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Based on the Unified Boundary Condition 

Niel Madsen, Benjamin J. Fasenfest, Daniel White, Mark Stowell, Vikram Jandhyala, James Pingenot, 
Nathan J. Champagne and John D. Rockway 

 
Abstract—An approach to stabilize the two-surface, time 

domain FEM/BI hybrid by means of a unified boundary 
condition is presented.  The first-order symplectic finite element 
formulation [1] is used along with a version of the unified 
boundary condition of Jin [2] reformulated for Maxwell’s first-
order equations in time to provide both stability and accuracy 
over the first-order ABC.  Several results are presented to 
validate the numerical solutions.  In particular the dipole in a 
free-space box is analyzed and compared to the Dirchlet 
boundary condition of Ziolkowski and Madsen [3] and to a 
Neuman boundary condition approach.   

Index Terms—time domain, integral equations, hybrid 
formulation, finite element method, method of moments. 

I. INTRODUCTION 

HYBRID solutions to time-domain electromagnetic 

problems offer many advantages when solving open-region 
scattering or radiation problems.  These formulations can take 
advantage of finite-element or finite-difference volume 
discretization for the features of interest, allowing for intricate 
features with inhomogeneous materials.  This volume region 
can then be bounded by a layer of planar boundary elements 
to form a radiating boundary condition, as depicted in Figure 
1.  In most time-domain hybrid formulations, two separate 
surfaces are used to set the boundary condition; an inner layer 
where equivalent currents are formed, and an outer layer 
where the fields are evaluated and used to truncate the volume 
mesh.   This concept has been implemented previously, using 
the boundary elements to set the E-field, H-field, or both for 
an FDTD grid, for example in [3][4][5], and as a mixed 
boundary condition for the second-order wave equation solved 
by finite elements [4].  Further study has focused on using fast 
methods, such as the Plane Wave Time Domain method [2][5] 
or FFT-based methods [6] to accelerate the BEM calculations.  
In addition, single-surface hybrids which fuse the same 
surface to produce currents and satisfy fields have been 
succesfull when coupled with an implicit finite element solver 
[6]. 

The focus of this paper is the long-term stability of the two-
surface hybrid solver.  The stability within the finite element 
region is maintained by solving Maxwell’s coupled first-order 
equations for the electric and magnetic fields with an explicit,  

symplectic time stepper.  However, to guarantee late-time 
stability, the accuracy and stability of the radiation boundary 
condition used to truncate the finite element mesh must also 
be ensured.  The two-surface boundary integral approach for 
FDTD is can be implemented by applying the computed fields 
to the outer boundary as either a Dirchlet boundary condition  
(based on the electric field) [3] or a Neumann boundary 
condition (based on the magnetic field) [4].  However, these 
methods have late-time instabilities when applied to finite 
element hybrids.  The temperament of the finite element 
region can include interior resonances and have spurious high-
frequency or DC effects.  These create numerical errors which 
can build-up over time and destabilize the boundary element 
solution.  While accurate in the short-term, a hybrid solver 
utilizing these RBC methods will eventually go unstable for 
some problems. 

 

 
Fig. 1: The geometry of the finite element and method of moment two-surface 
hybrid.  The finite element region is truncated with a radiating surface So.  
Interior to this surface within the volume is a specified source surface Ss on 
which equivalent surface currents J(r,t) and M(r,t) are computed due to the 
interior electric and magnetic fields. 

   
Instead, a Unified Boundary Condition (UBC) is used here 

as a means of eliminating errors in the solution to provide 
long-term stability.  Similar to the method used in [2], the 
UBC is designed as an accurate radiation “correction” to the 
first-order ABC. It effectively combines both the electric and 
magnetic field, which combats the cascading instabilities (e.g., 
interior resonances, numerical dispersion) within the finite 
element solution.  The UBC is more accurate than the first-
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order ABC for radiation problems.  More importantly, it 
remains stable over longer times when compared to the other 
hybrid RBC methods for the same mesh.   

