
UCRL-CONF-221452

Formal Specification of the
OpenMP Memory Model

G. Bronevetsky, B. R. de Supinski

May 18, 2006

Second International Workshop on OpenMP (IWOMP 2006)
Reims, France
June 12, 2006 through June 15, 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71306344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Formal Specification of the OpenMP Memory Model

Greg Bronevetsky1 and Bronis R. de Supinski2

1 Department of Computer Science,
Cornell University,

Ithaca, NY 14850, USA,
greg@bronevetsky.com,

2 Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory,

Livermore, CA 94551, USA
bronis@llnl.gov

Abstract. OpenMP [1] is an important API for shared memory programming, combining shared memory’s
potential for performance with a simple programming interface. Unfortunately, OpenMP lacks a critical
tool for demonstrating whether programs are correct: a formal memory model. Instead, the current official
definition of the OpenMP memory model (the OpenMP 2.5 specification [1]) is in terms of informal prose.
As a result, it is impossible to verify OpenMP applications formally since the prose does not provide a
formal consistency model that precisely describes how reads and writes on different threads interact.
This paper focuses on the formal verification of OpenMP programs through a proposed formal memory
model that is derived from the existing prose model [1]. Our formalization provides a two-step process to
verify whether an observed OpenMP execution is conformant. In addition to this formalization, our contri-
butions include a discussion of ambiguities in the current prose-based memory model description. Although
our formal model may not capture the current informal memory model perfectly, in part due to these
ambiguities, our model reflects our understanding of the informal model’s intent. We conclude with several
examples that may indicate areas of the OpenMP memory model that need further refinement however it
is specified. Our goal is to motivate the OpenMP community to adopt those refinements eventually, ideally
through a formal model, in later OpenMP specifications.

1 Introduction

Modern systems are being increasingly built using multi-threaded architectures. These include systems with
multiple processors on the same node and/or multiple cores on the same chip. Given the proximity of the
processors/cores on such machines, they typically feature a single memory accessible to any processor. As
such, these machines are most easily and effectively programmed in a multi-threaded shared memory style.

OpenMP [1] has emerged as a popular shared memory API because it combines the performance ad-
vantages of shared memory with an easy-to-use API. However, despite the relative simplicity of the API,
OpenMP applications remain difficult to write. The difficulty arises from several inherent complexities of
multi-threaded execution, including non-determinism, a large space of possible executions and a very relaxed
memory consistency model. Thus, although OpenMP allows programmers to improve application perfor-
mance significantly, this comes at a cost of significantly higher program complexity. This complexity makes
OpenMP programs much more vulnerable to bugs than sequential programs and, thus, more expensive to
debug. Ultimately, confidence in the correctness of the final application is reduced.

Formal verification is a family of techniques where a program or protocol is formalized into a mathemat-
ically well-defined form. Correctness is verified using a variety of techniques that range in their complexity
and their correctness guarantees, from model checking to theorem proving [9]. While formal verification is
generally too complex to apply to real-world applications, it is feasible for the basic algorithms on which real
applications are based.

Existing work on formally verifying shared memory algorithms [8] requires us to represent the entire
computational content of the algorithm formally, including algorithm logic and the details of the underlying
system. In particular the underlying memory model must be formalized. While some formal memory models
exist [7] [3], none exists for OpenMP. Instead, the official description of OpenMP’s memory model (section
1.4 of version 2.5 of the OpenMP specification [1]) is written in detailed English, which is generally clear

but not nearly precise enough for formal verification tasks. Similarly, while the OpenMP memory model was
recently clarified further [6], this clarification is also informal.

This paper focuses on verification of OpenMP programs through a proposed formal memory model that
we derived from the existing prose model [1]. Our formalization provides a two-step process to verify if an
observed OpenMP execution is conformant. In addition to this formalization, our contributions include a
discussion of ambiguities in the current prose-based memory model description. Although our formal model
may not capture the current informal memory model perfectly, in part due to these ambiguities, our model
reflects our understanding of the informal model’s intent. We present several examples that demonstrate a
need for further refinement of the OpenMP memory model however it is specified. Our goal is to motivate
the OpenMP community eventually to adopt those refinements, ideally through a formal model, in later
OpenMP specifications.

This paper is divided as follows. Section 2 provides an overview of the OpenMP memory model. Section 3
discusses aspects of that model that we find ambiguous (despite one of the authors having significant input
into it). Section 4 outlines the formalization of this model. Section 5 defines the language of the operations
used in the formal model. Sections 6 and 7 provide the details of the two phases used by the formal spec-
ification. Finally, section 8 provides several example programs and their outcomes under the formal model
specified in this paper.

2 OpenMP Memory Model
The OpenMP memory model provides for two types of memory: shared and threadprivate. There is a single
shared memory that is visible to reads and writes on all threads. Furthermore, each thread has its own
threadprivate memory that is accessible to only the reads and writes on that thread. OpenMP’s shared
memory semantics are akin to but a little weaker than weak ordering [4]. While each thread may read from
and write to data in shared memory, there is no guarantee that one thread can immediately observe a write
by another thread. Thus, the value associated with a given read may not reflect all prior writes from other
threads. Instead, each thread conceptually has a temporary view of shared memory and a flush operation
limits the reordering of operations and synchronizes a thread’s temporary view with shared memory.

Simple, intuitive concepts motivate the OpenMP memory model. In order to ensure that a read by thread
j returns the value of a write by thread i, the program must provide synchronization that guarantees the
following sequence of events:
1. Thread i writes to the variable
2. Thread i flushes the variable
3. Thread j flushes the variable
4. Thread j reads the variable

and no other writes to the variable are happening at the same time. Any behavior outside the above sequence
can produce undefined read results and/or leave the variable’s value in shared memory undefined. However,
the OpenMP memory model is very complex with many potential pitfalls in practice despite the simplicity
of the underlying concepts, as we will discuss.

A thread’s temporary view can be its cache, registers or other devices that speed up memory operations
by not forcing the processor to go to main memory for every shared access. Reads and writes to shared
variables access the thread’s temporary view of shared memory. If the thread reads a shared variable and the
temporary view doesn’t hold a value for this variable, the read goes directly to shared memory. If a thread
writes to a shared variable, it only updates the thread’s temporary view of that variable. However, the system
is then free to non-deterministically push the value of the write from a thread’s temporary view to shared
memory at any time. Since there are no atomicity constraints (e.g., a 64-bit write may not be executed as
a single operation), if two writes executed on two threads are not ordered via synchronization, the value of
the variable in shared memory may become garbage and is thus undefined (until it is overwritten by some
later write). Similarly, if a write to a variable and a read from the same variable are executed on different
threads and are not related via appropriate flushes and synchronization, the value read is undefined.

