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Abstract: 

A review is presented of recent advances in optical imaging and spectroscopy and the use of light 

for addressing breast cancer issues. Spectroscopic techniques offer the means to characterize 

tissue components and obtain functional information in real time. Three-dimentional optical 

imaging of the breast using various illumination and signal collection schemes in combination 

with image reconstruction algorithms may provide a new tool for cancer detection and 

monitoring of treatment.
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Chapter 1. Background

According to the National Institutes of Health, breast cancer is the most diagnosed non-

skin cancer and the second leading cause of cancer death among women in the United States. 

Although the breast cancer diagnosis rate has increased, there has been a steady drop in the 

overall breast cancer death rate since the early 1990s. Depending on the size of the tumor and the 

involvement of the lymph nodes, survival rates can vary from 45-95%. The key problem with the 

breast is the variation in demographic size, texture, chemical composition, and age. X-ray 

mammography is the gold standard for breast cancer screening and detection. Mammography is 

most sensitive in women over 35-40 years of age because of their fatty breast composition 1 and 

less effective and sensitive in younger women because they have denser breasts 2. For younger 

women, ultrasound is commonly used. Magnetic resonance imaging (MRI) can also play a 

significant role in the diagnosis and characterization of breast disease. 

According to the National Cancer Society, up to 10% of all breast cancers, roughly 

20,000 cases per year in the U.S., are not discovered by X-ray mammography. Also, X-ray 

mammography uses ionizing radiation and requires uncomfortable breast compression. It also 

suffers from a significant number of false positives that often lead to unnecessary biopsy since 

biopsy is generally required to determine malignancy in most women with an abnormal 

mammogram. All three techniques, X-ray mammography, ultrasound, and MRI provide high 

spatial resolution, but comparatively little information about molecular-level changes in breast 

tissue 1, 3. Consequently, new detection technologies are needed that can overcome current 

limitations.

Photonic technology plays an important role in the development of new medical 

diagnostic and therapeutic instruments. Readily available compact solid-state lasers and various 
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types of light sources allow one to examine tissues in a clinical environment using new and 

emerging photonic technologies. Major advances in light array detectors provide high signal 

sensitivities that enable new imaging approaches previously technologically infeasible. In 

addition, since the computation power of personal computers has been continuously increasing, 

signal processing speed and image reconstruction algorithms are also advancing. Key benefits of 

using light for medical imaging are that light is non-ionizing radiation, potentially much cheaper, 

and can be delivered to a localized region by using either an external source or internally through 

small optical fibers. 

Optical imaging and optical biopsy are two of the research areas where rapid progress has 

been achieved over the past ten years. The aim of optical imaging is to provide three-dimensional 

mapping of tissue structures using light. Photon selection and image reconstruction techniques 

are implemented to improve image contrast and resolution. Optical biopsy uses the difference in 

the optical properties of different tissue components to obtain information regarding the tissue 

makeup, status, and composition. Optical biopsy methods to detect breast cancer in vivo have 

been explored by various research groups. Such optical biopsy methods have demonstrated high 

sensitivity for cancer detection in various parts of the body. Cancer specific optical “signatures” 

must be present in order to devise optical biopsy methods for cancer detection. These optical 

“signatures” may arise from differences in the biochemical and/or structural characteristics of the 

tissues.

The development of an optical mammography system able to image the breast and detect 

tumors has been a focus area in the field of optical imaging. Although significant progress has 

been achieved in this very challenging area, preliminary results have documented the potential of 

optical imaging for noninvasive breast cancer detection. In recent years, near infrared (NIR) 
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spectroscopy and tomography have been explored by numerous research groups as a means of 

detecting and characterizing breast cancer. Many groups have demonstrated an ability to 

accurately quantify hemoglobin absorption and other intrinsic tissue chromophore concentrations 

(i.e. fat or water) and scattering properties, thereby providing valuable functional information. 

Spatial and temporal contrasts in these properties may be uniquely useful for diagnosing disease. 

The objective of this work is to provide a comprehensive review of the progress of 

photonics methods to address breast cancer issues. This review is divided into three major focus 

areas: a) optical spectroscopy methods suitable for tissue evaluation in real time; b) noninvasive 

NIR spectroscopy for the acquisition of functional information; and c) optical imaging methods 

for functional tumor characterization.

Chapter 2. Optical biopsy methods

The term “optical biopsy” describes the use of optical spectroscopy to characterize tissue, 

and requires direct exposure of the tissue under examination to the light source. Consequently, its 

application in a clinical setting is best suited for intraoperative use to assist in exploring tissue in 

real time, or via thin fiberoptic needles that can reach the suspected location within the breast for 

a minimally invasive evaluation. 

The breast is complex; its multiple tissue components make it more difficult to classify 

using optical spectroscopy than other tissues (i.e. esophagus, colon, bladder, or cervix). 

However, numerous reports over the past ten years highlight a number of spectroscopic 

approaches capable of detecting cancer and characterizing various types of breast tissue 

components. Within this set of reports, vibrational spectroscopy has been the method of choice 
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for most researchers. This may not be surprising given that the vibrational spectra from breast 

tissue contain a number of peaks arising from a diverse collection of tissue biomolecules. 

