
UCRL-CONF-227293

Comprehending Software
Architecture using a Single-View
Visualization

T. Panas, T. G. W. Epperly, D. J. Quinlan, A.
Saebjoernsen, R. W. Vuduc

January 17, 2007

12th IEEE Int. Conference on Engineering of Complex
Computer Systems
Auckland, New Zealand
July 11, 2007 through July 14, 2007

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Communicating Software Architecture using a Unified Single-View Visualization

Thomas Panas Thomas Epperly Daniel Quinlan Andreas Sæbjørnsen Richard Vuduc

Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory

{panas|epperly2|dquinlan|saebjornsen1|richie}@llnl.gov

Abstract

Software is among the most complex human artifacts, and
visualization is widely acknowledged as important to under-
standing software. In this paper, we consider the problem of
understanding a software system’s architecture through vi-
sualization. Whereas traditional visualizations use multiple
stakeholder-specific views to present different kinds of task-
specific information, we propose an additional visualization
technique that unifies the presentation of various kinds of
architecture-level information, thereby allowing a variety of
stakeholders to quickly see and communicate current devel-
opment, quality, and costs of a software system. For future
empirical evaluation of multi-aspect, single-view architec-
tural visualizations, we have implemented our idea in an
existing visualization tool, Vizz3D. Our implementation in-
cludes techniques, such as the use of a city metaphor, that
reduce visual complexity in order to support single-view vi-
sualizations of large-scale programs.

1. Introduction

Visualization techniques are widely considered to be im-
portant for understanding large-scale software systems [15];
yet knowing what to visualize and how to present infor-
mation are themselves daunting issues. The challenges are
many. First, there are several stakeholders in a software
project—architects, developers, maintainers, managers—
each asking different questions about the software. An-
swering a diverse set of questions will involve different ab-
straction levels, such as the architecture, the middle level
structure [15], or the source code itself. Each question
may require a distinct analysis; multiple analyses can gen-
erate huge volumes of data, which may be difficult to
store, to manipulate, and to present. Having to manage
multiple analyses, possibly through multiple visualizations
(views), places a significant cognitive burden on any indi-

vidual stakeholder. Multiple views also tend to make it dif-
ficult for separate stakeholders to communicate on subtle is-
sues about a software architecture. These challenges make
it hard for multiple stakeholders to reach a common under-
standing or consensus about the project.

Different stakeholders often interact around questions about
the software system’s architecture. For example, developers
and project managers need to know where to make improve-
ments, e.g., “which components do we have to modify in or-
der to improve the performance or security of our system?”
Project managers need to know how to allocate team mem-
bers to each part of the system and answer questions such
as, “can we meet the next deadline?” Additionally, both
managers and vendors are interested in development hot
spots (frequently modified components), which may indi-
cate areas of high system maintenance cost. Designers and
maintainers are more interested in the overall structure of
the system; this knowledge helps them to identify reusable
components, for instance.

We are investigating a visualization technique designed
to help all stakeholders collectively understand and better
communicate the architecture of a large-scale software sys-
tem. Our particular technique represents the structure of
the system using a graph-based model, following common
convention [15], and we augment this model with a num-
ber of static and dynamic analyses. Our specific choices of
model and analyses help stakeholders answer a wide range
of questions about the overall design, quality, and costs in
development and maintenance (Section 2).

The central design goal of our approach is to visualize mul-
tiple task- (or stakeholder-) specific aspects of a software ar-
chitecture using just a single view (Section 3), cf. Figure 1,
to communicate problems, decisions and solutions between
stakeholders. In contrast, existing approaches (Section 6)
primarily rely on multiple views when visualizing multiple
aspects of a system [1, 17, 30, 31]. Although multi-view
approaches can be very effective, users may also have con-
siderable difficulty managing and navigating through dif-

Figure 1. Architectural Program Visualization of a C++ Program.

ferent views [27, 28, 32]. In our current research, we are
particularly interested in whether these difficulties can be
overcome by judicious rendering within a single view.

To help answer this question, we have implemented a
single-view visualization tool (Section 4). We use a
metaphor based on cities that provides users with an in-
tuitive physical interpretation of the system. In addition,
we use a layout algorithm that permits the system to be
rendered consistently each time the visualization is per-
formed. That is, the layout is designed to be insensitive to
small structural changes, thereby helping users remember
and navigate in the visualization. Our specific implemen-
tation supports C and C++ programs, extending our earlier
work for Java programs [20, 34].

