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An Introduction to Algebraic Multigrid

Robert D. Falgout∗

June 12, 2006

Abstract

Algebraic multigrid (AMG) solves linear systems
based on multigrid principles, but in a way that only
depends on the coefficients in the underlying matrix.
The author begins with a basic introduction to AMG
methods, and then describes some more recent ad-
vances and theoretical developments.

Introduction

Multigrid methods are called scalable or optimal be-
cause they can solve a linear system with N un-
knowns with only O(N) work. Since this work
can be effectively distributed across a parallel ma-
chine, multigrid methods are able to solve ever larger
problems on proportionally larger parallel computers
in essentially constant time, making them an ideal
solver for large-scale scientific simulation.

Multigrid methods achieve optimality by employ-
ing two complementary processes: smoothing and
coarse-grid correction. Smoothing involves the appli-
cation of a smoother (also called a relaxation method),
which is generally a simple iterative method like
Gauss-Seidel. Coarse-grid correction involves trans-
ferring information to a coarser grid through restric-
tion, solving a coarse-grid system of equations, then
transferring the solution back to the fine grid through
interpolation (also called prolongation). In the classi-
cal geometric multigrid setting (see Yavneh’s article
in this issue), smoothing reduces (oscillatory) high-
frequency error, while coarse-grid correction elimi-
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nates (smooth) low-frequency error. Although this
geometric interpretation of multigrid was critical to
the early development of the method and still plays
an important role in simulation today, there are
classes of problems for which geometric techniques
fall short (see the “Operator-Dependent Interpolation
and AMG” sidebar).

Algebraic multigrid (AMG) [2, 3, 4] was introduced
as a method for solving linear systems based on multi-
grid principles, but in a way that requires no ex-
plicit knowledge of the problem geometry. The AMG
method determines coarse “grids”, inter-grid transfer
operators, and coarse-grid equations based solely on
the matrix entries. Since the original introduction of
the method, a wide variety of AMG algorithms have
been developed that target different problem classes
and have different robustness and efficiency proper-
ties. In this paper, we give a basic introduction to
AMG methods, beginning with a description of the
classical algorithm of Brandt, McCormick, Ruge, and
Stüben, then moving on to some more recent ad-
vances and theoretical developments. For a more
thorough introduction to AMG, see [5, 6]. For an
overview of parallel AMG methods, see [7].

AMG Basics

Before we get into the specifics of particular AMG al-
gorithms, it is important to set the stage by introduc-
ing the basic ingredients of the method. Since AMG
is a matrix-based method, we start with a purely lin-
ear algebra point-of-view.

We are interested in solving the linear system

Au = f , (1)

where A is a real n × n matrix and u, f are vec-
tors in Rn. To keep things simple, we assume that
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Operator-Dependent Interpolation and AMG

Operator-dependent interpolation was introduced in 1981 [1] to solve diffusion problems with large jumps in
coefficients. Unlike geometric interpolation techniques, operator-dependent interpolation takes into account
coefficients in the discrete operator. To illustrate this idea and see the connection to AMG, consider two
simple 1D problems (on domain Ω with boundary Γ) discretized with piecewise-linear finite elements. The
two problems, together with the ith discrete equations for their differential terms, are as follows:

(a) −uxx = fa on Ω; u = ga on Γ
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(b) −(kux)x = fb on Ω; u = gb on Γ
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It is well known that linear interpolation works well for problem (a), but not for problem (b) if k has large
jumps. However, we can derive an appropriate interpolation for problem (b) by noticing that it is equivalent
to problem (a) if the grid spacing satisfies hi− 1