2.1  Vibrational spectroscopy  

Early work indicated that substantial biochemical information is imprinted in the Raman 

scattering spectra of breast tissues suggesting the potential of this approach for breast cancer 

diagnosis 4-6. Redd et al suggested that the Raman spectra from breast tissue specimens contain 

features that are attributable to various amounts of carotenoids and lipids 6. A small contribution 

from a heme-type signal was detected in some samples of benign breast tissue and a much 

stronger heme-type signal was detected in most of the breast cancers. They also reported that the 

Raman spectra of diseased breast tissue (benign and malignant) exhibit lower contributions from 

lipids and reduced contributions from carotenoids. 

Frank et al reported through Raman scattering studies with laser wavelengths ranging 

from 406 to 830 nm that the best defined lipid features were observed with NIR laser excitation, 

while carotenoid features were strongest in the blue-green spectral range due to resonance 

enhancement 5. Extending their work, this same team later reported that the Raman spectra 

changed dramatically in diseased specimens, with much less evident lipid bands and the 

differences between benign (fibrocystic) and malignant lesions were smaller than those between 

normal and malignant specimens 4. These observations were later confirmed when Manoharan et 

al asserted the ability of Raman spectroscopy to accurately classify normal, benign, and 

malignant breast tissues 7. 

Raman micro-spectroscopy was more recently used to identify the origin of the peaks 

observed in the vibrational spectrum from breast tissues. Yu et al reported that the spectral 
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differences and changes between normal and malignant breast tissue samples could be 

categorized into the following three groups 8: (1) the band from the symmetric stretching modes 

of the PO2
- group in the DNA shifts from 1082 to 1097 cm-1 and becomes stronger; this is 

accompanied by an increase in the intensity of the symmetric stretching modes of O-P-O at 817 

cm-1 in the RNA; (2) the bands of Amide I and III at 1657 and 1273 cm-1 change to 1662 and 

1264 cm-1 respectively with their intensity and band-widths also increasing. The peak of the C-O 

stretching modes in the amino acids shifts to higher wave numbers while the intensity of the 

tryptophane band at 1368 cm-1 diminishes; (3) fewer Raman bands from lipids are present. 

In order to understand the relationship between the Raman spectrum of a sample of breast 

tissue and its disease state, Shafer-Peltier et al compared NIR Raman spectroscopic images of 

human breast tissue specimens (acquired using a confocal microscope) with the corresponding 

hematoxylin- and eosin-stained images 9. Spectra obtained from the epithelial cell cytoplasm, 

cell nucleus, fat, beta-carotene, collagen, calcium hydroxyapatite, calcium oxalate dihydrate, 

cholesterol-like lipid deposits, and water were used to form a basis of breast tissue spectra. By 

assuming that the macroscopically measured Raman spectra were a linear combination of the 

basis spectra, they developed a chemical/morphological basis to fit the observed features in 

normal and diseased breast tissues. This model was used to characterize the composition of ex 

vivo specimens and pathologies from 57 patients and predict the disease state 10. The results 

indicated that the fit coefficients for fat and collagen were the key parameters in the resulting 

diagnostic algorithm, which classified samples according to their specific pathological diagnoses, 

attaining 94% sensitivity and 96% specificity for distinguishing cancerous tissues from normal 

and benign tissues.
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The progress to date using Raman spectroscopy to classify breast tissue specimens 

provides very encouraging results when considered as a tool to evaluate a localized region via 

statistical means. It is important to mention that preliminary studies using Fourier transform 

infrared spectroscopy (FTIR) for the analysis of breast specimens yielded similarly promising 

results 11, 12. Dukor et al reported that benign vs. malignant cells and benign vs. atypical 

hyperplasia were discriminated with 100% accuracy, and malignant vs. atypical hyperplasia were 

discriminated with an accuracy of 90% and higher 12. Ci et al reported that the spectral 

differences observed among normal, benign, and malignant breast tissue samples could be 

categorized by the following 11: (1) the characteristic spectral patterns of fibroadenoma and 

carcinoma tissues appear in the frequency regions of 950-1150 and 2800-3050 cm-1 respectively; 

(2) the peak at 970 cm-1 is sharper and stronger, and the prominent bands at 1204, 1280, and 

1338 cm-1 are weaker and broader for carcinoma tissue, whereas the band near 970 cm-1 is 

weaker and the prominent peaks of collagen are sharper and stronger for benign tissue; (3) the 

band near 1163 cm-1 in benign tissue shifts to 1171 cm-1 in carcinoma tissue; (4) The absorbance 

(A) ratios of A(1032)/A(1083) and A(2958)/A(2853) are the lowest in carcinoma tissue and 

highest in fibroadenoma tissue; and (5) A(1459)/A(1241)>1.0 for normal tissue, 

A(1453)/A(1239)≥1.0 for fibroadenoma, and A(1456)/ A(1239)≤1.0 for hyperplasia and 

carcinoma tissues. Ci et al concluded that these significant differences revealed the differences in 

the relative contents of nucleic acids and collagen proteins in breast tissue components. It must 

be noted that the FTIR measurements discussed above were not obtained directly on the tissue 

specimens but required extensive tissue processing. Specifically, Ci et al 11 utilized dehydrated 

films of cell suspensions extracted from small areas of the specimens. Dukor et al 12 performed 

the measurements on the same samples used by pathologists for histopathologic evaluation, e.g. 
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stained samples on plain glass slides. This may be a limitation of FTIR spetroscopy that must be 

resolved prior to its application in a clinical setting.

