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Chapter 1

Introduction

The goal of any alarm algorithm should be that it provide the necessary tools to
derive confidence limits on whether the existence of fissile materials is present in
cargo containers. It should be able to extract these limits from (usually) noisy
and/or weak data while maintaining a false alarm rate (FAR) that is economi-
cally suitable for port operations. It should also be able to perform its analysis
within a reasonably short amount of time (i.e. ≈ seconds). To achieve this,
it is essential that the algorithm be able to identify and subtract any interfer-
ence signature that might otherwise be confused with a fissile signature. Lastly,
the algorithm itself should be user-intuitive and user-friendly so that port op-
erators with little or no experience with detection algorithms may use it with
relative ease. In support of the Nuclear Car Wash project at Lawrence Liver-
more Laboratory, we have developed an alarm algorithm that satisfies the above
requirements. The description of the this alarm algorithm, dubbed ALARMA,
is the purpose of this technical report.

The experimental setup of the nuclear car wash has been well documented[1,
2, 3]. The presence of fissile materials is inferred by examining the β-delayed
gamma spectrum induced after a brief neutron irradiation of cargo, particularly
in the high-energy region above approximately 2.5 MeV. In this region naturally
occurring gamma rays are virtually non-existent. Thermal-neutron induced fis-
sion of 235U and 239P , on the other hand, leaves a unique β-delayed spectrum[4].
This spectrum comes from decays of fission products having half-lives as large
as 30 seconds, many of which have high Q-values. Since high-energy photons
penetrate matter more freely, it is natural to look for unique fissile signatures
in this energy region after neutron irradiation. The goal of this interrogation
procedure is a 95% success rate of detection of as little as 5 kilograms of fissile
material while retaining at most .1% false alarm rate.

Plywood is used to simulate hydrogenous cargo material and steel (pipes)
is used to simulate metallic cargo. The wood consists of 120×240 cm sheets
and has approximately .65 g/cm3. The steel pipes have approximately 10 cm
diameters × 6.4 mm wall thickness are .6 g/cm3. Fissile sources consist of a
‘large’ (380 g) and ‘small’ (250 g) sample of HEU (U3O8 94% enriched). Note
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10 CHAPTER 1. INTRODUCTION

that the masses of the HEU sources used in our experimental runs are at least
an order of magnitude smaller than 5 kilograms. Runs are done with either
wood or steel cargoes stacked at various heights and the HEU sources placed at
various depths within the cargo.



Chapter 2

Methodology

In this chapter we motivate the reason for developing an alarm algorithm that
utilizes the full energy-time domain of the experimental data. An essential
assumption of our fitting routine is the near independence of the high-energy
spectra on the type of cargo media. This assumption, which we justify below,
greatly simplifies the analysis of data since the number of basis functions used
by our fitting routines is kept to a minimum. We also discuss the construction of
these basis functions, as well as enumerate our reasons for moving away from an
algorithm that fits summed spectra to decay curves. We note that our analysis
so far has been performed on static cargo (i.e. cargo was not moving during
irradiation and scanning).

2.1 Experimental Data in 2 Dimensions

Figures 2.1 and 2.2 show example data sets obtained from experimental runs in
which wood and steel cargoes were irradiated by a neutron beam (with endpoint
energy 7 MeV) for 30 seconds. The data shows the subsequent energy spectrum
up to 98 seconds after the irradiation was turned off. The x- and y-axes display
the time and energy binning of the data, respectively, while the z-axis displays
the counts binned at one-second intervals. In Fig. 2.3 we show the correspond-
ing close-ups of Figs. 2.1 and 2.2 where we have subtracted from each energy
bin the average of the data in the final 10 seconds. Plot (a) shows the active
wood example while (b) shows the active steel results. Note that in both cases
the spectrum is essentially flat in the high-energy regime for all times. At lower
energies (which is not shown) the spectrum is formed by in-medium activation
of the cargo and interactions of the detector with cosmic ray particles.

In Fig. 2.4 we show an example where HEU (a) and separately teflon (b) is
placed within the wood cargo. The latter simulates an 16N interference signal.
In both cases the average energy calculated from the final 10 seconds has also
been subtracted. It is obvious that the spectrum is not flat in the high-energy
region above approximately 2.0 MeV.

11
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Figure 2.1: Experimental data residing in full time-energy-counts space. Plot
(a) shows the results for wood active background. Plot (b) shows a close up in
the 2 to 5 MeV range. Dataset:[20060718 run015]
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Figure 2.2: Experimental data residing in full time-energy-counts space. Plot
(a) shows the results for steel active background. Plot (b) shows a close up in
the 2 to 5 MeV range. Data set:[20060810 run016]
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"abg_steel_bk.dat" every 2 using 1:2:3

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

Time (seconds) 2  2.5  3  3.5  4  4.5  5Energy (MeV)

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

Counts

(b)

Figure 2.3: Wood (a) and steel (b) active backgrounds where the aver-
age of the final ten seconds for each energy bin was subtracted. Data
sets:[20060810 run016, 20060718 run015]
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Figure 2.4: Plot (a) shows the results for HEU imbedded in wood. Plot (b)
shows the spectrum due to the presence of 16N . Data sets:[20060711 run007,
20060718 run005]
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Figure 2.5: Signatures of active background (red) and HEU in wood (blue) are
overlaid to show differences. Both experiments consisted of cargo with 4 feet of
wood (data sets). Spectrum is shown only above 2 MeV.

The difference in the signatures above 2.0 MeV of an active background
spectrum and a spectrum in which HEU is present can be quite pronounced,
even for weak HEU signatures. Fig. 2.5 overlays two such signatures to show this
difference. Here the spectrums are shown above 2 MeV and the cargo consists
of 4 feet of wood. The HEU signature is very weak for this example, yet its
signature (blue) is visually distinct from the active wood background (red) in
this energy range.

On the other hand, the HEU signatures within different cargoes are very
similar in shape, as Fig. 2.6 shows. Here the HEU signature is shown from car-
goes of wood and steel. Aside from an overall normalization (i.e. different total
counts), the shape of the spectrum is very similar in the high-energy region.
This is true for spectrums due to other sources, such as 16N. The relative inde-
pendence of the spectrum shape of HEU from different cargoes above 2 MeV is
an essential feature utilized by our alarm algorithm’s fitting routines. As will
be explained later (Sect. 2.3), this independence greatly facilitates the analysis
of data from various irradiated cargo media, since only one basis function for
each source will be needed and can be used for all the different types of cargoes
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Figure 2.6: HEU signatures originating from wood cargo (a) and steel cargo (b).
Aside from an overall normalization, the spectrum is essentially the same above
approximately 2.5 MeV. The data has been smoothed for ease of viewing.
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in the high-energy region. Before describing our fitting routines, however, it is
prudent to understand physically why this independence is manifest. The next
section addresses this issue.

