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The equations of radiation transport for thermal photons are notoriously dif-
ficult to solve in thick media without resorting to asymptotic approxima-
tions such as the diffusion limit. One source of this difficulty is that in thick,
absorbing media thermal emission is almost completely balanced by strong
absorption. In a previous publication [SB03], the photon transport equation
was written in terms of the deviation of the specific intensity from the lo-
cal equilibrium field. We called the new form of the equations the difference
formulation. The difference formulation is rigorously equivalent to the origi-
nal transport equation. It is particularly advantageous in thick media, where
the radiation field approaches local equilibrium and the deviations from the
Planck distribution are small. The difference formulation for photon transport
also clarifies the diffusion limit. In this paper, the transport equation is solved
by the Symbolic Implicit Monte Carlo (SIMC) method and a comparison is
made between the standard formulation and the difference formulation. The
SIMC method is easily adapted to the derivative source terms of the differ-
ence formulation, and a remarkable reduction in noise is obtained when the
difference formulation is applied to problems involving thick media.

1 Introduction

The transport of thermal photons in thick media is of sufficient importance
that substantial effort has been expended in developing both deterministic
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[Mih78] and Monte Carlo [FC71] methods for its solution. The difficulties
associated with thick media have been severe enough to necessitate solving
asymptotic approximations, such as the Eddington and diffusion approxima-
tions [PB83], instead of solving the full transport equation.

Asymptotic methods do give the right solution to the transport equation
in uniformly thick media, like stellar interiors. Nevertheless, in many problems
of interest the medium is a mixture of thick and thin regions; moreover, some
regions of interest may be thin for some radiation frequencies and thick for
others.

Although a lot of progress has been made in numerical calculations for such
complicated systems using asymptotic methods, they suffer from several de-
fects. One of them is an unphysical energy propagation rate when the method
is applied outside its proper domain, e.g. to optically thin regions. This led to
the development of ad hoc corrections such as flux limiters [Pom82]. Another
defect is that asymptotic methods are unable to satisfy correct boundary con-
ditions. Time honored “fixes” are the Marshak [Mrs47] and Mark [Mrk47]
boundary conditions, but these incorrect boundary conditions distort ubiqui-
tous boundary layers. More importantly, it is difficult to estimate or measure
the errors incurred by the approximations. Only an accurate solution of the
transport equation is able to eliminate the above defects.

Several hurdles have stood in the way of producing accurate Monte Carlo
solutions of the transport equation in thick media. The first one was overcome
by the development of a Monte Carlo technique that is numerically stable and
provides correct treatment of the stiff coupling between the radiation and the
material in the thick limit. Several authors have shown that the radiation
matter coupling is properly treated in the Symbolic Implicit Monte Carlo
method [Bro86, Nka91], producing a correct implicit solution of the radiation
field and the material temperature at the end of a time step [DL04], while
effective scattering techniques [FC71, CF73] possess a significant deficiency in
this regard.

A second hurdle has been the very significant noise problem, or the equiv-
alent problem of computational efficiency, when Monte Carlo methods are
pressed into service for thick systems. The energy is emitted in a zone uni-
formly, but only particles born within a few mean free paths of a zone bound-
ary have any chance of contributing to the flux across the boundary. Most
of the emitted particles are absorbed within the same zone and serve only to
compute the equilibrium values of the radiation intensity and temperature in
that zone. This situation for the Monte Carlo method, as applied to thermal
photon transport, has been a source of frustration for a long time. The local
equilibirium value of the radiation intensity in the thick limit is, of course,
the black body field for the given local temperature. One would prefer not to
waste a lot of processing power computing it.

In an earlier work [SB03], a new formulation was proposed for the trans-
port of thermal photons, referred to as the difference formulation. The main
considerations these papers will now be repeated. The natural way of deriv-
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ing the transport equation is to follow the propagation of narrow beams of
photons as they are emitted, propagate in vacuo, are scattered and, finally,
are absorbed by matter [Cas00, MM84]. In transparent media the absorption,
emission and scattering of photons is weak and the transport equation de-
scribes the overall propagation very well. Mathematically, the equations of
propagation are hyperbolic partial differential equations and their numerical
solution is relatively easy and stable in optically thin media.

In optically thick media, however, the probability that a photon propagates
in a straight line, unhindered, is very small; radiation transport is dominated
by a large number of scattering, absorption and re-emission events. As a result,
the solution of the transport equation in thick media is not straightforward.
An important example is hot, dense matter with a high absorption coeffi-
cient. It results in conditions of local thermodynamic equilibrium (LTE) and
very strong emission of photons. The emitted photons, in turn, are quickly re-
absorbed, maintaining the temperature of the medium. The net emission (or
absorption) is then a small difference between two large terms. The process
leads to stiffness of the transport equation: the material and radiation temper-
ature come into equilibrium much faster than any excess energy is transported
away. In any numerical method that uses explicit differencing to balance ther-
mal emission with absorption, the stiffness can cause instability, as well as a
significant increase in noise for Monte Carlo methods. If the scattering coef-
ficient is high a photon does not propagate in a straight path. This poses a
difficulty for methods that are highly dependent upon efficient streaming of
photons.

The transformation to the difference formulation, proposed in [SB03], is
achieved by considering the difference between the radiation field and the local
equilibrium field at each point in the problem domain. The local equilibrium
field is a function of the matter temperature, and therefore a function of
both space and time. It results in a transport equation that contains only
quantities that are small when the system is thick. In particular, the large
emission term and its (almost) compensating absorption term are replaced
by a pure absorption term for the “difference field”. The only sources for the
difference field come from the variation of the material temperature in space
and time.

Why is the difference formulation interesting? To summarize, the equations
are written in terms of quantities that are “natural” in thick media. (The
traditional formulation is written in terms of variables that are natural in thin
media.) In hot, dense matter the terms describing the nearly equal emission
and absorption of photons are eliminated and only the small, net transport
terms appear in the equation. We expect that this change of variables will aid
in its numerical solution: it will make it less stiff, more numerically stable, and
it will reduce the noise in Monte Carlo methods. In fact, preliminary results
shown here confirm our expectations. Derivation of the diffusive behavior
of the transport equation in thick media is simplified and clarified by the
difference formulation. As the difference equation is able to satisfy the correct
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physical boundary conditions, we hope to find a fast and accurate alternative
to the radiation diffusion equation. Finally, the new formalism might lead to
the development of new numerical methods.