2.2 Light scattering methods

Light scattering spectroscopy methods have been explored by different research groups 

for their ability to distinguish breast tissue types. Wallon et al measured the NIR reflectance 

spectra of 1100-2500 nm in specimens from ten breast cancer patients and found four spectral 

regions to be different between normal and cancerous tissues: 1208-1242, 1746-1788, 2012-2048 

and 2326-2368 nm 13. They also reported that even a minute quantity of cancer infiltration could 

be detected by NIR spectroscopy. 

Yang et al observed changes on the absorption spectra in the 250-650 nm range of 

malignant, fibroadenoma, and normal human breast tissues 14-16. The absorption spectra were 

extracted from diffuse reflectance measurements and the main differences in absorption were  

observed at 255-265 and at 275-285 nm. These differences were attributed to changes in proteins 

and DNA. A set of critical parameters was proposed for separating malignant tissues from 

fibroadenoma and normal tissues. 

Bigio et al reported on preliminary results of a clinical study designed to test elastic-

scattering spectroscopy mediated by fiberoptic probes for transdermal-needle (interstitial) 

measurements (suitable for a minimally invasive diagnosis) and a hand-held probe (suitable for 

assessing tumor/resection margins during open surgery) 17. Preliminary results from in vivo

measurements on 31 women analyzed using artificial intelligence methods of spectral 

classification yielded a sensitivity of 69% and specificity of 85%. The authors suggested that 

they expected these values to improve with the development of more sophisticated data 
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processing algorithms. A fiber-optic needle probe was also used by Van Veen et al to determine 

the local optical properties of breast tissue in vivo using differential pathlength spectroscopy 18. 

This yields information on the local tissue blood content, the local blood oxygenation, the 

average micro-vessel diameter, the beta-carotene concentration and the scatter slope. The results 

showed that malignant breast tissue is characterized by a significant decrease in tissue 

oxygenation and higher blood content compared to normal breast tissue. These in vivo

observations may be compared with ex vivo measurements reported by Palmer et al using diffuse 

reflectance spectroscopy that yielded sensitivity of 30% and specificity of 78% 19. These 

significant variations in sensitivity as reported by the different groups highlight the importance 

of developing a common classification algorithm as well as a common measurement scheme of 

the diagnostic outcome.
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Figure 1: Spectroscopic images of a ~ 4x3 cm2 human breast tissue, 5 mm thick, with multifocal 

high grade ductal carcinoma surrounded by fibrous supporting tissue with an adjacent area of 

fatty infiltration demonstrating enhanced tissue differentiation using NIR light scattering and 

autofluorescence approaches. NIR autofluorescence (NIRA) images from 700-1000 nm under 

laser excitation of a) 532 and b) 633 nm. c) Cross polarized light scattering (CPLS) under 700 

nm illumination. d) Ratio of the 633 nm NIRA image divided by the 700 nm CPLS image. e) 

Inter-image ratio of the CPLS image under 1000 nm illumination divided by the 700 nm CPLS 

image and f) Inter-image ratio of the 700 nm CPLS image divided by the 532 nm NIRA image.
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2.3  Autofluorescence spectroscopy

Pioneering work by Alfano et al highlighted the potential of autofluorescence 

spectroscopy for cancer detection 20. In a paper by Liu et al 21, Alfano and coworkers explored 

the use of autofluorescence, Raman scattering and time-resolved light scattering approaches as 

optical diagnostic techniques to separate diseased and normal breast tissues. Autofluorescence 

spectroscopic measurements on human breast tissues indicated that the ratio of fluorescence 

intensity at 340 nm to that at 440 nm could be used to distinguish between cancerous and non-

cancerous tissues. Gupta et al reported on an in vitro study involving 63 patients to evaluate 

autofluorescence spectroscopy under excitation in the near-UV region (nitrogen laser) 22. They 

reported that significant changes were observed in the spectrally integrated autofluorescence 

intensity from normal, benign, and cancerous breast tissues. The intensity ratios of cancerous 

tissues to benign tumor and normal tissues were found to be 3.2 and 2.8, respectively. A 

discrimination parameter based on spectrally integrated intensity alone provided a sensitivity and 

specificity up to 99.6%. A similarly high sensitivity was reported by Hage et al who used laser-

induced autofluorescence spectroscopy under 548 nm excitation 23.

The experiments in the paper by Palmer et al (discussed in the previous section) included 

characterization of the tissues using autofluorescence spectroscopy under multiple excitation 

wavelengths in the ultraviolet-visible range. They were successful in discriminating malignant 

and nonmalignant tissues with a sensitivity and specificity of 70% and 92%, respectively 19. The 

analysis of the results suggested that the important fluorophores for breast cancer diagnosis are 

most likely tryptophane, NAD(P)H, and flavoproteins. 

