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Abstract 
 
The goal of this LDRD was to demonstrate the use of robotic vehicles for deploying and 
autonomously reconfiguring seismic and acoustic sensor arrays with high (centimeter) 
accuracy to obtain enhancement of our capability to locate and characterize remote 
targets. The capability to accurately place sensors and then retrieve and reconfigure them 
allows sensors to be placed in phased arrays in an initial monitoring configuration and 
then to be reconfigured in an array tuned to the specific frequencies and directions of the 
selected target. This report reviews the findings and accomplishments achieved during 
this three-year project. This project successfully demonstrated autonomous deployment 
and retrieval of a payload package with an accuracy of a few centimeters using 
differential global positioning system (GPS) signals. It developed an autonomous, multi-
sensor, temporally aligned, radio-frequency communication and signal processing 
capability, and an array optimization algorithm, which was implemented on a digital 
signal processor (DSP).  Additionally, the project converted the existing single-threaded, 
monolithic robotic vehicle control code into a multi-threaded, modular control 
architecture that enhances the reuse of control code in future projects.  
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Introduction 
 
The three-year Adaptive and Mobile Ground Sensor Laboratory Directed Research and 
Development (LDRD) project was initiated to develop and demonstrate the capability to 
use robotic vehicles to autonomously deploy arrays of seismic/acoustic sensors with high 
positional accuracy, and then to re-deploy them into optimized configurations based on 
in-situ site measurements. The capabilities developed under this project have specific 
application for remote targets, but they also have great potential for a much broader range 
of high-value projects that can attract additional development funding. A number of 
significant advancements in Sandia’s capabilities that provide Sandia with an important 
technical edge were achieved during the conduct of this LDRD. 
 
Vehicle advancements: 

- Precision vehicle/payload placement control: Accomplished autonomous 
precision placement of sensors to centimeter accuracies in unstructured (outdoor) 
environments.  

- Modular vehicle control code architecture: Converted existing single-thread, 
monolithic robotic vehicle control code to a multi-threaded, modular control 
architecture. Modular software enables easy reuse of code in future projects 
allowing Sandia to build upon previous development efforts and rapidly deliver 
new projects.  

- Mobile manipulation on small autonomous vehicle: Implemented manipulation 
on a small-scale, man-portable, semi-autonomous vehicle for the first time. 

 
Sensor system advancements: 

- Autonomous sensor array signal processing: Achieved near real-time, 
autonomous processing of phased-array sensor data.  

- Sensor array optimization algorithms: Developed and tested autonomous 
reconfiguration algorithms to determine optimal sensor array layout for a given 
target and in-situ conditions. 

- Sensor array hardware and communication. Achieved multi-sensor, 
temporally aligned, radio-frequency (RF) communication of seismic array data to 
a central processor. 

 
These highly significant achievements position Sandia for significant follow-on work 
with a range of government and civilian organization for such wide-ranging activities as  

- Search and Rescue 
- Commercial seismic sensor placement 
- Military sensor placement for perimeter protection, urban operations, etc. 
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Project Concept 
 
The original LDRD proposal envisioned a synergistic merging of Sandia’s capabilities in 
the areas of unattended ground sensors and robotic vehicles to achieve a dramatic leap in 
sensing capability. High-valued, difficult targets are hard to detect and characterize, and 
site access is limited. Current tactical unattended ground sensor (TUGS) technology 
developed at Sandia using seismic and acoustic signals can provide extremely valuable 
information on underground target characteristics and contained equipment, but present 
performance is limited due to limitations on sensor placement. We know that significant 
improvements in bearing estimates (localization) can be obtained by deploying a coherent 
array of sensors spaced and oriented appropriately to the signal frequency. Additionally, 
using coherent superposition of multiple sensor signals, arrays can be used to increase the 
signal gain for longer range detection and scanning for specific frequencies. Present 
sensor emplacement techniques, either hand-emplaced or airdrop, do not provide 
adequate placement accuracy for these array techniques. Additionally, the signal 
frequency that determines optimal array spacing can only be determined by in-situ 
measurements, thus requiring a re-deployable system of sensors. Sandia’s robotic vehicle 
capability offers a technology approach to provide mobile, re-deployable sensors 
enabling on-site, dynamic sensor array configuration in response to site frequencies. This 
merging of two separate technologies offers a major leap in capability in sensing difficult 
targets.  
 
