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Abstract

Two differently heat-treated AerMet-100 alloy cylinders were explosively driven to 
fragmentation.  Soft-captured fragments were studied to characterize the deformation and 
damage induced by high explosive loading.  The characterization of the fragments reveals that 
the dominant failure mechanism appears to be dynamic fracture along adiabatic shear bands.  
These shear bands differ in size and morphology depending on the heat-treated conditions.  
Nanoindentation measurements of the adiabatic shear bands in either material condition indicate 
higher hardness in the bands compared to the matrix regions of the fragments.
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1. Introduction

High explosive (HE) driven cylinder tests have been commonly used to investigate the effect 
of this unique and complicated loading path on the failure and fragmentation of metals [1-6].  
The material is first driven into compression as the shock passes through it and then undergoes 
tensile loading resulting in fracture and fragmentation.  The present work examines the 
deformation and damage induced by this loading path on the AerMet-100 alloy.  The fragments 
from the cylinders are collected in a “soft recovery” tank that mitigates secondary damage to the 
material.  The fragments are then analyzed to determine the deformation and failure mechanisms 
that led to fracture.

The configuration used here is similar to that used by many researchers for several decades to 
investigate the behavior of ductile metals driven at high strain rates in order to understand the 
fracture and fragmentation characteristics of munitions.  These experiments motivated and 
guided much of the seminal work on fragmentation behavior and modeling [1,2] and related 
microstructural mechanisms involved in the dynamic failure of metals [7].  

AerMet-100 alloy is studied because of its high strength and toughness, and its wide range of 
applications ranging from armor to ordnance [8,9].  This study focuses on investigating HE drive 
induced shear band formation in the alloy and to provide microstructure information necessary to 
develop dynamic fracture models [10].  This report describes the microstructural observation 
related to the shear band formation.

This work was performed under the auspices of the U.S. Department of Energy by University of 
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
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2. Experimental Methods

AerMet-100 alloy was purchased in the form of normalized overaged, ground, round bar 
stock from Carpenter Technology Corporation (Heat #207470).  The chemistry of the alloy in 
wt-% is 0.24 C, 2.99 Cr, 11.05 Ni 1.16 Mo, 13.32 Co and the balance is Fe.  Hollow cylinders 
were produced from this bar stock using electrical discharge machining (EDM) and additional 
surface finish machining on both the inside and outside of the cylinders to produce a 0.4 µm 
finish.  The cylinders are 20.32-cm long with a 5.08-cm outer diameter and a 0.3-cm wall 
thickness.  Some of the cylinders are hardened using a heat-treatment schedule recommended by 
Carpenter Technology Corporation [9].  Post heat-treatment measurements showed that the 
cylinders maintained dimensional stability.  Rockwell C hardness (HRC) increased from 40 to 
55.  Sound speed measurements in three orthogonal directions suggest the rod material is 
isotropic.  The average longitudinal sound speeds increase from 5.77 km/s to 5.80 km/s, 
following the heat treatment.  These values are consistent with published values [8].  Henceforth, 
the normalized overaged condition will be denoted as “as-received” (AR) and the age-hardened 
condition as “heat treated” (HT).

The hollow AerMet-100 alloy cylinders are loaded with a main charge of LX-17 HE.  This 
HE has a Chapman-Jouguet pressure of 28 GPa.  On one end of the cylinder, an LX-10 booster 
charge is mated to the LX-17 main charge to provide a near planar detonation of the main charge 
along the entire length of the cylinder.  The detonation wave proceeded down the cylinder at a 
velocity of 7.7 km/s.  The Gurney velocity for this configuration is 2.15 km/s corresponding to a 
terminal strain rate of 8.5x104/s.  However, analyses of experiments using computer code 
simulations indicate that the material fragments before it reaches this strain rate [10]. 