2 Radiation transport in LTE

The radiation transport equations will be written down in both the traditional
and the difference formulation – in order to introduce the notation and for
completeness.

2.1 Traditional formulation

Radiation transport and its coupling to matter is described by the equations
of radiation hydrodynamics. In their general form, they consist of the equa-
tions of hydrodynamics coupled to those of radiation transport and to the
interaction of radiation with matter. Excellent treatises have been written by
Pomraning [Pom73], Mihalas [MM84] and Castor [Cas00].

In this paper we deal only with a subset of those equations. They are the
radiation transport equation, the material energy balance equation and the
conservation equation for the sum of the radiation and material energy. Fur-
thermore we assume local thermodynamic equilibrium (LTE) - i.e. that the
material has a well defined temperature - it emits radiation thermally. We
also assume that the material is at rest or that it moves with constant veloc-
ity. In real hydrodynamic cases, where different parts of the material move
at different velocities, the “co-moving frame transformation” has to be used
and proper account has to be given to kinetic energy and hydrodynamic work
[Cas00]. When the local acceleration of the material is significant, general rel-
ativity has to be invoked [MA00]. Our equations are written in the rest frame
of the material, assumed to be an inertial frame. Otherwise, the scattering
terms would have a more complicated angle and frequency dependence.

The transport equation describes the propagation of the radiation field in
terms of the specific intensity, I(x, t; ν,Ω), where x, t are the space and time
variables, ν is the radiation frequency and Ω is a unit vector in the direction
of propagation.

1
c

∂I(x, t; ν,Ω)
∂t

+ Ω·∇I(x, t; ν,Ω) =

σ′a(ν, T (x, t))[B(ν, T (x, t))− I(x, t; ν,Ω)] + Q(I) (1)

B(ν, T ) is the thermal (Planck) distribution at the material temperature,
T (x, t), and c is the speed of light. The absorption coefficient, σ′a, and the
scattering term, Q(I), will be defined below. The specific intensity is related
to the photon distribution function f(x, t; ν,Ω) by

I(x, t; ν,Ω) = chνf(x, t; ν,Ω) , (2)
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where hν is the photon energy.
In Eq. (1), all the variables, I, σ′a, B are functions of the independent

variables, x, t; ν,Ω and/or T (x, t). In the following, the independent variables
will mostly be suppressed.

The emission function and the absorption cross sections, corrected for
stimulated emission, are

B(ν, T ) =
2hν3

c2

(
ehν/kT − 1

)−1

, (3)

σ′a(ν, T ) = σa(ν, T )
(
1− e−hν/kT

)
, (4)

with σa being the “ordinary” absorption coefficient, per unit distance.
The scattering terms are denoted by Q(I)

Q(I) =
∫ ∞

0

dν′
∫

4π

dΩ′ ν

ν′
σs(ν′ → ν,Ω·Ω′)I(ν′,Ω′)

[
1 +

c2I(ν,Ω)
2hν3

]
−

∫ ∞

0

dν′
∫

4π

dΩ′σs(ν → ν′,Ω·Ω′)I(ν,Ω)
[
1 +

c2I(ν′,Ω′)
2hν′3

]
, (5)

where the x, t;T dependence of σs has been suppressed. In LTE there are
thermodynamic relations among the partial scattering cross sections in Eq.
(5). These follow from the observation that, in complete thermal equilibrium,
the radiation field reduces to the black body spectrum no matter what the
scattering cross sections are. See Eq. (30) below.

The zeroth moment of the intensity gives the radiation energy density

Erad =
1
c

∫ ∞

0

dν

∫
4π

dΩ I (6)

and its first moment is the radiation flux vector

Frad =
∫ ∞

0

dν

∫
4π

dΩ Ω I . (7)

Interaction of radiation with matter is expressed by the conservation law

∂Emat

∂t
=

∫ ∞

0

dν

∫
4π

dΩσ′a[I −B(ν, T )]−
∫ ∞

0

dν

∫
4π

dΩQ(I) + G , (8)

where Emat is the energy per unit volume of the material and G is a volume
source of energy.

In the absence of hydrodynamic work terms or thermal conductivity, the
total energy of the radiation field and the material are conserved

∂(Emat + Erad)
∂t

+∇·Frad = G . (9)
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2.2 Thick media

We all have a common-sense concept of a thick medium; we attempt to clarify
it here. One property of radiation in thick media is that its distribution is
almost isotropic. Another property of thick media is that the transport of
energy by radiation is severely hindered.

In the spirit of the first property we define a streaming parameter, εstream;
it is the ratio of the magnitude of the actual radiation flux, |Frad|, to the
maximum possible one

εstream :=
|Frad|
cErad

. (10)

It is clear that 0 ≤ εstream ≤ 1 and that εstream = 1 only if the radiation
streams in one well-defined direction. In thick media, εstream is a small pa-
rameter: εstream � 1.

In the spirit of the second property, we look at the ratio of the photon
mean free path, lrad and some scale length, L. The scale length defines the
distance of significant variation in the properties of the material. We define

εspace :=
4
3

lrad

L
. (11)

In thick media εspace � 1.
In thick media that strongly absorbs and emits radiation, far from any

boundary layer, the diffusion approximation is valid. In the diffusion limit,
the photon mean free path is determined by the Rosseland mean opacity,
lrad = 1/σR and the scale length is set by the rate of change in the tem-
perature: 1/L = (1/4T 4)|∇(T 4)|. In the diffusive regime the radiation en-
ergy density is that of a black body, Erad = aT 4 and the diffusion flux is
Frad = −(ac/3σR)∇(T 4). (Both of the preceding formulas are valid to first
order in the small parameter εspace.) Simple algebra shows that in the interior
of a thick, strongly absorbing and emitting region, without scattering, the two
approaches give the same result

εspace ≈ εstream . (12)

The time rate of change of conditions in thick media can be estimated in
a similar manner. We define a small parameter that is the ratio of the free
flight time of a photon to the time rate of change of the temperature

εtime :=
1

c σR

1
T 4

∂T 4

∂t
. (13)

Heating of the material results from radiation transport. Using the smallness
of the energy flux, εstream � 1, from the energy balance in a small volume we
get the estimate

εtime ≈ ε2space

3Erad

Erad + ∂Emat/∂(T 4)
. (14)

The parameters εstream, εspace and εtime are not small in some boundary
layers and in the leading edge of thermal waves.
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3 The difference formulation

In the introduction we discussed the difficulties of solving the transport equa-
tion, Eq. (1), in thick media. In the previous section we identified the stream-
ing parameter, εstream, that is small in thick media. We now show a very
simple exact transformation of the transport equation so that it is written
in terms of variables that are small in thick media. We call the result of the
transformation the “difference formulation.” In the following we show the
transformation in a simple case and discuss its remarkable properties.