The approach proposed in this effort was to integrate TUGS with a small air-deployable 
robotic vehicle to demonstrate the feasibility of self-adapting sensor arrays exhibiting 
enhanced performance capabilities. Advantages of this approach include reduced 
manpower for sensor deployment, since fewer sensors can be optimally positioned 
automatically for best results, and improved sensor results, since the sensors can be 
automatically optimized for in situ frequencies. With this concept, the vehicle can be 
deployed with minimal accuracy at a distance (a few kilometers) from its pre-selected  
observation site, and it can then reposition itself and place sensors within a few tens of 
centimeters relative to each other to form a sensing array. Once an initial set of 
measurements is evaluated using an on-board algorithm, the vehicle reconfigures the 
sensor array in the best arrangement for the site and target conditions. The original 
proposal envisioned using multiple vehicles each with individual sensors configuring 
themselves cooperatively, but an analysis performed during the first year identified a 
single vehicle configuration as preferable. This concept is shown in Fig. 1. 
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Figure 1 - Adaptive and Mobile Ground Sensor Concept 

 
Robotic System Configuration and Seismic Signal Coupling Study 
 
The Adaptive and Mobile Ground Sensor (AMGS) concept was intended to 
autonomously install a configurable array of seismic and acoustic sensors using one or 
more robotic vehicles. This left a lot of latitude in system design depending on the 
specifics of the intended operational environment and scenarios. This section discusses 
work done during the first year of the LDRD to explore the interrelated considerations 
and constraints involved in the selection of the sensor configuration, the vehicle 
configuration, and the seismic sensor coupling to the ground.  It identifies a preferred 
configuration for the vehicle and seismic sensors, and discusses some of the field tests 
conducted to gather system configuration and algorithm development data.  
 
Operational Assumptions 
Although the AMGS system could be used in a variety of operations, some assumptions 
are made here for the purpose of defining a system configuration. We first assume the 
AMGS will be used in a covert manner to remotely monitor target signals from a stand-
off distance. It is not intended to roam widely over the target locale to triangulate or 
home in on the target source. The robotic vehicle(s) is assumed to travel from its 
deployment site to the monitoring site under its own power for a distance that could be up 
to a kilometer or two. It will set up an initial sensor array in a localized area and monitor 
the target signals to validate assumptions on seismic conditions, target bearing, and target 
frequencies. Once actual signal conditions are identified, the system will autonomously 
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compute its best estimate of a modified array layout based on measured conditions and it 
will reconfigure the sensors by moving them short distances in the same monitoring area. 
This is the real value of the system we are developing. Not only does this enable on-the-
fly correction for inaccurate initial assumptions concerning site and target conditions, but 
it also enables the use of very different array configurations for the initial target 
evaluation and subsequent operational characterization. Operationally the sensors are 
intended to create a phased array tuned to specific target frequencies to create narrow 
beams to help in source localization. Additionally the phased array is intended to use 
coherent superposition of multiple sensors to increase gain for longer-range detection and 
scanning for specific frequencies. Reconfiguration of the sensors is intended to occur 
only once to place the sensors in a configuration that reflects actual conditions rather than 
the best guess used for the initial array configuration. Reconfiguration is not intended to 
be repeated numerous times in an optimization process. At the completion of the mission, 
the vehicle may be commanded to recover the sensors and return to its deployment site. 
 
The AMGS sensors use interferometric methods to compute bearing to the target and to 
enhance signal strength. Thus sensor position relative to each other need to be well 
controlled with errors in positioning minimized and characterized so software 
adjustments in relative signal timing can be made. It is more important to know the actual 
sensor’s position relative to the other sensors in the array than to have the sensor be in an 
exact predetermined location relative to the other sensors.  
 
The operational physical environment needs to be defined as it directly impacts system 
design. Soil type and vegetation impacts design of the seismic sensor installation system 
and the hardware used to couple the sensor to the seismic signals in the ground. It directly 
impacts vehicle mobility and seismic sensor implantation, if the vegetation is in the way, 
and it indirectly impacts seismic and acoustic signal strength via root and brush density 
and size. Soil density and composition affects the effort needed to insert a seismic sensor 
coupling device. We assume the soil is arable and the vegetation is brush in a semi-open 
environment, similar to that surrounding Sandia. Wind impacts the overall vehicle/sensor 
configuration as it is an important source of acoustic and seismic noise in addition to 
direct mechanical load considerations. As wind speed increases the turbulence around the 
acoustic sensor creates noise. Wind can also cause cables to bang or vibrate if not 
properly secured, and it can cause vibration of vegetation and vehicles that can be 
transmitted into the ground causing significant seismic noise. Rather than specify an 
operational wind speed, we tested various system and sensor configurations to identify 
the lowest noise ones, and then characterized the noise floor these can achieve as a 
function of wind speed. 
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Sensor Array Constraints 
Characteristics of the target and the mathematics of signal processing both determine the 
features of the sensor arrays necessary to achieve target characterization goals. The same 
equations apply to seismic and acoustic arrays, but due to the different mediums in which 
the signals travel, the two types of sensor arrays are laid out with very different spacing.  
Here we review some of the assumptions made concerning target signals and 
characterization goals and then trace these assumptions through the appropriate 
mathematical translations to determine how this affects the sensor array parameters.  
 

