
UCRL-TR-218537

Certification of Completion of Level-2
Milestone 464: Complete Phase 1
Integration of Site-Wide Global Parallel
File System (SWGPFS)

S. T. Heidelberg, K. J. Fitzgerald, G. H.
Richmond, H. A. Wartens

January 31, 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71306195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

 This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Introduction

This report describes the deployment and demonstration of the first phase of a Site-Wide
Global Parallel File System on the open network. The report and the references herein are
intended to certify the completion of the following Level 2 Milestone from the ASC due
at the end of Quarter 4 in FY05:

Milestone: 464
Title: Complete Phase 1 Integration of Site-Wide Global Parallel File System
(SWGPFS)
Category: Campaign 11—NA113, Advanced Simulation and Computing
ASC Program Element: Simulation and Computer Science

The milestone is defined as follows:

“At LLNL, the Lustre file system will be deployed to create a new Site-Wide Global
Parallel File System (SWGPFS) for both the open and classified networks. On the open
network, SWGPFS will be the primary data resource for capacity systems, BlueGene/L,
and visualization resources and will have high-speed access to the HPSS archive.
Deployment on the classified network will follow at a later date when appropriate multi-
cluster security plans are in place. For this milestone, Phase 1 of the SWGPFS will be
deployed and scalable file system functionality will be demonstrated between a minimum
of two LLNL ASC platforms and archival storage on the open network. File system
performance will be demonstrated using the IOR test suite to show transfers between the
Lustre-enabled clusters with a minimum of 60% of the effective measured aggregate
network and I/O bandwidth available and a target of 80%. Archive performance of at
least one GigaByte per second will also be demonstrated using HPSS interfaces to the
archive.”

Milestone integration/interfaces we defined as:

“Integration of an initial SWGPFS requires continued cooperation between ICC, PSE,
and VIEWS program elements at LLNL. The Lustre file system PathForward effort also
requires continued tri-lab cooperation with LANL and SNL. The SWGPFS team will
work closely with the HPSS project and file system and platform vendors to ensure
successful early deployment of this new file system model.”

The milestone was completed September 23, 2005. We demonstrated that two ASC
clusters of heterogeneous architecture, sited in different buildings, can share the same
parallel filesystem, and that the performance achieved from both clusters exceeds the
required levels, and either exceeds, or very slightly under achieves, the desired levels. In
addition we demonstrated archival data rates between the shared parallel file system and
the archival system satisfied the 1GB/s archival data rate requirement.

Background

There has been substantial development of the Lustre parallel filesystem prior to the
configuration described below for this milestone. The initial Lustre filesystems that were
deployed were directly connected to the cluster interconnect, i.e. Quadrics Elan3. That is,
the clients (OSSes) and Meta-data Servers (MDS) were all directly connected to the
cluster's internal high speed interconnect. This configuration serves a single cluster very
well, but does not provide sharing of the filesystem among clusters.

LLNL funded the development of high-efficiency “portals router” code by CFS (the
company that develops Lustre) to enable us to move the Lustre servers to a GigE-
connected network configuration, thus making it possible to connect to the servers from
several clusters.

With portals routing available, here is what changes: (1) another storage-only cluster is
deployed to front the Lustre storage devices (these become the Lustre OSSes and MDS),
(2) this “Lustre cluster” is attached via GigE connections to a large GigE switch/router
cloud, (3) a small number of compute-cluster nodes are designated as “gateway” or
“portal router” nodes, and (4) the portals router nodes are GigE-connected to the
switch/router cloud. The Lustre configuration is then changed to reflect the new network
paths.

A typical example of this is a compute cluster and a related visualization cluster: the
compute cluster produces the data (writes it to the Lustre filesystem), and the
visualization cluster consumes some of the data (reads it from the Lustre filesystem). This
process can be expanded by aggregating several collections of Lustre backend storage
resources into one or more “centralized” Lustre filesystems, and then arranging to have
several “client” clusters mount these centralized filesystems. The “client clusters” can be
any combination of compute, visualization, archiving, or other types of cluster.

This milestone demonstrates the operation and performance of a scaled-down version of
such a large, centralized, shared Lustre filesystem concept.

Description of the Hardware Configuration

A diagram of the network and disk configuration used for the demonstration for this
milestone is shown on the next page.

Gateway Gateway

Compute Compute

..16..

..28..
ALC Test Partition

uBGL
(1024 CN)
(128 ION)

Building 453

Building 439

Shared Lustre Filesystem Test Configuration

Quadrics

Local Ethernet

Federated Ethernet

Local Ethernet

Shared
Lustre

Storage
(14 servers)

Slic
Cluster

(10 nodes)

4x Jumbo Ethernet
(To / From HPSS)

The table below shows the role of the cluster nodes, their hardware architecture, and the
version of Linux that was running on each cluster component of the milestone
configuration. Note that this configuration is quite heterogeneous.

