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Abstract: The validity of gradient-diffusion closures for modeling turbulent transport in multi-mode Rayleigh–
Taylor and reshocked Richtmyer–Meshkov instability-induced mixing is investigated using data from three-
dimensional spectral/tenth-order compact difference and ninth-order weighted essentially non-oscillatory simu-
lations, respectively. Details on the numerical methods, initial and boundary conditions, and validation of the
results are discussed elsewhere [2,3]. First, mean and fluctuating fields are constructed using spatial averaging
in the two periodic flow directions. Then, quantities entering eddy viscosity-type gradient-diffusion closures,
such as the turbulent kinetic energy and its dissipation rate (or turbulent frequency), and the turbulent viscosity
are constructed. The magnitudes of the terms in the turbulent kinetic energy transport equation are examined
to identify the dominant processes. It is shown that the buoyancy (or shock) production term is the dominant
term in the transport equation, and that the shear production term is relatively small for both the Rayleigh–
Taylor and Richtmyer–Meshkov cases. Finally, a priori tests of gradient-diffusion closures of the unclosed
terms in the turbulent kinetic energy transport equation are performed by comparing the terms constructed
directly using the data to the modeled term. A simple method for estimating the turbulent Schmidt numbers
appearing in the closures is proposed. Using these turbulent Schmidt numbers, it is shown that both the shape
and magnitude of the profiles of the dominant terms in the turbulent kinetic energy transport equation across
the mixing layer are generally well captured.

1 INTRODUCTION

The purpose of this work is to investigate the mechanisms and modeling of turbulent transport in multi-mode
Rayleigh–Taylor and reshocked Richtmyer–Meshkov instability-induced mixing using three-dimensional high-
resolution numerical simulation data. The equations solved and the numerical methods used are summarized
elsewhere [2, 3]. Using the numerical simulation data validated by comparing to available experimental data,
Favre-averaged quantities used in turbulence models closed using the gradient-diffusion approximation are
computed from the simulation data. The budget of the terms in the turbulent kinetic energy transport equation
is investigated to determine which physical processes are most important to model. Finally, the unclosed
terms in the turbulent kinetic energy transport equation are modeled using standard gradient-diffusion (eddy
viscosity) closure models and are compared to the same terms computed directly from the simulation data.

2 DEFINITIONS OF AVERAGES AND THE EXACT TURBULENT KINETIC ENERGY TRANSPORT
EQUATION

As only one realization each of the Rayleigh–Taylor and Richtmyer–Meshkov unstable flows is considered,
ensemble averaging is approximated here by spatial averaging over the two periodic (homogeneous) directions
in the simulations: the directions perpendicular to gravity and the directions perpendicular to the shock
propagation. The Reynolds and Favre average of a field φ(x, t) are taken as

φ(z, t) =
1

Lx Ly

∫ Ly

0

∫ Lx

0

φ(x, t) dxdy , φ̃(z, t) =
ρ φ

ρ
(2.1)

with corresponding fluctuations

φ(x, t)′ = φ(x, t)− φ(z, t) , φ(x, t)′′ = φ(x, t)− φ̃(z, t) . (2.2)
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Fig. 3.1. The budget of the terms in the turbulent kinetic energy equation at τ = 1 for the Rayleigh–Taylor flow (left)

and at 5 ms for the reshocked Richtmyer–Meshkov flow (right). The buoyancy (shock) production term Pb, the shear

production term Ps, the turbulent diffusion term T , and the turbulent kinetic energy dissipation term D are shown

using a solid, dash-dot, dashed, and dotted line, respectively.

Here, Lx and Ly are the lengths of the domain in the periodic directions.
The exact, unclosed turbulent kinetic energy (Ẽ′′ = ũ′′2/2) transport equation is

ρ
dẼ′′

dt
= Pb + Ps + T + D + Π , (2.3)

where d/dt = ∂/∂t + ũj∂/∂xj and the buoyancy (or shock) production, shear production, turbulent diffusion,
turbulent dissipation, and pressure-dilatation terms are

Pb ≡ −u′′
j

(
∂p

∂xj
− ∂σ̃ij

∂xi

)
, Ps ≡ −ρ u′′

i u′′
j

∂ũi

∂xj
, T ≡ − ∂

∂xj

(
ρ E′′ u′′

j + p′ u′′
j − u′′

i σ′′
ij

)
, (2.4)

D ≡ −σ′′
ij

∂u′′
i

∂xj
, Π ≡ p′

∂u′′
j

∂xj
,

respectively. In the shock-capturing simulation of the Richtmyer–Meshkov instability, viscous terms are not
explicitly included, so that σ̃ij = σ′′

ij = 0 formally in Pb and T . The terms involving σ̃ij and σ′′
ij are also

very small in the Rayleigh–Taylor simulation (except in D), and are not considered further. The turbulent
dissipation D is computed explicitly in the Rayleigh–Taylor case, but can only be modeled in the Richtmyer–
Meshkov case.

