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We report the results of first-principles calculations of the Young’s modulus and other mechanical
properties of hydrogen-passivated Si <001> nanowires. The nanowires are taken to have predomi-
nantly {100} surfaces, with small {110} facets according to the Wulff shape. The Young’s modulus,
the equilibrium length and the constrained residual stress of a series of prismatic beams of differing
sizes is found to have a size dependence that scales like the surface area to volume ratio for all but
the smallest beam. The results are compared with two different models (and the results of classical
atomistic calculations based on an empirical potential). We discuss the physics of the hydrogen
interactions on the surface and the charge density variations within the beam that may account for
the discrepancies of the models and the first principles results.

PACS numbers:

Structures at the nanometer scale have drawn atten-
tion in recent years from various fields due to their
anomalous mechanical, electronic, and optical properties
as well as the advantages from their extremely small fea-
ture size[1–4]. Devices made of silicon or silicon oxide
are of particular interest for technological applications.
Quartz resonators and silicon resonators have been stud-
ied both theoretically and experimentally to gain higher
performance[5–7], and one of the key material proper-
ties that determine the performance of a resonator is
the Young’s modulus. The Young’s modulus is one of
the intrinsic mechanical properties of any material: for
macroscopic systems it is a material constant, indepen-
dent of size. As the structure size of interest shrinks
down to the nanometer scale, however, surface effects
play an increasingly important role and the Young’s mod-
ulus becomes size dependent. There has been study on
quartz nanowires along this direction, but little has been
done from first principles for equally important silicon-
based nano-electro-mechanical-systems (NEMS), or sili-
con nanowires (SiNW’s).

The challenge is that the silicon nanowires are gov-
erned by mixed physics: the small-scale physics, from
confinement effects due to the reduced dimensionality
to substantial surface effects due to the high surface-to-
volume ratio, plays an important role, but at the same
time, inside atoms feel the bulk-like environment. This
leads to the practical difficulty in modeling a realistic sys-
tem and interpret the outcome from such a model. For-
tunately, there has been huge experimental effort along
this direction, and it is of particular use to the systems
found in experiments: one of the commonly encountered
SiNW’s is hydrogen-passivated wires. Hydrogen passi-
vation is a natural residue after oxide rinsing with HF,
and it is a good starting point for the surface condition
of the wire[8]. As the surface effect dominates the me-
chanics, the surface condition is of great importance and
may change not only the electronic properties but also
the mechanical properties of SiNW’s. In this study, all

the dangling bonds are perfectly passivated with a hy-
drogen atom and Si atoms on (001) facets will form sym-
metric dihydrides, i.e. two Si-H bonds sharing a single
Si atom. Energetically canted dihydrides on the (001)
surface lower the surface energy, but they are unlikely
neither to change the nature of chemical bonding nor
to significantly modify the Young’s modulus of SiNW’s.
The consequence of symmetrization is discussed. For the
atomic arrangement of inside Si atoms, single crystalline
lattice is a reasonable approach in that single crystalline
wires can be easily made in this size regime[6, 7], and in
that this can provide the reference framework for possible
extensions including defects. In this Letter, we report the
complicated interplay between different kinds of physics
associated with SiNW’s with the emphasis on the size
effect.

The first principles density functional theory (DFT)
has been employed for this work. Specifically, the Vi-
enna Ab-initio Simulation Package has been used along
with projector augmented wave pseudopotentials[9, 10]
within generalized gradient approximation (GGA) [11].
The energy cutoff for plane wave expansion is 29.4 Ry and
higher, and 6 points in the one-dimensional irreducible
brillouin zone are used for k-point sampling. Each su-
percell is periodic in the wire growth direction, and has
10Å or more vacuum space in the transverse direction.

From the electronic structure’s point of view, SiNW’s
are thought of as one dimensional structures: sensible
evidence includes band gap increase due to quantum
confinement[12, 13] and band dispersion change due to
reduced dimensionality, i.e. switch from an indirect band
gap to a direct band gap [14, 15]. On the other hand,
they can be thought of as a three dimensional structures
from mechanics’ point of view, which have finite volume
and hence the cross-sectional area. The entangled dual
dimensionality is major challenge in any nanoscale me-
chanics study, in which continuum definitions of system
variables such as cross-sectional area are obsolete.

The Young’s modulus is, in principle, a stress-strain
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TABLE I: Polynomial fittings of the Young’s modulus of 57Si
36H. 10 data points are used for the fitting. Moduli in GPa.

