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Abstract  
Elucidating the relationship between polymorphic sequences and risk of common disease is a 
challenge. For example, although it is clear that variation in DNA repair genes is associated with 
familial cancer, aging and neurological disease, progress toward identifying polymorphisms 
associated with elevated risk of sporadic disease has been slow. This is partly due to the 
complexity of the genetic variation, the existence of large numbers of mostly low frequency 
variants and the contribution of many genes to variation in susceptibility. There has been limited 
development of methods to find associations between genotypes having many polymorphisms 
and pathway function or health outcome.  We have explored several statistical methods for 
identifying polymorphisms associated with variation in DNA repair phenotypes. The model 
system used was 80 cell lines that had been resequenced to identify variation; 191 single 
nucleotide substitution polymorphisms (SNPs) are included, of which 172 are in 31 base excision 
repair pathway genes, 19 in 5 anti-oxidation genes, and DNA repair phenotypes based on single 
strand breaks measured by the alkaline Comet assay.  Univariate analyses were of limited value 
in identifying SNPs associated with phenotype variation.  Of the multivariable model selection 
methods tested:  the easiest that provided reduced error of prediction of phenotype was simple 
counting of the variant alleles predicted to encode proteins with reduced activity, which led to a 
genotype including 52 SNPs; the best and most parsimonious model was achieved using a two-
step analysis without regard to potential functional relevance: first SNPs were ranked by 
importance determined by Random Forests Regression (RFR), followed by cross-validation in a 
second round of RFR modeling that included ever more SNPs in declining order of importance. 
With this approach 6 SNPs were found to minimize prediction error.  The results should 
encourage research into utilization of multivariate analytical methods for epidemiological studies 
of the association of genetic variation in complex genotypes with risk of common diseases. 
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Introduction

Elucidating the relationship between polymorphic sequences and risk of common disease 
is a challenge. For example, variation in the sequence of DNA repair genes among healthy 
people may contribute to risk of cancer, rate of aging, neurological disease and cardiovascular 
disease. Adding to the complexity, the impact of variation in exposures from diet, lifestyle, 
occupation and other environmental agents may be genotype dependent. As a consequence of the 
Human Genome Program, it has become feasible to systematically screen for DNA sequence 
variation in the human population, for example the HapMap project and the Environmental 
Genome Project. In recent years increasing technical ease and declining cost of genotyping has 
enabled and accompanied the increase in knowledge of genetic variation. Coupled with 
availability of large, well characterized cohorts, there are increasing opportunities to study the 
role of genetic variation in susceptibility to exposure and risk of disease. However, progress 
toward identifying the polymorphisms contributing to increased risk of common disease in the 
population (in contrast to family studies) has been slow.  The nature of the genetic variation, with 
large numbers of mostly low frequency variants affecting both coding and noncoding sequences, 
has contributed to limited characterization of the functional impact of individual single 
nucleotide polymorphisms (SNPs) and, perhaps more important, the impact of this extensive 
variation on the activity of pathways in which multiple genes are required for full functionality. 
There has been limited research on methods to find associations between SNPs and function or 
health outcome that take existing genomic complexity into account. 

With respect to cancer risk, utilization of functional assays providing quantitative measures of the 
ability of cells to repair DNA damage has been a powerful method for establishing the association 
of variation in DNA repair pathways with disease [1,2]. High heritability (0.65-0.80) for 
phenotypes associated with several repair pathways [3-5] provides evidence that genetic variation 
is a major contributor to variation in DNA repair phenotypes.  The power of functional assays for 
measuring the activity of pathways resides in their ability to capture the impact of variation in 
genes/proteins in pathways without perfect knowledge of the variants or genes contributing to the 
variation in activity. 

In contrast, genotyping/molecular epidemiology studies have had limited success in finding 
associations of individual polymorphisms with risk of common disease, including cancer [6]. For 
example, only six of 166 published molecular genetic association studies replicated three or more 
times yielded consistent results [7]. Issues of study design and data analysis are more likely 
responsible for these weak and inconsistent outcomes than lack of impact of genetic variation on 
susceptibility to disease. 

In this study we present our exploration of several statistical methods for identifying 
polymorphisms associated with variation in DNA repair phenotypes. We used a candidate 
pathway approach to compare methods for assessing the association of variation of cellular DNA 
repair phenotypes in human cell lines with previously reported genotypes for 172 SNPs from a 
high proportion of base excision repair (BER) pathway genes (31 of 39) [8-10] and 19 SNPs 
among 5 anti-oxidation genes.  The phenotypes studied include composite measures of single 
strand DNA breaks, abasic sites and alkali-labile sites present due to endogenous DNA 
metabolism, including but not limited to BER repair of oxidative and alkylation damage [11]
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(referred to as “background”), and damage present due to the net effects of anti-oxidation and 
repair at two times after exposure to ionizing radiation, immediately after exposure and after a
short period of repair.