This paper is organized in the following manner.  In Section 
II, the explicit time domain formulation for the finite element 
and method of moment hybrid is presented.  The details of the 
unified boundary condition for accurate truncation of the 
volume mesh is also detailed.  A numerical procedure to solve 
the corresponding explicit equations is presented in Section 
III.  In Section IV, numerical results are presented to validate 
the proposed method. Finally, conclusions about the method 
are given in the section V. 

II. AN EXPLICIT TIME-DOMAIN HYBRID FORMULATION 
In this section, at time-domain hybrid to solve Maxwell’s 

first-order equations is formulated.  The electric and magnetic 
fields are determined from Maxwell’s coupled first-order 
equations evaluated within the arbitrary-shaped volumetric 
domain V.  To provide an accurate radiation boundary 
condition for the fields, a two surface hybrid is proposed. The 
fields from the interior of the problem excite equivalent 
surface currents on a source surface, S BsB. These sources radiate 
outward between the two surfaces using a mixed-potential 
integral equation formulation similar to [7] and are used to 
compute either the electric field, magnetic field, or both on the 
outer surface S BoB.  This provides an accurate radiation 
boundary condition for the original interior E and B fields. 

To begin, the solution for the electric and magnetic fields 
within the volume are obtained from Maxwell’s coupled first-
order equations.  The electric field is given by 

( )( ) ( ) ( )1,
, , ,

t
t t V

t
ε
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∂

= ∇× − ∈
∂

r
r r r

E
B J       (1)  

and the magnetic flux is given by 
( )( ) ( )

,
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∂
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∂
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t
r
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The current J(r,t) is any impressed electric or magnetic 
currents within the volume.  This term can be used to create a 
scattered-field formulation by setting it equal to  

                 ( ) ( ) ( )( )0 ,
, ,

ε ε∂ −
= ∈
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incE

J
t

t V
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r
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where ε is the permittivity of a dielectric region, 0ε is the 

permittivity of free space, and ( ),incE tr is the incident electric 
field.  

  To generate a system of equations, Ampere’s law (1) is 
tested with some testing function w.  After integration-by-
parts, (1) becomes  
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For open region problems, the surface integral term in (4) 
can be used to truncate the finite element mesh with the first-
order absorbing boundary condition (ABC).  After applying 
vector identities and approximating the relationship between 
the magnetic field and electric field with the Sommerfeld 
radiation condition, the first-order ABC is given as  

( )

( ) ( )
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1 ˆ ˆ             ,

µ µ− −× = ∇× ×

→− × ×

∫ ∫ ∫

∫
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i
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dS dtdS
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       (5) 

where Z is the intrinsic impedance of free space. 
Instead of the first-order ABC, a more accurate method of 

truncating the finite element mesh can be used.  The interior E 
and B fields are used to compute equivalent surface magnetic 
and electric currents J and M on an inner source surface SBsB, 
slightly inside the outer, radiative boundary of the mesh,   

ˆ ˆand for sS− × × ∈M = E n J = n H r          (6) 
These equivalent currents are then used to find either the 
electric field E(r,t) or the magnetic field H(r,t) on the outer 
boundary of the mesh by first representing the fields in terms 
of the mixed- potentials,                      

( ) ( ) ( ) ( )1, , , ,s t t t t
t ε
∂

= − −∇Φ − ∇×
∂

E r A r r rF        (7) 

( ) ( ) ( ) ( )1, , , ,s t t t t
t µ
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r r r A rH F       (8) 

and then expressing the time-delayed potentials in terms of the 
equivalent currents  
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and 

( )
0

1( , ) ,
4 S

S

t t dt dS
τ

πµ
′ ′ ′ ′ ′Ψ = − ∇ ⋅∫ ∫r rM .           (12) 

In (9)-(12), R = |r – r´| is the distance between a source and 
observation location and τ = t - |r - r´|/c is the time delay 
between points located on the source surface and observation 
surface. In addition, the quantities µ and ε are the permeability 
and permittivity, respectively, of the medium between the two 
layers which must be the same as the region outside the outer 
boundary.  The variable c is the speed of light in this region. 
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Each of the different radiation boundary conditions can be 
applied by evaluating either the electric, magnetic or unified 
field at the outer surface using the sources from the inner 
surface.  For instance, a Dirichlet radiating boundary 
condition is applied by evaluating the tangential electric field 
on the outer surface, similar to the formulation in [3] for 
FDTD,   