3.1 The difference formulation without scattering

We start by repeating the transport equation, Eq. (1), without scattering

1
c

∂I(x, t; ν,Ω)
∂t

+ Ω·∇I(x, t; ν,Ω) =

− σ′a(ν, T (x, t))[I(x, t; ν,Ω)−B(ν, T (x, t))] . (15)

The equation is written in terms of the specific intensity carried by photons,
I(x, t; ν,Ω). The left-hand side of the equation describes their unhindered
propagation, the first term on the right-hand side describes their attenuation.
The two terms on the left-hand side and the first term on the right-hand side
constitute a homogeneous equation. The last term on the right-hand side, σ′aB,
is a “source term” that makes the full equation inhomogeneous. It describes
the emission of radiation by matter. From our considerations in the previous
section, we expect that the difference between the two terms on the right-hand
side is of the order of εstream in thick media, even though each term by itself
is of the relative order unity.

We introduce now a “difference intensity”

D(x, t; ν,Ω) := I(x, t; ν,Ω)−B(ν, T (x, t)) (16)

and subtract (1/c)(∂B/∂t) + Ω·∇B form both sides of Eq. (15).

1
c

∂D(x, t; ν,Ω)
∂t

+ Ω·∇D(x, t; ν,Ω) = −σ′a(ν, T (x, t))D(x, t; ν,Ω)

−1
c

∂B(ν, T (x, t))
∂t

− Ω·∇B(ν, T (x, t)) (17)

Let us rewrite it with the independent variables suppressed for clarity.

1
c

∂D

∂t
+ Ω·∇D = −σ′aD − 1

c

∂B

∂t
− Ω·∇B (18)

It should be emphasized that Eq. (18) and Eq. (15) are completely equiv-
alent. In particular, they are able to satisfy equivalent initial and boundary
conditions. The positivity constraint, I ≥ 0, translates into D ≥ −B.
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It is important to investigate the properties of the new equation, (18),
comparing it to its traditional counterpart, Eq. (15) and, by extension, to Eq.
(1). The terms on the left-hand side and the first term on the right-hand side
of Eq. (18) are completely analogous to those in Eq. (15): they describe the
straight line propagation and the attenuation of the difference intensity, D.
We conclude that the intensity I and the difference intensity D propagate the
same way. In particular, their Green’s functions (propagators) are the same.

In contrast, the inhomogeneous source terms have been changed drasti-
cally. The source term in Eq. (15) is σ′aB ≈ B/lrad, while the last source
term in Eq. (18) is Ω·∇B ≈ B/L. In thin media, where lrad � L, the first
version of the source term is small, while in thick media, where lrad � L, it
is the other way around. In addition to the question of asymptotic behavior,
the source terms in the difference formulation are smooth in the frequency
domain as they do not involve a factor of σ′a.

The formulas in the previous section can be used to estimate the or-
ders of the terms in Eq. (18) in optically thick regions. Let us divide the
equation by σ′aB and consider the D/B term as the unknown. In thick
media, the dominant source term is |Ω·∇B|/σ′aB ≈ εspace; therefore we
conclude that D/B ≈ εspace. We can then estimate that the other terms
(1/c)(∂B/∂t)/σ′aB ≈ εtime ≈ ε2space and Ω·∇D/σ′aB ≈ ε2space. Finally, the
(1/c)(∂D/∂t)/σ′aB term is of order ε3space.

Another significant difference between Eqs. (15) and (18) is in the angular
dependence of the source terms. The source term in the traditional formulation
is σ′aB; it is spherically symmetric, i.e. of P0 symmetry. The dominant source
term in the difference formulation is Ω·∇B; it is antisymmetric in angle;
more accurately it is of P1 symmetry. In the difference formulation there is
also a small source term, (1/c)(∂B/∂t) of P0 symmetry. While the σ′aB term
adds energy to the radiation field, in the difference equation the dominant
source term, Ω·∇B, only transports the difference intensity; it adds nothing
to the total energy of the radiation field. That task is relegated to the small
(1/c)(∂B/∂t) term.

The source term in the traditional formulation for photon transport, σ′aB,
accounts for spontaneous emission and is balanced by absorption in a thick
system. In the difference formulation, the reference value for the radiation
field is B, not zero. This reference value is a function of the local temperature,
T (x, t), and is therefore a function of both space and time. The new source
terms in the difference formulation have a straightforward, intuitive interpre-
tation. The term involving the time derivative of B can be understood from
energy conservation. If the local temperature changes, the resultant change
in B, all else remaining constant, must be accounted for by a change in the
difference field, D, in order to maintain (locally) the energy in the radiation
field.

The term involving the space derivative of B is more interesting. To under-
stand this term, consider transport in one-dimensional slab geometry where
this term is now written µdB/dx; the direction cosine of the propagation di-
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rection is µ = Ω·x̂, where x̂ is a unit vector perpendicular to the slab. If the
temperature is uniform, dB/dx is zero and there are no sources. Consider,
however, the case where there is a positive step in the value of B, of magni-
tude b, at the origin. The source term, µdB/dx, is now µ b δ(x). The difference
field has a source term only at the origin, with a negative source for positive
µ and a positive source for negative µ. The right-moving negative source is
interpreted as the missing photons that would have been streaming across the
origin if the step in B did not exist. The negative sources are “photon holes”,
borrowing a term from solid state physics. The left-moving positive source is
simply the photons being emitted from the hotter region into the cooler re-
gion. More succinctly, the µ dB/dx term generates the transport between the
hotter and cooler regions that would otherwise not occur. The total “photon”
energy emitted at the origin integrates to zero.