In addition to uncertainty about when shared reads and writes will actually access shared memory,
OpenMP allows the compiler and the hardware to execute application operations out of order relative to
their order in the original source code (called ”program order”). In particular, implementations are allowed
to reorder shared operations that access different shared memory variables. It is not specified whether it is

legal to reorder operations that do have data dependence (ex: A=B and B=1), although it is possible to
imagine aggressive compiler transformations that may do that.

OpenMP’s flush operation is the the application’s primary means of limiting the asynchrony of memory
and the degree of out-of-order execution. A given flush operation applies to a list of shared variables and
has two major effects:
• it synchronizes the thread’s temporary view with shared memory for the variables in the list;
• it prevents reordering of the thread’s operations on variables in the list.
The first effect ensures that any preceding writes to the list variables by the thread have completed in the
shared memory before the flush completes. It also ensures that the first read that follows the flush to each
of the list variables must come directly from shared memory. The second effect ensures that shared memory
operations that accesses a variable in the flush’s variable list are executed in program order relative to the
flush. Furthermore, all flush operations with overlapping variable lists must be executed in program order.

A program’s flush operations also restrict the interleaving of operations by different threads. All threads
must observe any two flush operations with overlapping variable lists in some sequential order. Thus, we
can organize non-flush operations on different threads into a partial temporal order that in turn determines
which writes are visible to which reads.

OpenMP provides several synchronization operations in addition to reads, writes and flushes. These
include locks, barriers, critical sections, ordered sections and atomic updates. All of these operations
are preceded and/or followed by implied flush operations that apply either to all variables or just the
variable involved in the operation.

3 Ambiguities in the OpenMP Memory Model

Despite the precise prose that defines the OpenMP memory model, we had several questions as we formulated
our formal memory model based on it. Some of the questions indicate ambiguities that should be resolved
in future specifications. Other questions arise from discrepancies between the prose and our understanding
of the intent of the OpenMP language committee. We present several of these questions in this section.

3.1 Dependence-breaking Compilers

The OpenMP memory model clearly defines reordering restrictions with respect to flush operations. However,
reordering restrictions for non-flush operations are much less clear. For example, most sequential compilers
reorder operations that access different variables; does the memory model allow these? The memory model is
definitely intended to allow them but only supports them with this sentence: “The flush operation restricts
reordering of memory operations that an implementation might otherwise do.” We read this to mean that
the memory model imposes no other reordering restrictions. This would mean that compilers may reorder
operations that access the same shared variable. In particular, they can reorder
not only reads but also writes. In general, the compiler can reorder any accesses
not separated by a flush, including conflicting accesses to the same variable,
provided that it preserves the application’s sequential semantics.

For example, in this sample code the application’s sequential semantics would
be preserved if the two writes to B were exchanged, since in a single-threaded
execution the write B = A is guaranteed to assign 5 to B. However, if this code
were to be executed by two threads, the write B = A would assign B to 20, rather
than 5. As such, reordering these two writes, while apparently legal in OpenMP,
can produce unexpected results. Since there exist apparently legal dependence-
breaking compiler optimizations that violate the spirit of the OpenMP memory
model, the OpenMP specification should include a clear statement about the va-
lidity of different types of variable access reordering.

if(threadNum==0) {
Barrier
A=20;
Barrier

} else {
A=5;
Barrier
Barrier
B=5;
B=A;
print B;

}

3.2 Intra-thread Dependencies

The OpenMP memory model clearly states that a flush does not complete until the values of all preceding
writes have been completed in shared memory. However, it is not clear if the OpenMP memory model enforces
program order, i.e., processor consistency [5].

In Section 2, we presented the events required for a read by thread j to return the value written by thread
i. If thread i writes another value between steps 1 and 2, what value should be read in step 4? The question
is related to the reordering questions in the preceding section, but it is also different. If the first value is
captured in the temporary view but not the second for some reason (for example, the writes are executed
out of order), is it legal not to propagate the captured value? The memory model prose states otherwise:
“the flush does not complete until the value of the variable has been written to the variable in memory.”
Simply put, the memory model does not address multiple writes to the same shared variable by the same
thread between two flush operations. Ultimately, the question is: does OpenMP guarantee that writes by a
given thread must be seen in program order by other threads as long as the appropriate flushes have been
issued (i.e. writes, flush, flush, read)?

We can also ask about the impact of reads by thread i: suppose that thread i reads the variable between
steps 1 and 2 and that value is different from what was written by the write in step 1 due to a write by some
other thread. This scenario includes a race condition and the specification is clear that the variable’s value
becomes undefined. However, completing the write would now be inconsistent with program order. Does the
race imply that the flush should not see the write from step 1 and the read in step 4 will get some other
value? The specification provides little detail on how local state evolves so the issue is unclear.

3.3 Effect of Privatization

The memory model section, section 1.4, of the 2.5 specification [1] states that OpenMP has two types of
memory: shared and threadprivate. The bulk of the section defines the semantics of the shared memory.
It provides few details of the second type, which corresponds to threadprivate variables and to variables
included in private clauses. The only issue discussed is the interaction with nested parallelism.

The memory model does not address any interactions between the two types. In particular, it does not
discuss the impact on shared variables that are included in private clauses. However, section 2.8.3.3, which
discusses the private clause, includes: ”The value of the original list item is not defined upon entry to the
region. The original list item must not be referenced within the region. The value of the original list item is
not defined upon exit from the region.” Including a shared variable in a private clause essentially writes the
shared variable with an undefined value, an effect that is easily overlooked by someone trying to understand
the OpenMP memory model. We understand that this effect is being reconsidered for the OpenMP 3.0
specification. However, our point here is that any interactions between the two types of memory should be
included in the memory section. In the very least, a forward reference is needed.

3.4 Captured Writes

The OpenMP memory model states that ”If a thread has captured the value of a write in its temporary
view of a variable since its last flush of that variable, then when it executes another flush of the variable,
the flush does not complete until the value of the variable has been written to the variable in memory.”
We find this ambiguous and believe others will also. What does it mean for a thread to capture a value of
a write? Does this only refer to a write by the thread that executes the flush? We believe that to be the
intent but the actual wording could refer to writes on other threads that have been read by the given thread.
Our point is that English is a rich and complex language in general and the phrase “precise English” is an
oxymoron. For this reason, a formal, mathematical model is needed.

4 Formal Specification

The following sections describe the OpenMP memory model in formal, mathematical language. This speci-
fication takes as input an application and a trace that shows how this application executed on top of some
implementation of OpenMP (a trace is a tuple of lists of executed shared memory operations, one list for
each thread, with the operations stored in the order in which they were executed on that thread, along with
their results, if any). It then uses a set of rules to judge if the application could have generated the trace
and if a valid interleaving of thread operations exists under the OpenMP memory model that results in the
values read in the trace.

Our OpenMP formalization is an operational model
(outlined on the right). It defines a system state and
valid transition rules for modifying the state. At a high
level, this model defines the state of one or more ap-
plication threads running on top of shared memory and
transition rules for evaluating the next application opera-
tion on some thread. Applications are specified as lists of
high-level operations such as (varA = varB ⊗ varC) and
(While(var = val) bodyList), called ”application opera-

appOps

Thread 1

smOps smOps. . .

appOps

smOps smOps. . .