2
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operator-dependent interpolation for (b)
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From this example, we see that geometric information alone is not enough to solve some classes of problems.
AMG takes this idea to the extreme by ignoring geometric information altogether. If we compare the discrete
equations in (a) and (b) to the ith matrix equation, (Au)i = ai,i−1ui−1 + ai,iui + ai,i+1ui+1, we see that
both linear and operator-dependent interpolation can be written entirely in terms of matrix coefficients:

ui =
(
−ai,i−1

ai,i

)
ui−1 +

(
−ai,i+1

ai,i

)
ui+1.
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A is symmetric positive definite (SPD). Recall that
the two main components of multigrid are smooth-
ing and coarse-grid correction. Coarse-grid correction
involves operators that transfer information between
fine and coarse “grids”, which are denoted in linear
algebra terms simply as the vector space Rn and the
lower-dimensional (coarse) vector space Rnc . Inter-
polation (prolongation) maps the coarse grid to the
fine grid and is just the n×nc matrix P : Rnc → Rn.
Restriction maps the fine grid to the coarse grid, and
is the transpose of interpolation (PT ) in this paper.
The two-grid method for solving (1) is then defined
as follows:

Do ν1 smoothing steps on Au = f . (2a)
Compute residual r = f −Au = Ae. (2b)
Solve Acec = PT r. (2c)
Correct u← u + Pec. (2d)
Do ν2 smoothing steps on Au = f . (2e)

In (2b), e is called the error and is the difference be-
tween the exact solution and the current iterate, i.e.,
e = A−1f − u. In (2c), we solve for a coarse ap-
proximation, ec, to this error. In practice, the coarse
system in (2c) is solved by recursively re-applying
algorithm (2), yielding a hierarchy of coarse grids,
transfer operators, and coarse-grid systems. Because
AMG is based only on the matrix A, there are few
options for defining the coarse system Ac. The most
common approach is to use the Galerkin operator,
Ac = PT AP , which has the nice property that it
minimizes the error after correction (in the energy
norm).

Adding geometry to the discussion

Although the goal of AMG is to solve matrix equa-
tions using multigrid principles, it is difficult to get an
intuitive understanding of the method from a purely
matrix point-of-view. Since many of the problems we
are interested in solving come from discretized par-
tial differential equations (PDE’s), one of the best
approaches for visualizing AMG is to relate the ma-
trix equations back to an underlying PDE. We rely
heavily on this technique in the paper. In fact, our
descriptions almost exclusively use PDE’s on two-
dimensional structured grids. It is important to re-
member that, although our illustrations contain ge-
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Figure 1: Illustration of the matrix adjacency graph
for a 5-point discretization of the Laplace equation
on a 5× 5 uniform grid. The edges between points i
and j correspond to nonzero entries aij in the matrix.
The discretization stencil (bottom left) is just a row
in the matrix.

ometry, AMG does not actually use any geometric
information.

The adjacency graph of the matrix plays an im-
portant role in AMG. The graph has a directed edge
from vertex i to vertex j for every nonzero entry aij

in the matrix A (see Figure 1). The grid in AMG is
simply the set of vertices in the graph, i.e., grid point
i is just vertex i. If the linear system comes from the
discretization of a PDE, then we can draw the grid
points in their actual geometric locations along with
the associated graph. We illustrate this in Figure 1
for a simple 2D Laplacian problem.

Algebraic smoothness

In AMG, the smoother is generally fixed to be a sim-
ple pointwise method such as Gauss-Seidel. Error not
eliminated by the smoother is called smooth error,
and must be handled by coarse-grid correction (recall
algorithm (2)). In the classical geometric multigrid
setting, smooth error is smooth in the usual geomet-
ric sense. In the AMG setting, however, smooth error
may actually be geometrically oscillatory. We often
use the term algebraically smooth to be clear about
the distinction.

To see this, consider the following simple 2D exam-
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ple, discretized by finite elements on a uniform mesh:

−auxx − buyy = f on Ω
u = g on Γ

a = b a » b
(3)

Figure 2 shows the error after 7 Gauss-Seidel itera-
tions. We see that the error is geometrically smooth
in both the x and y directions in the left-half plane
where the problem is isotropic, but it is geometrically
oscillatory in the y direction in the right-half plane
where the problem is anisotropic. As illustrated in
the figure, AMG coarsens in directions of geometric
smoothness. That is, in the left-half plane, the grid
is coarsened in both directions (so-called full coars-
ening), but in the right-half plane, the grid is coars-
ened only in the x direction (so-called semicoarsen-
ing). This ability of AMG to “follow the physics”
during coarse-grid correction is another advantage it
has over geometric approaches.