For completeness, we write the radiation energy density and its first mo-
ment, the radiation flux vector, in terms of D

Erad =
1
c

∫ ∞

0

dν

∫
4π

dΩI =
1
c

∫ ∞

0

dν

∫
4π

dΩ(D + B) , (19)

Frad =
∫ ∞

0

dν

∫
4π

dΩ Ω I =
∫ ∞

0

dν

∫
4π

dΩ ΩD , (20)

and the coupling of the radiation to the material, from Eq. (8)

∂Emat

∂t
=

∫ ∞

0

dν

∫
4π

dΩσ′aD + G . (21)

The energy conservation equation, (9), is unchanged.

3.2 The diffusion limit, without scattering

In thick media, in LTE, far from boundaries, after sufficient time, radiation
tends to the diffusion limit. This is a well established result of asymptotic
analysis; nevertheless even very recently a reanalysis was published by Morel
[Mor00]. We show now how the difference formulation leads to the diffusion
limit. In fact we will show it in two different ways. First, we formally integrate
the transport equation; second, we show that the traditional asymptotic ex-
pansion yields the same result to first order. It has to be emphasized that we
show the diffusion limit of the exact transport equation; therefore it includes
all terms, it is able to satisfy boundary conditions correctly and it includes
the treatment of boundary layers.

Formal solution

Equation (18) has a formal solution. We define a path variable, s, by

x = x0 + Ω s ; t = t0 + s/c . (22)
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It is easy to see that Eq. (18) can be written as

dD

ds
= −σ′aD − dB

ds
, (23)

giving the formal solution

D(s) = D(0)exp

[
−

∫ s

0

σ′a(s′)ds′
]

−
∫ s

0

ds′
dB(s′)

ds′
exp

[
−

∫ s

s′
σ′a(s′′)ds′′

]
. (24)

The formal solution shows that the boundary condition, D(0), decays in
a few absorption lengths. Deep in the material σ′a varies slowly. In fact both
σ′a and dB/ds are constant to first order in εstream. Eq. (24) can then be
integrated. The result is

D(s) =
[
D(0) +

1
σ′a

dB

ds

]
exp[−σ′as]− 1

σ′a

dB

ds
. (25)

It shows that

D(s) = − 1
σ′a(s)

dB(s)
ds

(26)

is the steady-state solution of Eq. (24) and that any boundary value of D(0)
decays to it in a few absorption lengths. A result that is correct to second
order in εstream was given in [SB03].

Asymptotic expansion

The relative orders of various terms in the transport equation, Eq.(18), in
thick media were estimated in Section 2.2. The estimation is valid far from
boundary layers and time transients. To first order in εstream, there are only
two terms

0 = −σ′aD − Ω·∇B , (27)

giving the solution

D = − 1
σ′a

Ω·∇B = − 1
σ′a

∂B

∂T 4
Ω·∇(T 4) . (28)

The radiation flux, from Eq. (20), is

Frad = −
[∫ ∞

0

dν
1
σ′a

∂B

∂T 4

]
1
3
∇(T 4) = − ac

3σR
∇(T 4) . (29)

This is the correct diffusion limit of the transport equation. We also recov-
ered the correct definition of the Rosseland mean opacity, σR; see [Cas00],
[MM84]. To first order Eq. (29) is identical to Eq. (25). It confirms the first
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order accuracy of the diffusion flux [Mor00]. Note the utter simplicity of the
derivation.

An expansion in higher orders of εstream can also be carried out. The
results are similar to those of Morel [Mor00], but they are slightly different
and more consistent. A short discussion was given in [SB03].

3.3 The difference formulation, in LTE, with scattering

The scattering term

The scattering term was displayed in Eq. (5). In LTE, the Planck distribution
at the material temperature is stationary and it also satisfies detailed balance.
This imposes thermodynamic conditions on the scattering cross sections

ν

ν′
σs(ν′ → ν,Ω·Ω′)B(ν′)

[
1 +

c2B(ν)
2hν3

]
=

σs(ν → ν′,Ω·Ω′) B(ν)
[
1 +

c2B(ν′)
2hν′3

]
, (30)

where the x, t;T dependence of σs and B has been suppressed. After some
algebra we get the surprising result

Q(D) =
∫ ∞

0

dν′
∫

4π

dΩ′ ν

ν′
σs(ν′ → ν,Ω·Ω′)D(ν′,Ω′)

[
1 +

c2D(ν,Ω)
2hν3

]
−

∫ ∞

0

dν′
∫

4π

dΩ′σs(ν → ν′,Ω·Ω′)D(ν,Ω)
[
1 +

c2D(ν′,Ω′)
2hν′3

]
. (31)

We would like to stress that Eq. (31) is valid only in LTE. Otherwise the
stimulated scattering terms cannot be written in terms of D alone.

If scattering does not change the radiation energy, e.g. in Thomson scat-
tering, the stimulated emission terms in Eq. (5) cancel identically and an
isotropic distribution is stationary under those conditions. In fact, we define,
as usual

J(x, t; ν) :=
1
4π

∫
4π

dΩ I(x, t; ν,Ω) . (32)

Then I = J is stationary and Eq. (5) can be written as

Qmono(I − J) =
∫

4π

dΩ′ σs (ν,Ω·Ω′) [I(ν,Ω′)− J(ν)]

−
∫

4π

dΩ′ σs (ν,Ω·Ω′) [I(ν,Ω)− J(ν)] . (33)

In the scattering terms, Eqs. (5), (31), (33), both σs(ν′ → ν,Ω·Ω′) and
I(ν,Ω) or D(ν,Ω) can be expanded in spherical harmonics [Brn95]. The in-
tegrals are then reduced to relaxation equations for the spherical harmonic
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components of D, or I − J , respectively. In particular, if the scattering is
isotropic, Eq. (33) reduces to

Qmono(I − J) = σs(ν)(I − J) . (34)

Finally, we note that the scattering terms are always proportional to

σs(ν) =
∫

4π

dΩ′ σs (ν,Ω·Ω′) , (35)

and to the analogous expressions in Eqs. (5), (31).