( )tanˆ ˆ × ×
S

-n n E = E J, M .                       (13) 
Substituting (9)-(11) into (7) and evaluating the electric field 
using  (13), the Dirichlet boundary condition is given by  
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Likewise, the Neumann’s boundary condition can be 
applied by evaluating the magnetic field H(r,t). By 
recognizing the surface integral term in (4) can be written in 
term of the magnetic field   
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S S
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which is found from (7)-(10) as 
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Alternately, the proposed unified boundary condition 
(UBC) can be derived by combining the Dirchlet’s and 
Neumann’s boundary conditions together.  Effectively, the 
electric and magnetic fields are superimposed into a U-field as 

1 ˆ ˆ ˆ( , ) ( , ) ( , )t t t
c

− × × + ×U r = n n E r n H r ,       (17) 

where a weighted sum of the tangential magnetic and electric 
fields from the finite-elements will be forced to match the 
same weighted sum computed from the boundary elements. 
Substituting (17) into the surface integral term on the right 
hand side of (4), the resulting unified boundary condition 
becomes 

( ) ( ) ( )1 11ˆ ˆ ˆµ µ− −− × = − × × +∫ ∫ ∫w B n n w n E w Ui i i
S S SZ

.  (18) 

Note, that the formulation contains the first-order ABC if the 
U field is zero and B and E are the magnetic and electric fields 
produced by the finite-elements at the outer surface.  The 
complete U field expression in terms of fields produced by the 
equivelent sources is then substituted into the surface integral 
right hand side of (18) as 

( ) ( ) ( )1
tan

1 ˆ
S S S

dS dS dS
c

µ− = − ×∫ ∫ ∫i i iw U w E n w H .      (19) 

Examining (19), the first boundary element term is the same 
as that filled for the Dirichlet boundary condition times a 
scaling factor, while the second is that used for the Neumann 
boundary condition.     

III. NUMERICAL IMPLEMENTATION 
In this section, a numerical implementation of the two-

surface hybrid is detailed.  The volume is meshed with vector 
finite elements and solved using an explicit, time-domain 
finite element approach.  The interior and exterior surfaces are 
meshed with surface elements upon which equivalent currents 
are interpolated from the finite elements and propagated as the 
U-field to the outer surface using the time-domain method of 
moments.   

A. Vector Finite Element Time Domain  
The vector finite element time-domain method is used with 

a Galerkin procedure to convert the weak form of Maxwell’s 
equations to a semidiscrete coupled system of ordinary 
differential equations using vector finite elements.  The 
VFETD method uses curl-conforming vector “edge” finite 
elements that have tangential continuity across elements as a 
basis for the electric field  

 
1

( )
=

= ∑E W
EN

j j
j

e r                                 (20) 

and vector “face” finite elements with normal continuity 
across elements as a basis for the magnetic flux density  

1

( )
=

= ∑B F
BN

j j
j

b r .                                (21) 

The properties of these vector finite elements are discussed 
in more detail in [8].  By testing (1) with a curl conforming 
function W and substituting the expansions for the E and B 
fields (20) and (21) into (1), a weak formulation of Ampere’s 
law is obtained, 

1( , ) ( , ) ( ), 1,2,...,ε µ−∂
= ∇× − =

∂
W E W B W ,Ji i i Ei N
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= − ∇× =
∂

F B F Ei i Fi N
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   (23) 

where N BE B and N BFB are the number of internal edges and faces, 
respectively.  This leads to the system of ordinary differential 
equations, 