Zhang et al investigated the spectral, polarization, and temporal characteristics of the far-

red and emission beyond 650 nm of breast tissue specimens under low intensity laser excitation 
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at 532 and 633 nm 24. The lifetime of this emission was found to be on the order of 1 ns. It was 

also suggested that the NIR autofluorescence intensity from human breast cancer is different than 

normal tissue and could potentially be used to detect breast cancer. More recently, Demos et al 

reported on results from fresh tissue specimens obtained from surgery that were imaged using 

NIR autofluorescence under 532 and 633 nm excitation 25. These images were subsequently 

compared with the histopathological map of each specimen. The experimental results indicated 

that the intensity of the NIR emission was considerably different in breast cancer compared to 

that of the adjacent non-neoplastic tissues (adipose and fibrous tissue). Examples of this 

approach are shown in Figures 1 and 2. From the images in Figure 1, only the NIR fluorescence 

image under 632.8 nm excitation (1b) and the resulting ratio image (1d) demonstrate a 

correlation with cancer identified by histology with ~1 mm diameter ductal carcinoma areas 

appearing as features with higher emission. The ratio image (1d) improves the visibility and 

contrast of the cancer and provides sharper delineation of the tumor margins. Table 1 

summarizes the average values of the ratio of intensities of cancerous to adipose tissue, 

cancerous to fibrous tissue, and fibrous to adipose tissue. It was suggested that this method may 

be suitable for real time detection and imaging of breast cancer lesions in a clinically relevant 

setting. It was also suggested that 632.8 nm excitation offers key advantages compared to 532 

nm excitation for two reasons. First, the images are least affected by blood due to lower 

absorption. Second, the intensity ratio between fibrous cancer tissue is higher in combination 

with a lower ratio of fibrous to adipose tissue allows for easier detection (higher contrast) of the 

cancer in a field of mixed tissue components.  
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Figure 2: The NIR autofluorescence images of a ~3.2x4.2 cm2 specimen under excitation of a) 

532 nm and b) 632.8 nm. c) A color photograph of the same specimen. d) A contrast-enhanced 

H&E stained paraffin section of the same specimen with tumor regions outlined with blue 

marker.

Table 1: Mean values and standard deviation of the ratio of image intensities from cancer and 

normal (adipose and fibrous) tissues components as recorded in the NIR autofluorescence images 

under 532 and 632.8 nm excitation and in the cross-polarized light scattering images under 700 

nm illumination.

Mean Value / Standard Deviation

532 nm
Excitation

632.8 nm
Excitation

700 nm
Illumination

Cander/Adipose 2.62 /  0.67 2.06 /  0.55 1.21 /  0.17

Cancer/Fibrous 1.34 /  0.11 1.49 /  0.27 1.09 /  0.14

Fibrous /Adipose 2.26 /  0.52 1.30 /  0.12 1.12 /  0.20
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2.4  Time-resolved and polarization approaches 

As discussed in the previous section, Liu et al suggested the use of time-resolved light 

scattering for tissue discrimination 21. The drawback of this approach is that it requires the use of 

excised specimens to measure the temporal profiles of ultrashort pulses (on the order of a few 

picoseconds or less) after propagating through the tissue specimen. This approach was recently 

employed by Garofalakis et al to retrieve the reduced scattering coefficients of very thin 

specimens from time-resolved transmission data 26. Demos et al investigated the degree of 

polarization of the propagating pulse through normal and cancer breast tissue specimens and 

demonstrated that the intensity, the polarization state, and the temporal profile of the emerging 

light were different depending on the tissue type 27. This change in the polarization state is due to 

the differences in the scattering properties of the tissues. 

The temporal profile and polarization state of the autofluorescence have also been the 

focus of preliminary studies. Tadrous et al used alcohol-fixed tissue samples photoexcited by 

pulses at 415 nm to acquire fluorescence lifetime images that use fluorescence decay differences 

between tissue components to generate image contrast 28. Within individual patients there was a 

statistically significant difference between benign and malignancy-associated stroma. In 

addition, benign collagen had a longer decay time than benign epithelium. Mohanty et al made 

steady-state measurements of the anisotropy of autofluorescence from malignant and normal 

breast tissue specimens and reported a dependence of the anisotropy on tissue thickness and 

type29.
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2.5  Spectroscopic assessment of lymph nodes and microcalcifications

The evaluation and treatment of breast cancer requires establishing whether or not the 

cancer has spread to the lymph nodes. In response to this issue, Raman and light scattering 

spectroscopy have been explored as methods that may be able to provide rapid, accurate, and 

straightforward detection of metastases in the lymph nodes. Johnson et al discussed the use of 

light scattering spectroscopy to interrogate excised nodes with pulsed broadband illumination 

and collection 30. The study involved specimens from 68 patients and the analysis of the data 

suggested 84% sensitivity and 91% specificity in detecting the cancerous nodes. Smith et al 

described the use of Raman scattering spectral mapping in the assessment of axillary lymph 

nodes 31. This method produced false-color spectral images of lymph node sections representing 

the biochemical composition of heterogeneous lymph node features. 