2.2 Shape Independence of Spectrum

The dominant process in which γ-rays interact with cargo media in the 2-10 MeV
energy range is via Compton scattering, where the initial photon scatters off of
a (essentially) free electron. At or above 10 MeV, pair production, where the
photon is converted to electron/positron pairs, becomes the dominant process.
In principle, pair production can occur below 10 MeV and above 1.06 MeV
(twice the electron mass), but due to kinematical constraints (e.g. conservation
of momentum) this process is suppressed compared to Compton scattering.

The differential cross section due to Compton scattering of unpolarized pho-
tons off electrons (and more generally, point-like spin-1/2 particles) is given by
the Klein-Nishina formula[5],

dσ

dΩ
=

1
2

(
e2

me

)2
[

ωf

ωi
−

(
ωf

ωi

)2

sin2(θ) +
(

ωf

ωi

)3
]

, (2.1)

where me is the electron mass, ωi and ωf are the initial and final energies,
respectively, of the photon (we have assumed natural units, c = 1, ~ = 1), θ is
the angle relative to the incoming photon’s direction, and

ωf

ωi
=

1
1 + ωi

me
(1− cos(θ))

.

Note that e2/me = 2.82× 10−13 cm is the classical electron radius. Figure 2.7
plots this function for initial photon energies of 2, 3, 4, and 5 MeV. Notice
that the differential cross section is strongly peaked in the forward direction for
photons at these energies. The total cross section is simply

σ(ν) =
(

e2

me

)2 [
2π(2 + ν(1 + ν)(8 + ν))

ν2(1 + 2ν)2
− π(2 + ν(ν − 2))Log(1 + 2ν)

ν3

]
,

(2.2)
where ν = ωi/me. Figure 2.8 plots this cross section for photon energies up to 8
MeV. Notice that above ≈ 2.5 MeV, the variation in the cross section is small.

Prussin has investigated the likelihood that given a photon with initial energy
ωi that undergoes Compton scattering, the final energy ωf of the photon is below
some cutoff energy ωc. This probability, P (ωf ≤ ωc : ωi), is defined as

P (ωf ≤ ωc : ωi) =
2π

σ(ωi)

∫ xc

−1

d(cos(θ))
dσ(ωi)

dΩ
, (2.3)

where dσ(ωi)/dΩ is given by Eq. 2.1, σ(ωi) is the total Compton cross section
for initial photon energy ωi (Eq. 2.2), and

xc = 1−me(
1
ωc
− 1

ωi
).
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Figure 2.7: Differential cross section for Compton scattering of photon of ener-
gies 2, 3, 4, and 5 MeV off electron.

In Fig. 2.9 we plot this probability for various cutoff energies as a function of
initial photon energy. From the figure it can be deduced that given a photon
with initial energy ωi, if it undergoes Compton scattering, the probability that
it will down-scatter below some cutoff energy ωc < 3MeV is large. In most
cases this probability is greater than 70%. Thus this analysis shows that, after
traversing through media, a detected photon of energy greater than ≈3 MeV
most likely did not interact with the cargo media, since if it did scatter it would
very likely have scattered to an energy below this threshold. This analysis is
valid only in the Compton (incoherent) limit.

It is stressed that the probability defined above does not reflect the likelihood
that a photon undergoes Compton scattering. It only states that once a photon
undergoes Compton scattering, the probability that the photon loses much of
its initial energy is large. The likelihood that a photon undergoes Compton
scattering depends linearly, to first order, on the density of electrons in which
the photon traverses through. As such, higher Z elements will produce more
scattering. Yet the statements of the previous paragraph do not change. Thus
one can posit that the shape of the high energy spectrum of photons (& 2.0 MeV)
should look very similar for various cargo media; only the overall normalization,
or attenuation, is different.

To support this statement, we show attenuation results calculated from
Monte Carlo photon transport simulations using various cargo media performed
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Figure 2.8: Total Compton cross section off electron as a function of incoming
photon energy ωi.

by Hall. The configurations for the simulations are shown in Fig. 2.10. In plot
(a) the cargo medium (brown) consists of either wood, aluminum, or steel. A
SNM source (red), a 1 kg Oralloy sphere, is located at the center of the box,
and two 2’×4’×6” plastic scintillator detectors (blue) are located to the sides
of the cargo. The size of the cargo container for each medium is varied (or
equivalently, the density of the media is varied) such that there are 0.5, 1.0, 2.0,
and 4.0 equivalent mean free paths (mfp) for photons traversing directly from
the SNM to the wall of the container in line of sight of the detector.

A fiducial run was done where there was no cargo present (photons traversed
through vacuum). Photons that impinged upon the detectors in this case under-
went no scattering. The energy spectrum of these photons is shown in Fig. 2.11,
binned in 50 keV intervals for the energy range 2.5-6.0 MeV. For each simulation
where cargo media was present the attenuation was calculated by dividing the
obtained energy spectrum of photons impinging the detectors by the fiducial
spectrum shown in Fig. 2.11. In Figs. 2.12 and 2.13(a) we show the attenuation
as a function of photon energy for wood, aluminum and steel cargoes at various
densities corresponding to different photon mean free paths. The attenuation,
as a function of photon energy, is nearly constant for all three cases. The slight
positive slope, most evident in wood cargo, is attributed to the hardening of
the photon spectrum since the cross section decreases slightly at higher energies
(see Fig. 2.8).
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Figure 2.10: Configurations used by Hall in performing Monte Carlo photon
transport simulations. Plot (a) shows a scenario of uniform cargo, whereas (b)
shows a cargo configuration where the yellow square consists of steel and the
brown region is wood. For both scenarios, the SNM source (red) is in the center
and the two detectors (patterned blue) are located to the sides of the cargo.
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Figure 2.12: Attenuation as a function of photon energy for wood (a) and
aluminum (b) cargoes at different densities corresponding to 0.5, 1.0, 2.0, and
4.0 minimal photon mfps.
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Figure 2.13: Attenuation as a function of photon energy for steel (a) and inho-
mogeneous cargo consisting of steel and wood (b) at different densities corre-
sponding to 0.5, 1.0, 2.0, and 4.0 minimal photon mfps.