Methods and Results

The sample set. 
All genotype and phenotype analyses were performed in 80 lymphoblastoid cell lines of the 
DNA Polymorphism Discovery Resource (DPDR) [12], obtained from Coriell Institute of 
Medical Technology (Camden, NJ). These uses of these anonymous samples were reviewed and 
determined to be exempt from Human Subject requirements by the Lawrence Livermore 
National Laboratory (LLNL) Institutional Review Board.

Genotype dataset. 
Resequencing methods to identify variation in DNA sequence have been described  [13,14]. The 
genotype data used in this study were assembled from three sources: 
http://greengenes.llnl.gov/dpublic/secure/reseq/ (LLNL studies) and 
http://www.genome.washington.edu/projects/egpsnps/ and http://egp.gs.washington.edu/. SIFT 
(Sorting Intolerant From Tolerant) [15] scores for amino acid substitution variants were 
determined as described in [10].  Relevant to these analyses, 191 SNPs were identified in the 80 
cell lines, 172 in the resequencing of 31 BER pathway genes and 19 in the screening of 5 anti-
oxidation genes. All amino acid substitutions of frequency 0.01 or higher in the selected genes 
were included. In addition for exploratory purposes, 15 SNPs affecting the 5’ UTR of 12 genes, 
allele frequency 0.10 or above and average frequency 0.22, were also included. Genotypes for 58 
of the SNP loci were known in all 80 cell lines, whereas genotypes for 1-5 cell lines were 
missing for 103 SNPs and 35 were missing in 6-16 cell lines; the remaining 5 SNPs had been 
analyzed in only about half the cell lines. Missing genotype values for SNP loci were imputed to 
be wild type (i.e., AA). Many of the variant alleles exist at low frequency and thus are observed 
in only a small number of the cell lines studied. For example 92 of the 191 SNPs exist in only 
one of the 80 cell lines. Given that cross-validation procedures (see below) required that a SNP 
be present in at least two cell lines, the ability of this model selection technique to find SNPs of 
interest was limited to the 99 SNPs existing in at least two cell lines. 

Phenotype dataset. 
The alkaline Comet assay (modified from  [16]) was used to measure endogenous DNA damage 
and the damage present as a function of time after exposure to ionizing radiation. An 
exponentially growing culture of each cell line was sampled once and viability determined by 
Trypan blue dye exclusion (average viability for the 80 cell lines was 90% at the time of 
analysis). Cells were sampled prior to radiation or exposed on ice to 5Gy (3 Gy/min) from a 137

Cs source and then sampled after 0 and 15 minutes incubation at 37°C. Slides for Comet analysis 
were prepared, placed in lysis buffer (1% Triton X-100, 10% DMSO, 89% stock lysing solution: 
2.8M NaCl, 0.1M Na2EDTA, 0.01M Trizma Base) at least overnight, then rinsed 3 x 10 min in 
0.4M Tris, pH 7.5. Slides were covered with a fresh solution of 300 mM NaOH, 1 mM EDTA, 
final pH >13.0 for 60 min, then electrophoresed at 0.92 V/cm with current adjusted to 300 
mamps for 25 min. Each slide was stained with 100 µl of ethidium bromide (2 µg/ml). Images of 
50 cells on each of 2 slides were captured on a Zeiss Axioplan epi-illumination fluorescence 
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microscope (C. Zeiss, Oberkpchen, Germany) fitted with a CCD camera. Comet parameters were 
determined using Komet4.0©: Image Analysis and Data Capture (Kinetic Imaging, Ltd., 
Merseyside, England). The specific phenotype outcomes analyzed are listed under univariate 
analyses (below). The selection of Comet parameters for analysis was based on their prevalence 
in the literature (percent of DNA in tail and tail length) and on our determination that the Comet 
Distributed Moment (CDM)  [17] parameter provided the best signal to noise ratio amongst 
matched slides of cells exposed to 5Gy that were electophoresed at the same time (data not 
presented). 

Statistical analyses. 