Haka et al demonstrated the use of Raman scattering spectroscopy to characterize 

microcalcifications in benign and malignant breast lesions 32. Based on their Raman spectrum, 

microcalcifications were initially separated into two categories: type I, calcium oxalate 

dehydrate; and type II, calcium hydroxyapatite. Type I microcalcifications were diagnosed as 

benign, whereas type II were subdivided into benign and malignant categories using principal 

component analysis. Using statistical analysis, subtle chemical differences were highlighted in 

type II that correlated with breast disease. It was suggested that type II microcalcifications that 

form in benign ducts typically contain a larger amount of calcium carbonate and a smaller 

amount of protein than those formed in malignant ducts. Using this diagnostic strategy, they 

were able to distinguish microcalcifications occurring in benign and malignant ducts with a 

sensitivity of 88% and a specificity of 93%.
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Chapter 3. Noninvasive optical methods

3.1  Background 

Optical spectroscopic interrogation of tissues in vivo can provide information about 

various indicators of tissue function, thus adding functional information to simple density 

imaging 33, 34. Studies have indicated that measurements of neovasculature, hypoxia and cellular 

microenvironments could have a role in tumor detection and treatment planning, as they are all 

related to tissue function. Hemoglobin is an important parameter because it measures the 

vascularization of tissue. Since breast cancer tissue is mostly hypoxic because of a metabolic 

imbalance between oxygen supply and consumption 33, measuring it optically has significant 

potential in diagnosis as well as treatment response. The hemoglobin levels measured by NIR 

imaging for the normal tissue surrounding the tumor may also be representative of the oxygen 

carrying capacity of the blood in the breast. Pretreatment hemoglobin levels 35 can also aid in 

predicting tumor response to primary chemotherapy. Tumor oxygenation may serve to predict its 

response to radiation treatment as suggested by its critical role in modifying the dose response 

curve 33 and may also be related to the likelihood of occurrence of distant metastases 36. Vaupel 

et al 33 have shown that although hypoxia does not correlate with tumor size, location, grade or 

stage, it depends critically on whole blood hemoglobin levels. 

Another parameter of significant interest is scattering. Severe scattering of light as it 

passes through breast tissue causes a great challenge to optical mammography as it limits the 

maximum achievable contrast and spatial resolution 37-39. Optical scattering has been correlated 

to mammographic density 40, which is a major risk factor for developing cancer 41. In breast 

cancer locations, scattering is certainly expected to increase because the tumor cells stimulate 
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endothelial cell proliferation 34, which increases the cellular density. In addition, the tortuous 

tumor vessel network is held together by dense fibrotic connective tissue 42 that may be optically 

dense, owing to the presence of different size scatterers relative to the surrounding tissue. 

Spectroscopic studies have shown this increase in scattering in a palpable carcinoma 43. Recent 

advances in lasers and opto-electronic instrumentation have opened up the possibility for new 

methods of overcoming the effects of scatter. 

Optical imaging is able to deliver unique spectroscopic information directly related to the 

physiological status of tissues that is currently not being obtained by other available clinical 

modalities 44. However, the turbid nature of tissues prevents embedded inclusions from being 

spatially resolved with sufficient resolution 45. Three optical imaging approaches have been 

developed: time-domain, frequency-domain, and continuous wave (CW). Time-domain optical 

imaging involves illuminating an object with ultrashort pulses and measuring the temporal 

profile of the transmitted light. A mathematical model of photon migration is then used to fit all 

or part of the measured temporal distribution of the transmitted light in a number of geometries.  

This model is used as if it represents a noise-free estimate of the original data, and images are 

created with the predicted intensities of transmitted pulses. Frequency-domain techniques 

involve illuminating an object with an intensity-modulated beam, and measuring the AC 

modulation amplitude and phase shift of the transmitted signal, typically using a standard 

heterodyne method. The transport of the modulated beam is often described in terms of the 

propagation of so-called photon density waves. CW optical imaging systems require a source 

that either emits at a constant intensity, or is modulated at a low frequency (a few kHz) in order 

to exploit the significant improvements in sensitivity available from phase-locked detection 

techniques. Measurements of the intensity of light transmitted between two points on the surface 
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of tissue are not only relatively straightforward and inexpensive to obtain, but also contain a 

remarkable amount of useful information.

3.2 NIR spectroscopy and imaging

Conover et al acquired NIR spectroscopic measurements in vivo on subcutaneous rat 

mammary adenocarcinomas and showed through sensitivity and specificity analyses that NIR 

spectroscopy imaging may identify clinically relevant hypoxia, even when its spatial extent is 

below the resolution limit of the NIR spectroscopy technique 46.

Tromberg et al use a handheld frequency-domain system and observed a decrease in 

oxygen saturation in spectroscopic studies on a palpable mass diagnosed as ductal carcinoma in 

situ 43. In a related study that monitored neoadjuvant chemotherapy using spectroscopy, initial 

tissue oxygen saturation was lower in the lesion with respect to the surrounding tissue followed 

by a slight peak, when tracked over 10 weeks of treatment 47. 

Chance et al developed a NIR method capable of rapidly acquiring data from the breast 

with a handheld puck 48. The CW device was used to measure tumor hemoglobin and 

hemoglobin desaturation compared to the mirror image site on the contralateral normal breast. 