The calculations presented above had cargo containing homogeneous me-
dia. In general, cargoes will not be homogeneous and there may be concern
that attenuation in this case will not be nearly flat. In a first order attempt
to address this issue, Hall has also run simulations using cargo configurations
consisting of both wood and steel, as shown in Fig. 2.10(b). Here the center
region surrounding the SMN source consists of steel. The entire steel box is
then enclosed in wood. The densities of the wood and steel cargoes are varied
such that they both have the same equivalent photon mfp in line of sight from
the SNM source and detector, and that the summed mfp from both wood and
steel equal 0.5, 1.0, 2.0, and 4.0 mfps. Figure 2.13(b) shows the attenuation for
this configuration. Again the attenuation is nearly flat within the energy region
plotted.

The near constant attenuation obtained for various cargo media indicates
that the shape of the energy spectrum of photons is nearly the same for different
cargo configurations. This is true for inhomogeneous as well as homogeneous
media. This implies that HEU signatures obtained in wood should be the same
(up to an overall constant) as HEU signatures obtained in steel, as was found
experimentally in Sect. 2.1. HEU signatures obtained from cargoes containing
both wood and steel (or any other combination of materials) should have the
same signature as well in the high energy regime.

2.3 Fitting 2-D Data

To extract a fissile signature from data taken after neutron irradiation of cargo,
the algorithm ALARMA attempts to fit the high-energy region of the data to
a set of pre-calculated basis functions. These basis functions reside in the full
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Figure 2.14: Schematic diagram of Eq. 2.4.

energy-time (E, t) domain of the experimental data and represent the various
components that we believe contribute to the overall spectrum. For example,
there is a basis function Φbg(E, t) that represents the active background, a basis
function ΦSNM (E, t) that represents the fissile signature, and various other
basis functions that represent possible interferences, such as Φ16N (E, t) for the
presence of 16N . In theory there will be an infinite number of interference basis
functions. Fortunately, as we will describe later, practical applications so far
only need one interference basis function: Φ16N .

The fitting algorithm will allow us to extract a set of coefficients αi that
allow us to express the experimental data in terms of the basis functions,

Φexp(E, t) = αbgΦbg(E, t) + αSNMΦSNM (E, t)
+ α16NΦ16N (E, t) + other interferences. . ., (2.4)

where Φexp represents the experimental data. αSNM > 0 would indicate that
a fissile signature is present in the data, and would lead us to conclude that
fissile material is present in the cargo. Notice that the basis functions have no
dependence on the type of cargo (i.e. wood, steel, mixtures, etc. . .). This
independence relies on the conclusions of the previous section: Up to an overall
constant (i.e. αi), the shape of the energy spectrum at high energies is basically
the same for all cargo media. We discuss the construction of these basis functions
in Sect. 2.5. Figure 2.14 gives a schematic representation of Eq. 2.4. Here the
Φ functions are replaced by a 3-D representation of the data.

Due to uncertainties in the experimental data and fitting routines (described
in detail in Sect. 4), an extracted coefficient of αSNM > 0 does not indicate the
presence of fissile material with 100% confidence, nor does αSNM = 0 imply
that no fissile material is present with 100% confidence. The fitting coefficients
themselves will have uncertainties that preclude the definite identification of
whether or not fissile material is present. An analysis of these uncertainties, as
well as the confidence limits and false alarm rates that can be deduced from
them, is given in Sects. 2.7 and 3.
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Table 2.1: Benefits of utilizing fitting algorithm on data in original energy-time
domain

Basis function contain correct decay curves and half-lives
Data representation is original and not manipulated

Background easily subtracted
Facilitates identification of interferences

Dead-time corrections could be implemented after data-acquisition
User-friendly 3-dimensional representation of data

2.4 Why Not Fit to Decay Constants?

An alternative to fitting basis functions in the full energy-time domain is to just
sum the energy counts above some threshold (e.g. 2.5 MeV) and fit the summed
counts to exponential functions. In this case, one is fitting decay curves using
half-lives of the elements believed relevant to the spectrum. Indeed, preliminary
analysis of the data was done in this fashion (e.g. [3, 6]), with satisfactory
results.

On the other hand, working in the original energy-time domain has addi-
tional benefits over fitting decay curves. First off, the basis functions already
incorporate the correct decay curves, and thus the correct half-lives, since they
are fitted from experimental data. This is explained in greater detail in Sect. 2.5.
Aside from the requisite binning during data acquisition, the data is raw and
not manipulated in any fashion. By viewing the data in a 3-dimensional fashion,
identification of interferences, such as the 16N signature, is greatly facilitated,
and subsequently easily eliminated. The background can be easily subtracted
by looking at long times where any fissile signature has decayed below back-
ground levels. This eliminates a source of uncertainty and thus facilitates error
analysis. If detectors are large enough, or counts sufficiently high in the 8-10
MeV regime, the algorithm can perform its own self dead-time corrections after
data acquisition. This is explained in greater detail in Sect. 2.61. Lastly, by
working in the energy-time domain, a 3-dimensional representation of the data
can be obtained that is more user-friendly for visual inspection and identifi-
cation of suspect signatures. This last feature partly addresses the point that
users of this algorithm most likely will not have any technical background in
nuclear physics. Table 2.1 summarizes these points succinctly.

2.5 Construction of Basis Functions

Originally the basis functions Φ were calculated via Monte Carlo simulations,
where photons from a source were sampled and propagated to the detectors.
Pruet used sources that modeled fissile materials as well as the 16N signature.

1This form of dead-time correction was not implemented in the analyses presented here.
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Table 2.2: Savitzky-Golay fitting parameters
NR NL M
24 24 6

Descalle simulated the energy response of the detectors, which were subsequently
folded with a temporal Gaussian response function. These latter calculations
simulated the interaction of the photons with the detectors. Coupling the sim-
ulated flux of photons with the response of the detector, the basis function of a
particular source was constructed. In this manner, any interference basis func-
tion could be constructed through simulation as long as there was a suitable
model for the source.

The biggest uncertainty of these calculations were the response functions of
the detector, which were actually not known at the time of the simulations.
Furthermore, transport of the photons through media was modeled naively. To
address these issues we have chosen to extract the basis functions directly from
experimental data of HEU signatures and 16N interference signatures. In prin-
ciple, the poorly known response functions of the detector are already folded
into these experimental data sets. Following the conclusions of Sect. 2.2, the
basis functions derived from experimental data should be relatively insensitive
to the type of media that the photons traversed through. Thus by performing
controlled experiments with and without fissile signatures, or with particular
interference sources (e.g. teflon to produce 16N), basis functions for each indi-
vidual source can be constructed.

