatic response to, this land use change. However, if 

the effect of irrigation is independent of other climate forcings, then estimates of 

irrigation’s impact on climate can simply be added to projections based on other forcings, 

such as greenhouse gas increases. This study investigates whether the effects of irrigation 

and CO2 on climate are indeed independent or, instead, interacting. If the latter is true, 

then estimates of CO2 induced warming over irrigated regions may be biased in the 

current suite of GCMs that ignore irrigation.  

One reason to expect an interaction is that GCMs often simulate a reduction of 

soil moisture in future climate [Manabe, et al., 1981; Wetherald and Manabe, 1995; 

Manabe, et al., 2004; Wang, 2005], in particular for the summer months in middle 

latitudes where much of agricultural activity occurs. Moisture decreases are driven 

largely by the nonlinear increase in atmospheric saturation vapor pressure, and thus 

evaporation rates, with higher temperatures [Wetherald and Manabe, 1995]. These 

moisture decreases subsequently lead to an increase in the fraction of incident radiation 

partitioned to sensible heat flux, which provides a positive feedback to temperature 

change as more energy is used to heat the land surface rather than evaporate water. 

Irrigation eliminates the potential for this feedback because soil moisture is maintained 

via human activity (assuming that irrigation water availability is unaffected by climate 

change). At issue here is whether the presence of irrigation has the potential to 

significantly modify the response of climate to CO2 over agricultural regions, and if so 

where these interactions are most likely to be important. 

 

Model and Experiment Design 
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We used the Community Atmosphere Model version 3.0 (CAM) [Collins, et al., 

2004] coupled to version 3.0 of the Community Land Model (CLM) [Oleson, et al., 

2004]. CAM has 26 levels in the vertical dimension and was run using 2.0° latitude x 2.5° 

longitude resolution using the Finite Volume (FV) dymanical core. We used a version of 

CAM that was coupled to a slab-ocean / thermodynamic sea-ice mode to allow 

interaction between atmosphere, ocean and sea ice. The horizontal ocean heat transport 

and mixed layer depth for the oceanic surface mixed layer were prescribed to ensure 

realistic sea surface temperatures and ice distributions for the present climate.  

The CLM model, described in detail by Bonan et al. [2002], includes up to four 

different plant function types (PFT’s) within each 2.0° x 2.5° grid cell, with a single PFT 

used to represent croplands. Multiple soil columns are simulated for grid cells with 

croplands, with cropland soils treated separately from natural vegetation. The percent of 

each grid cell with cropland (Figure 1a) is defined in CLM from satellite-based land 

cover maps [Loveland, et al., 2000]. Monthly values of LAI for each PFT in CLM are 

prescribed based on satellite measurements from 1992-1993 [Bonan, et al., 2002], and 

thus do not respond to CO2 changes. However, the physiological effects of CO2 on 

canopy photosynthesis and stomatal conductance are modeled within CLM [Oleson, et 

al., 2004].  

 Four 50-year simulations were performed, with the first 20 years of each 

simulation treated as spin-up and the last 30 years used for analysis. The first two runs 

included the default land surface in CLM, which does not include irrigation, and 

atmospheric CO2 levels of 355 ppm (CLM default) and 710 ppm, respectively. The 

difference between these two runs provided an estimate of the climate response to 
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doubled CO2 in the absence of irrigation. These experiments were then repeated, but with 

soil moisture in all agricultural soil columns maintained at soil saturation percentage 

throughout the simulation. This extreme irrigation scenario was not intended to represent 

reality, where many regions are not irrigated and even irrigated soils are usually below 

saturation. Instead, the experiments provide a simple measure of the sensitivity of 

greenhouse warming to irrigation practices. Figure 1b shows a recent estimate of the 

percent of actual land surface that is irrigated [Doll and Siebert, 2000], for comparison 

with the modeled distribution (Figure 1a). 

 

Results and Discussion 

 Doubling of CO2 in the absence of irrigation resulted in increases of global mean 

temperature by 2.2 °C and precipitation by 4 %. Consistent with nearly all GCMs, the 

simulated warming was greatest at high latitudes (Figure 2a) because of decreases in sea 

ice and snow extents [Dai, et al., 2001; IPCC, 2001]. Soil moisture exhibited significant 

changes in many regions (Figure 2b) with notable reductions in Europe, southern India, 

Southeast Asia, western United States, and northern South America. Increases in soil 

moisture were simulated in northeast Africa, Saudi Arabia, and western South America. 

Reductions in soil moisture corresponded to increases in the ratio of sensible to latent 

heat fluxes (not shown), which thus provided a positive feedback to temperature changes 

in these regions.  

 In the presence of irrigation, doubling of CO2 resulted in global mean increases of 

temperature by 2.1 °C and precipitation by 4 %. Thus, even an extreme scenario of 

irrigating all agricultural soils to saturation had little effect on the global climate 
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sensitivity to CO2. In many agricultural regions, such as the corn belt of the U.S. or most 

of South America and China, irrigation had negligible effects on the climate response to 

CO2 (Figure 2c). However, temperature changes differed significantly in several regions, 

in particular those with a positive soil moisture feedback in Figure 2b. Compared to the 

simulations without irrigation, the annual mean temperature response to doubled CO2 was 

roughly 0.5°C lower in southern India and Southeast Asia in the presence of irrigation, 

and 1.0 °C lower throughout much of Europe. While significant, these temperature 

differences represented less than 25% of the simulated warming from doubled CO2 in 

most regions (Figure 2d).  