Results found an increased hemoglobin concentration due to angiogenesis and decreased 

hemoglobin saturation due to hyper-metabolism of the cancer in the cancerous breast compared 

to the normal breast. Receiver Operating Characteristic (ROC) evaluation of the nomogram 

showed 95% in the area under the curve (AUC) for 116 patients with tumor sizes down to and 

including those of 0.8–1 cm in diameter. 

Simick et al used NIR transillumination spectroscopy to show that optical spectroscopy 

predicted the radiological assessment of density with a principal component analysis model in 
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the range of 90% with an odds ratio comparable to mammography 49. Parameters such as oxygen 

saturation, water fraction, and scattering provided fundamental metabolic information about 

tissue that is not currently being obtained with any other imaging modality.

Rinneberg et al recorded optical projection mammograms at two wavelengths (670 and 

785 nm) using a scanning time-domain instrument 50. From distributions of times of flight of 

photons through the slightly compressed breast sampled at a large number of scan positions, 

optical mammograms were generated by various methods of data analysis. In a study of 102 

histologically confirmed carcinomas of 154 patients, 72 carcinomas were detected 

retrospectively in both craniocaudal and mediolateral projections of the tumor-bearing breast, an 

additional 20 cases in one projection only, while 10 carcinomas were missed altogether in optical 

mammograms. Optical properties of each of the 87 tumors identified in optical mammograms 

were analyzed using the diffraction model of photon density waves, including in the analysis all 

prior knowledge available. From absorption coefficients at 670 and 785 nm, physiological 

parameters were deduced. Apart from a few exceptions, they found that the total hemoglobin 

concentration of tumors exceeded that of healthy breast tissue, whereas blood oxygen saturation 

was a poor discriminator by itself.

3.3 Optical tomography

3D optical tomography utilizes localized tissue optical properties which are converted 

into functional parameters, such as concentrations of oxy- and deoxy-hemoglobin, blood volume, 

and blood oxygenation. An ability to derive such parameters from optical images of the breast 

has already been demonstrated 51, 52. Past approaches of NIR tomography have suffered from 

using too few wavelengths and simplistic strategies for spectral deconvolution. More recently 
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there have been significant breakthroughs in the development of algorithms that incorporate 

multispectral information associated with the different chromophore-specific absorption spectra 

into the image reconstruction process 39, 40, 53.

Many theoretical constructs have been proposed to analyze experimental data such as 

using different photon time-of-flight or frequency intervals to separate the effects of scattering 

and absorption. This enables one to quantify optical coefficients at different wavelengths as a 

spectroscopic signature of abnormal tissue embedded in thick, but otherwise normal tissue. The 

most widely used of these theoretical constructs are diffusion-like models based on the diffusion 

approximation of the transport equation and models based on the random walk theory (RWT) 54. 

These theories can be used to fit experimental data and retrieve optical properties. 

Methods currently being pursued generally involve either compressing the breast between 

two parallel arrays of sources and detectors (or between plates over which individual sources and 

detectors are scanned) 55-59, or coupling sources and detectors in one or more rings around the 

surface of the uncompressed breast 37, 60, 61. The former approach is particularly appropriate for 

generating single projection images, while the latter is more readily able to yield depth 

information sufficient for a full 3D image reconstruction. 

The effect of an inclusion on photon propagation is usually considered either under a 

perturbation approximation that involves serious restrictions on the inclusion characteristics, or 

in the frames of RWT, where the influence of increased scattering is modeled by a photon time 

delay (random walker) proportional to a squared size of the inclusion 62. Analysis of absorptive 

abnormalities is expanded beyond the small linear perturbations to the case of larger non-

localized targets, by introducing an exponential correction factor that depends on the inclusion 

size and magnitude of absorption perturbation 62, 63.
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Time-resolved data have been obtained from an optical mammograph designed by 

researchers at the Physikalich.-Techniche-Bundesanstalt (PTB) of Berlin 56, 64, 65 (described in the 

previous section) of several patients with invasive ductal carcinoma (IDC). The data were used 

by Gandjbakhche et al to estimate optical coefficients (absorption and scattering) of the lesion 

and surrounding normal tissue. Then, physiologically important tissue characteristics, i.e., total 

blood volume (TBV) and blood oxygenation (SO2) were obtained from relative concentrations of 

oxy- and deoxy-hemoglobin, using their known spectral absorptions with ad hoc assumptions of 

constant water content of 30% and an insignificant role of lipids in the tissue absorption at these 

wavelengths. In some (but not all) cases, the tumors can be seen in the optical images, 

corresponding to both projections, as illustrated in Figure 3.

Table 2 shows calculated ratios of total blood volume and blood oxygenation of tumors 

relative to surrounding normal tissue for three patients. Though the statistics are small, these first 

results give evidence that the malignant tissue in the IDC is hypoxic (in a deoxygenated state) 

with considerably higher blood volume compared to the surrounding tissue. The latter can be 

explained by increased vascularization. 
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Figure 3: 2D optical images of the breast, bearing IDC at different projections: a) craniocaudal 
and b) mediolateral.