Due to the poor resolution of the detectors, Descalle’s energy response results
are used to calibrate the detectors to peaks of known sources, such as the gamma
peaks of Yttrium. Roughly speaking, these peaks occur at an energy between
the Compton edge and full photo-absorption peak. Details of this calibration
are given in Sect. 4. These calibrations are a necessary step in constructing
consistent basis functions that reside in the energy-time domain.

Each experimental data set representing a particular source is smoothed
via a Savitzky-Golay filter[7, 8] when constructing its basis function. This is
necessary as the data sets themselves can be noisy due to Poisson statistics.
The parameters of this particular filter are shown in Tab. 2.2. This particular
filter has the benefit of smoothing the data while preserving higher moments of
peaks in the data set. This is especially important when constructing the 16N
basis function interference peak. In this particular case, preserving the width
and height of this peak while smoothing the data is essential in producing a
correct half-life of this spectrum in the basis function2.

2.5.1 Background

Basis functions representing active background (i.e. irradiated cargo without
fissile material or interference signatures) as calculated from different experi-

2This assumes that the data set itself has already been corrected for dead time.
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mental runs have very little (if any) structure above 2.5 MeV. As Figs. 2.15
and 2.16 show, in this region the spectrum is basically flat regardless of the
cargo medium and for all times. As one goes well below 2.5 MeV, the picture
is quite different as the in-medium activations are quite different depending on
the type of cargo.

Because the background spectrum is essentially flat as a function of time in
the high energy regime, it is more convenient (and faster) to fit the experimen-
tal background to a constant value by using the data points residing at long
times (t > 85 seconds), as opposed to fitting a background basis function in
the entire energy-time domain of the experiment data. This is possible since at
such long times, it is expected that fissile signatures and interference signatures
will have decayed below background levels. Further details of this fitting pro-
cedure is given in Sect. 4. Though this is the preferred method for extracting
the background, we show sample basis functions of the background (Figs. 2.15
and 2.16) for completeness.

2.5.2 HEU

Figure 2.17 shows an experimental run consisting of a small sample of HEU
in three feet of wood, and the corresponding basis function constructed from
this data set. Again note the distinctive feature of the HEU signal compared
to purely active background runs shown in Figs. 2.15 and 2.16, particularly in
the energy range above 2.5 MeV. Also note that the signal becomes basically
non-existent above 5 MeV for all times.

2.5.3 16N interference

A teflon source was used to construct the 16N interference signature through
the reaction 19F(n,α)16N. The nitrogen would subsequently decay with half-life
τ=7.13 seconds predominantly to the first excited state of 16O residing at 6.1
MeV, which would immediately decay to its ground state. The teflon source
was immersed directly over the aperture. An example experiment is shown in
Fig. 2.18 (a) and the corresponding basis function constructed from this data
in Fig. 2.18 (b).

2.5.4 Other interferences

In principle there will be other sources of interference signals that occur in the
high-energy region above approximately 2.0 MeV. Examples of such sources
are the 3.084 MeV line of 49Ca and 2.113 MeV line of 56Mn. The former can
be activated from cargo containing wood, for example, and has a half life of
approximately 8 minutes. The latter is present in steel alloys; its half-life is over
2 hours. Church has performed preliminary interference tests and concluded
thus far that interference sources other than 16N will contribute at most at the
level of 10−5 of the active background level. For all results presented here we
have only included 16N as a possible interference. Prussin has argued that the
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Figure 2.15: Panel (a) shows an example data set taken after a 30 second
irradiation of wood cargo. Panel (b) shows the corresponding basis function
constructed from this data set. Note the lack of structure at high energies (>
2.5 MeV).
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Figure 2.16: Same as in Fig. 2.15, but with steel cargo.
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Figure 2.17: Panel (a) shows an example data set taken after a 30 second
irradiation of wood cargo containing a small sample of HEU. Panel (b) shows
the corresponding basis function constructed from this data set.
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Figure 2.18: Panel (a) shows a sample experimental signal due to the presence
of 16N. Panel (b) shows the corresponding basis function that is constructed
from this set.
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Figure 2.19: Experimental energy-counts profile of 16N source at 2, 7, and 12
seconds. The data has been smoothed to facilitate presentation. The line labeled
Fit 1 uses the profile at 2 seconds to predict the profile at 12 seconds using
the known 7.13 second half life of the 16N source. Note that it underpredicts
the experimental profile. The line labeled Fit 2 uses the profile at 7 seconds
to due the same prediction. Here the prediction is much better, indicating that
deadtime is less of an issue for this case.

8 minute half-life of 49Ca might could manifest itself in our fits. We plan to
investigate this interference in the near future. We do not believe its presence
will dramatically alter our current conclusions.

2.6 Importance of Dead-time Corrections

Because of the large count rates after irradiation, deadtime issues come into play.
As an example, Fig. 2.19 shows the energy-count profile of an irradiated teflon
source at times t = 2, t = 7, and t = 12 seconds using data that has not been
corrected for deadtime. The data has been smoothed to de-clutter the figure.
Given that the half-life of 16N is 7.13 seconds, one can predict what the profile
will look like at t = 12 seconds using the raw data at t = 2 seconds. In doing
this one underpredicts the profile, as shown by the line labeled Fit 1. On the
other hand, one can also use the raw data at t = 7 seconds to predict the same
profile. The prediction is closer in this case (Fit 2). These results are indicative
of deadtime errors. Church and Manatt have written various routines that can
perform deadtime corrections using the *.lst files produced from experimental
runs. Preliminary analysis shows that deadtime corrections can be large at
small times (< 5 seconds). Table 2.3 shows some typical deadtime errors as a
function of time calculated by Church. Unfortunately, due to lack of funding,
time constraints, and more pressing matters related to the nuclear car wash,
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Table 2.3: Sample deadtime errors at various times
Time (seconds) Deadtime error

8 4.81%
16 3.49%
28 2.92%

most experimental runs have not been corrected for deadtime. This issue will
be resolved in the next version of the alarm algorithm.

On the other hand, Norman has suggested utilizing the counts at energies
above 8 MeV to estimate deadtime errors. This idea assumes that the counts in
this energy regime are due to interactions with high-energy cosmic ray particles
and thus should be constant as a function of time and energy. A non-constant
count as a function of time would suggest the presence of deadtime errors.
By comparing the count at time t with the counts at late times of the data
(here the deadtime errors should be zero or constant), one can estimate the
relative deadtime error and subsequently the deadtime correction at time t.
This proposed method is convenient in that the deadtime corrections can be
calculated from the data itself.