Thread n

.

Shared Memory

Output

tions” or ”appOps”. Each appOp is made up of one or more simpler operations such as (Read varA) or
(Write varB val), called ”shared memory operations” or ”smOps”. Every thread’s state transition either:
• Evaluates the next smOp that makes up the thread’s currently-executing appOp; or
• Moves to evaluation of the thread’s next appOp in its remaining application source code.

The first action can change the shared memory state. The second action typically removes an appOp from
the remaining application source code but can add appOps in the case of a while loop appOp that performs
multiple loop iterations. A trace records each thread’s view of a particular execution of the system. As
such, it is a tuple of lists of smOps, one for each thread, (each list is some thread’s ”sub-trace”). Each
sub-trace contains the smOps executed by its respective thread and any values they returned (e.g., the entry
(Read var 7→ val) corresponds to a read of variable var that returned the value val). Traces do not specify
the interleaving of smOps from different threads.

We break our operational model into two sub-models, the Compiler Phase and the Runtime Phase, so that
we can reason independently about different aspects of the memory model. The compiler phase evaluates
each thread’s source code independently from any other thread to verify that the application could have
generated the list of smOps in each sub-trace. Its state consists of:
• a list of the current thread’s remaining appOps;
• a list of smOps generated by that thread so far;
• the suffix of the thread’s sub-trace that contains the yet unverified smOps.

During each state transition the compiler phase evaluates the next appOp, breaks it up into its constituent
smOps (ex: the appOp (varA = varB ⊗ varC) breaks up into (Read varB), (Read varC) and (Write varA)
smOps) and checks whether these smOps are contained in the sub-trace. Whenever an appOp uses values from
shared memory (e.g., the value returned by a read), it looks them up in the sub-trace. The trace corresponds
to the application’s source code if the compiler phase independently verifies this for each sub-trace.

The runtime phase determines if the smOps in the individual threads’ sub-traces correspond to each
other. More specifically, it evaluates the threads’ sub-traces in parallel to determine whether a conformant
interleaving exists that results in the associated read values. It assumes that the smOps in the individual
threads’ sub-traces correspond to the application’s source code. Therefore, its state consists of:
• the writes, atomic updates and flushes that each thread performed (one list per thread);
• a partial order that relates those smOps in time (used for determining the values that a read may return);
• the system’s synchronization state: currently held locks, critical and ordered sections and the identities of

threads that are currently blocked on a barrier;
• the smOps that remain to be evaluated for each thread (one list per thread).

During each state transition the runtime phase chooses a thread and evaluates its pending smOp. It may
evaluate smOps out of order if this does not break their data dependences, (determined during the compiler
phase). Evaluation of the read and atomic update smOps examines the values available to be read and verifies
that the value returned by the read or atomic update in the trace could actually have been read during this
interleaving. Every state transition also causes the state to change, including updating the synchronization
state and adding new operations to the above partial order. Since the runtime phase is non-deterministic,
the trace is self-consistent if the exists some interleaving of the different threads’ smOps such that all reads
and atomic updates performed by the formal model match their return values recorded in the trace.

Section 5 details the full language of appOps and smOps. Sections 6 and 7 provide more details on the
mechanics of the compiler phase and runtime phase, respectively. Due to lack of space, we do not cover the

full mathematical details of the formalism, which are available elsewhere [2]. Instead, we express them in a
more verbal style here.

5 Language Specification

5.1 Application Operations
Our application language (specified below) models the major relevant features of C/Fortran and OpenMP.
It contains basic computational and control flow operations as well as flushes and locks. Section number
references refer to the OpenMP 2.5 specification [1]. The while loop primitive makes the application language
Turing-complete in its use of shared memory operations. As mentioned, these operations are sufficient for our
examples; the complete language covers the remaining OpenMP synchronization operations such as barriers
and ordered sections [2].
varA = varB ⊗ varC

• Represents any local computation
performed by the application.

• ⊗ is a Turing-complete binary
operation that does not use shared memory.

• varA, varB and varC are shared variables.
• Corresponds to (Read varB), (Read varC)

and (Write varA val) smOps.
Flush varList
• Models explicit flushes [sections 1.4.2 and 2.7.5].
• varList is a list of shared variables.
• An explicit flush operation with a list maps to

Flush varList, where varList is its variable list.
• An explicit flush operation without a list maps

to Flush allV arList, where allV arList contains
all application shared variables.

• Corresponds to a single Flushmm smOp that applies
to the same varList.

Atomic var ⊕ = updV al
• Models the atomic update construct [section 2.7.4].
• ⊕ may be one of the following operations:

+, ∗, −, /, &, ˆ, |, <<, or >>
(++ and - - are modeled via +=1 and -=1).

• var is a shared variable.
• updV al is a constant.
• Corresponds to an Atomicmm smOp

surrounded by (Flushmm (var)) smOps.

Lock lockV ar
Unlock lockV ar
• Model the omp set lock and omp unset lock

function calls [section 3.3].
• lockV ar is a shared variable only accessed via

Lock and Unlock operations.
• Correspond to a BlockSynch smOp surrounded

by (Flushmm allV ars) smOps (Lock and Unlock
correspond to different BlockSynch smOps)

While(var = testV al) bodyList
• A while loop control flow primitive.
• var is a shared variable.
• testV al is a value.
• bodyList is a list of appOps.
• Corresponds to a single (Read var) smOp.

Print var
• Outputs the value of a given shared variable

to the user; primarily used in examples to
reason about outcomes of application executions.

• var is a shared variable.
• Corresponds to a single (Read var) smOp.

End
• The last operation in the application’s source

code.
• Ensures each thread’s sub-trace ends correctly.

5.2 Shared Memory Operations

We use a very simple shared memory operation language that is sufficient for the functionality needs of the
higher-level appOps. The smOps include reads, writes, atomic updates, flushes and blocking synchronizations
(from which higher-level synchronizations are built) and are detailed in Figure 1.
6 Compiler Phase

The compiler phase, diagrammed here, independently evaluates each
thread of the application. It relates the application’s source code to the
smOps recorded in the thread’s sub-trace. The evaluation pass reads the
appOps of the application source code in program order and unwraps its
while loops as appropriate. In the process, it translates each appOp into
its constituent smOp(s). These application smOps are looked up in the
thread’s sub-trace during this evaluation process to verify that they actually
do appear there. The values of all shared reads and atomic writes are also

appOps

Thread i

smOps smOps. . .

Trace

Output

i

looked up in the trace. This phase also defines a dependence order −−−→DepO on each thread’s smOps, which

Write var val: writes val to variable var.

• var is a shared variable.
• val is a constant.

Read var 7→ val: read of variable var returns val.