The key to designing an effective AMG algorithm
is to have a good characterization of smooth error.
In general, smooth error corresponds to eigenvectors
of A with small associated eigenvalues (we call these
small eigenmodes for short). In other words, smooth-
ing damps large eigenmodes, leaving coarse-grid cor-
rection to eliminate the remaining small eigenmodes
of A. As we see later in the paper when we discuss
AMG theory, the smaller the eigenmode, the more
effective must be coarse-grid correction. This makes
the smallest of the eigenmodes, called the near null
space or near kernel of A, particularly important in
the design of AMG algorithms.

As an example, we again consider problem (3).
Any linear function u is in the kernel of the differ-
ential operator since both uxx and uyy are zero. The
same is true for the discrete operator A (away from
boundaries). That is, the near null space of A for this
problem consists of any vector that is almost linear
when plotted on the grid. Hence, it makes perfect
sense for AMG to coarsen in directions of geomet-
ric smoothness, as shown in Figure 2. The example
underscores the distinction between smooth error (er-
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Figure 2: Smooth error for problem (3) after 7 sweeps
of Gauss-Seidel (top image). The error is geometri-
cally smooth in the x direction (2nd image), but os-
cillatory in the y direction in the right-half plane (3rd
image). For this problem, AMG coarsens the grid in
directions of geometric smoothness (bottom image).
Larger squares correspond to coarser grids.
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ror not eliminated by the smoother) and the near null
space (the smallest eigenmodes of A). In the example,
smooth error consists of functions that are geometri-
cally both smooth and oscillatory, while the near null
space contains only geometrically smooth functions.
For applications where the near null space contains
geometrically oscillatory functions (such as electro-
magnetics), the approach of coarsening in directions
of geometric smoothness is not sufficient.

So, how can we use knowledge of the near null space
to design a real AMG algorithm? There are many ap-
proaches that researchers have used, and we describe
some of them in this paper. But, first, we start with
the classical AMG algorithm of Brandt, McCormick,
Ruge, and Stüben [2, 3, 4].

Classical AMG

As in the example of the previous section, the clas-
sical AMG algorithm (C-AMG) is based on the as-
sumption that geometrically smooth functions are in
the near null space of A. Since AMG knows noth-
ing about the geometry of the problem, we need to
characterize this in some algebraic way.

To simplify the discussion, assume that A has been
scaled so that its largest eigenvalue equals 1, and let e
be a small normalized eigenmode of A (i.e., ‖e‖ = 1).
Multiplying the eigenvalue equation Ae = λe by eT ,
we see that a small eigenmode satisfies

λ = eT Ae� 1. (4)

Since the constant function is geometrically smooth,
from our assumption that geometrically smooth func-
tions are in the near null space of A, it is reasonable
to assume that A has row sum zero. Then, we can
expand eT Ae to arrive at

eT Ae =
∑
i<j

(−aij)(ei − ej)2 � 1. (5)

If −aij > 0, then this equation leads us to one of the
main heuristics in C-AMG:

C-AMG Heuristic: Smooth error varies
slowly in the direction of relatively large
(negative) coefficients of the matrix.

The C-AMG heuristic gives us an algebraic way to
track geometrically smooth error, but we need to be

more specific about what it means to be a “large”
coefficient. This leads us to another major concept
in the algorithm:

Strength of Connection: Given a thresh-
old 0 < θ ≤ 1, we say that variable ui

strongly depends on variable uj if

−aij ≥ θ max
k 6=i
{−aik}.

In other words, strength of connection is measured
relative to the largest off-diagonal entry in a row.
Note that, in practice, positive off-diagonal connec-
tions are considered to be weak connections and are
ignored in the above. Also note that, with this defini-
tion of strength, it is possible that a point i strongly
depends on j, but point j only weakly depends on i,
even though A is symmetric. There are alternative
symmetric definitions used in some algorithms. For
simplicity, we assume that strength is symmetric.