We investigated the feasibility of this procedure. Figure 2.20 shows the
summed counts above 8 MeV as a function of time for a certain experimental
run. Because of the low counts and large statistical errors, it is not possible
to extract a time-dependence of the counts from these results. Similar results
were obtained for other runs. Thus deadtime corrections were not corrected in
this manner. If counts are increased in this energy regime (e.g. by using larger
detectors), this method should become viable.

To minimize the effects of deadtime errors, we perform our analysis above
a lower time cutoff of tc ∼ 5 seconds. With cutoff times larger than this any
fissile signature, if present, becomes much weaker and the signal-to-noise ratio
is worsened.

2.7 Constructing Receiver Operator Character-
istic (ROC) Curves

As mentioned earlier, the intrinsic noise of the experimental data and the un-
certainties introduced by the fitting algorithms preclude any definite predictions
on the absence or existence of fissile signatures. Interference signals will further
cloud the prediction. Thus any prediction will be accompanied with a corre-
sponding uncertainty. For cases where the fissile signature is extremely weak
(or where noise is very large), an alarm algorithm may falsely identify the sig-
nal as a null result (or falsely predict the presence of fissile materials). Such
false negatives (or false positives/alarms) will occur given a large enough sample
of experiments. It is therefore necessary to quantify, as much as possible, the
probability for these types of occurrences.
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Figure 2.20: Summed counts above 8 MeV as a function of time. The large
uncertainties and fluctuations make it difficult to extract deadtime errors using
the method proposed by Norman.

Receiver-operator-characteristic (ROC) curves allow for a simplified way to
quantify the probability of these occurrences. By measuring the overlap in dis-
tribution of null events with the distribution of positive events, false alarm rates
(or equivalently, false negative rates) can be calculated without specific knowl-
edge of the underlying statistics intrinsic to the experiment. The construction
of ROC curves is relatively straightforward, as long as there is a large sample
of null results and positive results from which to construct distributions. The
reader is referred to Refs.[9, 10] and references within for further details on the
theory behind ROC curves. In Sect. 3.4 we construct the ROC curves from our
most sensitive experiment run (HEU in 5ft of steel) and use them to obtain
optimal time windows for performing our analysis as well as setting a delimiter
between a null result and a positive result.

2.7.1 Why bootstrap the data?

Standard fitting routines, such as least-squares fitting via normal equations or
singular-value-decomposition (SVD)[7], have as output the standard deviation
σ of the fitted parameters, as well as the χ2 of the fit. These parameters assume
that the error in the experimental data follows a Gaussian distribution. For
our experiments this is not the case, as counting statistics have errors dictated
by Poisson statistics. Thus the extraction of uncertainties from run-of-the-mill
fitting routines must be done with care.

On the other hand, if there exists large samples of experimental runs, the
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set of fitted coefficients extracted from these samples will form a distribution
from which an uncertainty can be extracted. This scenario is more suited for
evaluating false alarm rates as well, since ROC curves can be calculated from
the overlap of the null distribution with other distributions. Furthermore, the
extracted uncertainties will respect the underlying statistics intrinsic to the
experiment, since the distributions are calculated directly from the sample of
experiments without any prejudices (as opposed to assumed Gaussian distribu-
tions for least-squares fitting). This is clearly the desired method in obtaining
uncertainties.

Unfortunately, we do not have large enough samples of experiments in which
we can form distributions for the fitted coefficients. In this case, given a par-
ticular data set, one can statistically sample the data to make pseudo-sets of
data. For example, given a data set consisting of N elements, one can make
a pseudo-data set of N elements by randomly pulling from the original set N
times. One does the sampling with replacement. This ensures that the pseudo-
data set is not completely identical to the original set, as some of the elements in
the pseudo-set will be repeated (on average, approximately %37 of the data in
the pseudo set will be repeated). To make 10 pseudo-sets, for example, one just
repeats this scheme 10 times. For each pseudo-set of data, one passes the data
through some fitting algorithm to extract a fitted coefficient. With sufficient
numbers of pseudo-sets a distribution in the fitted coefficients can be formed.
This procedure of constructing distributions of parameters by empirically sam-
pling the original data set is called bootstrapping [7, 11]. The uncertainties ex-
tracted from the distributions constructed in this manner should respect the
underlying statistics driving the experiment. The ROC curves shown in later
sections were calculated from distributions constructed in this manner.

Another benefit of employing the bootstrap method for generating distribu-
tions is that in addition to just sampling the experimental data, one can also
estimate the contribution to the uncertainty due to fluctuations in external en-
vironmental variables, such as temperature. For example, if the calibration of
the detectors is known to depend on the temperature, than the contribution to
the uncertainty due to this dependence can be estimated by varying the temper-
ature (and thus the calibration) during the bootstrap procedure. We perform
these analysis in later sections.
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Chapter 3

Data Analysis

We now show examples of our fitting procedure and the distributions of the
fit coefficients constructed from our empirical sampling procedure. The basis
function representing the HEU signature used in these fits were constructed
from data set 20060718 run013, which represents the small HEU sample in 2’ of
wood. The 16N basis function was constructed from data set 20060718 run005.
Thus these data sets represent our fiducial runs from which we can compare with
subsequent runs. Most fits were done in a time window from 5 to 95 seconds
after neutron irradiation and energy window from 2.5 MeV to 5.0 MeV.

3.1 Cargoes with HEU

Figure 3.1 shows an example fit performed on a experiment run in which the
large HEU sample was imbedded in 4’ of wood. The fit coefficient obtained in
this example is αSNM = .073422 with χ2/d.o.f.=1.27 . To estimate the uncer-
tainty, we empirically sample the data set as outlined in Sect. 2.7.1. Figure 3.2
shows the distributions obtained in this manner.

In Fig. 3.3 we show distributions obtained from various experimental runs
where HEU is imbedded in wood and steel cargoes. This calculations were
performed with varying backgrounds. In general, distributions calculated from
steel cargoes are wider since the signal-to-noise ratio is poorer than their wood
counterparts. This is partly due to the fact that steel does a poorer job of ther-
malizing the neutrons when compared to wood. Steel also attenuates photons
more readily.

3.2 Samples with Teflon Contamination

Recent runs were performed where teflon was inserted with the HEU sample to
simulate the presences of the 16N contaminant. In run 20060804 run011, teflon
was inserted with HEU in 3 feet of wood. Figure 3.4 shows the data and the
subsequent fit of this run. The data is divided into two regions colored green

37
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Figure 3.1: Experimental data from irradiated large sample of HEU in 4’ wood
(a) and the fitted basis function (b). The fit was performed in energy window
[2.5:5.0] MeV, using time window from [5:98] seconds. The fit coefficient for the
HEU basis function is 0.073422 with χ2/d.o.f.=1.27. Data set:[20060719 002]
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Figure 3.2: Distribution of fitted coefficients using sampling procedure discussed
in text.

and red. The green region represents the energy range in which the 16N is basis
function is fitted to, while the red region shows the energy range for performing
the HEU basis function fit.