3 TIME-EVOLUTION OF TERMS IN THE EXACT TURBULENT KINETIC ENERGY TRANSPORT
EQUATION

The time-evolution of terms in the exact turbulent kinetic energy transport equation is considered here for
both the Rayleigh–Taylor and Richtmyer–Meshkov flow cases to determine which terms are dominant in these
instabilities. For each term, the profile across the mixing layer is shown, i.e., the term in (2.3) integrated over
the periodic directions using the Favre and Reynolds average definitions. The coordinate in the direction of
gravity or the shock is scaled by the mixing layer width h(t). In addition, in the Richtmyer–Meshkov flow case,
the coordinate is recentered by the midpoint, xmid, between the bubble and spike fronts.

3.1 Rayleigh–Taylor Unstable Flow

The budget of terms in the turbulent kinetic energy transport equation (2.3) across the mixing layer is shown in
Fig. 3.1 at time τ = 1, where τ = t/

√
gAH (see [3] for further details of the simulation). It is evident that the
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buoyancy production term is dominant, with additional significant contributions from the turbulent diffusion
and dissipation terms. The shear production term is nearly zero, as expected in a flow with either a nearly
constant mean velocity or zero mean velocity. The turbulent diffusion is both positive and negative over the
layer, with zero integral, indicating that this term redistributes turbulent kinetic energy conservatively within
the layer. The buoyancy production and dissipation terms are positive everywhere, and are peaked near the
centerplane of the layer, z = 0. The relative importance of these terms and the trends are also true for earlier
times (not shown here).

3.2 Richtmyer–Meshkov Unstable Flow

The budget of terms in the turbulent kinetic energy transport equation (2.3) across the mixing layer is shown in
Fig. 3.1 at 5 ms (see [2] for further details of the simulation). In the absence of explicit molecular dissipation,
the dissipation term is modeled as in the Ẽ′′-ω̃′′ model [4]

D = −ρ Ẽ′′ ω̃′′ , (3.1)

where ω̃′′ =
√

2Ω̃′′ is the turbulent frequency. The shock production term dominates the other terms, and has
largest (negative) value near the centerplane of the mixing layer. As in the Rayleigh–Taylor case, the turbulent
diffusion and dissipation terms also contribute significantly. The shear production is oscillatory and averages
to nearly zero, as expected in a flow with a nearly constant mean velocity. The turbulent diffusion is both
positive and negative over the layer, with zero integral, indicating that this term redistributes turbulent kinetic
energy conservatively within the layer. The dissipation term is positive everywhere, and is peaked near the
centerplane of the layer.

4 A PRIORI ANALYSIS OF THE GRADIENT-DIFFUSION APPROXIMATION

In the a priori analysis of the gradient-diffusion (eddy viscosity) approximation for closing the terms in the
exact turbulent kinetic energy transport equation, the profiles of the closed terms across the mixing layer are
computed using the models presented below. Modeled terms were constructed from the appropriately averaged
simulation data. The model predictions and the directly computed (unclosed) terms are compared to evaluate
the predictive capability of the gradient-diffusion closures of the key terms in the turbulent kinetic energy
equation.

4.1 The Modeled Turbulent Kinetic Energy Transport Equation

Using the gradient-diffusion hypothesis, the modeled terms (2.4) are given by the algebraic closures [1]

Pb = − νt

σρ ρ

∂ρ

∂xj

∂p

∂xj
, (4.1)

Ps = −
[
2
3

ρ Ẽ′′ δij − 2 µt

(
S̃ij −

δij

3
∂ũk

∂xk

)]
∂ũi

∂xj
, (4.2)

T =
∂

∂xj

(
µt

σk

∂Ẽ′′

∂xj

)
, (4.3)

D = −ρ ε̃′′ , (4.4)

where S̃ij = (1/2)(∂ũi/∂xj + ∂ũj/∂xi) is the mean strain-rate tensor, ε̃′′ is the turbulent kinetic energy dis-
sipation rate per unit mass, the pressure-dilatation term Π and the pressure-flux p′u′′

j contribution to T are
neglected in the current study, and σρ and σk are dimensionless turbulent Schmidt numbers. With the defini-
tions of the Favre and Reynolds averages, these terms are profiles across the mixing layer depending only on
the coordinate in the inhomogeneous direction and on time. In the above expressions,

νt =

0.09 ( fE′′)2

fε′′ for Rayleigh–Taylor flowfE′′fω′′ for Richtmyer–Meshkov flow
(4.5)
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Fig. 4.2. The turbulent kinetic energy fE′′, turbulent kinetic energy dissipation rate eε′′, and turbulent viscosity νt at