• var is a shared variable.
• val is a constant.

Atomicmm var ⊕ = updV al 7→ finalV al:
atomically updates variable var to finalV al.

• var is a shared variable.
• updV al is a constant.
• Reads current value, val, of var.
• Computes finalV al = val ⊕ updV al.
• Writes finalV al to var.
• Actions are atomic: unsychronized atomic updates

do not make the value of var indeterminate.
• Does not have any flush semantics

(unlike the Atomic appOp).
• ⊕ may be: +, ∗, −, /, &, ˆ, |, <<, or >>.

Flushmm varList:
flushes this thread’s temporary view
of variables in varList.

• varList is a list of shared variables.
• Updates thread’s temporary view of those variables

with writes from other threads and vice versa.
• Provides flush semantics for explicit and

implicit flush operations.

BlockSynch blockF updF :
generic blocking synchronization operation.

• Used to implement synchronization semantics of
higher-level operations such as locks and
barriers.

• blockF is function.
◦ Result depends on the formal system synchronization

state.
◦ Returns False if the thread may continue executing

(i.e., is not blocked).
◦ Returns True if the thread is blocked.

• updF is a function.
◦ Result depends on the formal system

current synchronization state.
◦ Returns the next sychronization state.
◦ Applied only when blockF returns True.
◦ Ensures the synchronization state reflects that the

thread has become unblocked.
• blockF and updF vary with each high-level

synchronization construct.
• The compiler phase (Section 6) defines

blockF and updF .
• The runtime phase (Section 7), where synchronization

state is defined, applies blockF and updF .

Fig. 1. Types of shared memory operations
the evaluation in the runtime phase must not violate. The remainder of this section defines the state and
transition function of the compiler phase.

This phase’s operational model is applied to the sub-trace corresponding to each thread. During each
transition it evaluates the next appOp of the app list and verifies that its smOps occur in the sub-trace
and have the appropriate step counter labels. The phase fails if it cannot verify those smOps. Whenever an
appOp’s evaluation depends on the outcome of a read, the read value is looked up in the trace and used
in the appOp. For example, the while loop transition behaves differently depending on whether the value
returned by its read is testV al or not.

The full trace is valid only if the above transition system independently passes each of its sub-traces.
The Dependence Order −−−→DepO is preserved after this compiler pass for use in the runtime pass to ensure that
whenever smOps are evaluated out of order, this new ordering does not violate their read-write dependences.
6.1 Compiler State
[n, app, tracesub,

−−−→
DepO]

• n: the number of smOps evaluated by this thread thus far. Initially n = 0.
• app : The list containing the appOps that remain to be evaluated by the thread. Initially, it is the original

source code of the application.
• tracesub : The list containing the thread’s sub-trace that is to be validated relative to application source

code. The mth smOp generated on this thread is listed as < smOp,m > (recall that the smOps in tracesub

may have been executed out of order, meaning that they may be listed out of program order). No two
entries in tracesub have the same m field.

• −−−→
DepO: The dependence order established so far between thread’s smOps; initially the null relationship.

6.2 Compiler Transitions
The valid state transitions are shown in Figure 2. One compiler transition exists for each appOp type. While
loops have two transitions, one for the while loop performing an extra iteration and another for the while
loop’s termination. The transition used depends on the associated value of the loop variable, as described
following the transitions. Whenever the partial order −−−→DepO is updated with new ordering relations, the new−−−→
DepO is the transitive closure of the old −−−→

DepO and the the new relations.

Computation

Current State:

[n, (varA = varB ⊗ varC) :: app, tracesub,
−−−→
DepO]

Next State: [n + 3, app, tracesub,
−−−→
DepO

′
]

and the following are true:
• < Read varB 7→ valB , n > ∈ tracesub

• < Read varC 7→ valC , n + 1 > ∈ tracesub

• < Write varA (valB ⊗ valC), n + 2 > ∈ tracesub

• −−−→DepO
′
extends

−−−→
DepO as follows:

◦ The write depends on the reads.
◦ The read from varB , the read from varC

and the write to varA, depend on the most
recently evaluated writes or atomic updates to
varA, varB or varC , respectively (if any).

◦ All three smOps depend on the most recent read
that was part of a while loop iteration test
(i.e., they depend on control flow).

While Loop

Current State:
[n, (While(var = testVal) bodyList) :: app,

tracesub,
−−−→
DepO]

Next State if readV al = testV al:
[n + 1, bodyList :: (While(var = testV al) bodyList) :: app,

tracesub,
−−−→
DepO

′
]

Next State if readV al 6= testV al:

[n + 1, app, tracesub,
−−−→
DepO

′
]

and the following are true:
• < Read var 7→ readV al, n > ∈ tracesub

• −−−→DepO
′
extends

−−−→
DepO as follows:

◦ The Read of var depends on the most recently
evaluated write or atomic update of var (if any).

◦ The read depends on the most recent read that was
part of a while loop iteration test.

Atomic Update

Current State:

[n, (Atomic var ⊕ = updVal) :: app, tracesub,
−−−→
DepO]

Next State: [n + 3, app, tracesub,
−−−→
DepO

′
]

and the following are true:
• < Flushmm (var), n > ∈ tracesub

• < (Atomicmm var ⊕ = updV al 7→ finalV al), n + 1 >
∈ tracesub

• < Flushmm (var), n + 2 > ∈ tracesub

• −−−→DepO
′
extends

−−−→
DepO as follows:

◦ The smOps are ordered to place the atomic update
between the two flushes.

◦ The Atomicmm smOp depends on the most recently
evaluated write to or atomic update of var.

◦ The Flushmm smOps depend on all prior writes
to or atomic updates of var.

◦ All three smOps depend on the most recent read that
was part of a while loop iteration test.

Print

Current State:

[n, (Print var) :: app, tracesub,
−−−→
DepO]

Next State: [n + 1, app, tracesub,
−−−→
DepO

′
]

and the following are true:
• < Read var 7→ readV al, n > ∈ tracesub

• −−−→DepO
′
extends

−−−→
DepO as follows:

◦ The read of var depends on the most recently
evaluated write or atomic update of var (if any).

◦ The read depends on the most recent read that
was part of a while loop iteration test.

Lock Acquire

Current State:

[n, (Lock lockVar) :: app, tracesub,
−−−→
DepO]

Next State: [n + 3, app, tracesub,
−−−→
DepO

′
]

and the following are true:
• < Flushmm allV ars, n > ∈ tracesub

• < BlockSynch lockBlock lockUpd, n + 1 >
∈ tracesub

• < Flushmm allV ars, n + 2 > ∈ tracesub

• −−−→DepO
′
extends

−−−→
DepO as follows:

◦ The smOps are ordered to place the lock
acquisition between the two flushes.

◦ The Flushmm smOps depend on all prior
writes to or atomic updates of any variable
and the lock acquire (BlockSynch) depends
on the most recently evaluated acquire or
release of lockV ar.