Our overall approach allows multiple stakeholders to see
and communicate about the same view, which facilitates the
collective understanding and discussion of the system’s ar-
chitecture (Section 5).

2. Visualizing Architectures

There are roughly three levels of program visualization,
based on the level of abstraction [15, 26]: source code level,
middle level, and architecture level. This section explains

what we mean by architecture level, and describes our spe-
cific model of the program and analyses in detail.

On the source code level, typical visualization tools in-
clude program and aspect editors. Advanced tools may in-
tegrate program editors with online debuggers and profilers.
Source-level visualizations are very “low-level,” as they re-
late directly to the underlying software artifact, and are pri-
marily of interest to developers and maintainers.

On the middle level, visualizations are problem-specific.
Developers and code maintainers have specific problems to
solve, and they usually apply tailored algorithms and vi-
sualizations to the program to better understand both the
problem and the program. Typical middle level visualiza-
tions include sequence diagrams, abstract syntax tree (AST)
representations, dominance tree visualizations, concept lat-
tices, control and data flow graphs.

The aim of architecture-level visualization is to rapidly
summarize and communicate the architecture and design
decisions of the overall software system. Architectural visu-
alization is naturally more abstract than source- or middle-
level visualizations, and therefore better suited to visualiza-
tions in the large. Abstract visualizations of software ar-
chitectures combined with metrics can help different stake-
holders to answer many questions about a software system.

For instance, project managers might use the visualizations
to understand the aspects of a project that are most expen-
sive, code designers can communicate current implementa-
tion deviations from original design plans, and code main-
tainers may use the visualizations to better understand un-
known software systems [7].

Common examples of architectural visualizations are func-
tion call graphs, hierarchy graphs, and directory structures.
There are many ways to present these graphs, such as UML
diagrams, graph browsers, and component/connector graph
drawings. Many tools support these visualizations [12, 26,
31]1. However, to the best of our knowledge, no tool exists
that supports the visualization and communication of soft-
ware architecture between different software development
and maintenance stakeholders.

2.1. A graph-based program model

To support communication among various stakeholders
through a single-view architecture visualization, a program
model combining different aspects of a program (important
to different stakeholders) is needed. We have merged sev-
eral tools (Section 4) to retrieve the following architectural
program models of C/C++ applications:

• A Function Call graph represents the call relationship
between different (C/C++) functions.

• A Class Call graph shows the interaction structure be-
tween (C++) classes.

• A Class Contains graph holds information about
classes and their functions.

• A Class Inheritance graph represents the inheritance
structure of an (C++) application.

• A File Call graph shows the call structure between
source files.

• A File Contains graph shows functions in relation to
their files. In C/C++, related functions may be imple-
mented in (multiple) source as well as header files. The
C++ specification does not enforce a standard imple-
mentation style. As a result, File Contains and Class
Contains graphs are most likely to be viewed together.

• A Directory Contains graph represents the relationship
between files and their corresponding directories.

Our graph-based program model is a union of the graphs
implemented and described above. Table 1 shows examples
of how various stakeholders might communicate software
architecture through a particular set of graph types.

1We consider only graph-based tools and visualization approaches.

Graph Program Architect/ Developer Maintainer/
Manager Designer Re-engineer

Function Call x x x
Class Call x x x

Class Contains x x
Class Inheritance x x x

File Call x x x x
File Contains x x

Directory Contains x x x x

Table 1. Correlation Graphs - Stakeholders

Table 1 only suggests what information might be of interest
to each stakeholder. Of course, we might modify the table
to reflect the interest, expertise, or task at hand. The key
point in Table 1 is that a unified architectural visualization
more flexibly supports and encourages interaction among
stakeholders, compared to visualizing and communicating
multiple stakeholder-specific representations in various no-
tations.

2.2. Augmenting the model with analyses

There is more information of interest to various stakehold-
ers than plain structural graphs can represent. For instance,
when investigating a Directory Contains graph, a project
manager would also like to understand the complexity of
the files being viewed with respect to other metrics, such
as size. The additional program information can either be
shown in tables and be related to the views, or more prefer-
ably be integrated directly into the views themselves.