τ = 1 and 5 ms for the Rayleigh–Taylor (top) and Richtmyer–Meshkov (bottom) flows, respectively.

is the turbulent viscosity (µt = ρνt).
The turbulent kinetic energy, turbulent kinetic energy dissipation rate, and turbulent viscosity profiles

across the mixing layer are shown for the Rayleigh–Taylor and Richtmyer–Meshkov flows in Fig. 4.2. For
the Rayleigh–Taylor case, all three quantities are peaked near the center of the mixing layer. Note that the
turbulent viscosity is considerably larger than the molecular viscosity ν ≈ 0.1 cm2/s. In order to obtain better
correlation between the modeled and directly computed term, the time-dependent turbulent Schmidt numbers
were first calculated by algebraically solving for them in Eqs. (4.1) and (4.3) and integrating over the layer
for both the Rayleigh–Taylor and Richtmyer–Meshkov flows. The resulting time-dependent values of σρ and
σk were then used in the closures. Note that this rescaling of the terms does not change their shape, but only
adjusts their magnitude.

4.2 Rayleigh–Taylor unstable flow

In the Rayleigh–Taylor instability, it was found that σρ approaches a value of ∼ 0.1, while σk approaches unity
at the latest time in the simulation. The profiles are shown as a function of z/h(t), where z is the coordinate
direction parallel to gravity and h(t) is the mixing layer width. Thus, the mixing layer is contained within
z/h(t) ∈ [−0.5, 0.5]. As seen in Fig. 4.3, the overall agreement between the model and DNS data for w′′ is
good. In particular, the shape and magnitude are generally well captured. However, the figure shows that the
gradient-diffusion approximation does not completely capture the energy transfer across the layer. The large
amplitude excursions in the model are a consequence of the poor statistical convergence of the mean density
and turbulent kinetic energy gradients due to the limited spatial resolution of the data.

4.3 Richtmyer–Meshkov unstable flow

In the Richtmyer–Meshkov instability, it was found that σρ and σk both approach an asymptotic value of
∼ 0.1 in the simulation. The profiles are shown as a function of (x− xmid)/h(t), where x is the coordinate
direction parallel to the shock propagation, xmid is the midpoint of the layer, and h(t) is the mixing layer
width. Thus, the mixing layer is contained within (x− xmid)/h(t) ∈ [−0.5, 0.5]. As shown in Fig. 4.3, the
Reynolds-averaged Favre fluctuating velocity u′′ is in good agreement with the model up to the interaction of
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Fig. 4.3. Comparison of the computed and modeled averaged Favre fluctuating velocity and turbulent diffusion, T , for

the Rayleigh–Taylor (top) and Richtmyer–Meshkov (bottom) flows.

the layer with the reflected rarefaction at ∼ 5 ms. The turbulent kinetic energy diffusion shown in Fig. 4.3
is also in good agreement with the model up to the interaction with the reflected rarefaction. Both quantities
exhibit large amplitude excursions in the model due to the poor statistical convergence of the mean density
and turbulent kinetic energy gradients.

5 CONCLUSIONS

Using spatially-averaged data from numerical simulation models of the Texas A&M University water channel
Rayleigh–Taylor experiment [3] and the reshocked Ma = 1.5 air/SF6 Vetter–Sturtevant Richtmyer–Meshkov
instability experiment [2], it was shown that: (1) the buoyancy (shock) production, turbulent dissipation, and
turbulent diffusion terms are dominant, while the shear production term is nearly zero in Rayleigh–Taylor flow
and less important than the other terms in the Richtmyer–Meshkov flow; (2) using spatial averaging to define
Favre and Reynolds averaged and fluctuating fields, it is possible to compute quantities (such as the turbulent
viscosity) entering into gradient-diffusion turbulence closures, and; (3) using adjusted values of the turbulent
Schmidt numbers (smaller than typically used in compressible and stratified turbulent flow modeling), the
gradient-diffusion models for the key terms in the turbulent kinetic energy transport equation are in reasonable
qualitative and quantitative agreement with the data in a priori comparisons. While the gradient-diffusion
approximation cannot correctly capture the anisotropy of the Reynolds stress tensor components in these flows,
this approximation is evidently quite reasonable for most of the important terms in the turbulent kinetic energy
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balance. The only term in the turbulent kinetic energy equation that requires the Reynolds stress tensor is
the shear production (4.2): this term is generally of little importance in the overall energy balance in both
Rayleigh–Taylor and Richtmyer–Meshkov instability-induced turbulence.

This investigation demonstrates that high-resolution simulations can be used to provide essential data
concerning turbulent transport and mixing processes in three-dimensional Rayleigh–Taylor and reshocked
Richtmyer–Meshkov instability. In particular, simulations provide quantities not presently possible (or dif-
ficult) to measure experimentally, such as the turbulent Schmidt numbers.
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