The full equations

The full equations in the difference formulation, in LTE, are obtained by
adding the right-hand side of Eq. (31) to the right-hand side of Eq. (17). As
the change of the radiation energy caused by scattering comes from the matter,
the integral of Eq. (31) over frequency has to be subtracted from Eq. (21),
in analogy to Eq. (8). They have to be solved together with the conservation
equations, Eq. (9). In the more general case they have to be solved together
with the full set of equations of radiation hydrodynamics [Cas00], [MM84],
[Pom73].

Rather than presenting the formal development of the equations, we will
sketch their simplified version that gives some insight into the relaxation be-
havior of the radiation intensity. We start by rewriting Eq. (1) in terms of
the path variable, s, as defined in Eq. (22). We also take liberties with the
scattering term; we tacitly assume it to be monochromatic and isotropic, as
in Eq. (34).

dI

ds
= −σ′a(I −B)− σs(I − J) . (36)

We define the total extinction coefficient, σt = σ′a + σs. Obviously,[
σ′a
σt

+
σs

σt

]
dI

ds
= −σ′a(I −B)− σs(I − J) . (37)

In analogy to the difference formulation, we subtract appropriate terms from
the equation to give

σ′a
σt

d(I −B)
ds

+
σs

σt

d(I − J)
ds

=

−σ′a(I −B)− σs(I − J)− σ′a
σt

dB

ds
− σs

σt

dJ

ds
. (38)

Depending on the relative magnitudes of σ′a and σs, it is easy to see that
asymptotically, in thick media, the equation approaches either the diffusion
approximation or the Eddington approximation.
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An alternative rearrangement gives

dI

ds
= −σ′a(J −B)− (σ′a + σs)(I − J) . (39)

We now subtract dB/ds from both sides of the equation, to give

d(I − J)
ds

+
d(J −B)

ds
= −σ′a(J −B)− (σ′a + σs)(I − J)− dB

ds
. (40)

With the further assumption of dB/ds = 0 and the constancy of σ′a and
σs along the radiation path, it is easy to verify that Eq. (40) has the solution

J −B = [J(0)−B(0)]exp[−σ′as] , (41)

I − J = [I(0)− J(0)]exp[−(σ′a + σs)s] . (42)

We note at this point that the material relaxation equation, Eq. (8), can
always be written as

∂Emat

∂t
= 4π

∫ ∞

0

dνσ′a(J −B) + G , (43)

so J −B is a natural variable to consider.
We emphasize again that our derivation of the solution of Eq. (40) was

highly simplistic. In particular it did not take into account material relaxation
and the possibility of scattering with change of photon frequency, e.g. Comp-
ton scattering [Cas00]. We hope to report later on further developments along
these lines.

4 Test Problems

A variety of test problems have been investigated in [Bro05] in order to eval-
uate the computational efficiency and accuracy of the difference formulation,
employing the Symbolic Implicit Monte Carlo (SIMC) method. Our goal was
to analyze some simple situations that indicate the potential impact of the
difference formulation in more complex physics environments. The key issues
are accuracy and efficiency for both thick and thin media, and specfically the
frequent occurence of media which are thick at one frequency while being thin
at others. In addition to comparing the Monte Carlo solution of the two formu-
lations of transport, we compared them to analytic, or semi-analytic solutions
where they are available. The main results of that study will be summarized
below.
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4.1 Behavior of a finite slab heated from the outside

A very basic test of a time-dependent thermal transport algorithm is whether
it correctly approaches the steady state solution for a finite slab immersed
in a heat bath with different temperatures on either side. The fourth power
of the temperature should become a linear function of the optical depth in a
gray, thick medium, in steady state. Deviations from such a straight line are
indicative of boundary layers when they occur within a mean free path or so of
a surface, but otherwise indicate serious problems in the numerical solution.
Teleportation errors result in a wrong slope and cause curvature in the interior
solution [MBS03]; for this reason zone thickness were limited to one mean free
path in our piecewise constant treatment of the material temperature.

In addition to the issues noted above, the time dependent approach to
steady state offers the opportunity to check the correctness of the implemen-
tation of interior source terms as well as initial and boundary conditions. That
the steady state temperature is independent of time step, reflecting implicit
behavior of the time integration, can also be checked. When the spectrum of
the radiation field is examined, even for a grey opacity, the correctness of the
frequency sampling algorithm can be checked. Agreement between the stan-
dard and difference formulation is non-trivial due to the different nature of
the source terms.

In the presentation of our computational results below, we provide a clear
demonstration of rigorous agreement between the two formulations for trans-
port, in terms of their approach to steady state, along with a measure of
increase in computational efficiency for the difference formulation. The mag-
nitude of this increase in computational efficiency, in the form of greatly re-
duced Monte Carlo noise as the optical thickness of the problem is increased,
is somewhat surprising even to the authors who were prospecting for it.

In the first set of simulations we considered a finite slab heated from the
left side, with an open boundary on the right, allowing the radiation flowing
through the slab to enter free space. The slab was composed of a uniform,
static material having a frequency-independent (gray) opacity. We calculated
the time dependence of the temperature and of the radiation field after a 1
keV black-body source on the left side of the slab is turned on at time t = 0.
( 1 keV ≈ 1.2 107 ◦K.)

During the time dependent execution of the problem, a thermal wave,
also known as Marshak wave, sweeps the problem domain and the solution
then approaches steady state. We compared the solutions provided by the two
formulations and their relative noise, for identical problem run times, in order
to obtain a measure of the accuracy and relative computational efficiency of
the two formulations for transport, under conditions that the Monte Carlo
portion of the code dominates execution time.