For our prototype, we have implemented a number of anal-
yses, the results of which can be attached to our program
model. We list examples below; though not all-inclusive,
this list can be extended easily:

Run-Time Analyses. We collect run-time information
about C/C++ applications using the gprof profiling tool.

• Execution Time Analysis profiles the time spent in
functions, identifying performance “hot spots,” or
functions that execute for an exceptionally long time.

• Execution Frequency Analysis profiles the call fre-
quency of functions to determine exceptionally fre-
quently called functions.

Metric Analyses collect program information about single
entities such as functions.

• Lines of Code (LOC) is measured for each function.

• Unsafe Function Calls. Certain aspects of C++ (e.g.,
unchecked array access, raw pointers), can lead to low-
level buffer overflows, page faults, and segmentation

faults. In this analysis, we detect calls to “unsafe”
functions, such as sprintf, scanf, strcpy.

• Global Variables. We traverse the program’s abstract
syntax tree (AST) to check for public declared vari-
ables (within the scope of classes) and global variables
(outside the scope of classes). It is considered a good
programming style to avoid global variables.

• New-Delete Analysis. In C++, when deleting scalar en-
tities, the scalar C++ delete statement should be used
to ensure correct program behavior. Similarly, dy-
namically allocated arrays must be deleted with the
delete[] statement. Our analysis is based on data-flow
and control-flow information.

• Cyclomatic Complexity (CC) indicates how much ef-
fort is required to maintain a function. Our imple-
mentation of McCabe’s Cyclomatic Complexity [19]
counts the possible execution branches in a function
for the following branching statements: if, for, while,
do-while, and (switch-)case.

• Arithmetic Complexity. For each function, this analy-
sis counts the number of arithmetic operations on float,
int, float pointer, and int pointer types. Thus, functions
and classes with large arithmetic operation counts can
be detected. This is particularly important in scientific
computing codes, since such functions should be the
most robust and reliable pieces of the software.

Advanced Static Analyses help to recover various hidden
aspects of software. In general, these analyses can not be
interpreted alone; results indicate relations between entities.

• Pattern Matching is used to locate functional and
non-functional properties of a software system, e.g.,
MPI [22] calls in high performance computing. This
approach is similar to visualizing aspects from aspect-
oriented programming (AOP) [13].

• Class Membership. This analysis annotates each mem-
ber function with its associated class and source file it
is implemented in. It discovers fragmented member
functions, i.e., member functions declared in the same
class but defined in different files. This analysis may
uncover “bad” coding styles or refactoring efforts that
were applied to split large source files.

• Strongly Connected Components (SCC). We detect
cyclic dependencies between functions, classes or
files. In general, nodes in a cyclic dependency may
be merged to reduce call dependencies, and hence to
reduce the structural complexity of the system.

Repository Analyses retrieve information from a source-
code repository such as CVS or SVN and attach it to the
current program model. In our current implementation of

C/C++ visualization, we have not attached this information
yet. We base the need for such information on our previ-
ous studies visualizing Java repository information [20, 24]
using VizzAnalyzer [35] and Kenyon [3].

• Work Distribution is an analysis that determines the
specific developers that are working on a specific part
of a software system. This information gives an idea
about the progress of the maintenance or development
team and can also assist to estimate time to completion.

• Frequent Change. Entities changed frequently result
in higher maintenance efforts and costs. Thus, it is
essential to determine frequently changed components.

• Defect Dependencies show how certain defects and
their bug-fixes relate [4, 6]. Defect analyses may help
to predict software project/maintenance costs.

Table 2 lists stakeholders and these analyses in which they
might be particularly interested.

Metric/Analysis Project Architect/ Developer Maintainer/
Manager Designer Re-engineer

Execution Time x x
Execution Frequency x x

Lines of Code x x x x
Unsafe Function Calls x x

Global Variables x x x
New-Delete x x

Cyclomatic Complexity x x x
Arithmetic Complexity x x

Pattern Matching x x x
Class Membership x x

SCC x x x
Work Distribution x
Frequent Change x x x

Defect Dependencies x x

Table 2. Correlation Analyses - Stakeholders

Table 2 only suggests what is possible. For our prototype,
we have implemented all of the analyses above (except pat-
tern matching and the repository analyses). The analysis
results are attached to our model graph. With the model
graph at hand, the user can now view, interactively select
(reduce) and communicate information of interest.