Univariate Analyses
For each SNP and six phenotype outcomes, we used an F-test from an analysis of variance to 

assess the difference in mean outcome among genotypes for that SNP. To control for multiple 
testing, the p-values were adjusted to control for False Discovery Rate using the procedure 
outlined by Benjamini and Hochberg [18]. The six different phenotype outcomes analyzed were: 
(1) Background levels (no radiation exposure), as measured by CDM; (2) amount of damage 
induced by 5 Gy, as measured by CDM immediately after irradiation on ice; (3) amount of 
damage repaired in 15 minutes, as measured by CDM; (4) percent of damage repaired, as 
measured by CDM (we transformed this variable by taking the square root of the percentage); (5) 
background levels, as measured by Tail Length; (6) background levels, as measured by percent 
of DNA in Tail (tail%DNA).  The histograms of the distribution of these six CDM phenotype 
outcomes among the 80 cell lines are shown in Fig. 1.

None of the first three outcomes resulted in any SNP with an adjusted p-value <0.20. 
However, Percent Repaired (CDM) reported four SNPs with an adjusted p-value <0.20: one each 
in LIG1, MPG, NTHL1, and POLE, with adjusted p-values of 0.01, 0.14, 0.14, and 0.14 
respectively. Background levels (Tail length) produced two SNPs in GPX1, both with an 
adjusted p-value of 0.16. Finally Background levels (TDNA) produced one SNP in RFC1, with 
an adjusted p-value of 0.11. Except for the GPX1 SNPs, all the above SNPs have very low allele 
frequency, and the effect was due to one (or at most two) cell lines with Aa (heterozygote) 
genotypes. Given the limited significance of these results, the detailed identities of these SNPs 
are not provided.

Multivariable Model Selection employing SIFT scores
Our first approach to multivariable model selection was based on SIFT scores. SIFT scores have 
been reported as being able to predict amino acid changes that affect function  [15]. When using 
SIFT scores, the SNPs were added to a model in order of increasing SIFT score. Each time a set 
of SNPs with a given score was added to the model, the expected prediction error of this 
augmented model was re-calculated. This model selection process results in a set of nested 
models, with one model for each unique SIFT score. The “best” model is the one with the lowest 
expected prediction error. We tried two types of models for our SIFT-based model selection. The 
first model type, which we term "sum the alleles", creates a variable for each cell line consisting 
of the number of variant alleles found in that cell line across all the SNPs in the model. The value 
of the sum will depend on which SNPs are in the model, the number of which increases as we 
increase the SIFT cutoff threshold. We used leave-one-out cross-validation to estimate the 
expected prediction error for each “sum-the-alleles” model. The second model type is one based 
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on Random Forests Regression (RFR) [19]. For each set of SNPs, we created a RFR model and 
used the estimate of expected prediction error generated automatically by the random forests 
algorithm. Fig. 2 shows the results of SIFT-based model selection for the "sum the alleles" 
model type, using CDM as the outcome measure for four phenotypes. We see that background, 
damage induced and, marginally, percent damage repaired, produce models which decrease the 
expected prediction error for some set of SNPs with a low SIFT score. Fig. 3 compares the 
results of model selection via sum-the-alleles and random forests for the background CDM 
phenotype. We see that using only SIFT scores less than around 0.1 produces the best 
performing model of this type. We also see that the simplest model, just counting the number of 
variant alleles with low SIFT scores, does as well as Random Forests. The conclusion: using 
Random Forests out of the box provides no improvement over a very simple model.  

Multivariable Model Selection ignoring SIFT scores
Because of the granularity of SIFT scores, the smallest non-null model in the above analysis 
contained the fifty-two SNPs with a SIFT score of 0. Next we tested whether a more complex 
model selection procedure that ignores SIFT scores might generate a parsimonious model. The 
“best” model for each of k=0,1,2,3,…,15 variables was separately estimated, where the “best” 
model is the one with the lowest expected prediction error. The model selected from the sixteen 
“best” models is the one with the lowest prediction error. We used importance measures from 
RFR to order the SNPs and select the top k SNPs. We then used leave-one-out cross-validation 
with another round of RFR, this time using only the k selected SNPs, to estimate the expected 
prediction error for a k variable model. Assessments of expected prediction error using leave-
one-out cross validation requires that each SNP have a chance of appearing both in the training 
set and the test set. SNPs that had only one cell line with a non-wild genotype are not useful in 
assessing prediction error. Hence, we limited our analysis to SNPs with an non-wild genotype in 
at least two cell lines, reducing the SNPs to be examined to 99 SNPs.  In addition, due to the 
large number of SNPs with only two non-wild genotypes, we extended the number of trees to be 
examined by random forests to 10,000.

A non-null model that reduced expected prediction error was detected only for one 
phenotype outcome, the background CDM outcome. Fig. 4 shows the relationship between 
number of variables and effect on expected prediction error. Table 1 shows the results of this 
analysis and selected attributes of the six SNPs that optimize prediction in this data set. Note: 
The two XRCC1 variant alleles are not in linkage disequilibrium.