TC K Q
t

∂
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∂
e b j ,                            (24) 

and 
∂

= −
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                          (25) 

where b = [b B1B,b B2B,…,b BNFB]P

T
P, e = [eB1B,eB2B,…,eBNE B]P

T
P and the matrices 

are given by 
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A symplectic time integration scheme similar to [1] is then 
used to discretize the equations in time.  The time derivatives 
are approximated using central difference. The electric fields 
are calculated at whole time steps and the magnetic fields 
calculated at half-time steps as 

1 1/ 2 1( ) ( ) ( ) ( )+ + += ∆ − ∆ +e b j en T n n nC tK tQ C            (27) 
and 

3/ 2 1/ 2( ) ( ) ( )n T n nG tT G+ += − ∆ +b e b .           (28) 
While these electric and magnetic fields are being updated, the 
radiation boundary condition must be applied.  For the electric 
field boundary case, it is applied as a Dirichlet boundary 
condition on the solution of (27).  For the magnetic field 
boundary or unified boundary condition, it is added to the 
right hand side of (27).  
At every iteration, the fields must be used to generate the 
equivalent surface currents as shown in Fig. 2.  For the 
magnetic current, this is done by directly using the degrees of 
freedom from the electric field curl-conforming bases as the 
degrees of freedom for the magnetic current surface 
divergence conforming basis functions.  For the electric 
current, it is done through spatial and temporal interpolation. 

B.  Time Domain Method of Moments 
The time domain method of moments is used to solve the 
integral equations for the electric and magnetic fields used in 
the unified boundary condition.  A series of time-delayed 
matrices for the propagation of fields from the inner source 
surface to the outer, radiative surface is constructed and 
applied using a sub-cycle method versus the explicit time step 
used in the VFEMTD.   

A numerical solution to (14), (16) or (19) is obtained by 
discretizing the surfaces with surface elements and expanding 
both the unknown current distribution for J and M across each 
element in a set of basis functions in time and space as   

( ) ( )

1 1
, ( ) ( )

N T
j

n n j
n j

t J T t
= =

= ∑∑r Λ rJ ,                   (29) 

and 

( ) ( )

1 1
, ( ) ( )

N T
j

n n j
n j

t M T t
= =

= ∑∑r Λ rM ,                   (30) 

where JBnPB

(j)
P and MBnPB

(j)
P is the nth unknown current coefficients at 

time tBjB.  N is the number of edges on the inner surface and T is 
the number of time steps.  The temporal basis function can be 
any higher-order interpolatory function but a piece-wise linear 
function has been used.  

In order to preserve the functional spaces occupied by the 
electric and magnetic fields, a complimentary surface space is 
defined for the equivalent electric and magnetic surface 
currents.  The spatial component of the current distribution is 

thus modeled with a spatial basis function Λ BnB(r) based on the 
same discrete space as used in the 1-forms for the finite 
elements.  The current across a boundary element is modeled 
with a twisted 1-form basis functions (Λ), which are 
divergence-conforming edge basis functions.  They are 
derived from the higher-order interpolatory 1-form basis 
functions and are “twisted” in the sense that they are rotated 
90˚ from the 1-form basis function.  The 1-form basis 
functions (w) are derived from the same curl conforming 
polynomial spaces as the 1-form volume basis functions. The 
discrete surface twisted 1-forms (Λ) is derived from the 1-
form basis function (w) as 

= ×w nΛ               (31) 
These bases accurately represent surface divergence, and 
differ from the RWG basis function [9] only by a scale factor. 
 
Substituting (29) and (30) into (9,10,11,12) and rewriting the 
electric and magnetic potentials in a generalized manner (B, B, 
∆ x B) allows the generalized potential forms to be written in 
terms of sums of partial potentials as 
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ˆ ˆ1( , , ) ( )
4 4

R RG t
c t R Rπ π
∂′∇ = + ×
∂

r r I . 

Notice that the summation limits in (32)-(34) over the 
temporal basis have been replaced by a finite interval 
[jBk PB

min
P,jBk PB

max
P], which stands for the delay range in terms of a time 

interval for a given element-element pair found between the 
two surfaces. 

