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We introduce a new treatment of the difference formulation[1] for photon radiation
transport without scattering in 1-d slab geometry that is closely analogous to that
of Fleck and Cummings[2] for the traditional formulation. The resulting form is
free of implicit source terms and has the familiar effective scattering of the field of
transport.
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1. INTRODUCTION
Symbolic-Implicit Monte Carlo (SIMC) treatments[3] of the difference formulation of

photon transport[1] have demonstrated impressive levels of noise reduction. As it has been
applied to the difference formulation in local thermodynamic equilibrium (LTE), the SIMC
method enhances the numerical stability of those calculations at the expense of a non-linear
system solve at each time step. For well-conditioned systems discretized into relatively
few zones, the computational effort is typically dominated by particle tracking; the expense
of the non-linear solver is inconsequential, and SIMC applied to either the standard or
the differnece formulation enables the use of large time steps while maintaining numerical
stability. This can reduce overall computation time.

Notwithstanding considerations of scattering and connectivity in higher dimensions, for
problems of sufficiently large spacial extent the matrix to be inverted will be band-diagonal,
the width of which is limited by int(cδt/δx)+1, where c is the propagation speed, δt is the
time step size, and δx is the size of the zones used. Additionally, optically thick problems
guarantee that the reach of influence of Monte Carlo particles from symbolic sources will
be limited by attenuation, especially when techniques are utilized for eliminating particles
of insignificant weight. Either way, the band-limiting tends to ease the iterative burden
by reducing the influence of the non-linear portions of the system solve. However, if one
considers the costs associated with inverting the large matrices storing Monte Carlo sums
for a finely-discretized system, then one may find that multi-dimensional, high-fidelity
calculations using SIMC to be impractical.
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To improve the numerical stability of the Monte Carlo solution of the standard photon
transport equation, Fleck and Cummings[2] introduced a method of that converts a portion
of the absorption into an artificial scattering term, weakening the coupling between the
radiation transport and material energy equations. While the treatment, now called Implicit
Monte Carlo (IMC), is not perfect[4][5] and can be costly in optically thick problems where
there are many effective scattering events, it is unconditionally stable and does not require
the extra storage or computational burden of the solution of the non-linear system.

2. FLECK-LIKE TREATMENT OF THE DIFFERENCE FORMULATION
For optically thick systems in LTE, the departure of the specific photon intensity, I , from

the planck field, B, is small[1]. The difference formulation takes advantage of this by
transforming from the photon field, which is large in these systems, to the difference field,
D = I − B. It is the smallness of the difference field that we think will work in favor of
the IMC method.

In the SIMC treatments of the difference formulation currently known to the author[6],
the reduction in noise is due to the small size of the field and freedom from having to
sample the material’s emissivity for emission frequency, a task made difficult by the rich
structure in frequency the function exhibits for real materials. We believe similar benefits
may be realized in an IMC treatment, since the size of the field–determined by the physics
of the problem and not the solution method–should be small. With fewer Monte Carlo
particles (samples) of the field required in the calculation to achieve a desired level of
noise, there should be fewer scattering events to calculate too. We conjecture that two
of IMC’s disadvantages in optically thick problems, namely it’s Monte Carlo noise and
frequent effective scattering, may be mitigated by an analogous treatment of the difference
formulation.

The source terms of the difference formulation are treated implicitly in [6] to improve
numerical stability, and it is this implicit treatment that leads to the system of non-linear
equations that must be solved for the temperatures of the cells at the end of each time step.
Beginning with the difference formulation for photon transport without scattering in 1-d
slab geometry,
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we closely follow the development of the IMC treatment of the standard photon transport
formulation[2].

The black body field B can be expressed as 1
2c ur, where ur = aT 4 is the radiation

energy density. Closely following Fleck[2], the energy density equation is written as

∂ur
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(∫ 1
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where S is an external energy source and
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∂ur

∂um
(3)
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with um being the material energy density. Integrating both sides of Eq. 2 and taking the
appropriate time-centered values, leads to an expression for the radiation energy density

uγ
r =

αβσ∆t

1 + αβσc∆t

∫ 1
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r
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2Bγ

c
(4)

where the superscripts λ, γ and the factor α define the time-centering of the mean values
of I , S, B and ur, e.g.:

uγ
r = α

(
un+1

r − un
r

)
+ un

r (5)

with n being the time-integration cycle index and ∆t = tn+1 − tn. Solving for Bγ gives
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Substituting this expression for B into Eq. (1) gives
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On the right-hand side, the term(
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may be written as ( 1
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Moving the streaming operator within the integral( 1
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The integrand looks familiar; it’s just part of the standard transport equation:
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where D is the difference field in the difference formulation. Thus, the term now becomes( 1
2cαβσ∆t

1 + αβσc∆t

) [∫ 1
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]
(13)

which looks like an effective scattering term for the D-field with scattering cross-section
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)
σ (14)

The reader will recognize this as the same effective scattering cross-section that appears in
the transport equation in the work by Fleck and Cummings[2]. The term
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is close to the original form for the new source terms in the difference formulation in
LTE [6], but here there are no implicit terms Bn+1. The last term is the contribution from
external sources,
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which is usually known or specified. The transport equation now has the form
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which is free of implicit terms, but has an effective scattering term for the D-field.
As ∆t→∞, σs → σ and the transport equation becomes
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Note the absence of source terms from the streaming operator on B:(
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B

the new source terms of the difference formulation. The 1/∆t-dependence of this source
term in Eq.17 may lead to an unphysical decoupling between the material energy and the
difference field for large time-step sizes, a behavior observed in the IMC method applied
to the standard formulation[4]. As ∆t→ 0, σs → 0 and we recover the original difference
formulation of the radiation transport equation.
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3. CONCLUDING REMARKS
We have shown how the simple application of methodology used in [2] to improve the

numerical stability of non-linear radiation transport has eliminated symbolic source terms
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in the difference formulation. But the old aphorism “there is no free lunch” holds here
too: one must still deal with the scattering of the D-field and all the well-known problems
it invites (radon-walk techniques [7] may reduce the burden caused by scattering) as well
as the possible problems with the new 1/∆t-dependence of the source terms for large
time steps. It would be interesting to see if an analysis similar to [4] could be applied.
Nonetheless, it is our hope that the relatively few Monte Carlo samples required of the
difference formulation will mean fewer scattering events for the D-field in some of the
most challenging problems for the standard formulation–namely optically thick systems
in LTE. Further, since the method is free of a system solve, there may be a net savings in
computational effort over an SIMC implementation of the difference formulation when one
tries to solve problems composed of many cells.

We close by noting that Nick Gentile of this laboratory and Richard Smedley-Stevenson
of AWE are busy mining a similar vein.
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