The previous example showed a scenario where the HEU signal was much
larger than the 16N signal. In Fig. 3.5 the situation is reversed. In this ex-
perimental run (20061017 run016) HEU is placed in steel. Notice that the fit
algorithm failed to detect the presence of HEU in this case. This shows a possi-
ble weakness of the alarm algorithm and emphasizes the fact that the presence
of large interferences can drastically reduce our sensitivity to detecting fissile
signatures. This issue is still not resolved and is currently being investigated.

3.3 Cargoes without HEU

One can also apply the sampling procedure to an active background run to
obtain a distribution of null results. Figure 3.6 shows such an example for a
particular data set. Similar results were obtained for other active background
runs.
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Figure 3.3: Distribution of fitted αSNM coefficients for various HEU scenarios
in wood (a) and steel (b). Note the different scales in the ordinates of the two
panels. Data sets are labeled in the figures.
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Figure 3.4: Raw data of run where HEU and teflon are both imbedded in wood
to simulate presence of 16N contaminant (a). The green points show the region
in which the 16N peak is searched for, while the red points show the region in
which the HEU signature is searched. Panel (b) shows the subsequent fitting of
the basis functions. Data set:[20060804 run011]
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Figure 3.5: Raw data of run where HEU and teflon are both imbedded in steel
to simulate presence of 16N contaminant (a). The green points show the region
in which the 16N peak is searched for, while the red points show the region in
which the HEU signature is searched. Panel (b) shows the subsequent fitting of
the basis functions. Data set:[20061017 run016]
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Figure 3.6: Distribution of null events (no HEU) for fitting coefficient αSNM .
The y-axis has been blown up by a factor of 2 to facilitate viewing. Data
set:[20060711 run014]
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Figure 3.7: Plot shows the overlap of null results and runs generated from data
set 20060811 run008, which represents large HEU sample in 60.25” steel. The
y-axis has been mulitplied by a factor of 2 to facilitate viewing.

3.4 ROC curves, false alarm rates, and optimal
fitting windows

To obtain ROC curves, the overlap of the null distribution shown in Fig. 3.6
with distributions shown in Fig. 3.3 must be calculated. However, the only dis-
tribution with any appreciable overlap comes from data set 20060811 run008,
which represents the large HEU sample in 60.25 inches of steel. The distribu-
tions are shown in Fig. 3.7. The corresponding ROC curve is shown in Fig. 3.8.
Note that the performance criterion in this case is satisfied as the ROC curve
basically intersects the point (FPF,TPF)=(.001,.95).

We note that run 20060811 run008, in which the large sample of HEU is
placed in approximately 5 feet of steel, is our most sensitive run (i.e. has weakest
fissile signal). Even so, preliminary analysis suggests that the performance
criterion for detecting this weak signal just meets our goals of 95% success rate
with .1% false alarm rate. Furthermore, this detection was done on a sample
of HEU that has a mass that is almost an order of magnitude smaller than
our target of 5 kg. We note that all our wood runs, and runs where there was
less steel and the 16N interference signal is relatively small, easily satisfies our
detection criterions. For the remaining sections most of the calculations shown
are performed on the run corresponding to the large sample of HEU in 60.25”
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Figure 3.8: ROC curve calculated from overlap of null results with data set
20060811 run008 shown in Fig. 3.7. The black lines corresponding to the inter-
section of our detection criterions of 95% success rate and .1% false alarm rate.
The delimiter that corresponds to this point is αSNM = .0105.

of steel.

3.4.1 Optimal time window

Is it necessary to use the full 95 seconds to perform our fits? Ideally one would
prefer a time window as small as possible. We have performed multiple fits with
varying time windows, the ROC curves of which are also shown in Fig. 3.9. For
time windows above 85 seconds, the ROC curves are very similar. This suggests
that the fissile signal has decayed below background levels at these times. For
time windows less than 85 seconds, the ROC curves deteriorate quickly.

One can also look at the integrated signal-to-background ratio as a function
of time window, as is shown in Fig. 3.10. Above 85 seconds there is relatively
small variation in the signal-to-background ratio, but as one reduces the time
window below 85 seconds there is a drastic decrease in the signal-to-noise ra-
tio. These analyses suggest that the optimal time window is approximately 85
seconds. We stress that our analyses have been done on cargo that has been
irradiated for 30 seconds. It is likely that the optimal time window will be a
function of irradiation time1. We have not done repeated our analyses on cargo
irradiated for shorter times. We plan to do so in the near future.

1It is likely that it will also depend on the strength of interference signals as well.
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20060811 run008 using different time windows for performing fits, as labeled in
figure. For time windows of 85, 90, and 95 seconds, the performance criterions
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deteriorates quickly due to loss of signal.
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Figure 3.10: Signal-to-background ratio as a function of time window. Data
set:[20060811 run008]
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Figure 3.11: χ2/d.o.f. of fits as a function of lower energy cutoff. Upper energy
cutoff is fixed at 5.0 MeV. Data sets are labeled in the plot and represent various
HEU runs imbedded in wood and steel.

3.4.2 Optimal energy window

Determining an optimal energy window is much more difficult. This is partly
due to the fact that the amount of in-medium activation strongly depends on the
type of cargo. As one goes below 3 MeV in the spectrum, there are various short-
lived products that can be activated via neutron interactions. Such activations
in the 2.5-3.0 MeV range did not seem to adversely affect our fits thus far.
However, we have only looked at two types of cargo: Wood and steel.

An initial guess at determining an optical energy window is to look at the
performance of our fits as a function of energy window. Figure 3.11 shows
the χ2/d.o.f. as a function of lower energy cutoff. All calculations were done
with a fixed upper energy of 5.0 MeV. As one lowers the energy cutoff below
3 MeV, the performance of the fit improves initially. This is partly due to
the fact that the signal becomes stronger. However, as one goes below 2.2-
2.3 MeV, the fit starts to drastically worsen for the runs that involved steel
cargoes (20060810 run008, 20060811 run004, 20060811 run008). Here the
long-lived in-medium activations of the cargo start to interfere with the HEU
signature, causing the performance of the fit to quickly worsen. For the wood
runs (20060711 run009, 20060711 run011, 20060804 run009), the fits seem
to deteriorate below a lower bound of 2.0 MeV. Thus it would seem that the
optimal lower cutoff on the energy window is constrained by our steel runs and
is approximately 2.3 MeV. We have looked at the performance of the fit as a



48 CHAPTER 3. DATA ANALYSIS

 1.06

 1.065

 1.07

 1.075

 1.08

 1.085

 1.09

 1.095

 1.1

 1.105

 1.5  2  2.5  3  3.5  4

S
ig

na
l/B

ac
kg

ro
un

d

Lower energy (MeV)

Figure 3.12: Signal-to-background ratio as a function of lower energy cutoff.
Data set:[20060811 run008]

function of upper energy cutoff being larger than 5.0 MeV. We found little if
any dependence. Here the fissile signature is so weak that there is practically
no dependence on the upper energy cutoff.