Choosing the coarse grid

In C-AMG, the coarse grid is a subset of the fine grid.
Points are chosen such that the grid is coarsened in
directions of strong connections of the matrix. The
procedure for doing this is actually quite simple. In a
nutshell, the algorithm consists of three main steps:

1. Define a strength matrix, As, by deleting weak
connections in A;

2. First pass: Choose an independent set of fine-
grid points based on the graph of As;

3. Second pass: Choose additional points if
needed to satisfy interpolation requirements.

The coarsening procedure partitions the grid into
C-points (points on the coarse grid) and F -points
(points not on the coarse grid). Figure 3 illustrates
the first pass of the algorithm for a 2D Laplacian
problem discretized with finite elements on a uniform
mesh. The discretization stencil is given by −1 −1 −1

−1 8 −1
−1 −1 −1


Since all of the off-diagonal coefficients are −1’s, the
connections in the matrix are all strong connections,
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Figure 3: Illustration of the first pass of the C-AMG coarsening algorithm for a 9-point discretization stencil.
(a) The nodes of the graph of the strength matrix are assigned a weight equal to the number of off-diagonal
connections. (b) A point with maximal weight is chosen as a C-point. (c) The neighbors of the new C-point
are set to be F -points. (d) For each new F -point, the weights of its neighbors are increased by one to make
them more likely to be chosen next. The algorithm continues in this way until all points are either C- or
F -points.

regardless of the parameter choice θ. Hence, As and
A are the same.

The original C-AMG interpolation scheme (de-
scribed below) requires each pair of strongly-
connected F -points to be strongly connected to a
common C-point. The second pass of the coarsen-
ing algorithm searches for F -point pairs that do not
satisfy this requirement, and changes one of them to
a C-point. Researchers later found that the second
pass leads to high computational costs, and they have
largely abandoned it in favor of other approaches for
defining interpolation.

As we saw in the example of Figure 2, the C-
AMG coarsening algorithm is able to produce stan-
dard fully coarsened and semicoarsened grids, and
combinations thereof. The strength matrix is the
key to making this happen, but as we see later, it
can sometimes be sensitive to the choice of strength
parameter θ. Some researchers today are exploring

more reliable definitions of strength, while others are
exploring completely different coarsening approaches
based on so-called compatible relaxation that avoid
defining strength altogether.

Another area of active research is parallel coarsen-
ing algorithms. It is easy to see that the algorithm
in Figure 3 is inherently sequential. Unfortunately,
most parallel coarsening algorithms lead to increased
computational costs and often degrade convergence.

Defining interpolation

We again use the fact that smooth error e is char-
acterized by small eigenmodes. Since the residual
r = Ae, we have from (4) that

λ2 = eT A2e = rT r� 1. (6)

In other words, smooth error is also characterized by
small residuals. To derive interpolation in C-AMG,
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Figure 4: Derivation of C-AMG interpolation for the standard 9-point finite element stencil. In the second
image, we assume that strongly-connected F -points are interpolated from neighboring interpolatory points.
The weights (all 1/2) are chosen based on the underlying matrix entries such that the constant function
is interpolated exactly. In the third image, we “redistribute” the strong F connections according to the
interpolation weights in the previous step. This produces the “collapsed stencil” in the fourth image, which
leads directly to the interpolation rule in the last image.
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Figure 5: Derivation of C-AMG interpolation for an anisotropic 9-point finite element stencil. In the second
image, weak coefficients are added to the diagonal to produce the “collapsed stencil” in the third image,
which leads directly to the interpolation rule in the last image

we take this to its extreme and assume that

ri = (Ae)i = 0.

If we rewrite this equation at an F -point i in terms
of the coefficients of A, some regrouping leads to

aiiei = −
∑
j∈Ci

aijej −
∑
j∈F s

i

aijej −
∑

j∈Nw
i

aijej , (7)

where the sets Ci, F s
i , and Nw

i are defined as follows:

Ci : C-points strongly connected to i
F s

i : F -points strongly connected to i
Nw

i : all points weakly connected to i.
(8)

The set Ci is the set of interpolatory points. That
is, these are the points that F -point i will interpo-
late from. The trick to deriving interpolation is to

rewrite the ej in the last two terms of (7) in terms of
either the interpolatory points in Ci or the F -point i.
This produces an equation that involves only the F -
point and its interpolatory points, which we can use
directly to define interpolation. This process is some-
times referred to as “collapsing the stencil”, and it is
illustrated in Figures 4 and 5 for two finite element
stencils.