Name Lustre role Architecture Linux Version
ALC Clients, portal routers X86 2.4.21

uBGL Clients ppc32 2.4.19
Levi Servers (OSS/MDS) X86-64 2.6.9
Slic Clients Itanium 2.4.21

ALC: ALC clients are indirectly connected to the IP network to which the Lustre storage
servers are connected. In this configuration, data flows first over ALC's Elan3 network
from clients to nodes that are assigned to be “portals router nodes,” and then the data
flows from the portals router nodes over gigabit-ethernet networks to the Lustre storage
server nodes. The “portals router nodes” are required to “gateway” the portals-over-
Elan3 streams to/from the portals-over-GigE streams. The protocol underlying the
portals-over-Elan streams is native Quadrics Elan comms, while the protocol underlying
the portals-over-GigE streams is TCP. In this Lustre configuration, the netperf client
processes are run on the ALC portals router nodes (there are 16 of these) and
communicate with netperf server processes running on the Levi Lustre storage server
nodes – OSSes (there are 14 of these).

uBGL: The BGL architecture connects 64 compute nodes (CNs) via an IBM-proprietary
tree network to each IO node (ION). IONs are invisible to user applications running on
the CNs (but essential to their operation). The IONs serve as the Lustre clients, and are
directly connected to the IP network to which the Lustre storage servers are connected.
In this Lustre configuration, there is no need for “portals router nodes”. The netperf
client processes are run on the uBGL IONs (there are 128 of these) and communicate
with netperf server processes running on the Levi Lustre storage server nodes – OSSes
(there are 14 of these). The protocol used here is TCP.

Levi: The back-end storage devices used by the Lustre storage servers are Data Direct
Networks (DDN) S2A-8500 raid storage units. The “Lustre cluster” used in this
milestone is named “Levi.” Each Levi OSS node connects via a single 2-gigabit
FibreChannel connection to a single port on the S2A-8500. These storage units utilize
SATA disk drives. Extensive testing has shown that these S2A-8500-SATA units can
sustain, for each FC port, 150 MB/sec for writes, and 110 MB/sec for reads. Since there
are 14 Lustre OSSes in this configuration, and each OSS is connected to a single DDN
FC port, the system maximum disk I/O bandwidth is calculated as: 14*single_port_rate.

ALC/Clients GigE
Net

Levi/OSSALC/Portals
routers

uBGL/Clients GigE
Net

Levi/OSS

SLIC: The “slic” cluster is a special purpose Lustre client designed as an interface to the
archival (HPSS) environment. In this instance the Slic nodes are directly connected to
the IP network to which the Lustre storage servers are connected. The protocol used here
is TCP.

Demonstration Details

The network bandwidths of the cluster connections, the disk bandwidth of the back-end
Lustre storage devices, and the resulting milestone performance goals (derived from the
milestone description), are shown in the table below. Units are in MB/sec.

Table of Bandwidths, Requirements, and Targets

ALC uBGL Slic Comments
Network b/w

Network write Mb/s 3,158 3,301 2,003 Measured by netperf
Network read Mb/s 3,030 3,288 2,189 Measured by netperf

Disk b/w
Disk write b/w 2,100 2,100 2,100 14*150MB/s
Disk read b/w 1,540 1,540 1,540 14*110MB/s

Min (network_bw, disk _bw)
write 2,100 2,100 2,100 Disk limited
read 1,540 1,540 1,540 Disk limited

Required IOR performance
write 1,260 1,260 N/A 60%
read 924 924 N/A 60%

Target IOR performance
write 1,680 1,680 N/A 80%
read 1,232 1,232 N/A 80%

As the table shows, our application-level test, IOR, cannot hope to achieve performance
better than the:

minimum (network_bandwidth, backend_disk_bandwidth)

The network bandwidths were determined by running a variant of the well-known

SLIC/Clients GigE
Net

Levi/OSS

“netperf” performance test, from all pairs of network interface end-points, and summing
the individual performance reports to an aggregate network bandwidth value. Appendix
A gives examples of netperf execution lines.

The IOR test program is LLNL's standard I/O test. IOR has been used for I/O related
testing for some time, and it supports many options for selecting the I/O model and the
details of the I/O pattern being emulated. For this milestone, we use IOR in the simple
“file-per-process” mode, which is the predominant mode used by LLNL application
programs. In this mode, the various MPI tasks of the IOR job synchronize only at the
beginning and end of their testing. IOR gathers information from each task at the end of
the run, and computes the I/O performance values. Appendix B shows some details of the
IOR command lines and input-scripts used in the milestone testing. Actual logs from this
testing are available upon request.