Four instances of this problem are presented below. The slab is composed
of a uniform material having a frequency independent (gray) opacity of 0.1, 1,
10, and 100 mean free paths per cm respectively. The slab is 10 cm thick so the
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four opacities correspond to total optical depths of 1, 10, 100 and 1000 mean
free paths. The specific heat of the material is a constant 0.1 jerk/(keV cm3),
where jerk is an energy unit (1 jerk = 1016 ergs), and temperature is measured
in energy units of kT = 1 keV. The slab is initially at a temperature of
0.01 keV, with the radiation field being a Planckian in equilibrium with this
temperature. All four problems used a time step of 0.2 sh, where 1 sh =
10−8 sec. The problem 1 mean free path thick was run to 20 sh in order to
get close to steady state, as was the problem 10 mean free paths thick. The
problem 100 mean free paths thick was run to 40 sh in order to approach
steady state. The problem 1000 mean free paths heated up very slowly due
to the diffusive nature of the solution, requiring 320 sh in order to suitably
approach steady state. The problems 1 and 10 mean free paths thick employed
20 zones, while the thicker problems employed zones one mean free path thick
in order to prevent teleportation error from influencing the results, and to
prevent anomalous performance results for the difference formulation. Equal
thickness zones were used everywhere. Geometric zoning has a role only if
piecewise linear treatment of the material temperature is available to remove
teleportation error.

The speed of light is 300 cm/sh. This provides 6 traversals of the slab for a
time step of 0.2 sh, reflecting on the stability of the method. Relaxing the need
for implicit treatment of the source terms was one of the hopes of the authors,
given that implicit treatment requires the solution of a non-linear system of
equations for each time step. Our experiences in this regard, documented in
[Daf05], were made even more difficult by the T 4 term for thermal emission.
Explicit treatment of the ∂B/∂x source terms was abandoned as a result, but
may be worth revisiting in mixed physics applications where the time step
size is limited for reasons outside of transport physics.

We would like to note that the Monte Carlo solution for the two transport
formulations have entirely different requirements for spatial importance sam-
pling if uniform statistical noise, as a function of position, is to be obtained.
In the standard formulation most of the computational effort is spent com-
puting the balance between emission and absorption that produces the local
equilibrium black body field. As a result, a scheme that samples particles with
a uniform density in space produces a relatively flat statistical noise across
the slab. The number of source particles born in each zone, during each time
step, is proportional to the thickness of the zone. The statistical properties of
the Monte Carlo solution for the difference formulation are in sharp contrast
to this. For thicker problems, the statistical noise for the difference formu-
lation is miniscule near the hot side and increases very rapidly towards the
cold boundary. Suitable importance sampling could flatten out this growth in
noise. An exposition of this topic is beyond the scope of this paper.

In the results shown below, the unit of source sampling was one ∂B/∂t
particle, and one ∂B/∂x particle pair, for each zone, or zone interface, respec-
tively, for the difference formulation. We have not attempted to tune the ratio
between ∂B/∂t and ∂B/∂x source particles, nor have we attempted to tune
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the relative importance of source sampling across the volume of the problem.
In the standard formulation, the unit of source sampling is one thermally
emitted particle per zone.

In Figure 1 (a) we show the steady state solution for the material temper-
ature, as a function of position in the slab, for the problem instance that is
one mean free path thick. The average of 100 randomly seeded runs using the
standard formulation, and the average of the same number of instances using
the difference formulation, is shown by the boxes and the × symbols, respec-
tively. The two formulations are in perfect agreement. The standard deviation
of the results for the standard formulation, as well as the same statistic for the
difference formuation, both multiplied by 400, are plotted using diamonds and
triangles, respectively. The Monte Carlo source particle counts were selected
for equal run times for the two formulations, and were high enough that the
cost of Monte Carlo transport dominated execution time. The relative per-
formance of the methods, then, is the ratio of the squares of the standard
deviations. There is a small advantage in favor of the difference formulation,
except at the very right hand side of the slab. Note that the optical thickness
of each zone is only 0.05 optical depths.

In Figure 1 (b) we show the results for a slab that is 10 mean free paths
thick. Again, we obtain perfect agreement for the two formulations when the
average of the equilibrium material temperature is examined. In order to see
the standard deviation for the two formulations on the same plot, we now
have to apply a scale factor of 100 for the standard formulation and 1000 for
the difference formulation. The trend of growth for the standard deviation for
the difference formulation, as the temperature gradient increases in the slab
from left to right, is becoming apparent.

In Figure 1 (c) we show the results for a slab that is 100 mean free paths
thick. There are 100 zones in this problem in order to avoid teleportation error,
with every fifth point plotted using a symbol. The other points are included
in the solid lines drawn. The growth in noise for the standard formulation is
now becoming visible in the plot. We apply a scale factor of only 10 to see the
standard deviation for the standard formulation. The growing trend of the
standard deviation for the difference formulation, as one traverses the slab
from left to right is now quite clear, but the computational advantage for the
difference formulation is large.

In Figure 1 (d) we show the results for a slab that is 1000 mean free
paths thick. Thee are 1000 zones in this problem, a requirement to avoid
significant teleportation error, with every 50’th zone plotted using a symbol.
The disagrement between the two formulations appearing towards the left side
of the slab are statistical fluctuations. The computational advantage of the
difference formulation is extreme.

At this point, the reader may note that the results for the difference formu-
lation have the appearance of smooth curves, regardless of the optical thick-
ness of the problem. The 1/

√
N noise behavior typical of a Monte Carlo
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solution is still present, it is just that the amplitude of the noise is small and
remains small as the optical thickness of the problem increases.

Evidence of the scaling behavior of the computational advantage is shown
in the next figure. As noted above, the number of Monte Carlo particles for
each optical thickness is set so that the difference formulation and standard
formulation exhibit the same run time, and that the computer time is domi-
nated by the Monte Carlo, so that the standard deviation is scaling like one
over the square root of the computational work. Under these conditions, the
relative computational efficiency of the two methods is the ratio of the squares
of their standard deviations. In Figure 2 we show the computational advantage
exhibited in the standard deviation of the material temperature, as a function
of position, for the four optical thicknesses. The computatational advantage
scales, roughly, as the square of the optical depth of the problem.

Finally, in Figure 3 we show the penetration of the thermal wave into the
material, 1000 optical depths thick, at an intermediate time. As in Figure 1
(d), the material temperature is plotted vs. distance. Refining the time step
and zone size demonstrates that the solution shown is fully converged. This
figure illustrates the gains that the difference formulation provides, clearly
visibly to the reader.