The stencil in Figure 5 helps to illustrate one
of the potential problems with the strength of
connection definition used in C-AMG. The sten-
cil comes from a quadrilateral finite element dis-
cretization of the Laplacian on a mesh that is highly
stretched in the x direction. The resulting problem
is strongly anisotropic in the y direction, yet this
strong anisotropy is not reflected in the size of the
off-diagonal entries. In fact, any value of the strength
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Convergence Coarse Grid Operator Setup Solve
Fine Grid Iterations factor grids complexity complexity time time
31× 31 9 0.19 5 1.6 1.7 - -
61× 61 10 0.23 6 1.6 1.6 0.01 0.02

121× 121 9 0.23 8 1.6 1.7 0.05 0.07
241× 241 9 0.23 9 1.6 1.7 0.25 0.32
481× 481 9 0.23 12 1.7 1.7 1.02 1.27
961× 961 11 0.29 13 1.7 1.7 4.42 6.28

Table 1: C-AMG results for example problem (3) for different grid sizes with strength threshold θ = 0.4, and
with ν1 = ν2 = 1 smoothing steps of C-F Gauss-Seidel. Iterations were done until the relative residual was
reduced below 10−9. Grid complexity is the total number of grid points on all grids divided by the number
of grid points on the fine grid. Operator complexity is the total number of nonzeroes in the linear operators
on all grids divided by the number of nonzeroes in the fine grid operator. Setup time is the time required to
choose coarse grids and build interpolation, restriction, and coarse-grid operators.

threshold θ that is less than or equal to 0.25 will turn
the corner couplings into strong connections. The
resulting interpolation has 6 interpolatory points in-
stead of 2, and degrades the convergence of C-AMG.

Numerical performance

To give an illustration of the numerical performance
of C-AMG, consider again the example problem in
(3) and Figure 2. Table 1 shows single-processor re-
sults on an Intel Pentium workstation. The coarse
grids for the 31×31 problem are shown in the figure.
We see that the convergence factors are almost uni-
form independent of problem size, the growth in both
setup and solve time is essentially linear with problem
size, and the number of grid levels grows logarithmi-
cally with problem size. These are expected charac-
teristics of multigrid methods. We also see that the
grid and operator complexities stay nicely bounded
for this problem (growth in operator complexity is
often an issue for AMG, especially in parallel). Note
that in practice, it is usually better to use AMG as
a preconditioner for a Krylov method such as con-
jugate gradients (CG). To precondition CG, we first
must ensure that the AMG cycle is symmetric. If we
do that for this problem by using C-F Jacobi, the re-
sulting AMG-CG method takes 8 or 9 iterations for
all problem sizes. See [6, 8] for a more extensive set
of numerical experiments.
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Figure 6: AMG scaling results on BlueGene/L for
four different parallel coarsening schemes. The prob-
lem is a 3D Laplacian discretized with 7-point finite
differences such that each processor has a 25×25×25
piece of the grid. The largest problem has nearly 2
billion unknowns distributed across 125K processors.

In Figure 6, we show scaling results1 for a par-
allel variant of C-AMG, and illustrate the dramatic
effect that coarsening algorithms can have on paral-
lel performance at large processor counts. The al-
gorithm indicated by diamonds is the most similar
to C-AMG. Here, each processor uses the C-AMG

1Courtesy of Ulrike Yang at Lawrence Livermore National
Laboratory.
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coarsening algorithm on the interior of its piece of
the grid, then does something special to complete
the coarsening along processor boundaries. The sec-
ond pass and the non-sequential nature of the par-
allel algorithm conspire to increase complexities and
slow parallel performance. The algorithm indicated
by circles achieves decent scaling results by control-
ling complexity through more aggressive coarsening
and the use of long-range interpolation with no sec-
ond pass. Note that non-optimal methods like CG
would be orders of magnitude slower than any of the
curves in the figure.