Signal Wavelength  
The wavelength of the measured signal of interest directly impacts the design of the 
sensor array because the sensors are nominally spaced at half-wavelength intervals to 
achieve the best results. Wavelength is proportional to the velocity of the medium and 
inversely proportional to the frequencies of interest. Table 1 gives frequency and velocity 
ranges for the targets of interest, and the wavelength range that results from these. It also 
selects a target frequency and signal velocity within this range for use in sensor array 
design. The frequencies are those found from prior experience in monitoring underground 
facilities to be ranges likely to yield interesting information. Acoustic velocities are 
calculated using the formula c = 331.5 + 0.58°C  for temperatures ranging from 0°C to 
40°C.  The seismic velocities range from that of representative of unconsolidated 
alluvium to a value measured in granite. Basing our sensor array design on the target 
wavelengths given in Table 1 and spacing the sensors at half-wavelength intervals, we 
arrive at an acoustic sensor spacing of 1.1m and a seismic sensor spacing of 5m.  
 

Table 1- Target Wavelength 
 

 Frequency 
Range 

Velocity Range Wavelength 
Range 

Target 
Frequency 

Target 
Velocity 

Target 
Wavelength 

Acoustic 50 to 250Hz 330 to 350m/s 1.3 to 70m 150 Hz 340m/s 2.3m 

Seismic 10 to 100Hz 500 to 3300m/s 5 to 330m 100 Hz 1000m/s 10m 

 
While seismic wavelengths can be quite long, emphasis should be given to shorter 
wavelengths, on the order of 10-30m.  There are two reasons for this.  First, if sensor 
spacing is on the order of a hundred meters, the arrays would in turn be very large, a large 
fraction of a kilometer.  The logistics resulting from long wavelengths dictate a very 
different system design than a system deploying arrays with sensor spacing on the order 
of 10m. Second, long wavelengths are associated with high velocities that in turn are 
associated with solid rock.  However, solid rock is rarely exposed at the surface.  The 
unconsolidated materials found at the earth’s surface tend to have lower velocities 
resulting in shorter wavelengths 
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Array Geometry  
Different two-dimensional arrangements of sensors can provide different information on 
the target after signal processing. The intention of this effort is to enable the robotic 
vehicle to implant whatever array configuration is necessary to maximize the information 
desired from the target signal. A circular array may be selected initially because it 
eliminates ambiguity in target bearing, while a linear array may be selected for longer-
term monitoring once the target bearing is determined. The configuration for the acoustic 
array mounted on the robot is constrained to a circular array (with a center sensor) 
because the target separation of 1.1m makes it impractical to mount a linear array on the 
vehicle. As mentioned previously, the acoustic sensors can also be deployed in stand-
alone packages like the seismic sensors if so desired. 
 

Number of Sensors  
The goal of using arrays of sensors is to identify target bearing to help in target 
localization, and to increase signal gain to aid in target long-range detection and 
characterization. Increasing the number of sensors will increase the signal-to-noise ratio 
(SNR), aiding target detection. Improvement in the signal-to-noise ratio of the array 
output is bounded by the square root of ,n the number of sensors. 
 

 n
SNR

nSNR
<

)1(
)(

 (1) 

 

At best one would expect a factor of two improvement in SNR for a four-sensor array, 
and a factor of three improvement for a nine-sensor array. An improvement in SNR of 2 
to 3 is a reasonable target, although if the sensors are small and light enough, an 
improvement by a factor of four could be achieved with 16 sensors. As an initial target 
we have decided on an acoustic sensor of seven sensors, six in a circle with one in the 
center. We are also targeting to deploy between 4 and 9 sensors in the seismic array as 
well.  
 