Table 2: Calculated ratios of total blood volume and blood oxygenation for three subjects

Age Tumor Size (mm) TBV(tumor)/TBV(tissue) SO2(tumor)/So2(tissue)

84 25×15×15 1.8 0.77

57 40×35×30 2.0 0.90

52 15×15×15 2.1 0.80
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In previous work at Dartmouth College, McBride et al 66 used a frequency-domain NIR 

tomography system to image a subject with a 2.5 cm IDC, and although an increase in 

hemoglobin was observed, a reduction in oxygen saturation was not found. Dehghani et al 40

used 3D modeling to obtain tomographic images from a patient with IDC and reported an 

increase in blood oxygen saturation level, contrary to expectation.

In a study using time-domain instrumentation with two wavelengths and a water 

contribution fixed at 30%, lower oxygen saturation was observed in images of two carcinomas 63. 

Heffer et al 58 used an ‘oxygenation index’ generated from frequency-domain measurements to 

show a decrease in carcinomas. 

Yates et al from University College London developed a time-resolved optical 

tomography system to generate cross-sectional images of the human breast 67. The 3D breast 

imaging scheme was based on a 32-channel time-domain imaging system and recorded the 

temporal distribution of transmitted light at up to 32 locations on the surface simultaneously in 

response to illumination by picosecond pulses of light at wavelengths of 780 and 815 nm 68. 

Images were generated using a reconstruction package known as TOAST (temporal optical 

absorption and scattering tomography), which determines the optical parameters that describe a 

finite-element model (FEM) of photon migration within an object by comparing its predictions 

with the measured data 69. The parameters of the model were then adjusted iteratively to 

minimize the difference between the two, and thereby 3D images were produced that represent 

the internal distribution of scatter and absorption 70. Thirty-eight studies have been performed on 

3 healthy volunteers and 21 patients with a variety of breast lesions including cancer. 17 out of 

19 lesions were successfully detected, and optical images of the healthy breast of the same 

volunteer displayed a heterogeneity that was repeatable over a period of months. 
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Srinivasan 71 used multi-wavelength NIR tomography to noninvasively quantify 

physiological parameters of breast tumors using direct spectral reconstruction. Frequency 

domain NIR measurements were incorporated with a new spectrally constrained direct 

chromophore and scattering image reconstruction algorithm, which was validated in simulations 

and experimental phantoms. Images of total hemoglobin, oxygen saturation, water and scatter 

were obtained with higher accuracy than previously reported. Three of six cases studied were 

malignant (infiltrating ductal carcinomas) and showed higher hemoglobin (34-86%), a reduction 

in oxygen saturation, an increase in water content as well as scatter changes relative to 

surrounding normal tissue. Three of the six cases were benign, two of which were diagnosed 

with fibrocystic disease and showed a dominant contrast in water, consistent with fluid-filled 

cysts. Scatter amplitude was the main source of contrast in the volunteer with the benign fibrosis, 

which typically contains denser collagen tissue. The changes monitored correspond to 

physiological changes associated with angiogenesis, hypoxia, and cell proliferation anticipated in 

cancers. These changes represent potential diagnostic indicators, which can be assessed to 

characterize breast tumors. The physiological changes observed can be extended to monitoring 

response to therapy, and predicting risk of malignancy or aggressiveness of tumors. NIR 

tomography is an imaging method that can directly quantify some functional processes 

noninvasively.

While clinical data are useful to identify overall trends separating malignant from benign 

disease, the reality may be that separating the two is more complicated. Certain features of 

benign conditions, such as fibrocystic disease, present difficulties in diagnosing it from cancer, 

when based only upon mammographic image features 42. NIR tomography is undergoing several 
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clinical trials to evaluate its role in aiding breast lesion diagnosis 43, 72; however, defining the 

particular NIR characteristics expected in different types of tumors is not yet well defined. 

3.4  Multimodality techniques

Since the spatial resolution of optical tomography is limited by scattering, multi-modality 

imaging is increasingly being used to interrogate tissue morphology and function simultaneously 

because of the inherently optimized co-registration. Structure and function of tissue afford 

different physical bases for contrast and combinations have proven beneficial in the diagnosis 

and management of disease 73. 

To date, NIR techniques have been combined with several high spatial resolution, 

structure-specific imaging modalities including X-ray tomosynthesis 57, ultrasound 66, 74, and 

MRI 75-77, to study human tissues and small animals. Past experiences have contributed to a 

variety of imaging systems, imaging geometries, and numerical reconstruction techniques, but 

have not led to a consensus on the optimal way of applying a priori derived constraints. 

Adjunctive noninvasive imaging modalities are often needed to characterize suspicious 

abnormalities, especially in women with radiographically dense breasts. There is considerable 

potential for functional NIR imaging to help distinguish breast cancer noninvasively, yet this 

modality has consistently suffered from low spatial resolution. Such hybrid approaches could 

generate image data that combine the functional information of optical imaging with the high 

spatial resolution of structural information in MRI. Hybrid imaging systems also avoid 

complications associated with tissue movement between separate exams, which reduce co-

registration accuracy and thus degrade the diagnostic value of the image fusion 78. 
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In addition to co-registration, data sets from combined NIR and MRI imaging offer other 

synergistic benefits, namely anatomical priors (from high spatial resolution MRI) enhance NIR 

(i.e. high contrast resolution) image reconstruction. NIR spectroscopy is biochemically rich, but 

spectroscopic imaging is hindered by the highly scattered photon paths that reduce resolution in 

tissue51. The most widely adopted approach to this problem incorporates parameter estimation 

strategies based on models of light propagation in tissue. The estimation task is sensitive to small 

perturbations in the light measurements, not all of which are caused by the intrinsic changes in 

tissue optical properties. Experience has shown that significant improvements in the stability and 

accuracy of the reconstruction process can be obtained by including prior anatomical/optical 

information 53, 57, 60, 79-81.