3. Practical Single-View Visualization

We believe that single-view visualizations are better than
multi-view visualizations when communicating about soft-
ware architecture. First, single-view illustrations avoid the
difficulties when managing and navigating through different
views [27, 28, 32]; secondly, they rapidly summarize a sys-
tem because all information is available within that view;
and thirdly, having one view helps different stakeholders
to easily communicate different concerns within the same
familiar picture. Single-view visualizations do not replace

detailed stakeholder-specific visualizations. Rather, they
unify different stakeholder-specific architectural visualiza-
tions to a common image that can easily be communicated,
as is done in the engineering industry where task-specific
blueprints are unified to be understood by architects, electri-
cians, civil engineers, and others. As an example, Kruchten
introduced (software) architectural blueprints in which a
logical view describes classes and associations for end users
and a development view describes modules and compila-
tion dependencies for developers and managers [16]. Both
views are essential. Nevertheless, we believe that a single
unified view combining both the logical and development
view could support the communication between end users,
developers and managers. We plan to evaluate this hypoth-
esis in future work.

To study the effects of single-view visualizations, we have
developed a tool prototype, cf. Section 4. For our prototype
to work effectively (i.e., by reducing the cognitive over-
load for a viewer [28, 32]), we need to handle the inher-
ent complexity of multiple architectural aspects within one
view. Below, we describe complexity reduction techniques
we have selected and implemented from literature:

• Abstraction. To cope with a flood of information, we
need mechanisms for filtering, aggregating, or merging
low-level details into higher-level properties [25, 36].
Abstraction techniques are part of Vizz3D [20].

• Association with Source Code. The architectural vi-
sualization should be easy to relate to the underlying
software artifact [36]. Therefore, we have extended
Vizz3D with the capability to interactively view the
source code in association with any node of the archi-
tectural view. This feature associates architecture and
source levels, cf. Section 2.

• Metaphors. Many graphic designs lack an intuitive in-
terpretation, requiring that a user be trained to under-
stand them. We can alleviate this problem by selecting
metaphors that are familiar to the user, such as those
found in the real world. Tangible metaphors improve
understanding and social interaction [8]. We have
chosen and implemented the city metaphor [14, 24],
cf. Section 4.1, to increase program understandability.

• Predictability. Two different runs of a layout algo-
rithm, involving the same graphs, should not lead to
radically different visual representations. This prop-
erty is also referred to as “preserving the mental map”
of the user [23]. While force-directed layouts are usu-
ally not predictable, hierarchical algorithms improve
the situation, but they do not scale particularly well.
For improved predictability and scalability, we have
implemented a combination of force-directed and hi-
erachical layout within our tool, cf. Section 4.2.

The items above do not constitute an all-inclusive list of
complexity reduction techniques or features a tool should
support. There are several other techniques discussed in the
literature [31, 36]. Some techniques were not chosen be-
cause of their minor impact. For instance, focus and con-
text [9], in which a user focuses on a visual detail with-
out losing the visual context, also aids program compre-
hension. However, as Storey, et al., report in their user
study, although focus and context (particularly fish-eye)
views are thought to be useful, in practice they tend not to
be used [32]. Moreover, it is not our primary goal to define a
complete list, but rather to implement a reasonable number
of techniques to support our goal to show that our single-
view visualization can present all manners of architectural
information.

4. Implementation: Vizz3D

Our prototype is based on Vizz3D [20, 34], a 3D informa-
tion visualization system primarily developed for program
visualization. Vizz3D is highly flexible and allows users to
define and reassign layout algorithms and metaphors at run-
time. Hence, visualizations can be configured on-line [20].

To reduce a user’s cognitive load, Vizz3D has a variety of
operations, such as the aggregation and filtering of nodes.
In addition, users may at run-time filter all nodes and edges
of certain types, thereby allowing the visualization of ar-
bitrary combinations of the graphs defined in Section 2.1.
For instance, a user may interactively select several types
of edges to display; the resulting same image might then
represent a Function Call graph, a Class Call graph, a File
Contains graph, or all graphs simultaneously.

We have enhanced Vizz3D with the ability to view the cor-
responding source code when interactively selecting visual
entities. In addition, to achieve predictable and consistent
layouts and to provide an intuitive representation of our
program model, we have configured our own layout and
metaphor for Vizz3D. (Sections 4.1–4.2, below).