◦ All three smOps depend on the most recent read
that was part of a while loop iteration test.

• lockBlock is a function that returns True
(blocked) if lockV ar is currently held by
some thread and False otherwise.

• lockUpd takes the current runtime state
and returns one where lockV ar is recorded
as being held.

Lock Release

Current State:

[n, (Unock lockVar) :: app, tracesub,
−−−→
DepO]

Next State: [n + 3, app, tracesub,
−−−→
DepO

′
]

and the following are true:
• < Flushmm allV ars, n > ∈ tracesub

• < BlockSynch unlockBlock unlockUpd, n + 1 >
∈ tracesub

• < Flushmm allV ars, n + 2 > ∈ tracesub

• −−−→DepO
′
extends

−−−→
DepO as follows:

◦ The smOps are ordered to place the lock release
between the two flushes.

◦ The Flushmm smOps depend on all prior
writes to or atomic updates of any variable
and the lock release (BlockSynch) depends
on the most recently evaluated acquire or
release of lockV ar.

◦ All three smOps depend on the most recent read
that was part of a while loop iteration test.

• unlockBlock always returns False (not blocked)
• unlockUpd updates the current runtime state s.t.

lockV ar is recorded as being not held.

Flush

Current State:

[n, (Flush varList) :: app, tracesub,
−−−→
DepO]

Next State: [n + 1, app, tracesub,
−−−→
DepO

′
]

and the following are true:
• < Flushmm varList, n > ∈ tracesub

• −−−→DepO
′
extends

−−−→
DepO as follows:

◦ The Flushmm smOp depends on all previously
evaluated writes to or atomic updates of variables
in varList.

◦ The Flushmm depends on the most recent read
that was part of a while loop iteration test.

End

Current State:

[n, (End) :: app, tracesub,
−−−→
DepO]

Next State: [n + 1, [], tracesub,
−−−→
DepO

′
]

and ∀ < smOp, m > ∈ tracesub, m ≤ n
(the sub-trace has no more smOps).

Fig. 2. Valid application state transitions

7 Runtime Phase

The first pass verifies that the smOps from each thread’s sub-trace
could have come from the given application. The second pass, the run-
time phase, verifies that the values returned by reads and atomic updates
would occur with some OpenMP conformant interleaving of the smOp Shared Memory

Trace : ... smOps ...1 Trace : ... smOps ...n
.

traces. It evaluates the traces from all the threads in parallel, interleaving operations from different threads,
as diagrammed here. The transition system below specifies this evaluation procedure. During each transition
we choose some thread and evaluate the next smOp from this thread’s sub-trace. We then check that the
value returned for any Read or Atomic update could have been read under the OpenMP memory model.
Conceptually, our runtime phase does not have a single shared memory. Instead, each write or atomic update
simply becomes available to reads on its own thread and other threads the moment it is evaluated. Overall,
this phase determines the trace is valid if at least one interleaving of thread operations agrees with the trace,
since the procedure is non-deterministic. As discussed in Section 7.3, we consider an interleaving of smOps
to agree with the trace if:
• it verifies the values returned by all reads and atomic updates; and
• either all smOps have been evaluated or the remaining smOps correspond to a deadlock.

7.1 Runtime State

The state of an application with r threads is:
σ,
−−−−→
FlshO;< t1|subtrace1,

−−−→
LclO1 >, ...

..., < tr|subtracer,
−−−→
LclOr >

where:
• σ: The state of all synchronizations.
• Contains one component for each type of synchronization in full model.
• σ.HeldLocks: lock component (only component in abbreviated model)
• Set of pairs < lockV ar, ti >, corresponding to lock variables lockV ar currently held by thread ti.
• Initially = ∅.

• −−−−→
FlshO: The flush order established so far; initially, the null relationship.

• subtracei: The suffix of thread ti’s sub-trace with its smOps yet to be evaluated; initially ti’s full sub-trace.
• −−−→

LclOi: Thread ti’s local order established so far; initially, the null relationship.
The partial orders −−−−→FlshO and −−−→

LclOi are defined on the events that happen on different threads. −−−−→FlshO
applies to events on all threads. −−−→LclOi applies to events on thread ti. How these two orders relate events
determines the values returned by reads.−−−→

LclOi is the program order of thread ti in our runtime pass, the order in which it evaluates tis operations. If
event E1 is evaluated on thread ti before event E2 then we have E1

−−−→
LclOi E2. For any event E that happened

on some thread ti, we define ”−−−→LclOi ti E” to be an order that is identical to −−−→
LclOi, except that event E

follows all events that have been completed on thread ti.−−−−→
FlshO is the global sequential flush order, defined by the relative times that different threads evaluate

flushes. Let E and F be two events such that F is a flush of the form Flushmm varList. These two rules
relate E and F :
• If the same thread evaluates E and F and E is a (Read var), (Write var) or (Atomicmm var ⊕ = updV al)

and var ∈ varList then if E was evaluated before F then E
−−−−→
FlshO F , otherwise F

−−−−→
FlshO E.

• If E is a flush of the form Flushmm varList2 (on any thread) and varList ∩ varList2 6= ∅ then if E was
evaluated before F then E

−−−−→
FlshO F , otherwise F

−−−−→
FlshO E.

The transitive closure of these rules defines −−−−→FlshO. For any event E that happened on some thread ti we
define ”−−−−→FlshO tj

var E” to be an order that is identical to −−−−→
FlshO, except that event E follows any flush

operation evaluated on tj that has var in its variable list. (note that ti may or may not be the same as tj)
We use these orders in two key concepts: operation races and eclipsing operations. Two operations

race if they are not related via −−−−→
FlshO. A write or atomic update WAecl on thread ti eclipses a write

or atomic update WA on thread tj from view by read R on thread tk (all accessing the same variable) if
WAecl sits between WA and R under the order −−−−−−−−−−−−−−−−−−−−→FlshO ∪ LclOi ∪ LclOk. Similarly, a read Recl on thread
ti eclipses a write or atomic update WA on thread tj from view by read R on thread tk (all accessing the

same variable) if Recl sits between WA and R under the order −−−−−−−−−−−−−−−−−−−−→FlshO ∪ LclOi ∪ LclOk and Recl returns
a value different from that written by WA.

7.2 Transition System
The runtime phase transition system contains one rule for each smOp. Each transition evaluates si, the first
smOp in subtracei, provided that:
• No s′

i previously evaluated on thread ti exists such that si
−−−→
DepO s′

i;
• the return value in subtracei is available for reading as defined below, if si is a read or an atomic update;
• its blockF function evaluates to false and its updF function would update the synchronization state σ to

reflect si’s evaluation, if si is a blocking synchronization operation.
If these conditions are not satisfied for thread ti, its next smOp will not be evaluated until they are. The
phase succeeds once subtracei is empty on every thread ti or there is a deadlock, as discussed in Section 7.3;
otherwise the phase backtracks to examine other interleavings. If no interleavings succeed, the phase fails
and the trace demonstrates non-conformance.