 Another way irrigation could modify CO2 response is through the addition of 

extra water vapor, a strong greenhouse gas, to the atmosphere in response to elevated 

CO2. However, if water vapor feedbacks were important one would expect to see 

interactions over all irrigated regions, which was not observed. This agrees with Boucher 

et al. [2004], who found that direct radiative effects of water vapor from irrigation were 

much smaller than temperature effects of increased surface latent heat flux. 

The results presented here suggest that simulated climate changes in some 

agricultural regions may be biased if current models anticipate feedbacks from soil 

moisture that, in reality, will not occur because of irrigation. In the present model, 

irrigation tended to mitigate the simulated temperature response to doubled CO2. It is also 

possible, at least in principle, that irrigation could amplify the simulated response, if an 

agricultural region is located within an area simulated to have a strong negative soil 

moisture feedback.  
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A recent inter-comparison of 15 GCMs found that modeled soil moisture changes 

for an A1b emission scenario were consistently negative in the summertime for southern 

Europe, southwestern U.S., Australia, and northern and southern Africa [Wang, 2005]. 

Southeast Asia also exhibited significant declines in moisture content for most models, 

while changes in India were inconsistent among models. No regions were found to have a 

consistent increase in summer soil moisture. Thus, the results presented here for Europe 

appear more robust than those for South and Southeast Asia. In addition, it appears 

unlikely that including irrigation would ever increase projected warming, given a lack of 

agricultural regions with a negative soil moisture feedback. 

The use of extreme irrigation scenarios in this study was useful for bracketing the 

potential impact of irrigation on GCM simulations of greenhouse gas responses. For 

example, it appears that irrigation is relatively unimportant for simulating temperature or 

precipitation responses at the global scale, given the limited intersection of agricultural 

land and regions of strong simulated soil moisture feedbacks. At the regional scale, the 

presence of irrigation may significantly mitigate greenhouse warming but is unlikely to 

aggravate it. Simulations of more realistic distributions of irrigation (e.g., Figure 1b) 

would be useful for assessing the actual impact of irrigation on future regional climates. 

 While this study focused on the interaction between irrigation and CO2, a 

comparison of temperature changes for doubled CO2 with those for irrigation are also of 

interest and readily evaluated from the experiments. Table 1 shows that cooling from an 

extreme irrigation scenario was ~0.5º C larger in magnitude, on average, than warming 

from doubled CO2 over cropland regions in summer months. Conversely, irrigation-

induced cooling was lower than CO2-induced warming in winter. Table 1 also reveals 
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that the modification of CO2 warming by irrigation, which was ~0.3º C in summer and 

~0.2º C in winter, was roughly one-tenth the magnitude of the direct cooling influence of 

irrigation.  

Thus, accounting for changes in irrigation are likely more important than the 

interaction between irrigation and CO2 when projecting climate change in regions with 

substantial land use change. However, these results depend on how irrigation was 

represented in the model and should be compared with other models. The results are also 

potentially sensitive to the lack of LAI response in CLM to irrigation or CO2, and the 

modeled response of stomatal conductance to CO2 [Betts, et al., 1997]. 

 

Conclusions  

 GCM’s are nearly universal in their simulation of summertime soil drying in 

response to increased atmospheric CO2 in many important agricultural regions, such as 

Europe and southern North America. Thus, modeled temperature changes over these 

regions due to historical or future CO2 changes likely include, to some extent, a positive 

feedback between moisture change and near-surface air temperatures. The results 

presented here indicate that irrigation can significantly modify (i.e. interact with) 

greenhouse warming by eliminating this moisture feedback. Inclusion of irrigation in 

GCMs would thus likely reduce simulated warming in some agricultural regions, 

although the effect on global mean temperature is likely to be small relative to the 

consequences of the enhanced greenhouse effect by increased greenhouse gas 

concentrations. Given that a disproportionate amount of food production originates in 

irrigated regions, however, it is possible that the interaction of irrigation and CO2 is an 
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important source of overall uncertainty for projecting societal impacts of climate change. 

Thus, future work to better understand and reduce this source of climate uncertainty in 

heavily irrigated regions appears warranted. 
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Table 1. Average temperature change (ºC) over land in response to extreme irrigationa 
(first 2 rows) or doubled CO2 (last two rows). 

 JJA DJF 

Model Experiments All land Cropland only All land Cropland only 

1xCO2 irr  - 1xCO2no-irr -1.8 -2.7 -0.9 -1.4 

2xCO2 irr  - 2xCO2no-irr -2.1 -3.0 -1.1 -1.6 

2xCO2 no-irr  - 1xCO2no-irr 2.7 2.2 2.6 2.1 

2xCO2 irr  - 1xCO2irr 2.4 1.9 2.4 1.9 
aIrrigation corresponds to all cropland grid cells being maintained at soil saturation. 
JJA = June-July-August; DJF = December-January-Februrary.  
 

 

 

Figure Legends: 

1) (a) The percentage of each 2.0° x 2.5° grid cell defined as cropland within CAM3. (b) 

The estimated percentage of each 2.0° x 2.5° equipped for irrigation [Doll and Siebert, 

2000]  

 

2) Annual average surface (a) temperature (°C) and (b) soil moisture (%) changes for 

doubled CO2 in the absence of irrigation, [2xCO2 – 1xCO2]no-irr. (c) Difference in 

temperature response to doubled CO2 with and without irrigation, [2xCO2 – 1xCO2]irr – 

[2xCO2 – 1xCO2]no-irr. (d) Ratio (%) of same responses, [2xCO2 – 1xCO2]irr / [2xCO2 – 

1xCO2]no-irr. Gray cells are not significant at p = 0.05.  
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