Our prototype works on real C and C++ applications [33].
To build our implementation, we have used, combined,
and enhanced the following reverse engineering tools:
ROSE [29], a C/C++ source-to-source code transformation
tool used for program retrieval; ROSEVA, a program ana-
lyzer developed to create and merge the various graphs de-
scribed above; VizzAnalyzer [35], a framework for reverse
engineering tool integration, allowing us the rapid integra-
tion of various program analysis and visualization tools; and
for language interoperability between C/C++ (ROSE and
ROSEVA) and Java (VizzAnalyzer), we use Babel [2].

4.1. An intuitive city metaphor

Metaphors help users to better understand complex situa-
tions. For our architectural program visualization, we have
chosen a city metaphor [14, 24]. Our metaphor comprises
the following elements, cf. Figure 12. Buildings represent
functions. Building textures represent source code metrics;
for instance, the (tall) blue colored buildings in Figure 1
indicate a LOC > 200. Similarly, other textures in this im-
age indicate other thresholds. Cities (blue plates) indicate
source files. Pillars (C++ only), shown perpendicular to
cities in Figure 2, represent class definitions. The pillars
are the foundation for water towers (spheres), representing
header files. In this way, a header file can have multiple
class definitions. Finally, (green) landscapes, which carry
cities and water towers, represent directories. The water and
sky in Figure 1 and 2 are optional aesthetic decorations.
Note that the above is an example of one visual configura-
tion; to determine the most effective configuration, cogni-
tive studies must be conducted. Vizz3D merely allows dif-
ferent user defined mappings (from program model entities
to visual entities). For more information see [20].

4.2. Computing consistent layouts

Our layout algorithm extends the force-directed algorithm
of Huang and Eades [11] by combining it with a hierarchi-
cal algorithm. Because force-directed layout algorithms can
in general be rather slow, we calculate the forces for coarse-
grained nodes first, i.e., for header files, source files, and di-
rectories. Figure 3 a) shows the layout of 36 files. The edges

2Directed edges are color interpolated from a light to a dark color.

Figure 2. Architectural Visualization.

represent Directory Contains relationships. Files belonging
to the same directory, representing components by design,
are laid out close together. The size of a source file reflects
the number of functions defined within it. Buildings are
laid out compactly next to each other, i.e., they are not part
of the force-directed layout. The second step is to apply the
landscapes (directory structure) for the cities (files), cf. Fig-
ure 3 b). The height of the landscape (y-axis) represents the
depth of the directory path. Therefore, cities or files in a
deeper directory structure are represented on a higher hier-
archical level. As a result of the force-directed layout, di-
rectories containing subdirectories are laid out more closely.
As subdirectories are on a higher hierarchical level, subdi-
rectories produce “visual mountains”, similar to 3D tree-
maps [5], where directory structures are represented to the
user in a hierarchical way.

Our layout provides predictable visualizations (see Sec-
tion 3) in that different runs of the system produce fairly
similar landscapes. Together with our 3D city metaphor, fa-
miliar entities can quickly be rediscovered. The current lay-
out predictability can even be improved if the initial random
seed of our layout is kept constant across multiple runs.

4.3. Representing analysis results

Our single-view restriction means that all analysis results
are displayed in one view, raising immediate concerns about
information overload. To overcome this problem, we dis-
play metrics either with 2D icons [27] within our 3D scene
(i.e., 2D icons are shown on top of each building and above
each city to convey information), or we use visual proper-
ties such as height, width, depth, and texture, among oth-
ers. Analysis results may also be represented by color; this
means, however, that only one analysis at a time can be rep-
resented. For instance, all strongly connected components
are colored red (the top roof of a building).

5. Application Examples

We envision a variety of scenarios in which our single-view
architectural visualization would be particularly useful. We
outline several such scenarios in this section, emphasizing
the ways in which our approach can facilitate collaboration
and discussion among stakeholders.

5.1. Quality Assessment

Project managers and developers can easily assess various
aspects of a software system’s quality in our one-view vi-

(a) (b)

Figure 3. (a) layout algorithm between files (b) adding the directory structure

sualization. For instance, consider Figure 1, which com-
bines a File Call-, Class Inheritance-, Class Contains-,
File Contains- and Directory Contains graph. In addi-
tion, this figure shows software complexity information (fire
texture), global variables (globe icon), oversized functions
(blue buildings), unsafe functions (lock icon), and run-time
information (the width and depth represents run-time infor-
mation).