A suitable testing scheme must be adopted to solve the 
UBC in (19) using the method of moments.  In this 
formulation, standard Galerkin testing functions are used in 
space, evaluated on the outer surface via a higher-order 
Gaussian rule.  Note the different testing functions, surface 
basis function w and Λ, are used to evaluate the electric and 
magnetic field integral equations, respectively. Also, point 
matching in time is applied but done using a subcycled time 
step ∆tBiB′ that can operate at multiples values of the explicit, 
finite element time step.  Applying this testing procedure to 
(19) leads to the tested U field equation 

( ) ( ) ( )1 1
tan, ( ) , ( ) , ( )m i m i m it c t tµ− −′ ′ ′= +w U w E HΛ     (35) 

where m = 1,…Ns, and Ns is the number of edge unknowns 
on the outer surface.  After substituting the generalized partial 
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potentials (32)-(34) into (35), a linear system of time-delayed 
matrices is obtained for the U field which is updated at each 
boundary element time step ∆t′ as 

( )
( ) ( ) ( )

( )( ) ( )
0 1 1

n n

i jT N N
ni j j

i jm
j m n n

J
U Z Z
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′= = =

⎡ ⎤
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∑∑∑ EH J EH M .      (36) 

Thus a correction to the first-order ABC is obtained from 
(36), where the U-field U Bm PB

(i’)
P is updated at each time step tBiB′  

due to the time-delayed electric and magnetic currents [JBnPB

(i’-j’)
P 

MBnPB

(i’-j’)
P] from previous time steps tBiB′ = tBjB′ - R/c.  The other 

radiation boundary conditions can also be employed using 
similar field expressions.  The time-delayed system 
submatrices ZBm,n PB

(j’)
P in (36), are given by 
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(41) 
The last final comment concerns the time step used for the 

integral equations.  As mentioned previously, it need not be 
the same time step as the finite element time step.  In 
particular, it can be sub-cycled at some larger multiple ∆tBiB’ of 
the finite element time step.  This offers two advantages.  The 
first is that this sub-sampling leads to faster time-stepping, 
because the matrix-vector products used to compute the 
electric and magnetic fields on the outer boundary do not need 
to be performed every time step.  The second advantage is that 
the representation of E and H on the boundary can actually 
become more accurate, leading to a more stable solution.  
Because the time step needed for the finite element is often 
small, such that light takes several timesteps to cross one face 
of an element, standard integration techniques have trouble 
accurately evaluating the potential integrals.  For pure BEM 
problems, the timestep required for finite-element stability 
would lead to unstable results.  By using a multiple of the 
finite element time step for the BEM timestep, the time 

integration testing in time becomes more accurate, removing 
late-time instabilities.  This same sub-cycling method used in 
[5] for FDTD to reduce complexity, is also shown here to 
improves stability and overall accuracy of the technique.   

IV. APPLICATIONS AND RESULTS 
Several 3D hybrid meshes are simulated to validate the 

proposed unified boundary condition presented in this paper. 
In particular, the results will demonstrate the accuracy of the 
solution over the first-order ABC.  More importantly, the 
UBC will show long-term stability of the solution over the 
previously derived radiation boundary conditions.  All cases 
considered here suggest improved late-time stability over the 
Dirchlet’s and Neumann’s boundary conditions.  Two 
different types of excitation problems are considered, an 
internal source problem and a scattering problem.  All 
simulations were performed on a LINUX based cluster 
computer. 

To validate our new hybrid boundary element – finite 
element code, we have chosen to first solve a problem which 
has a known analytic solution.  The problem chosen is the 
same as that used in [3] for verification of an FDTD-BEM 
hybrid. An electric dipole oriented along the z-axis is assumed 
to be located at the origin. Its dipole moment is taken to be 
 

ˆ( , ) ( ) ( ) .t f t δ=p r r z                        (42) 
 
The resultant fields are 
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where ( , , )x y z=r is our position in space, cτ = | r | = r and [f] 
= f(t-τ) denotes evaluation at the retarded time t-τ. 
 