4.2 Comparison to analytic diffusion solution for a linearized
problem

In order to check the correctness of our numerical implementation, we have
compared results with the diffusion solution appearing in [SO96]. This solution
requires that the material energy take the form

Emat =
αT 4

4
(44)

or, equivalently, a specific heat of the form

∂Emat

∂T
= αT 3 . (45)

The purpose of this form for the material energy is to remove the non-linearity,
T 4, that otherwise prevents an analytic solution. The resulting analytic solu-
tion can then be used to check for correct convergent behavior in the numerical
simulation. The behavior of the specific heat at T = 0, however, makes things
quite fragile unless the numerical code itself is transformed to handle things
in linearized form. To some extent, this defeats the purpose of checking the
original code, much of which had to be modified to resolve the problem.

For this problem, α and the cross section were chosen so that the values in
the tables of analytical results appearing in [SO96] could be used directly. In
Figure 4 we plot the material temperature produced by our Monte Carlo solu-
tion of the standard and difference formulation, along with data from Su and
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Olson’s analytical solution corresponding to a late time, τ = 10. We obtain
good agreement where analytical data are available. This is expected because
for τ = 10 the diffusion approximation assumed by Su and Olson is valid. In
Figure 5 we plot the material temperature for the same problem at a much
earlier time, along with data from Su and Olson’s analytical solution for a
τ = .01. In this case, not surprisingly, there is sharp disagreement between
the diffusion solution and the fully overlapped and converged Monte Carlo
transport solutions for the standard and the difference formulation. Here the
fundamental limitation is the speed of light. It is fully respected by the trans-
port solution but ignored by the diffusion solution.

4.3 Time dependent Marshak wave problem, with a non-trival
opacity

Our Monte Carlo solutions of the standard and difference formulations of
transport fully implement the details of the thermal frequency spectrum; the
spectral properties of the derivative sources make the agreement between the
two formulations non-trivial even in the case of a gray opacity. Once the
spectral sampling of the source terms in the difference formulation is done
correctly, as described in Appendix A of [Bro05], there is no more to be done
for the correct treatment of a frequency dependent opacity in the difference
formulation other than to use the correct absorption cross section for the
given Monte Carlo particle. The accuracy of the treatment of the frequency
dependent cross section is as good as the cross section itself.

The emission term for the standard formulation, on the other hand, ap-
pears as σB and in the most general case it must be numerically integrated
across a frequency group structure in each zone, for the temperature at the
start of each time step, in order to produce the probability distribution for the
emission spectrum that, then, must be sampled. This requirement provides
another place where numerical errors must be controlled in the implementa-
tion of the standard formulation.

We now turn to a relatively simple frequency dependent opacity. The opac-
ity is constant (gray and 1000 mean free paths for the slab) for frequencies
below 1 keV and again constant (gray and 10 mean free paths for the slab) for
frequencies above 1 keV. This corresponds, roughly, to the precipitous drop
in opacity that can occur in real materials, as a function of frequency. The
portion of the emitted spectrum below 1 keV is strongly re-absorbed, while
the portion of the emitted spectrum above 1 keV encounters a lower opacity
and transports freely. This is a difficult non-linear problem because, as the
trapped radiation heats the material, the Planckian emission spectrum moves
towards higher frequencies where radiation flows freely.

In Figure 6 we show the material temperature for one instance of this
problem, at an intermediate time where the thermal wave is still propagat-
ing through the slab. Again, as before, the standard formulation is the one
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exhibiting a high level of statistical noise. Note, however, that this noise dis-
appears in the “foot” of the advancing thermal wave. The reduction in noise
for the standard formulation is due to the fact that this feature is caused by
photons at high frequencies where the material has a reduced opacity. Those
photons are absorbed, but not reemitted by the cold matter.

5 Summary and directions for further work

5.1 Theory

In earlier work [SB03], a new analytical formulation was introduced for the
transport equation. The new formulation is for the transport of the difference
between the specific intensity and the local black body equilibrium radiation
at the matter temperature, at any point in space, time and direction. Ap-
propriately, we called the new transport equation the difference formulation
to distinguish it from the traditional formalism. We have shown that the dif-
ference formulation is expressed in terms of quantities that become small in
optically thick media. The transformation is a simple one and results in a
completely equivalent system of equations, without approximation.

The most important distinction between the two formulations is in the
source terms. In the traditional formulation, the source term is the sponta-
neous emission of the medium. It is small in optically thin regions, resulting
in straight line propagation of photons. The traditional formulation is well
suited for this regime. In the difference formulation, the source term is the
space-time gradient of the Planck function at the material temperature. The
latter gets small in optically thick regions. In addition to this important dif-
ference in asymptotic behavior, the two formulations differ in that the spon-
taneous emission depends upon the absorption cross sections for the emitting
medium, while the source term in the difference formulation depends only
upon the temperature of the medium, as a function of space and time. The
two formulations are able to satisfy equivalent boundary conditions and initial
conditions.

Even the largest terms in the difference formulation are of the order of
εspace, i.e. the ratio of the photon mean free path to the gradient length. In
optically thick regions this ratio is a small quantity. We have shown that the
equations reduce to the diffusion limit in the proper circumstances. We have
also discussed briefly the extensions needed when scattering is important.

5.2 Computations

The Symbolic Implicit Monte Carlo method, SIMC, [Bro86] is an attractive
framework for the calculation of radiation transport in complex media and ge-
ometries; it provides a basis for accurate and stable numerical schemes [Nka91]
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[DL04]. In our previous paper, [Bro05], we have demonstrated that the dif-
ference formulation [SB03] is eminently suitable for numerical simulations of
radiation transport, employing the SIMC technique.

Theoretical expectations were that the traditional formulation would be
good for thin regions, while the difference formulation would be advantageous
in thick media. We have demonstrated that the difference formulation, when
employing the SIMC technique, offers significant noise reduction for thick sys-
tems. The expected cross-over vis-a-vis the standard formulation occurs for
very thin systems, thin enough that the difference formulation might become
a panacea for Monte Carlo treatment of thermal radiation transport. Its ad-
vantage for thick systems goes like the square of the optical depth of the
system.