By interactively examining Figure 1, developers can com-
municate concerns, such as global variables, new-delete de-
viations, or unsafe functions, to managers, and help the
managers understand where and why additional time must
be spent to improve those components. Similarly, complex
areas of the system, as indicated by cyclomatic or arith-
metic complexity, can be easily illustrated via the common
metaphor. Developers of all skill levels can use this kind of
visualization to detect and communicate concerns, and they
may do so over a variety of communication media, such as
teleconferencing or virtual reality displays.

We anticipate that single-view collaboration will help stake-
holders detect code quality problems earlier, make meetings
more effective, and reduce project costs in general.

5.2. Componentization

Once a software system becomes large, it is essential to de-
componentize it, i.e., to split it into smaller reusable compo-
nents that eventually can be maintained or sold separately.
A single-view architectural visualization may again help
to communicate componentization issues and costs among
management, developers, and re-engineers, using analyses

such as pattern matching, class membership, and SCC.

For example, consider the analysis of class membership
violations. As described in Section 2.2, a class member-
ship analysis determines fragmented member functions, i.e.,
member functions declared in the same C++ class (usually
header file) but defined in different source files. Suppose a
file represents a component. From a reusability perspective,
a “good” coding style might prefer that all member func-
tions of one class be implemented in the same source file.
A re-engineer might write a simple analysis to check this
condition and print the results as text to the screen.

Though this screen dump provides useful information, this
information might be of limited use if the original devel-
opers are not present to guide changes. An architectural
visualization, on the other hand, might supply some of the
developers’ expertise through additional metrics visualized
at the same time. For instance, consider Figure 4, where the
class membership relationship is indicated by assigning the
same color to each member function of a class. In Figure 4,
the directory “/wpp3D/” contains four source files and one
header file. The header file contains one class (pillar) that
contains eight member functions, indicated by their red col-
oration. We see that one member function is defined in a dif-
ferent source file, i.e., a fragmentation is present. However,
due to the additional LOC information, even a non-expert
could conclude that the exceptional member function has
been refactored due to its size.

Our single-view architectural visualization helps us to un-
derstand the specific analysis problem at hand. Moreover,
it shows the entire context of all additional entities and
relationships involved. For example, one can determine
whether the exceptional method described above occurs in

Figure 4. Class Membership Visualization.

the same directory as the other methods in its class or not.
Furthermore, call edges may be activated turning the Class
Contains graph into a merge of the Class Contains and
Function Call graphs. The additional information may help
to investigate the purpose of certain functions in the context
of the whole program.

Another example is the detection of strongly connected
components. Again, if only printed to the screen as a list,
the context might be lost. For instance, Figure 5 shows
an architectural visualization of a file call graph. The files
themselves are color coded; a green color indicates a cy-
cle. Seeing the analysis result in the context of the directory
structure, one could assume that all files in the cycle be-
long to the lower right directory. There are however two
exceptions. It is now up to the developer or re-engineer to
determine whether the exceptional files should be moved.

6. Comparison to Related Work

There is a large literature on existing architectural visual-
ization tools. We can classify these approaches according to
the number of aspects they visualize using how many views.

• Single-aspect, single-view. Illustrate only one aspect
of a software architecture, e.g., CrocoCosmos [18],
sv3D [21].

• Multi-aspect, single-view. Our work is an example of
this class. Another example is SHriMP [31], allow-
ing the interactive, single-view navigation between ar-
chitecture and source code. SHriMP is a great tool
for architectural browsing and understanding of source
code. However, SHriMP was not developed with
stakeholder communication in mind; it does not sup-
port a natural metaphor or the ability to add multiple
analysis and metric results within the view.

• Multi-aspect, multi-view. Illustrate multiple views
of the architecture level, e.g., CodeCrawler [17],
BLOOM [30]3.

Other approaches, such as ArgoUML [1], exist. However,
these applications visualize not just architectural level infor-
mation, but rather a combination of architecture and middle
level. Further recommendations and cognitive studies on
(architectural) multi-views can be found in [10, 16, 32].