Other AMG Algorithms

Although the classical C-AMG method of the pre-
vious section works remarkably well for a wide va-
riety of problems, some of the assumptions made
in its derivation limit its applicability. There have
been many other AMG algorithms that have been
developed to extend the applicability of AMG to new
classes of problems. We mention a few of them here.

The AMGe approach (“e” stands for “element”)
was first introduced in [9] as a means of improving
the robustness of AMG for finite element problems.
It differs from standard AMG by requiring access to
local element stiffness matrices (in addition to the
assembled global stiffness matrix). These stiffness
matrices are used to construct effective interpolation
operators. Another variant of AMGe is element-free
AMGe [10], which constructs its own local stiffness
matrices directly from the system matrix. The inter-
polation for this method can be viewed as a general-
ization of the C-AMG interpolation described ear-
lier. These AMGe methods have been proven to
be robust for such difficult problems as non-grid-
aligned anisotropic diffusion and thin-body elastic-
ity. They can suffer though from generally expensive
setup costs, both in time and memory, since they re-
quire generating coarse element matrices on all levels
during the setup.

The smoothed aggregation (SA) method [11, 12]
is a highly successful AMG method that has been
shown to be robust and efficient over a wide variety
of problems. One of the most interesting aspects of
SA is its approach for defining interpolation. In all of
the methods we have discussed so far, interpolation is

viewed (and constructed) as rows of P , i.e., we think
of interpolation as being “to point i”. However, if pj

are the columns of P , then interpolation of a coarse-
grid vector ec can be written as

Pec =
∑

j

ec,jpj .

That is, we can think of interpolation as being a linear
combination of basis functions pj . The SA algorithm
takes this view and builds a set of sparse (local) ba-
sis functions from a given small set of near null space
components. To see how this works, consider the case
where we have a single near null space component x
(e.g., the constant function). The SA algorithm first
partitions the grid by “aggregating” grid points into
small disjoint sets. It then builds the so-called tenta-
tive prolongator (interpolation) so that the nonzeroes
of column j are the values of x in aggregate j. Lastly,
a smoother is applied to the tentative prolongator to
produce the final interpolation operator.

In general, AMG methods (all multigrid meth-
ods, actually) must use some additional information
characterizing the near null space to be successful.
For AMGe, the stiffness matrices are used, while in
smoothed aggregation, the near null space compo-
nents are explicitly required. The recently developed
adaptive AMG methods are the first methods that
do not require this additional information [13, 14].
These methods employ the idea of “using the method
to improve the method,” and they exhibit the opti-
mal convergence properties of multigrid without re-
quiring a priori knowledge of the near null space. In-
stead, they automatically “discover” these problem-
atic components and make adjustments for them (i.e.,
they adapt). The basic adaptive algorithm is as fol-
lows:

Initialize the method, E (9a)
Apply E to Ax = 0 (9b)
If fast, use E to solve Au = f (9c)
Else, use x to update E and go to (9b) (9d)

The x that results from step (9b) is called a prototype.
It is a representative of error that is not damped well
by the method E. The key step is (9d), the adaptive
step. Understanding how to use information in x to
update E is one of the main research issues for these
algorithms.
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Theory and New Developments

Most AMG algorithm development is guided by the-
ory. In the AMGe algorithms above, the underlying
theory was outlined in [9]. A major component of
this theory is the so-called weak approximation prop-
erty that, if satisfied by interpolation, implies conver-
gence of the two-grid algorithm in (2). This approxi-
mation property relates the accuracy of interpolation
to the spectrum of the system matrix: namely, that
eigenmodes with small associated eigenvalue must be
interpolated well. The weakness of this theory is that
it is limited to simple pointwise smoothers and a par-
ticular type of coarse grid.

Recently, we introduced a new theory [15] that al-
lows for general smoothing processes and coarse grids
(e.g., vertex-based, cell-based, and agglomeration-
based), encompassing a much broader class of prob-
lems and algorithms than before. The motivation for
developing the new theory was Maxwell’s equations,
for which pointwise smoothers are not adequate and
non-standard coarse grids are often more appropriate.
The next two theorems summarize the main conver-
gence results in [15].

Theorem 1 ‖E‖2A ≤ 1− 1
K , where

K = sup
e

‖(I − PR)e‖2
M̃

‖e‖2A
.