Archival Interface

The Lustre global parallel file system is designed to act as fast temporary storage for our
supercomputing resources. But our users need a way to transfer data to or from archival
storage. In the past this was accomplished by running the archival interface codes on the
interactive (or login) nodes associated with the various compute resources. The
interactive nodes could access the local file system and were also attached to the high-
speed archival network. With the advent of the global (or site wide) filesystem we are
able to move this archival interface function to a special purpose cluster designed to
perform the archival interface function. Part of this milestone was to demonstrate 1GB/s
between the Lustre filesystem and the HPSS based archive.

Milestone Performance Results and Conclusion

The table below shows our IOR performance results and the percentages that those
results represent, of the required and target rates:

Table of IOR results
ALC MCR

Required Performance
write MB/s 1,260 1,260
read MB/s 924 924

Target Performance
write MB/s 1,680 1,680
read MB/s 1,232 1,232

Measured IOR Performance rates
write MB/s 1,810 1,671
read MB/s 1,197 1,268

Percent of required performance
write 143.7% 132.6%
read 129.5% 137.1%

Percent of target performance
write 107.7% 99.5%
read 97.2% 102.9%

These results show that the two ASC clusters of heterogeneous architecture, sited in
different buildings, can share the same Lustre filesystem, and that the performance
achieved from both clusters exceeds the required levels, and either exceeds, or very
slightly under achieves, the desired target levels.

Archival data rates between the shared Lustre file system and the open HPSS archival
system were tested using nine nodes of the “slic” cluster. The test was designed to
duplicate a user’s behavior moving data to/from the archival storage system. The tester
ran nine concurrent ftp sessions on the nine “slic” nodes and was able to achieve an
aggregate data rate of 1.042 gigabytes per second. This data rate satisfies the 1GB/s
archival data rate requirement contained in the milestone.

Appendix A – netperf execution command lines

Netperf servers on levi:
/usr/bin/nohup /usr/local/netperf/netmonns -p 12866 > /dev/null 2>&1 &

Netperf command line on ubgl: (for ubgl there needs to be some initial
setup
all this stuff was taken care of in a script. Note that this command
line is run
on each client and we map each client to an interface on the server as
fairly as possible)

/bgl/ion/bin/nohup /netperf/netmonnp -H levi1-eth2 -B -l 600 -f M -P 0
-- -m 1M -M 1M -S 2M -s 2M >
/home/wartens2/testing/netperf/logs/netperf.20050919161744/ubglio1_128.
log/ubglio1 2>&1 &

Netperf command line on alc 2 clients started:
/usr/bin/nohup /home/wartens2/.bin/i386/netmonnp -H levi4-eth3 -B -l
600 -f M -P 0 -- -m 1M -M 1M -S 2M -s 2M >
/home/wartens2/testing/netperf/logs/netperf.20050919161744/alc4_19.log/
alc4 2>&1 &

/usr/bin/nohup /home/wartens2/.bin/i386/netmonnp -H levi5-eth2 -B -l
600 -f M -P 0 -- -m 1M -M 1M -S 2M -s 2M >
/home/wartens2/testing/netperf/logs/netperf.20050919161744/alc4_19.log/
alc4.2 2>&1 &

Appendix B – IOR execution command lines and input scripts

ior command line on alc:

srun --core=light -t 120 -W 60 -l -O -N140 -n280 -pltest ior -f
/home/wartens2/.bin/ior-scripts/posix.fpp.survey.ior
contents of posix.fpp.survey.ior (note that our good results were when
numtasks == 56):

IOR START
intraTestBarriers=1
writeFile=1
readFile=1
useExistingTestFile=0
keepFile=0
checkWrite=0
fsync=1
reorderTasks=1
quitOnError=1
transferSize=512k
blockSize=32m
intertestdelay=5
verbose=1

testFile=/p/gbtest/wartens2/lustre-test/ior/iorData

filePerProc=1
api=POSIX
numTasks=14
RUN
numTasks=28
RUN
numTasks=56
RUN
numTasks=84
RUN
numTasks=112
RUN

 numTasks=140
RUN
numTasks=168
RUN
numTasks=196
RUN
numTasks=224
RUN
numTasks=252
RUN
numTasks=280
RUN

IOR STOP

ior command line on ubgl:

/usr/local/bin/mpirun -cwd /home/wartens2/testing -exe
/home/auselton/bgl/ior -args "-f /home/wartens2/.bin/ior-
scripts/posix.fpp.survey.stripe1.ior"
&> /home/wartens2/testing/64m/ubgl-64m-01.log
contents of posix.fpp.survey.ior:

IOR START
intraTestBarriers=1
writeFile=1
readFile=1
useExistingTestFile=0
keepFile=0
checkWrite=0
fsync=1
reorderTasks=1
quitOnError=1
transferSize=512k
blockSize=32m
intertestdelay=25
verbose=1

 testFile=/p/gbtest/wartens2/lustre-test/ior-stripe1/iorData
filePerProc=1
api=POSIX

numTasks=1024
RUN

IOR STOP