We believe that multiple views are important for detecting
and answering many problems, especially when depicting
low-level analysis results in middle-level visualizations. In
such cases, it is impossible to view all the possible aspects
of software in one image. However, when illustrating the
architecture of a software system to various stakeholders,
we believe that showing the different architectural aspects

3Note that some architecture level tools might also be used for other
purposes, e.g., CodeCrawler supports also class blueprints and therefore
could as well qualify as a multi-level, multi-view visualization tool.

Figure 5. Strongly Connected Components Visualization.

in the same view with the same metaphor and layout is de-
sirable. In this paper, we have suggested how it is possible
to merge and filter the essential information for different
stakeholders. This helps stakeholders get precise answers
to their questions and, moreover, enables them to commu-
nicate the answers among themselves and others.

7. Conclusion and Future Work

Our tool is a proof-of-concept design for a multi-aspect,
architecture-level, single-view visualizer. This paper re-
views our philosophy and implementation, with particular
emphasis on how different stakeholders can use such visu-
alizations as an aid in collaborative understanding, devel-
opment, maintenance, and re-engineering of a large-scale
software system. The key features of our approach are the
use of an intuitive city metaphor for representing the struc-
ture of the system architecture, a single view for visualizing
multiple aspects and analysis results, and powerful filtering
and focusing techniques built into the tool implementation.

We have integrated and extended a variety of analysis and
visualization tools, allowing us in future work to evaluate
the trade-offs of using a unified single-view for architecture-
level program visualization and communication. In prepa-
ration for such future experiments, we have classified and
implemented program analyses, identified and implemented

complexity reduction techniques for large scale visualiza-
tions, and implemented a layout algorithm and metaphor in
our visualization tool, Vizz3D.

8. Acknowledgments

This work was performed under the auspices of the U.S. De-
partment of Energy by University of California, Lawrence
Livermore National Laboratory under Contract W-7405-
Eng-48, UCRL-CONF-227293. We thank Jeremiah Will-
cock and Christian Iwainsky for numerous helpful discus-
sions.

References

[1] ArgoUML. Available at: http://argouml.tigris.
org/, 2004.

[2] Babel. Available at: http://www.llnl.gov/CASC/
components/, July 2006.

[3] J. Bevan, S. Kim, and L. Zou. Kenyon: A common software
stratigraphy system. Available at: http://www.soe.
ucsc.edu/research/labs/grase/kenyon/,
2005.

[4] D. Beyer. Co-change visualization. In Proceedings of the
21st IEEE International Conference on Software Mainte-

nance (ICSM 2005, Budapest, September 25-30), Industrial
and Tool volume, pages 89–92, Budapest, 2005.

[5] T. Bladh, D. Carr, and J. Scholl. Extending tree-maps to
three dimensions: a comparative study. In M. Masoodian,
S. Jones, and B. Rogers, editors, 6th Asia-Pacific Confer-
ence on Computer-Human Interaction (APCHI 2004), New
Zealand, June 2004.

[6] M. Burch, S. Diehl, and P. Weissgerber. Visual data min-
ing in software archives. In SoftVis ’05: Proceedings of the
2005 ACM symposium on Software visualization, pages 37–
46, New York, NY, USA, 2005. ACM Press.

[7] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann Publishers,
2003.

[8] C. R. dos Santos, P. Gros, P. Abel, D. Loisel, N. Trichaud,
and J. Paris. Metaphor-aware 3d navigation. In IEEE Sym-
posium on Information Visualization, pages 155–65. Los
Alamitos, CA, USA, IEEE Comput. Soc., 2000.

[9] G. W. Furnas. The FISHEYE view: A new look at struc-
tured files. Technical Report 81-11221-9, Murray Hill, New
Jersey 07974, U.S.A., 12 1981.

[10] J. C. Grundy, R. Mugridge, and J. Hosking. Visual specifica-
tion of multi-view visual environments. In IEEE Symposium
on Visual Languages, Halifax, Nova Scotia, Canada. IEEE
CS Press, September 1998.

[11] M. L. Huang and P. Eades. A fully animated interactive sys-
tem for clustering and navigating huge graphs. In 6th Int.
Symposium on Graph Drawing, pages 374–383. Springer
LNCS 1547, 1998.

[12] M. Jünger and P. Mutzel, editors. Graph Drawing Software.
Springer, 2004.

[13] G. Kiczales, K. Lieberherr, H. Ossher, M. Aksit, and T. El-
rad. Discussing Aspects of AOP. Communications of the
ACM, 44(10), October 2001.