Cutoff energy Order of polynomial fitting
(Ry) 2nd 3rd 4th 5th 6th
29.34 103.41 103.40 104.72 104.77 103.03
44.10 103.93 103.90 105.36 105.28 103.48
51.45 104.05 104.03 105.31 105.26 103.61

relationship, and the definition of stress and hence the
crosse-sectional area must be defined first. The definition
of the cross-sectional area of a system of particles may not
be defined uniquely, but in this work, it is defined with-
out loss of generality as the area bounded by hydrogen
atoms. The system volume (or any spatial dimensions) is
determined from electron interaction rather than nucleus
interaction although the mass of the system is condensed
in the nuclei. For example, the lattice constant is de-
termined by the point where the kinetic repulsion and
the cohesive attraction balance out. In much the same
way, the thickness of a metallic surface slab without ex-
plicit reconstruction could be determined by measuring
the minimum energy separation of two identical surface
slabs. This approach has been applied to the hydrogen-
passivated surface slabs[16], but it remains questionable
whether the same can directly be applied to nanowires or
not considering that large separation within GGA ( 5 Å
or 2.5 Å added to the thickness of the slab on each side)
has been observed, and that the adsorbate-induced repul-
sion, not the intrinsic interaction between Si nanowires,
is the source of such large separation. Still our definition
is reasonable in the sense that most of electron density is
enclosed by the boundary formed by hydrogen atoms and
the electron density from Si atoms would almost vanish
beyond this boundary.

The cross-sectional shape is a truncated square with 4
(001) facets and 4 (011) facets to avoid an unstable edge
formed by two (001) facets. Due to the small scale and
single crystalline structure, the cross-section can not be
arbitrarily scaled. Rather, it has to commensurate with
the underlying diamond-cubic lattice, and consequently
there is a slight variation in the aspect ratio across the
size, i.e. the shape effect and the size effect have not
been completely deconvoluted. Nevertheless, this varia-
tion gives more number of data points and turns out to
predict a clearer trend.

Based on the new definition of cross-sectional area, the
Young’s modulus of 57Si 36H wire has been calculated
and tabulated in Table I. The Young’s modulus is a
second derivative of the strain energy with respect to the
applied strain, and has been taken from the second order
coefficient of the polynomial fit regardless the highest
order of the fit. For the given order of fit, a higher cutoff
energy hardly improves the fit, and for the given cutoff
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FIG. 1: Equilibrium length of hydrogen-passivated SiNW as
a function of wire size. Solid curve is a 1/r fit to 4 data points
from 1 nm or bigger wires.
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FIG. 2: Young’s modulus of hydrogen-passivated SiNW as a
function of wire size.

energy, uncertainty remains even if a higher order fit is
employed. Considering that a higher order fit is more
sensitive to any numerical errors in the calculations and
only a limited number of data with finite accuracy is
accessible due to high computational cost, a higher order
fit is not always preferred. Moreover, the second order
fit with 29.34 Ry energy cutoff seems reasonably good
given that the error introduced in doing so is less than
2% compared with all the combinations tested. This also
ensures the direct comparison with bigger wires where
the number of data points and the energy cut off are
essentially limited by the system size.

The equilibrium structure is determined from the bal-
ance between several competing effects. The intrinsic
surface effect, in spite of the huge free surface area com-
pared to the volume of the system, hardly introduces
the surface stress, and the equilibrium length essentially
remains unchanged. This is clearly seen in the case of
the 25Si 20H wire in which the extrinsic surface stress
due to H-H repulsion is almost negligible, and the result-
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FIG. 3: Cross-section of fully relaxed hydrogen-passivated wires. The numbers represent the number of each species in the
super cell. For example, 405Si 100H means that the super cell contains 405 Si atoms and 100 H atoms.

ing elongation is less than 0.002%. On the other hand,
the extrinsic surface effect due to the hydrogenated sur-
face layer plays a crucial role in changing the equilibrium
length of the wires. Unlike the atoms on the (110) facets,
which have one Si-H bond, the atoms on the (100) facets
have two Si-H bonds and form a dihydride. The dihy-
drides on the (001) facets are aligned with symmetry such
that two neighboring hydrogen atoms from adjacent dihy-
drides repel each other.(may refer to hydrogen molecule
articles for the origin of repulsion) Since the dihydrides
are aligned diagonally, the resulting repulsion introduces
axial stress as well as transverse shear stress on the sur-
face. The induced axial stress substantially stretches the
wire, and the ground state length of the SiNW’s with
symmetric dihydrides tends to be longer than the bulk
lattice spacing. Naturally, the bulk elasticity comes into
play and counterbalances the elongation, trying to bring
the wire length back to the bulk spacing. Consequently,
the ground state length is determined from the balance
between the surface stretching and the bulk restoring,
or the surface-to-volume ratio, and hence, would ideally
follow the 1/r dependence.