Techniques for incorporating this information are relatively new, and are the subject of 

active research in a variety of disciplines, including medical imaging 76, 82, 83, industrial process 

imaging 84, and geophysical surveying 85, yet there is no clear consensus on the optimal 

approach. 

Brooksby et al 86 used NIR tomography and magnetic resonance imaging (MRI) on a 

healthy woman in vivo. The NIR image reconstruction technique implemented the MR structure 

as a soft-constraint in the NIR property estimation. The algorithm incorporated the MR spatially 

segmented regions into a regularization matrix that linked locations with similar MR properties. 

This reconstruction algorithm allowed maximal flexibility upon use with a priori data, and was 

validated on a series of breast tissue-like phantoms. Spatially resolved images of absorption and 

reduced scattering coefficients at multiple wavelengths (660-850 nm) were used to estimate 

values of hemoglobin concentration, oxygen saturation, water fraction, scattering power, and 

scattering amplitude within adipose and glandular breast tissue types identified from MRI. 
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Dramatic changes in spatial property distributions arose when the MRI was used to guide these 

reconstructions. Glandular tissue was observed to have more than four times the water than 

adipose tissue, and almost twice as much blood volume, as well as slightly reduced oxygen 

saturation. 

Hsiang et al 87 developed a handheld scanning probe based on broadband diffuse optical 

spectroscopy (DOS) in combination with dynamic contrast enhanced MRI (DCE-MRI) to 

quantitatively characterize locally-advanced breast cancers in six patients. Measurements were 

performed sequentially using external fiducial markers for co-registration. Lesion patterns were 

categorized according to MRI morphological data, and 3D DCE-MRI slices were converted into 

a volumetric matrix with isotropic voxels to generate views that coincided with the DOS 

scanning plane. Lesion volume and depth at each DOS measurement site were determined, and a 

tissue optical index (TOI) that reflects both angiogenic and stromal characteristics was derived 

from broadband DOS data.
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Figure 3: a) The original enhancement maps from 2 slices (4 mm thick) demonstrates an 
unenhanced necrotic center in the lesion. b) The re-sliced pre-contrast image along the 7 DOS 
markers demonstrating a hypointense mass, and the corresponding enhancement map 
demonstrating a strongly enhanced mass. These images are 1.5 cm thick, and do not show the 
necrotic core. c) The tissue optical index curve measured at each DOS location from the lesion 
and the normal breast tissues in the contralateral breast. A dip is seen at 6 cm in the DOS scan 
line, likely due to the necrotic core.
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Chapter 4.  Discussion

The histological examination of breast tissue is currently performed by selecting one of 

the well-developed invasive breast biopsy techniques (i.e. excisional biopsy, axillary node 

dissection, sentinel node dissection, or fine needle aspiration) depending on the location, size, 

palpability, and characteristics of the abnormality. Breast excisions remain one of the most 

common surgical operations for diagnosing and treating breast cancer. In the current setting, 

while frozen section analysis is available, there are technical limitations to cutting certain types 

of tissue and as a result, immediate histological analysis is not possible or practical. Therefore, 

developing technology that can offer detection and delineation of tumor margins in real time may 

be very useful to a surgeon during a diagnostic or therapeutic procedure.

The progress to date in using various optical spectroscopy methods for the classification 

of breast tissue arguably provides a solid foundation for the development of spectroscopy-based 

instrumentation for real time pathological assessment. Most of the approaches use single point 

measurement techniques that interrogate a small volume of tissue at each measurement. As 

mentioned earlier, the potential role of this technology in addressing clinical needs related to 

breast cancer detection and treatment may be for intraoperative tissue characterization in real 

time, or via designing thin fiberoptic needles to reach the suspected location within the breast for 

an evaluation of a suspected lesion. Such “optical needle biopsies” have recently been designed 

and preliminary in vivo results are encouraging 17, 88. Similar work is also in progress by other 

research teams 89. 

Point spectroscopic measurements or spectral imaging may be used to detect a tumor or 

establish tumor margins in real time in the operating room. It is estimated that 40-70% of 
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margins from breast lumpectomies will be involved by malignancy if the excision was not 

preceded by a tissue diagnosis. Optical biopsy methods could be most useful to detect 

nonpalpable or very small lesions and therefore guide the surgeon.

Although the development of optical mammography as a means of routine screening for 

early incidence of breast cancer in asymptomatic women is not universally regarded as an 

achievable goal, several applications have been identified for which the technique may be 

beneficial for specific patients. It has recently been proposed that NIR imaging may be useful for 

prescreening younger women to identify those at increased risk of developing disease 51. The 

facility to study tissue function, such as the oxygenation status of hemoglobin, may also make 

optical imaging a potent tool for detecting responses to new and existing forms of therapy 47. A 

further potential application of NIR imaging is to assess and monitor surrounding healthy tissues 

after treatment.
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