Discussion
The results presented provide evidence that variation in quantitative DNA repair phenotypes is 
more effectively predicted by statistical approaches that incorporate multiple polymorphisms into 
the models than those that study one at a time.  Of the methods explored, the best model in terms 
of reduction of expected prediction error required no prior knowledge of the 99 polymorphisms’ 
potential impact on function. Although it was the most computationally demanding, this 
approach produced the most parsimonious model.   

This exploratory study has many strengths and weaknesses.  Among the strengths are that 
increasingly complex analytic methods are compared using the same data set for genotypes and 
phenotypes;  a candidate pathway approach was utilized in which many SNPs from  a large 
number the genes likely to be associated with the phenotypes were evaluated; amino acid 
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substitution SNPs were emphasized so that methods that predict functional impact might be used 
either in the analyses themselves or for assessing plausibility of results; the cell lines utilized 
have been resequenced for many other DNA repair genes and all  cell lines and genotype data are 
in the public domain, such that these studies can readily be repeated and extended to other genes, 
pathways and phenotypes. The primary limitation of these studies is the small dataset of 80 cell 
lines. An additional limitation is occurrence of missing genotype data; our coding of missing 
data as wild type would tend to understate the effect of a variant.

In addition to an adequate sample size, success in detecting potential relationships between a 
phenotype and a large set of genotypes depends on having a reasonably close correspondence 
between the actual underlying relationship and the proposed statistical models that describe that 
relationship. It is usually assumed that the underlying genotype-phenotype relationship is one of 
a few genotypes having substantial effects, either independently or as a multigene interaction, 
and existing among a large number of genotypes having no effect at all. In this situation, 
approaches that search for a few big effects, either exhaustively [20] or heuristically [21], are 
usually effective. The difference between the two types of methods is one of scaleability: 
exhaustive methods run into a computational barrier after a couple of dozen SNPs, while 
heuristic methods such as the Random Forests approach used here scale well with the number of 
SNPs [22]. Results of modeling the base excision repair pathway by Sokhansanj and [23] are 
consistent with genetic variation leading to major reductions in activity of one protein or the 
simultaneous variation in several proteins being responsible for reduced BER pathway activity.  
In the later scenario, the underlying genotype-phenotype relationship is one in which the large 
number of SNPs existing in most individuals have a cumulative effect, but each effect is so small 
that detecting and quantifying it is nearly impossible, given the complexity and variability of the 
“background” genotype. In this situation, the above techniques will likely fail. Instead, much 
simpler models such as those which simply add up the number of variant genotypes may perform 
as well or better than more sophisticated approaches (see Millikan et al [24] where increasing 
number of variant alleles was associated with increasing risk of melanoma). Such approaches 
may perform even better still if one can provide a coarse screening of the SNPs to eliminate 
those which are likely not to have an effect on protein and/or pathway activity. Sorting by SIFT 
score is one relatively simple approach to screening, although the robustness of SIFT for 
identifying variants with only modest impact on activity is unknown. Although several 
approaches have been proposed for handling the first scenario above, methods to analyze data 
under the second scenario are much less well developed. One approach for variable selection that 
may work well under this scenario is a penalized likelihood approach like those used in “Least 
Angle Regression” methods [25, 26]

Given the preliminary nature of these studies, extensive discussion of the 6 SNPs 
identified in the ‘best’ model as associated with variation in background CDM is inappropriate.  
However, it is important to note several features of the results. With respect to plausibility, the 5 
identified amino acid substitutions have low SIFT scores, consistent with likelihood of reduced 
function [15] and, interestingly, the 5’UTR identified is in a CpG island. Three of the SNPs have 
allele frequencies of ~0.03, hence their effect on phenotype implies codominance, and the 
potential that low frequency SNPs may be as influential at the population level as high frequency 
recessive SNPs. It is notable that in some cases the effect of some variants was to decrease the 
measured phenotype, while other variants were associated with decreased damage and/or 
increased repair. Detailed research into these effects, after validation in future studies, will 
provide insights into protein and pathway function.
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In conclusion, this report illustrates the potential to relate variation in highly complex 
genotypes to variation in biological functions that may be relevant to human disease. Extension 
to more extensive genotypes, not limiting inclusion to presumptions about the role of a gene or 
impact of a SNP, and additional phenotypes, and research and development of multivariate 
model selection methods will lead to both improved predictive power and new insights into the 
underlying biology.  The need to increase research on these and related data analysis and study 
design issues is enormous. The field of genetic epidemiology is poised to launch mega-projects 
in search of defining the genetic contribution to a number of common diseases using large, well 
characterized cohorts and low-cost, high throughput genotyping.  The success of these efforts 
depends critically on research and development of study design and new approaches to analysis 
of the huge volume of data generated.
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Table 1: Six SNPs were selected as associated with background single strand break DNA 
damage by multivariate model selection analysis ignoring SIFT scores. Damage was quantified 
by the Comet Distributed Moment (CDM), measured by the alkaline Comet assay. The 6 SNPs 
are presented in decreasing order of importance. Also presented are other aspects of the SNP: the 
relative importance of the SNP, its SIFT score, the  distribution of genotypes among the 80 cell 
lines, the mean value of the phenotype for the AA genotype (homozygous wildtype), and the 
effect sizes (relative to AA) and standard errors for the other two genotypes. See Fig. 4 for the 
analysis that resulted in these six SNPs being selected.