The driving function f is designed to turn on and then turn 
off over a period of 50ns. The response is a pulse that radiates 
outward through space. This function is defined by f(t) = 
g(βt), where β = 2.0 ×10 P

7
P secP

-1 
P, and where 
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We observe that this function is continuous and has 

continuous first and second derivatives, but discontinuous 
third derivatives. Figures 2 and 3 show the time history of the 
electric and magnetic field solutions for this dipole pulse at 
the test point location (0.91573, 0.27778, 0.29028), which was 
chosen to avoid any symmetry planes of the solution. 
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Figure 2.  Exact solution for the electric field from the pulsed 
dipole. 
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Figure 3: Exact solution for the magnetic field from the pulsed 
dipole. 
 

This problem is solved over the volume between two 
concentric spheres with radii of 0.25 and 1.0, respectively. 
Figure 4 shows a typical hexahedral mesh for this problem. 
The problem is excited by specifying the exact field solution  
on the interior spherical surface. At the outer surface (radius = 
1.0) the boundary element hybrid boundary condition is used 
to truncate the mesh. This outer surface is relatively close to 
the dipole source. This will cause difficulties with 
conventional radiation boundary conditions such as “far-field” 
impedance conditions.  A sequence of refined meshes is used 
to investigate accuracy, convergence and stability. Table 1 
shows the number of nodes and elements in each of the 
different meshes. 

 
Table1. Number of nodes and elements for different test 
meshes. 

Mesh 
ID 

Nodes Elements 

16 686 576 
32 5018 4608 
64 38450 36864 
128 301154 294912 
256 2384066 2359296 

 
 
 

 
Figure 4.  Half of the typical hexahedral mesh for the dipole-
64 problem. 
 
 

The hybrid radiating boundary condition is compared to a 
conventional first-order accurate absorbing boundary 
condition (ABC), placed at the outer surface.  Figure 5 shows 
the relative error for the same Ez component for the hybrid 
method for the various meshes together with the relative error 
for the ABC method on the finest mesh. The hybrid method is 
relatively accurate even for the coarse meshes and is 
converging to the exact solution as the meshes are refined. We 
observe almost a 1000-fold less error for the hybrid solution 
than for the ABC on the Sphere 128 mesh. 
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 Figure 5. Relative Error for the hybrid method and 
conventional ABC boundary conditions. 
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 The formulation section presents three separate ways to use 
the boundary elements to truncate the finite-element mesh; a 
Dirichlet, Neumann, or combined approach.  These three 
methods were tested on the 64-size sphere problem.  The 
results for Ez sampled at a point are shown in Figure 6.  Both 
the Dirichlet and Neumann applications have stability 
problems fairly early in the time marching.  Even the 
combined UBC without sub-cycling eventually displays late 
time instability.  Only the UBC with sub-cycling remains 
stable at the noise floor late in the simulation.  Because of the 
potential for instability in the other formulations, the UBC 
with subcyling is used for the rest of the examples in this 
paper. 
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Figure 6.  Stability comparison of the different methods for 
using the BEM to truncate the finite-elements. 
 
 

There are two other effects that occur when sub-cycling is 
used: the solution accuracy changes, and the computational 
time is significantly affected. In general, when the boundary 
element computation is done less frequently, the accuracy 
degrades. However, the computational run-time decreases 
dramatically. So, in using sub-cycling, trade-offs must be 
made.  Figure 7 shows how the maximum relative error for the 
Ez component degrades as the sub-cycling frequency changes. 
When the sub-cycling changes from 2 (every other finite-
element time step) to 16, the relative maximum error increases 
by more than an order of magnitude. In contrast, Figure 8 
shows how the computational efficiency increases. The 
computational time per time step decreases by a more than an 
order of magnitude. 
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Figure 7. The maximum relative error increases with the sub-
cycling frequency 
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Figure 8. The computational cost per time step decreases as 
the sbu-cycling frequency increases. 
 

Figure 9 shows how the Ez component error magnitude 
behaves for the Sphere 32 problem as the sub-cycling 
frequency changes.  In general, we have found that using a 
hybrid sub-cycling frequency of 4 or 8 does not degrade the 
accuracy unacceptably and dramatically improves the 
computational efficiency of the method. 
 