To collect as many of the cylinder fragments as possible, a “soft-capture” tank comprising a 
low-density (0.3g/cm3) foam box surrounded on the outside by water was fabricated.  This 
capture tank was designed to slow the fragments down and ultimately stop them in a manner that 
mitigates further damage to the material by keeping the retarding pressure on the fragments 
below the ultimate tensile strength of the material.

The recovered fragments from the exploded cylinders were cleaned, dried, and stored in 
desiccant.  Representative fragments were selected for microstructural characterization and 
analyses.  Prior to cross-sectional metallography, the original inner and outer cylinder surfaces 
(identifiable on most fragments) were examined to characterize surface cracks and other 
deformation induced surface features.  The fracture surfaces in both axial and circumferential 
directions were also examined to determine the failure modes.  Fragments were sectioned and 
metallographic samples were prepared using standard sample preparation techniques.  The 
polished surfaces were etched in a 5% nital solution to reveal the deformed microstructure.  
Samples of the virgin material were prepared in a similar manner.  The deformed microstructure 
was examined with optical and scanning electron microscopy (SEM) imaging.

3. Results and discussion

The microstructures of the AR and HT AerMet-100 alloy are shown in Fig. 1.  The AR 
microstructure contains martensite and randomly embedded incoherent 1.5 ± 0.8 µm diameter 
spherical inclusions.  Energy dispersive X-ray spectroscopy indicates that the micron-sized 
inclusions are composed of As, Ce and La.  A detailed analysis (performed on a recovered 
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fragment from an AR cylinder) indicates an areal density of these spherical inclusions of 
approximately 40/mm2.  This areal density corresponds to a volume density of approximately 
250/mm3 and a mean inclusion spacing of 0.17 mm. After the heat treatment, the martensite 
boundaries are homogeneously decorated with precipitates.  The coherent submicron sized grain 
boundary precipitates are identified as M2C carbides [11].  These carbides are the primary 
contributors to increased hardness observed in the heat-treated sample. 

The fragments recovered from either the AR or HT cylinders typically have a fragment 
length-to-width ratio of approximately five.  The average fragment length is 16 mm while the 
average fragment width is about 3 mm.  However the spread in each of these quantities is rather 
large.  The SEM fractography of a HT fragment is shown in Fig. 2.  The fracture surfaces 
defining the ends of the long dimension of the fragment reveal typical tensile failure, 
characterized by a mixture of very fine and enlarged dimples caused by various sized inclusions.  
Along the fragment length, the fracture surface is inclined at ± 45˚ to the inner or outer surface; 
but this angle can abruptly change from + 45˚ to - 45˚ on a given surface. Hence, these shear-
fracture surfaces can either be parallel to each other, resulting in a parallelogram shaped cross-
section; or the fracture surfaces can be anti-parallel, resulting in a trapezoidal or triangular cross 
section.  These surfaces show both equiaxed and teardrop shaped ductile dimples, characteristic 
of Mode I and/or Mode II crack growth [12]. 

The original inner and outer surfaces of the fragment show a hierarchy of deformation-
induced features, ranging from very small surface perturbations to small cracks to complete 
fracture.  These features are aligned along the long dimension of the fragment.  The smallest 
scale surface perturbations appear to be surface roughening and clearly defined surface steps or 
discontinuities.  These steps are typically several microns deep, have axial lengths on the order 
of a millimeter and average separations on the order of 200 µm.  Some of these steps are 
associated with adiabatic shear bands (ASBs) that penetrate into the fragment interior [13-15].  
On a larger scale, longitudinal cracks have axial lengths on the order of a couple of millimeters 
and inter-crack separations on the order of 1 mm. They are oriented along the axis of the 
cylinder in the same direction as the shear fracture surface, as shown in Fig. 3.