SNP identity and attributes Genotype Phenotype *
Difference from AA and 

SE (Dif.)
Rel.

Distribution 
among cell lines

Mean Aa aa
LLNL  
ID**

ID ****effect Imp. SIFT AA Aa aa AA Dif. Std. 
Err.

Dif. Std. 
Err.

RFC1.1 rs3736168 5’ UTR 2.3 - 56 14 10 23.4 -2.0 0.8 -0.8 0.9
RPA4.1*** rs2642219 33 Thr 1.3 0.06 43 18 19 23.1 0.4 0.7 -1.1 0.7
XRCC1.10 rs25487 399 Gln 1.3 0.02 46 30 4 23.1 -0.8 0.6 3.8 1.3
XRCC1.3 rs25496 72 Ala 0.7 0.00 75 5 0 22.8 2.6 1.2
POLD1.1 rs3218773 19 His 0.3 0.00 76 4 0 23.1 -3.0 1.3
LIG3.2 rs3136025 780 His 0.2 0.13 75 5 0 22.8 2.8 1.2

* arbitrary units of CDM
** Gene name decimal LLNL SNP code
***  RPA4 was previously denoted by the locus symbol HSU24186
**http://www.ncbi.nlm.nih.gov/SNP/index.html
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Fig. 1.  Histograms of the six DNA repair phenotype outcomes. Repair phenotypes are 
represented by damage measured by the alkaline Comet assay: (a) Background levels (no 
radiation exposure), as quantified Comet Distributed Moment (CDM); (b) amount of damage 
induced by 5 Gy immediately after irradiation on ice, as quantified by CDM; (c) amount of 
damage repaired in 15 minutes after irradiation, as quantified by CDM; (d) percent of damage 
repaired (Pct. Repaired) in 15 minutes, as quantified by CDM (we transformed this variable by 
taking the square root of the percentage); (e) background levels, as measured by Tail Length; (f) 
background levels, as quantified by percent of DNA in Tail (Tail%DNA).  
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Fig. 2,  Expected prediction error for predicting four phenotypes as a function of SIFT score 
cutoff for the simple model that predicts phenotype as a linear function of the sum of the number 
of variant alleles for all SNPs with a SIFT score not exceeding the SIFT cutoff. The horizontal 
line shows the expected prediction error for the null model, i.e., the variance of the phenotype. In 
all cases the phenotype is the CDM outcome measured by the alkaline Comet assay: (a) 
Background levels (no radiation exposure); (b) amount of damage induced by 5 Gy, measured 
immediately after irradiation on ice; (c) amount of damage repaired in 15 minutes; (d) percent of 
damage repaired in 15 minutes (we transformed this variable by taking the square root of the 
percentage). All 191 SNPs were used for these models. 
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Fig. 3.  Expected prediction error for predicting background DNA damage as a function of SIFT 
score cutoff for two model classes. The dashed line corresponds to a model that sums up the 
number of variant alleles for all SNPs with a SIFT score not exceeding the SIFT cutoff. The solid 
line corresponds to a Random Forests Regression model based on all SNPs with a SIFT score not 
exceeding the SIFT cutoff. The dashed horizontal line shows the expected prediction error for 
the null model, i.e., the variance of the background values as quantified by the Comet Distributed  
Moment in the alkaline Comet assay. All 191 SNPs were used for both of these models. 



15

Fig. 4.  Expected prediction error for predicting background DNA damage for the best Random
Forests Regression model with 1, 2, …, 15 variables. The horizontal line shows the expected 
prediction error for the null model, i.e., the variance of background DNA damage values as 
quantified by the Comet Distributed Moment in the alkaline Comet assay. Only the 99 SNPs 
with at least two variant alleles were used in the analysis.

 