The character of the source terms is very different in the traditional and
the difference formulations: thermal emission in the former is replaced by
derivative source terms in the latter. Therefore a key issue for the accuracy
and stability of the difference formulation is the successful treatment of those
derivative source terms. We have developed efficient, accurate analytic tech-
niques for sampling the frequency spectrum of the source terms for the differ-
ence formulation. Frequency sampling in the difference formulation depends
only on the space and time derivative of the material temperature, not on
detailed material optical properties. This offers a significant advantage for
problems with complicated material optical properties. The gain in terms of
code complexity became clear when we implemented the test problem with
the step in opacity. Although the test problems presented were very simple, in
order to be able to clearly identify the advantages of the method, extensions
to more complex situations do not present conceptual difficulties.

We would like to note that the computational gain for the difference for-
mulation demonstrated in this paper is for the Monte Carlo portion of the
problem. In order to obtain implicit treatment of the source terms, the SIMC
technique requires the solution of a non-linear system of equations in order to
perform the temperature update at the end of the time step. The cost of this
can become significant when the number of zones in the problem is large. We
used band-limited Gaussian elimination in our numerical work on problems
with as many as 1000 zones. The bandwidth was limited both by the time step
size and by the death of Monte Carlo particles when they became too small,
relative to their birth weight. Multi-dimensional problems with significantly
larger numbers of zones will pose a challenge, requiring the use of suitable it-
erative solution techniques. We believe that the demonstrated noise reduction
in thick systems will be worth the effort involved.

We would like to note that our test problems have been relative simple,
suitable as the first numerical tests for the difference formulation for thermal
radiation transport. In our presented results, it is clear that the importance
sampling requirements for the difference formulation are quite different than
those for the standard one. It is also the case that improvements such as weight
vectors in frequency space, and deterministic handling of the spectral output
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from the interface adjoining free space, have a significant impact on noise
when spectral information associated with the photon field is desired. The
details of these enhancements, and their relative value, are dependent upon
the exact nature of the problems being run and the computational results that
are desired.

5.3 Work in progress

We believe that the difference formulation will help in numerical solutions of
the equations of radiation hydrodynamics in optically thick regions. We ex-
pect that it will be useful regardless of the numerical method employed, be it
a deterministic method, for example Sn and Pn, or a Monte Carlo method,
for example the Symbolic Implicit Monte Carlo (SIMC) method of Brooks
[Bro86], employed here. The dominant source of instability for Monte Carlo
methods, the spontaneous emission term, is removed in the difference formu-
lation and replaced by terms that are small in thick systems. Because of this,
the well known stability problem for Monte Carlo methods in thick systems
may, in fact, be removed. We will report on this possibility in future work.
We would like to note that the Symbolic Implicit Monte Carlo method is well
suited for dealing with the (1/c)(∂B/∂t) term, should it be a source of insta-
bility. Preliminary results show that the efficiency for Monte Carlo methods
in thick systems will be improved, due to the removal of the balance between
emission and absorption in a zone that produces a relatively noisy estimate
for the difference.

A similar treatment may be useful in other transport problems. Neutron
transport near criticality has many of the same properties as photon transport
in optically thick regions. Similarly, the success of radiation therapy depends
on accurate modeling of particle transport in the presence of strong absorption
and scattering. We hope to be able to extend our treatment to some of those
applications in the future.

In our numerical work on the difference formulation, we have employed a
piecewise constant discretization for the material temperature. Due to telepor-
tation effects, this discretization does not provide the correct diffusion limit
for zone sizes that are large compared to the mean free path of a photon. It
was clearly established by Clouet and Samba [CS04] that a piecewise linear
treatment of the material temperature is required to obtain the correct dif-
fusion limit, thereby eliminating the teleportation problem [MBS03]. In view
of our results so far, we expect that introducing such treatment will enable
the SIMC method to treat opically thick media with the same efficiency as
optically thin ones. In addition, as discussed in the paper, the two formula-
tions are completely equivalent. That suggests that they can be freely mixed
within a single problem. This should enable one to take the best advantage of
either formulation. We expect that the result will be an accurate and efficient
treatment of radiation transport in almost any medium.
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Further studies in progress include a study of the numerical stability of
various methods. We also intend to generalize the difference formulation to in-
clude non-monochromatic scattering and investigate its applicability to some
well known approximate treatments, e.g. the Eddington approximation and
the Kompaneets equation.
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Fig. 1. Temperature distribution in a slab in steady state. The slab is heated from
the left by a 1 keV black body, and it radiates freely on the right. The total optical
depth (OD) of the slab is 1 in (a), 10 in (b), 100 in (c) and 1000 in (d). The
standard deviation of the standard formulation is denoted by diamonds and that of
the difference formulation by triangles. Note the change in their relative scale with
optical depth. The noise in the standard formulation increases dramatically with
optical depth, while in the difference formulation it does not.
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Fig. 2. The relative computational advantage of the difference formulation com-
pared to that of the standard formulation, plotted as a function of position for
various optical depths of the slab. In the 1 OD case, each zone is only 1/20 OD
thick, nevertheless, the difference formulation is better than the standard one ex-
cept near the surface of the slab on the right hand side. There is a sharp decrease in
computational advantage where the temperature gradient is large. This could easily
have been remedied by spatial importance sampling of the source particles.
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Fig. 3. Thermal wave (Marshak wave) penetrating a uniform, gray slab of 1000 OD
at an early time, 40 sh. The standard formulation gives a noisy temperature profile
whereas that of the difference formulation is many orders of magnitude smoother.
The slight difference in the position of the leading edge is a statistical fluctuation
for the standard formulation.
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Fig. 4. Temperature distribution in the Su & Olson problem [SO96] at a late time
τ = 10. There is excellent agreement of the calculations with analytic results.
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Fig. 5. Temperature distribution in the Su & Olson problem [SO96] at an early
time τ = 0.01. The transport solution is limited by the speed of light, that is 1 in
the units of τ . Note that there is no significant spreading of the radiation front at
the leading edge of the thermal wave.
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Fig. 6. Thermal wave penetrating a uniform slab, shown at a time t = 1 sh. The
optical thickness of the slab below 1 keV is 1000 mean free paths, but there is a
precipitous drop in opacity by a factor of 100 above 1 keV. The long “foot” of the
thermal wave stems from high frequency photons that penetrate deeply.