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

0 2 4 6 8

Time (ns)

Ez
 C

om
po

ne
nt

 E
rr

or
 (V

/m
)

Sub=2
Sub=4
Sub=8
Sub=16

 
Figure 9. Ez component error behavior as the hybrid sub-
cycling frequency changes. 
 

  The second test problem, scattering from a PEC 
sphere, was used to test the hybrid boundary condition for 
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scattering problems.  A hexahedral mesh including a 0.5 m 
radius spherical PEC surface, meshed with 96 quads, was 
used.  For the hybrid case, the inner surface was placed one 
element away from the PEC sphere, and the outer surface one 
element from that.  For the ABC case, the outer boundary was 
placed 4m away from the sphere in order to obtain good 
results. 

 The sphere was hit with a plane wave polarized in the x 
direction incident from –z.  The plane wave was modulated by 
a Gaussian enveloped cosine, given by  

 ( ) ( )( )
01(

cos τω
− − −

= −
k r

r k r
i

i
2

2
t t )

xE t e                 (21) 

where 62 100 10ω π= × , -9 ˆ3.33564 10×k = x , and 
81.91 10τ −= × .  Because the air padding around the sphere 

was almost eliminated for the hybrid mesh, the hybrid 
simulation ran much quicker.  The ABC simulation took 18.3 
minutes to run on a single processor, whereas the hybrid 
simulation only took 2.1 minutes to run. The results for the 

θE scattered field are shown below in Figure 10.  While both 
the ABC and hybrid simulations show good agreement with 
the MIE series solution, the hybrid agreement is slightly 
better.  
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Figure 10.  A comparison of the θE scattered fields from a 
PEC sphere using the MIE series, the ABC, and the hybrid 
formulation. 
 
 A final test case consisting of scattering from a rocket with 
a dielectric nosecone was simulated.  The rocket, shown in 
Figure 11, consists of a 1m long PEC cylinder of radius 0.4m 
with a hemispherical dielectric nosecone with ε =r 4 .  In 
addition, four tapered fins were connected to the body.  These 
fins taper from 0.35m tall where they connect to the body to 
0.25m at 0.1m away from the rocket body.   

 
Figure 11.  The rocket mesh used for the hybrid simulation 
 
 The rocket was hit with a Gaussian enveloped cosine plane 
wave incident from broadside polarized in z, the long axis of 
the rocket.  The center frequency of the plane wave was 350 
MHz, and the width factor 91.736 10τ −= × was used.  The 
rocket was meshed using a conformal hexahedral mesh, with 
the inner surface for the hybrid problem placed one cell away 
from the rocket, and the outer surface placed one cell away 
from the inner surface.  For the ABC simulation, the rocket 
was meshed using a tetrahedral mesh, padded with air to 6 
meters from the rocket.  The hybrid mesh contained 24 
thousand hexehedral elements, and the ABC mesh contained 
5.5 million tetrahedra.  A timestep of -112 10× s was used for 
both methods, and the simulations were allowed to run 1600 
timesteps.  The hybrid problem took 45 minutes on 16 
processors, while the ABC problem took 1 hour and 48 
minutes on 64 processors.  Both methods show fairly good 
agreement for the far field scattering, as shown in Figure 12. 
 
 
 



 
 

9

-60

-50

-40

-30

-20

-10

0

0 90 180 270 360

Theta (degrees)

Et
he

ta
 (d

B
)

ABC
UBC

 
Figure 12.  The θE component of the scattered electric field in 
the elevation plane for both the ABC and hybrid boundary 
conditions.   
 

V. CONCLUSION 
A hybrid Unified Boundary Condition for FEM/BEM analysis 
using coupled first order equations was presented and results 
given.  The results show that that a UBC provides stability 
which is not found in formulations which only satisfy the E or 
H field on the radiating boundary. In addition, speed 
improvements as well as additional late-time stability were 
achieved by sub-cycling the BEM portion of the simulation 
rather than using the finite-element timestep. 
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