However, if one looks at the integrated signal-to-background ratio, as shown
in Fig. 3.12, the ratio seems to peak at approximately 2.8 MeV. It worsens in
the 2.2-2.3 MeV range, and improves below 2.0 MeV due to the large long-lived
in-medium activations. This seems to contradict the results shown in Fig. 3.11,
since the optimal lower cutoff in this case seems to be approximately 2.8 MeV
as opposed to 2.3 MeV. Norman has noted that the χ2/datum, as shown in
Fig. 3.11, is not a good figure of merit for determing the optimal lower energy
cutoff since the number of fitted data points is large. Furthermore, Prussin has
stressed that even though the short-lived activated products do not seem to be
apparent in our fits thus far, it is prudent to keep the cutoff as large as possible
so as to minimize their effects. To be safe, we have tentatively stated that the
optimal lower-energy cutoff should be approximately 2.8 MeV. We note that
this value was determined from fits using time windows from 5 to 95 seconds.

The drawback of increasing the lower-energy cutoff is that the spectrum
of any present fissile signature is reduced. An alternative option is to delay
our analysis to later times (e.g. 15 seconds instead of 5 seconds after end of
irradiation) when the short-lived activated products will have decayed below
background levels. It may be possible to now lower the energy cutoff well below
2.8 MeV. Of course, by working at delayed times the overall fissile signature
is reduced. Thus there should be an optimal delayed time and corresponding
lower-energy cutoff. Determining these parameters is our next immediate goal.
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Figure 3.13: Fit distribution of run 20060811 run008 shown in red. HOT and
COLD points represent how distribution is altered by adjusting temperature of
detectors ± 3 degrees centigrade assuming 1.2% change in gain per centigrade.

3.5 Dependence on temperature fluctuations

Petersen has made measurements on the dependence of the detector gain (keV
/channel) on external temperature and has deduced a 1.2% change in detector
gain per Centigrade relationship. To simulate the effects of this dependence,
we have re-calculated our fit distributions for the run 20060811 run008 (large
sample of HEU in approximately 5 feet of steel) assuming a ± 3 centigrade
change in detector temperature. Figure 3.13 shows how the distributions change
as one increases or decreases the temperatures of the detectors in this fashion.
Notice that as one lowers the temperature the signal is artificially reduced. In
a corresponding fashion the signal is artificially increased as one increases the
temperature of the detectors. Figure 3.14 shows how the corresponding ROC
curves are altered with these temperature changes. Our performance criterions
are not met when the detectors are cooled in this example. Thus we conclude
that for very weak signals the outcome of our fits can be affected by temperature
fluctuations.

A possible way to overcome these temperature issues is to constantly immerse
the detectors (even during scanning scenarios) to sources that have long half-
lives and gamma lines below the 2.8 MeV lower energy cutoff. Assuming that
the temperatures of the detectors remain constant during the scanning period,
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Figure 3.14: ROC curves calculated from distributions shown in Fig. 3.13.

these sources can serve as calibration beacons during data collection. Ideal
sources are the two gamma lines of Yttrium.



Chapter 4

Coding Logic and
Procedures

The algorithm ALARMA actually consists of three distinct algorithms. The first
algorithm, calibrateAlarma, reads in experimental calibration data (Yttrium
and teflon) and determines the calibration coefficients that relate data chan-
nels to energy. It writes the calibration coefficients out to a file. The second
algorithm, basisAlarma, loads in experimental data sets and constructs basis
functions from these sets. The last algorithm, fitAlarma, takes a user-chosen
experimental data set and fits basis functions to the data. It also performs error
analysis by constructing distributions of the fitted parameters using the sam-
pling procedure described in Sect. 2.7. We now describe the individual routines
in more detail.

4.1 calibrateAlarma

Almost all experiments have accompanying calibration runs where Yttrium and
teflon are used as sources with known energy peaks to calibrate the data chan-
nels. Yttrium has two gamma lines at 898 keV and 1.8 MeV with long half-lives.
Since the Yttrium lines are naturally occurring, no previous neutron irradiance
is needed. Teflon sources, on the other hand, require irradiation so that the
reaction 19F(n, α)16N occurs (1.6 MeV threshold). 16N subsequently decays
with half-life τ = 7.13 seconds predominantly to the 6.1 MeV excited state of
16O, which decays to its ground state almost immediately. It is these three
gamma lines (.898, 1.8, 6.1 MeV) that calibrateAlarma uses to calibrate the
data channels.

Because of the poor detector resolution and the small probability that the
photon lines mentioned above are fully deposited in one scattering within the
detector, detected peaks due to these lines actually reside lower in energy–
approximately half way between the Compton edge and the photon lines. Descalle’s
simulations show that these lines will be detected as peaks at the energies given
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Table 4.1: Calibration peaks for Yttrium and Nitrogen
Element Yttrium Yttrium Nitrogen

Line 898 keV 1.836 MeV 6.128 MeV
Detected peaks 799 keV 1.724 MeV 6.005 MeV
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Figure 4.1: Calibration runs using Yttrium background source (a) and irradiated
teflon source (16N) (b).

in Tab. 4.1. calibrateAlarma reads in calibration data with peaks given as a
function of data channels. For example, Fig. 4.1 show peaks of eight detectors
for runs with an Yttrium background source (panel (a)) and an irradiated teflon
source (panel (b)). Note that the peaks do not line up for both calibration runs.

With appropriate input parameters, calibrateAlarma will search for two of
the three peaks shown in Fig. 4.1 and map a linear function to the data such
that the two peaks reside at their corresponding energies shown in Tab. 4.1. It
will do this for each detector. As an example, Fig. 4.2 shows the same data but
calibrated using the two Yttrium peaks. The ordinate represents energy (MeV)
in this case. Notice that in this case, all peaks in panel (a) line up, but panel
(b) still has small variations. The small variations in panel (b) suggest that the
calibration is almost linear.