Theorem 2 K ≤ ηK?, where

η = ‖PR‖A ; K? = inf
P

sup
e

‖(I − PR)e‖2
M̃

‖e‖2A
.

In the theorems, E is the multigrid operator, M̃ is
an operator derived from the smoother, P is interpo-
lation, and R is a restriction-like operator such that
RP = I (so that PR is a projection onto range(P )).
We think of R as defining the coarse-grid variables,
i.e., uc = Ru.

Theorem 1 gives conditions that P must satisfy in
order to achieve a fast converging multigrid method.
We can see that to make K small, then small eigen-
modes must either be interpolated well by P (since
the denominator is small for these eigenmodes) or
they must be handled by the smoother.

Theorem 2 bounds K by two new constants, η and
K?. The significance of this theorem is that it sepa-
rates the construction of P into its natural two com-
ponents: coarse-grid selection and definition of P ’s
coefficients. The constant K? is the K in the first
theorem for the “best” P possible. Hence, K? mea-
sures the quality of the coarse grid in some sense,
because if it is small, we know there exists an inter-
polation operator that gives good AMG convergence.
Once we have a coarse grid, the expression for η gives
us guidance on how to define the coefficients of P in
a way that is independent of the relaxation process.

To ensure that K? is bounded in practice, we can
use compatible relaxation (CR). The notion of com-
patible relaxation was introduced by Brandt in [16] as
a modified relaxation scheme that keeps the coarse-
grid variables invariant. Brandt stated that the con-
vergence rate of CR is a general measure for the qual-
ity of the set of coarse variables. In [15], we proved
that fast convergence of CR implies a small K? (a
good coarse grid). Based on this work, we developed
an algorithm for selecting coarse grids [17]. To date,
we have considered only the case where the coarse
grid is chosen as a subset of the fine grid variables.
This is the classic C-AMG approach. The algorithm
does not use fragile notions of strength-of-connection,
and it naturally complements the smoother used in
the AMG method. A similar method was developed
in [18].

Most recently, we have developed a new sharp the-
ory [19] that gives necessary and sufficient conditions
for two-grid convergence and provides additional in-
sight for the development of AMG methods. The
sharp theory is very similar in form to Theorem 1, and
we have begun to use this similarity to develop more
predictive CR methods (better predictors of AMG
convergence) that may play an important role in fu-
ture adaptive AMG methods.
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[4] J. W. Ruge and K. Stüben. Algebraic multigrid
(AMG). In S. F. McCormick, editor, Multigrid Meth-
ods, volume 3 of Frontiers in Applied Mathematics,
pages 73–130. SIAM, Philadelphia, PA, 1987.

[5] W. L. Briggs, V. E. Henson, and S. F. McCormick. A
Multigrid Tutorial. SIAM, Philadelphia, 2000. First
edition.

[6] U. Trottenberg, C. W. Oosterlee, and A. Schüller.
Multigrid. Academic Press, London, 2001.

[7] U. M. Yang. Parallel algebraic multigrid methods
- high performance preconditioners. In A. M. Bru-
aset and A. Tveito, editors, Numerical Solution of
Partial Differential Equations on Parallel Comput-
ers, volume 51 of Lecture Notes in Computational
Science and Engineering, pages 209–233. Sprinter-
Verlag, 2006.

[8] A. J. Cleary, R. D. Falgout, V. E. Henson, J. E.
Jones, T. A. Manteuffel, S. F. McCormick, G. N.
Miranda, and J. W. Ruge. Robustness and scalabil-
ity of algebraic multigrid. SIAM J. Sci. Comput.,
21(5):1886–1908, 2000.

[9] M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Hen-
son, J. E. Jones, T. A. Manteuffel, S. F. McCormick,
and J. W. Ruge. Algebraic multigrid based on ele-
ment interpolation (AMGe). SIAM J. Sci. Comput.,
22(5):1570–1592, 2000.

[10] V. E. Henson and P. S. Vassilevski. Element-free
AMGe: general algorithms for computing interpo-
lation weights in AMG. SIAM J. Sci. Comput.,
23(2):629–650, 2001.
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