The values available for reading in subtracei depend on the established −−−−→
FlshO and −−−→

LclO orders and the
writes and atomic updates that the transition system has previously evaluated. Specifically, let RA be a read
or atomic update of variable var on thread ti. Let pastWriteSet be the set of all un-eclipsed writes and
atomic updates that precede RA under −−−−−−−−−−−−→FlshO ∪ LclOi and let
presentRemoteWriteSet be the set of writes and atomic updates that race RA. Then a given value val is
available for reading by RA if:
• presentRemoteWriteSet contains any writes; or
• presentRemoteWriteSet contains an atomic update the final value of which is val; or
• pastWriteSet contains a pair of writes that race each other; or
• pastWriteSet contains a write that wrote val or an atomic update the final value of which is val; or
• pastWriteSet is empty (i.e. RA is not preceded by any writes to var and thus got its value from unini-

tialized memory).
In other words, val is available if it is the most recently written value to var or if var is uninitialized or

racing writes exist to it (so RA can return anything).
For any si, its transition rule:

• removes si so subtrace′
i = tail(subtracei) (recall that si = head(subtracei));

• updates −−−−→FlshO and −−−→
LclOi to include the ordering relationships between Esi , si’s evaluation event, and

those of all previously evaluated smOps, as discussed above;
• updates synchronization state to σ′ = updF (σ) if si is a BlockSynch smOp.
Additional actions depend on the type of smOp, as detailed in Figure 3.

7.3 Fairness and Deadlocks

The transition rules verify that a trace conforms with the OpenMP memory model if an interleaving of
operations exists that agrees with the outcomes of the trace’s smOps. An interleavings in which some smOp
of some thread never executes is not sufficient since the phase will not validate that thread’s sub-trace. Thus,
our model has a basic fairness guarantee on valid traces that we now make explicit.

A trace is Fair if an interleaving of thread transitions exists such that no thread’s current smOp is
enabled for evaluation an infinite number of times without being evaluated. In particular, BlockSynch is
only enabled in states where its blockF returns false, reads and atomic updates are enabled when their values
are available for reading and writes and flushes are always enabled for execution. For finite traces this
fairness condition guarantees that every smOp on every thread will eventually be evaluated unless there is
a deadlock or the ordering of smOps on a thread’s sub-trace violates the application’s dependence order.
For infinite traces it ensures no thread may be enabled for unblocking an infinite number of times without
actually unblocking. In particular, if a thread is waiting to acquire a lock that periodically becomes available,
it will eventually acquire it.

However, OpenMP does not guarantee deadlock freedom. A poorly written OpenMP program can contain
a deadlock. Thus, our fairness guarantee also allows applications that deadlock. If the application reaches
a point where every thread’s next smOp is a BlockSynch whose blockF returns true, then the proposed

Blocking synchronization

Current State:

σ,
−−−−→
FlshO; ..., < ti| < BlockSynch blockF updF, m >::

subtracei,
−−−→
LclOi >, ...

Next State:

σ′,
−−−−→
FlshO; ..., < ti|subtracei,

−−−→
LclOi

′
>, ...

and the following are true:
• The function blockF (σ) returns False, meaning that

this thread does not need to block.
• σ′ = updF (σ), meaning that that synchronization

state is transformed to reflect the fact that thread ti

is unblocked.

• −−−−→FlshO
′
=
−−−−→
FlshO ti

var Esi for all variables var.

• −−−→LclOi
′
=
−−−→
LclOi ti Esi .

Atomic Update

Current State:

σ,
−−−−→
FlshO; ...,

< ti| < Atomicmm var ⊕ = updVal 7→ finalVal, m >::

subtracei,
−−−→
LclOi >, ...

Next State:

σ′,
−−−−→
FlshO; ..., < ti|subtracei,

−−−→
LclOi

′
>, ...

and the following are true:

• −−−−→FlshO
′
=
−−−−→
FlshO ti

var Esi .

• −−−→LclOi
′
=
−−−→
LclOi ti Esi .

Read

Current State:

σ,
−−−−→
FlshO; ..., < ti| < Read var 7→ readVal, m >::

subtracei,
−−−→
LclOi >, ...

Next State:

σ′,
−−−−→
FlshO; ..., < ti|subtracei,

−−−→
LclOi

′
>, ...

and the following are true:
• The value readV alue is available for

reading.

• −−−−→FlshO
′
=
−−−−→
FlshO ti

var Esi .

• −−−→LclOi
′
=
−−−→
LclOi ti Esi .

Write

Current State:

σ,
−−−−→
FlshO; ...,

< ti| < Write var val, m >::

subtracei,
−−−→
LclOi >, ...

Next State:

σ′,
−−−−→
FlshO; ..., < ti|subtracei,

−−−→
LclOi

′
>, ...

and the following are true:

• −−−−→FlshO
′
=
−−−−→
FlshO ti

var Esi .

• −−−→LclOi
′
=
−−−→
LclOi ti Esi .

Flush

Current State:

σ,
−−−−→
FlshO; ...,

< ti| < Flushmm varList, m >::

subtracei,
−−−→
LclOi >, ...

Next State:

σ′,
−−−−→
FlshO

′
; ..., < ti|subtracei,

−−−→
LclOi

′
>, ...

and the following are true:

• −−−−→FlshO
′
=
−−−−→
FlshO tj

var Esi for all variables
var and threads tj .

• −−−→LclOi
′
=
−−−→
LclOi ti Esi .

Fig. 3. Valid shared memory state transitions

interleaving deadlocks. Ordinarily, our transition system would reject the interleaving since each thread’s
last smOp (the BlockSynch) would not be validated against the trace. In order to allow (poorly written)
applications that may deadlock, we explicitly accept deadlocked interleavings if every thread’s last smOp is
a BlockSynch for which blockF returns true.

A situation similar to deadlocks can occur when the sub-traces of one or more threads violate the
dependence order established during the compiler phase. The problem is that the next smOp on such threads
will never be evaluated since its evaluation would follow the evaluation of an smOp that should have preceded
it according to the dependence order. Such traces are illegal and are rejected by the above model.

8 Examples
In the examples below we use the following shorthand:
• varA = const corresponds to varA = varconst + varzero where varconst and varzero are variables that are

initialized to const and 0 and never modified.
• Barrier corresponds to a barrier synchronization (not explicitly defined due to lack of space) and a

Flushmm of all variables.

8.1 Uninitialized Read

Figure 4 contains an example code where the read on thread 0 may return any value. The reason is that
if the read executes before the write, its pastWriteSet will be empty. Therefore, the read may return any
value since the value would come from uninitialized memory. In order to avoid such uninitialized reads we
can transform this program into the one in Figure 5.