Lastly, calibrateAlarma can perform a quadratic fit using all peaks shown
in Fig. 4.1. In this case, all peaks line up at their corresponding energies of
Tab. 4.1, as Fig. 4.3 shows. The quadratic coefficients in these fits are a couple
orders of magnitude smaller than the linear coefficients and offset coefficients.
Again, this points to the fact that detector calibrations are almost linear.

The calibration coefficients are written to a file, which can be subsequently
used by basisAlarma and fitAlarma. The following shows a sample input file
calibrate.ini that is called by calibrateAlarma:

calibrate.ini
0,1 1 means perform fit, 0 means do not perform fit
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Figure 4.2: Calibration runs using Yttrium peaks to fit a linear function. Panel
(a) shows the Yttrium peaks, which now all line up. Panel (b) shows the irra-
diated teflon source (16N) (b).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0.5  1  1.5  2  2.5

C
ou

nt
s

E (MeV)

CDAT0
CDAT1
CDAT2
CDAT3
CDAT4
CDAT5
CDAT6
CDAT7

(a)

 0

 500

 1000

 1500

 2000

 2500

 5  5.5  6  6.5  7

C
ou

nt
s

E (MeV)

CDAT0
CDAT1
CDAT2
CDAT3
CDAT4
CDAT5
CDAT6
CDAT7

(b)

Figure 4.3: Calibration runs using all three peaks to fit a quadratic function.
Panel (a) shows the Yttrium peaks, which now all line up. Panel (b) shows the
irradiated teflon source, which all line up as well. (b).
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path to Yttrium data
path to Nitrogen data
path to output calibration data
1,2,3,4 1-3 refer to various linear fit options, 4 means quadratic fit

4.2 basisAlarma

The routine basisAlarma reads in a user-selected data set and constructs a
basis function from the data. In principle, the user should select data with a
known source (without contaminants) so that the basis function represents the
spectrum from only that source. The basis function is constructed by simply
smoothing the data using a Savitzky-Golay filter[8]. When constructing the
basis function from the data, an energy interval of 24 keV is used to re-bin
the summed data from all available detectors. This binning interval can be
easily changed within the algorithm. The entire channel-time domain is used
in constructing the basis function even though, as will be described in the next
section, only a certain range of this domain will be used in performing the fits.
The basis function is written out to a file as specified by the user. Supporting
data is also written out in the file, such as cubic spline coefficients used to
interpolate the basis functions. Note that the basis functions will be stored
in the energy-time-counts domain. It is necessary that the calibration of the
detectors (i.e. calibrateAlarma) be performed before using this routine. The
following shows the structure of a sample input file basis.ini, which is called
by basisAlarma.

basis.ini
path to experimental data
path to output basis function data
path to calibration data outputted by calibrateAlarma

4.3 fitAlarma

The crux of the algorithms resides in fitAlarma. After reading in calibra-
tion data and basis functions, as well as the experimental data in question, the
routine fits the basis functions to the data to obtain fit coefficients. The coeffi-
cients measure the amount in which a particular irradiated source is present in
the data. The fitting is done in two steps: first a 16N signal is searched for in
the 5.3-7.0 MeV range. This signal, if found, is then subtracted from the data.
The fissile signature is then searched within an energy range defined by the user
(e.g. 2.5-5.0 MeV) using the subtracted data. The user also has the freedom
to choose the time window in which to perform the analysis. This two-stepped
procedure of fitting the data was found to give the most robust and consistent
fit coefficients. The fitting is done by weighted least-squares (variances are eval-
uated by square root of the counts), using a singular value decomposition (SVD)
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[7] algorithm. Uncertainties in the fit coefficients are obtained by statistically
sampling the experimental data, as described in Sect. 2.7.1.

The following sample input file fit.ini called by fitAlarma shows the
various options available to the user. The fit coefficients, as well as their dis-
tributions, are written out to file defined by the user. Numerous other write to
files are performed to support future graphical displays of ALARMA.

fit.ini
path to data in question
path to calibration data
128 total number of experimental time steps
10 number of last points to average for determining background
2 ignore data points below this value
98 ignore data points above this value
5 lower time cutoff to perform data analysis
95 upper time cutoff to perform data analysis
2.5 lower energy cutoff to perform data analysis
5.0 upper energy cutoff to perform data analysis
path to fissile basis function
path to nitrogen basis function
path to output fit coefficients and distributions
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Chapter 5

Conclusion

We have developed an alarm algorithm ALARMA for the nuclear car wash
experiment at Lawrence Livermore National Laboratory. By utilizing the entire
energy-time-counts domain of the experimental data, we were able to easily
identify fissile signatures as well as the 16N interference signature for a wide
range of experiments that were performed. For most experimental runs we were
able to meet our detection criterions of 95% success rate and .1% false alarm
rate.

By looking at our most sensitive runs where the large HEU sample was
placed in approximately 5 feet of steel, we were able to deduce the optimal
time window of scanning to be no less than 85 seconds (assuming 30 seconds
of neutron irradiation). The optimal lower cutoff in energy was more difficult
to quantify, as there was a lack of a proper figure of merit in this case. Here
the possible presence of short-lived activated products complicated matters. By
looking at the integrated signal-to-background ratio, we have conservatively set
the lower energy cutoff to be approximately 2.8 MeV. This uncertainty in this
value should lessen as we analyze more data that has been recently acquired.

We stress that our runs were performed with HEU samples that were smaller
by an order of magnitude than our target 5 kilograms. The fact that our de-
tection criterions were met for all our wood cargo runs and most steel cargo
runs gives us confidence that detection of 5 kilograms of fissile material during
normal field operations should be attainable. This assumes that the nuclear car
wash is used as a secondary screening procedure.

5.1 Things to be done

An open question is whether the presence of large interfering signals can confuse
our detection algorithm. This seems to be the case for the particular run shown
in Fig. 3.5. A possible resolution to this problem is to take advantage of the
different decay times of the interfering signal (in this case 16N) and the fissile
signature. By delaying our analysis by a couple of half-lives (7.13 seconds)
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of the interfering source, we can reduce its signature and thereby minimize
its interference. This should allow our fitting algorithm to readily detect any
underlying fissile signature. This investigation is currently being done.

For extremely weak signals for which our detection criterions are just met,
there is concern about the (lack of) robustness of our calculated ROC curves.
Already we have shown an example where temperature fluctuations of the de-
tectors by a few degrees can alter our ROC curves. We intend to do more
variability tests to quantify, as best as possible, the robustness of our alarming
procedure in the case of very weak signals.

Recent data was taken using neutron irradiation times less than 30 seconds.
We intend to analyze this data and determine new optimal time and energy
windows in which to perform our analyses.
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