[14] C. Knight and M. C. Munro. Virtual but visible software. In
IV00, pages 198–205, 2000.

[15] R. Koschke. Software Visualization in Software Mainte-
nance, Reverse Engineering, and Reengineering: A Re-
search Survey. Journal on Software Maintenance and Evo-
lution, 15(2):87–109, March 2003.

[16] P. Kruchten. The ”4+1” view model of architecture. IEEE
Software, 12(6):42–50, November 1995.

[17] M. Lanza. Codecrawler a lightweight software visualiza-
tion tool. In VisSoft 2003 (2nd International Workshop on
Visualizing Software for Understanding and Analysis). IEEE
Computer Society Press, 2003.

[18] C. Lewerentz and F. Simon. Metrics-based 3D Visualization
of Large Object-Oriented Programs. In 1st International
Workshop on Visualizing Software for Understanding and
Analysis, June 2002.

[19] W. Li and S. Henry. Maintenance Metrics for the Object
Oriented Paradigm. In IEEE Proceedings of the 1st Interna-
tional Software Metrics Symposium, May 1993.

[20] W. Löwe and T. Panas. Rapid Construction of Software
Comprehension Tools. International Journal of Software
Engineering and Knowledge Engineering, December 2005.

[21] A. Marcus, L. Feng, and J. I. Maletic. 3D Representations
for Software Visualization. In Proceedings of ACM Sympo-
sium on Software Visualization, 2003.

[22] Message Passing Interface Forum (MPIF). MPI: A
Message-Passing Interface Standard. Technical Re-
port, University of Tennessee, Knoxville, June 1995.
http://www.mpi-forum.org/.

[23] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Tree visuali-
sation and navigation clues for information visualisation. J.
of Visual Languages and Computing, 6:183–210, 1995.

[24] T. Panas, R. Berrigan, and J. C. Grundy. A 3d metaphor for
software production visualization. In IV03, London, UK,
June 2003. IEEE.

[25] T. Panas, W. Löwe, and U. Aßmann. Towards the unified re-
covery architecture for reverse engineering. In International
Conf. on Software Engineering Research and Practice, Las
Vegas, USA, June 2003.

[26] T. Panas, J. Lundberg, and W. Löwe. Reuse in reverse en-
gineering. In International Workshop on Program Compre-
hension, Bari, Italy, June 2004.

[27] G. Parker, G. Franck, and C. Ware. Visualization of large
nested graphs in 3d: Navigation and interaction. Journal of
Visual Languages and Computing, 9(3):299–317, 1998.

[28] M. Petre, A. Blackwell, and T. Green. Cognitive questions
in software visualization. Software Visualization: Program-
ming as a Multimedia Experience, pages 453–480, January
1998.

[29] D. Quinlan, S. Ur, and R. Vuduc. An extensible open-source
compiler infrastructure for testing. In Proc. IBM Haifa Ver-
ification Conference, volume LNCS 3875, pages 116–133,
Haifa, Israel, November 2005.

[30] S. P. Reiss and M. Renieris. The BLOOM Software Visual-
ization System. In Software Visualization – From Theory to
Practice, MIT Press, 2003.

[31] M.-A. D. Storey, F. D. Fracchia, and H. A. Mueller. Cogni-
tive design elements to support the construction of a mental
model during software visualization. In Proc. of the 5th Int.
Workshop on Program Comprehension (WPC ’97), Wash-
ington, DC, USA, 1997. IEEE Computer Society.

[32] M.-A. D. Storey, K. Wong, and H. A. Müller. How do
program understanding tools affect how programmers un-
derstand programs? Science of Computer Programming,
36(2–3):183–207, 2000.

[33] T. Panas. Quality Analysis of SMG2000. Technical report,
CASC, Lawrence Livermore National Laboratory, Novem-
ber 2006.

[34] Vizz3D. Available at: http://vizz3d.
sourceforge.net, July 2006.

[35] VizzAnalyzer. Available at: http://www.arisa.se/,
2006.

[36] P. Young and M. Munro. Visualising software in virtual re-
ality. In Proc. IEEE 6th Int. Workshop on Program Compre-
hension, June 24-26, pp19-26. Ischia, Italy, IEEE Computer
Society Press., 1998.