Thread 0 Thread 1

Flush var=1
print var Flush

Fig. 4. Uninitialized read example

Thread 0 Thread 1

var=0 Barrier
Barrier var=1
Flush Flush
print var

Fig. 5. Initialized read example

In the modified program the barrier ensures that thread 0’s read must follow some write to var, meaning
that its pastWriteSet cannot be empty. In future examples, whenever we make a statement about variables’
initial value, we mean that the example’s operations were preceded by a barrier, which was itself preceded
by writes that initialized those variables. Equivalently, we could assume that the initialization occurs prior
to the first parallel construct; we construct our examples with existing threads for notational simplicity.

8.2 Example A.2

The example in Figure 6 comes directly from example A.2 from the OpenMP 2.5 specification [1], converted
from the original C/C++ and Fortran into our simplified language. Figure 7 shows a typical operation
interleaving of this code (All other interleavings produce the same results).

Initially, x = 2

Thread 0 Thread 1

x=5 print(x)
Barrier Barrier
print(x) print(x)

Fig. 6. Example A.2

Thread 0 Thread 1

Write flag 2
Barrier Barrier
Write x 5

Read x 7→??? (print x)
Barrier Barrier
Read x 7→ 5 (print x)

Read x 7→ 5 (print x)

Fig. 7. Sample execution

This interleaving features three reads. The first read is evaluated on thread 1 before the barriers. As
such, in any possible interleaving it must race the write to x on thread 0. Since the write is in the first read’s
presentRemoteWriteSet, the read may return any value, regardless of x’s initial value. The two other reads
are in a different situation. The barriers force them to follow the write in any interleaving. Because of the
Flushmm inside each barrier, both reads follow the write on thread 0 in −−−−→FlshO. As such, the write is in their
pastWriteSet. With no other available writes, this means that both reads must return 5, the value written
by thread 0. Our formalism is consistent with the explanation of example A.2 [1].

8.3 Faulty Spinlock

Initially, flag = 0

Thread 0 Thread 1

flag=1 Flush
Flush while(flag=0){

print(flag)
Flush

}
print(flag)

Fig. 8. Example of a faulty
spinlock

Thread 0 Thread 1

Write flag 0
Barrier Barrier
Write flag 1

Flushmm allV ars
Read flag 7→??? (while)
Read flag 7→??? (print)
...

Flushmm allV ars
F lushmm allV ars
Read flag 7→ 1 (while)
Read flag 7→ 1 (print)

Fig. 9. Sample faulty spinlock interleaving

Initially, flag = 1

Thread 0 Thread 1

Atomic flag+=1 Flush
while(flag=0){

print(flag)
Flush

}
print(flag)

Fig. 10. Correct Spinlock

Figure 8 shows a basic spinlock. At first it appears that this program will print a finite sequence of 0’s,
followed by a 1. However, despite the abundance of flushes there is a race between the write on thread 0 and
the reads on thread 1. The smOp interleaving that reveals this race is shown in Figure 9.

The problem here is that the reads on thread 1 may happen before the flush on thread 0. Thus, the
values read by these reads are unspecified, meaning that the values printed may be garbage. Fortunately,
our fairness assumption guarantees the flush on thread 0 will eventually be evaluated. Another iteration of
the while loop on thread 1 will produce a flush call, which will cause thread 0’s write to precede subsequent
reads on thread 1 under −−−−−−−−−−−−→FlshO] LclO1. This in turn causes them to read 1, terminating the while loop.

While this seems to be a contrived example, suppose that we have a shared memory implementation
where 64-bit writes are broken up into multiple 16-bit messages and the write on thread 0 actually writes
some large 64-bit value. In this case the reads on thread 1 may read flag while it is only partially updated
with only some of the 16-bit messages, causing the prints to output garbage. Indeed, the only way to prevent
this situation is to ensure that the write to the flag is atomic, something that only the atomic construct can
provide.

Given this new knowledge we can augment the program above to use an atomic update, as shown in
Figure 10. In this case the above interleaving produces the expected behavior since even when the reads on
thread 1 race with the atomic update on thread 0 (i.e. the atomic update is in their presentRemoteWriteSet),
they do not get garbage values but rather either 0 or 1. (atomic update appOps contain their own Flushmm

smOps)

8.4 Flush-free Spinlock
The example in Figure 11 is the same as the one above except that the flushes have been removed. This
program must either print a sequence of zero of more 0’s, followed by a 1 or an infinite sequence of 0’s. To
understand why this is, lets examine the smOp interleaving shown in Figure 12.

Initially, flag = 0

Thread 0 Thread 1

Atomic flag+=1 while(flag=0){
print(flag)

}
print(flag)

Fig. 11. Flush-free spinlock example

Thread 0 Thread 1

Write flag 0 [*]
Barrier Barrier

Read flag 7→ 0 (while)
Read flag 7→ 0 (print)
...

Flushmm (flag)
Atomicmm flag+ = 1 7→ 1
Flushmm (flag)

...
Read flag 7→ 0 (while)
Read flag 7→ 0 (print)
...
Read flag 7→ 1 (print) [**]
Read flag 7→ 1 (while)
Read flag 7→ 1 (print)

Fig. 12. Sample flush-free spinlock interleaving

Before thread 0 executes the atomic update, the fact that reads on thread 1 have empty presentRemoteWriteSets
and pastWriteSets that contain only the initialization write [*], causes them to return 0. When thread 0’s
atomic update does occur, thread 1 may not update its temporary view - ever. The atomic update is in
the presentRemoteWriteSet of its reads. Thus, the value may never be observed by thread 0, which can
iterate its loop forever, printing out 0’s. In the trace above, the view is eventually updated and some read
[**] returns 1. Therefore, all subsequent reads of flag on thread 1 must also read 1 because read [**] eclipses
write [*] under order −−−−−−−−−−−−−−−−−−−−→FlshO ∪ LclO0 ∪ LclO1.

This example portrays an important lesson. Although fairness is an important condition and critical
for avoiding infinite loops, it does not prevent them. Programs without appropriate flushes may still loop
infinitely because a thread’s temporary view may not be updated.

8.5 Multi-thread Writer Race
The example in Figure 13 shows the effect of a race between writes. Suppose that the above application has
smOp interleaving as in Figure 14. Before threads 0 and 1 do their flushes, the reads on thread 2 are racing
with the writes on threads 0 and 1 under the order −−−−−−−−−−−−→FlshO ∪ LclO2. This is still true after thread 0 performs
its flush since the reads on thread 2 are still racing with thread 1’s write. The problem persists even after
thread 1’s flush. At this point both writes are in the past of all subsequent reads on thread 2 according to−−−−−−−−−−−−→
FlshO ∪ LclO2. However, the two writes are not related to each other under −−−−−−−−−−−−→FlshO ∪ LclO2, meaning
that they race. This means that the third read on thread 2 may also return an unspecified value.

In reality, this example can happen in the aforementioned implementation where 64-bit writes are broken
up into 16-bit messages and no filtering is done to tell which 16-bit message comes from which 64-bit write.