Examining the irregular surfaces that define the narrow dimension of the fragment, i.e., its 
width, we surmise that some of these longitudinal cracks link to form a single large crack, as 
shown in Fig. 4a.  A cross-section orthogonal to the long dimension of this particular HT 
cylinder fragment reveals that occasionally a “parallel” and “anti-parallel” crack meet so that the 
fracture surface changed its cross-sectional shape from a parallelogram to a trapezoid.  The 
damage induced on the surface and within the fragment is clearly seen in Figs. 4b-4d.  Larger 
surface defects that penetrate into the material up to hundreds of microns transition into very 
narrow and well-defined deformation bands; see Figs. 4c and 4d.  These narrow deformation 
bands are identified as ASB [13-21].  The width of the deformation is highly localized—
approximately 1 µm.  The material accumulates shear strains on the order of 3 or more in this 
region.  Cracks that have propagated into but not through the material constitute the largest 
surface defects observed; see Figs. 4b and 4d.  These cracks terminate in the fragment interior, 
transitioning into ASBs.   

The AR cylinder fragments exhibit similar deformation features as those observed in HT 
cylinder fragments.  However, ASBs found in this softer material are notably wider, on the order 
of 1.5 - 5 µm.  The larger widths and width variations associated with shear bands found in the 
AR material are the result of the shear bands being not as defined as those found in the HT 
material.  The deformation gradient between the matrix and shear band is less pronounced in the 
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AR material than in the HT material, such that a transition region of increasingly sheared 
material is clearly observable in the former; see Fig. 5.  

Differences between shear bands found in the AR and HT materials have also been observed 
in other high strength steels [19-21].  Cho et al. [19] observed similar diffuse shear bands in a 
softer (HRC44) AISI 4340 steel and more distinct, narrower bands in a harder (HRC55) 4340 
steel.  These investigators concluded that the shear bands with sharp edges (more defined edges) 
formed by deformation induced phase transformation within the shear band.  The shear bands in 
the softer material, in which plastic flow lines are clearly visible in the material region adjacent 
to the shear band, did not involve a phase transformation.  The phase transformation is induced 
by localized strain energy work (heating) within the shear band, which is more probably to occur 
in a harder material due to the high flow strength.  

Results of nanoindentation hardness (Hn) measurements within the ASB of both the AR and 
HT material suggest both shear bands experienced significant strain hardening.  The Hn of the 
ASB in the AR material is approximately 33% higher than the matrix hardness.  The Hn of the 
ASB in the HT material is approximately 17% higher than the matrix.  The larger increase in 
hardness measured in the AR material suggests that less of the strain hardening caused by the 
intense localized deformation is recovered due to the adiabatic heating than for the HT material.  
However, if both materials experience some degree of deformation induced phase 
transformation, the resulting phase may be harder than the starting phase; conventional 
hardening in the AerMet-100 alloy is the result of heat treatment.  

4. Conclusions

Explosively driven AerMet-100 cylinders, both AR and HT, are highly susceptible to strain 
localization induced adiabatic shear band formation.  Crack nucleation and growth occurs along 
these shear bands.  Although numerous cracks form, most terminate in the material interior at 
shear band intersections.  Nanoindentation measurements of the adiabatic shear bands in both 
materials indicate higher hardness compared to the matrix regions of the fragments. 
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Fig. 1.  SEM images of (a) AR and (b) HT AerMet-100 alloy showing the inclusions and 
precipitates in martensite boundaries after the heat treatment. 
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Fig. 2. SEM fractograpy of a HT fragment shown in (a) end of long dimension and (b) 45˚ shear. 

Fig.  3. SEM image of the original outer surface of a HT fragment (#83) showing the hierarchy 
of deformation. The vertical lines are the machining marks.

Long Axis
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Fig. 4.  Optical images of (a) HT fragment, (b) orthogonal cross-sectional view from a dashed 
line, (c) adiabatic shear band (1 µm) and area of the microvoids, and (d) from a boxed region 
showing interaction between ASB and cracks.  Arrows indicate the directions of crack 
propagation and shear band in (d).

Fig. 5. SEM images of (a) AR fragment #9 where the width of the shear bands lies between 1.5 
and 5 µm, and (b) HT fragment #154 where the width of the shear bands is less than1.5 µm. 