Other effects, however, add subtlety to the force bal-
ance and alter the 1/r dependence especially for the
smaller wires. Nanowires are not perfectly continuous,
and some may have the same aspect ratio while some
others may not. Different aspect ratios mean different
surface-to-volume ratios, and mean the change in the
size-equilibrium length relationship. For example, 109Si
52H and 405Si 100H, having the same aspect ratio, are
likely to fit in a single 1/r curve, while 57Si 36H and 205Si
fit in another 1/r curve. Also important is the edge effect
in that dihydrides on the edge are substantially relaxed

and exhibit weaker repulsion. The edge effect is more
severe for small wires because the 21Si 20H wire, for ex-
ample, has 2 surface atoms on each (001) facet, and essen-
tially all the (001) atoms undergo substantial relaxation.
On the other hand, a smaller fraction of (001) atoms are
relaxed for the 405Si 100H wire. There are two more
effects that play a role in the force equilibrium. First,
the bulk anharmonicity appears as the wire is stretched
beyond the limit of linear elasticity[17]; nevertheless it is
few percent increase in the bulk stiffness for the strain
range mentioned here, and hence not significant. Second
effect is the H-H repulsion in the transverse direction on
the surface. The more wires are elongated, the greater
becomes the Poisson effect. In other words, elongation
stretches the wire, but at the same time, shrinks the
cross-sectional area, which, in turn, increases the repul-
sion between the dihydrides on the (001) facets because
they are aligned diagonally. The transverse repulsion is
clearly observed in the form of shear deformation.

The same level of complexity is observed for the
Young’s modulus as in the case of the equilibrium struc-
ture, but the impact of each contribution is different.
First of all, the intrinsic surface effect plays a critical role
in softening nanowires. Surface atoms, having less than 4
Si-Si bonds, can be regarded as having a smaller number
of springs, and consequently soften the wire under uni-
axial tension. This is clearly seen in the case of the 25Si
20H wire: even though any extrinsic surface effect is neg-
ligible, i.e. the ground state length almost remains at the
bulk lattice spacing, the soft surface layer diminishes the
material stiffness with the given high surface-to-volume
ratio. Evidently, the covalent nature of bonding is pre-
served even with a high surface-to-volume ratio, and a
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simple bond-counting argument holds. The local envi-
ronment of surface atoms is virtually similar to the bulk
environment even though a Friedel-like oscillation, due to
the surface relaxation and the natural structure of silane
chains, is present. This is a different situation from a
metallic surface where significant charge redistribution
occurs.

The complexity arises from the general belief that the
compressive stress is related to the material stiffening,
while the SiNW’s soften as the size shrinks even though
the equilibrium length increases as can be seen in Fig. 2.
This common belief, however, is not entirely true because
it is the surface elastic constant (or strain-derivative of
the surface stress), not the surface stress evaluated at the
bulk equilibrium (or simply surface stress), that changes
the net stiffness[18]. Therefore, a wire with compressive
surface stress could result both in softening and stiffen-
ing depending on the sign of the surface elastic constant.
Another reason for the complexity of underlying nanome-
chanics is the mixture of intrinsic and extrinsic surface
effects. Only the extrinsic effects stands out for the sur-
face stress, but for the material stiffness, the intrinsic
effect dominates.

It turns out that the extrinsic surface effect plays a
secondary role in the stiffness change, but the impact is
not as big as that from the intrinsic effect. Due to the
exponential nature of the repulsive force, the H-H tend
to stiffen the compressive domain but soften the tensile
domain, resulting in noticeable anharmonicity. Interest-
ingly, such anharmonicity observed in the calculations of
surface slabs is not observed in the case of nanowires.
This can be explained with the Poisson effect as is the
case with the equilibrium length. As a wire is elongated,
the longitudinal repulsive force exponentially decreases
but the transverse repulsive force exponentially increases.
Two competing driving forces tend to balance at some
point where two opposite anharmonic effects cancel out.

Another impact that the substantial elongation by the
H-H repulsion brings in is the effect of bulk anharmonic-
ity. The bulk anharmonicity increases the Young’s mod-
ulus when the applied tensile strain is beyond the range
of linear elasticity. Nevertheless, the bulk anharmonicity
due to the stretch contributes little to the net material
stiffness. Based on the 5th order polynomial fit of bulk
uniaxial tension data, the bulk anharmonic stiffening for
the smallest wire is less than 2%.

In conclusion we have found that calculation of several
mechanical properties of silicon nanowires from first prin-
ciples reveals a size dependence in properties that would
be size-independent constants for macroscopic systems:
the equilibrium length and the Young’s modulus. An-
other property, the residual stress in a beam constrained
at the bulk equilibrium length, is zero for a macroscopic
beam, and in nanowires it is non-zero and size depen-

dent. In each of these cases the size dependence scales
roughly as the surface area to volume ratio. In the case
of the hydrogen terminated surfaces studied here, the ef-
fect is not strong. For example, the Young’s modulus is
softened by about 20% for a 1 nm diameter wire. Since
the resonant frequency of a flexural resonator depends on
its Young’s modulus, it may be possible to measure this
effect directly.

Another interesting possibility is that the effect could
be substantially stronger in silicon nanowires with dif-
ferent surfaces, such as bare surfaces or oxide surfaces.
These systems are more challenging for first-principles
calculation due to a greater number of candidate struc-
tures and a greater role for charge transfer in the mechan-
ics. It is not clear whether the Young’s modulus would
increase or decrease as the size of the beam is reduced.
There is much to be learned still.

This work was performed under the auspices of the
U.S. Department of Energy by the University of Cali-
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