Initially, flag = 0

Thread 0 Thread 1 Thread 2

flag=1 flag=42 Flush
Flush Flush print(flag)

Flush
print(flag)
Flush
print(flag)

Fig. 13. Multi-thread writer race
example

Thread 0 Thread 1 Thread 2

Write flag 0
Barrier Barrier Barrier
Write flag 1

Write flag 42
Flushmm allV ars
Read flag 7→??? (print)

Flushmm allV ars
F lushmm allV ars
Read flag 7→??? (print)

Flushmm allV ars
F lushmm allV ars
Read flag 7→??? (print)

Fig. 14. Sample multi-thread writer race interleaving

Since the writes on threads 0 and 1 are unrelated by any synchronization, their individual messages may
arrive in memory in arbitrary order, causing the resulting stored value to contain pieces from both writes.

8.6 Writes from Same Thread

The example in Figure 15 shows how writes on one thread that were placed in a given order by the program’s
source code will be seen to occur in this order by any reads on other threads that have ordered themselves
correctly relative to the writes (via flushes). However, in the absence of proper ordering, anything can happen.

Initially, flag = 0

Thread 0 Thread 1

flag=1 Flush
flag=2 print(flag)
Flush

Fig. 15. Example of a
writes from the same
thread

Thread 0 Thread 1

Write flag 0
Barrier Barrier
Write flag 1 [*]
Write flag 2 [**]
Flushmm allV ars

F lushmm allV ars
Read flag 7→ 2 (print)

Fig. 16. Properly ordered interleaving

Thread 0 Thread 1

Write flag 0
Barrier Barrier

Flushmm allV ars
Write flag 1 [*]
Write flag 2 [**]
Flushmm allV ars

Read flag 7→??? (print)

Fig. 17. Uordered interleaving

Figure 16 shows a properly ordered trace. Thread 0 goes first, issues both writes and performs a flush.
Note that since both writes were to flag, they were related via −−−→

DepO and had to be evaluated in that
order. Furthermore, when the read on thread 1 was evaluated, both writes precede it according to order−−−−−−−−−−−−−−−−−−−−→
FlshO ∪ LclO1 ∪ LclO2 and write [**] follows write [*] under to the same ordering. As a result, the write
[*] is eclipsed by write [**] under the definition of WriteEclipse(flag,R, Write [∗],W [∗∗],
−−−−−−−−−−−−−−−−−−−−→
FlshO ∪ LclO1 ∪ LclO2). Thus, the read only has write [**] in its past, no writes in its present and
therefore returns 2.

Figure 17 shows what happens when the read is not properly ordered relative to the writes. In this case
both writes are in the read’s present since they are not ordered relative to the read via −−−−→

FlshO. Thus, the
read may return any value. Indeed, any later read is also free to return any value until thread 1 calls a
Flushmm, placing the two writes on thread 0 into the past under order −−−−−−−−−−−−−−−−−−−−→FlshO ∪ LclO0 ∪ LclO1).

8.7 Atomic Updates Racing with Reads

Figure 18 shows a code example where atomic updates to a given variable may not be seen in a linear order to
a reader thread that has not performed the appropriate flushes. This behavior is shown in Figure 19. In this
trace the reads on thread 1 are preceded by the initialization write on thread 0 and two atomic updates on
thread 1. Thus, the first read [*] has the initialization write in its pastWriteSet and the two atomic updates
in its presentRemoteWriteSet. Therefore, the read is free to return any of the three available values: 0, 1
or 2. In this trace it returns 2.

Now examine the other reads. Although they do follow read [*], the absence of flushes on thread 1 means
that under the ordering −−−−−−−−−−−−−−−−−−−−→

FlshO ∪ LclO0 ∪ LclO1 read [*] does not eclipse any of the writes or atomic
updates on thread 0. As such, their pastWriteSets and presentRemoteWriteSets are identical to those of
read [*] and so they are free to return any of the same values: 0, 1 or 2.

Initially, flag = 0

Thread 0 Thread 1

Atomic flag+=1 print flag
Atomic flag+=2 print flag

print flag

Fig. 18. Atomic values racing with reads example

Thread 0 Thread 1

Write flag 0
Barrier Barrier
Flushmm (flag)
Atomicmm flag + = 1) 7→ 1
Flushmm (flag)
Flushmm (flag)
Atomicmm flag + = 1) 7→ 2
Flushmm (flag)

Read flag 7→ 2 (print() [*]
Read flag 7→ 1 (print)
Read flag 7→ 0 (print)

Fig. 19. Sample interleaving for the Atomic Updates
Racing with Reads example

9 Conclusion

The OpenMP 2.5 specification includes a section that details the OpenMP memory model [1]. This section
significantly improves previous specifications – the previous C/C++ specifications did not address the issue
directly at all. Instead, users and implementers had to synthesize a model as best they could from several
disparate sections. However, the memory model is still described in informal prose, which lacks precision by
definition.

This paper presents a formal OpenMP memory model, derived from the model in the current specifica-
tion. We tried to faithfully adhere to that prose description. However, as we have discussed, it has several
ambiguities, which we resolve in our formal model by relying on our understanding of the intent of the
language committee. Our operational model supports the verification of the conformance of OpenMP im-
plementations. It consists of two phases: a compiler phase that extracts the constituent operations of the
application and a runtime phase that verifies that a compliant execution could produce the values that
appear in the trace. We have applied this model to several examples. Overall, our work demonstrates the
need for the OpenMP community to adopt further refinements of the OpenMP memory model. Ideally those
changes will lead to a formal model in later OpenMP specifications.

References

1. OpenMP Architecture Review Board. OpenMP application program interface, version 2.5.
2. Greg Bronevetsky and Bronis de Supinski. Fully formal specification of the OpenMP memory model. Cornell

Computer Science, 2005. In Preparation.
3. William W. Collier. Reasoning About Parallel Architectures, 1992.
4. Scheurich C. Dubois, M. and F Briggs. Memory access buffering in multiprocessors. In In Proceedings of the 13th

Annual International Symposium on Computer Architecture (ISCA), pages 434–442, 1986.
5. J.R. Goodman. Cache consistency and sequential consistency. Technical Report 61, SCI Committee, 1989.
6. Jay Hoeflinger and Bronis de Supinski. The openmp memory model. In International Workshop on OpenMP

(IWOMP), 2005.
7. William Pugh Jeremy Manson and Sarita V. Adve. The java memory model. In Symposium on Principles of

Programming Languages (POPL 2005).
8. John Matthews Serdar Tasiran Mark Tuttle Rajeev Joshi, Leslie Lamport and Yuan Yu. Checking cache-coherence

protocols with tla+. Formal Methods in System Design, 22(2):125–131, 2003.
9. Alan Robinson and Andrei Voronkov eds. Handbook of Automated Reasoning Volume, 2000.

nijhuis2
Text Box
This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