Array Relative Position Accuracy  
Array signal processing depends upon accurately determining the relative phases between 
signals measured at the elements of an array.  Determining accurate relative phase in turn 
depends upon accurately knowing the positions of the sensors as well as the velocity of 
the signal in the medium in the vicinity of the array.  In the application this LDRD 
addresses, it is difficult to accurately determine the seismic velocities. The difficulty in 
determining the seismic velocity bounds the degree of accuracy to which the sensor 
location must be determined. A key process in array signal processing is extrapolating the 
sensor measurements at multiple locations to estimate what the signal should be at a 
common “array center.”  For non-impulsive signals, the extrapolation is essentially a 
phase shift. Phase errors caused by location inaccuracy need to be somewhat smaller, but 
not vastly smaller, than the low end of phase errors due to inaccurate velocities. If we 
assume we can estimate seismic signal velocity within 5% some portion of the time, and 
require the phase error induced by inaccuracies in knowing relative position to be 1/3 that 
of the phase error induced by the velocity error, we can determine an upper bound on the 
acceptable position error. 
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The most compact array configuration is a circular one. With sensors placed at half-
wavelength spacings, the greatest separation between pairs of sensors is one wavelength 
(the circle’s diameter). An error of 5% in velocity will cause an 18° error in signal phase 
(360°x0.05) across this array. This is what we are assuming is the low end of the 
achievable phase error due to imprecise knowledge of seismic signal velocity. One-third 
of this, the allowable phase error due to sensor placement error, is 6°, or 1/60 of a 
wavelength. Using a 10m target wavelength, this corresponds to a tolerable position error 
on the order of 10m/60, or 17cm. This is the upper bound we allow for relative positional 
error on the seismic sensors to ensure it does not contribute markedly to the overall phase 
error. While the original project plan did not call for developing the capability to 
determine relative sensor position this accurately until out years, we have been able to do 
so using real-time kinematic (RTK) GPS technology by Novatel, which gives a 1cm 
standard deviation in its relative precision. 
 
For acoustic sensors a different approach is taken to determining allowable positional 
errors because the velocity error in air is much smaller. Imposing a maximum amplitude 
error of 10% on the in-phase and quadrature components of the signal after phase shift 
translates to about 6°, or 1/60 of a wavelength. Using a 2.3m target wavelength, this 
corresponds to a tolerable position error on the order of 2.3m/60, or 4cm. This would be 
significantly more difficult to achieve with stand-alone sensors implanted by a robotic 
vehicle, but it is easily achievable using retractable masts mounted to the vehicle. 

Time Determination  
Just as knowing inter-sensor spacing accurately is crucial in array signal processing, so is 
being able to place their signals accurately in time.  We need to be able to align every 
sample from every sensor.  We examine two major issues associated with temporal 
alignment of signals: 
 
1) Estimating the maximum misalignment the array signal processing algorithms can 

tolerate. 
2) Identifying sources of temporal misalignment. 
 
In the previous section, 6 degrees (1/60 cycle) was established as an upper bound for 
phase errors arising from sources other than seismic velocity errors.  This is used as a 
bound for the maximum tolerable phase error due to inaccurate times.  We impose the 
same requirement on the temporal accuracy of both acoustic and seismic signals.  From 
the highest frequency of interest we can use the maximum tolerable phase error to 
determine the maximum tolerable time error. Using 250Hz as our maximum frequency of 
interest, we take 1/60 of 1/250 of a second, giving 67usec as our maximum temporal 
error. 
 
We identify two types of temporal error: 
 
1) a constant offset between the clocks of pairs of sensors 
2) a time varying difference between the clocks of pairs of sensors. 
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The array processing algorithms require that the sum of both errors not exceed the 
maximum temporal error of 67µsec.  We take the conservative approach and require that 
the sensor portion of the robot be able to align samples to better than 67µsec accuracy for 
both types of error unless it can be demonstrated that one of the above types of error is 
guaranteed to be less than this. The following are possible sources of temporal errors: 
 
1) digitizers that sample at slightly different rates 
2) clocks that drift over time 
3) improper initial alignment of clocks. 
 
Discussion of Coupling 
Probably the most critical issue that needs to be answered in this LDRD effort is 
achieving good signal coupling between the seismic sensor and the ground while 
minimizing signal coupling to noise sources such as wind-induced vegetation, cable, or 
vehicle vibration. Good coupling is generally achieved by driving or burying a portion of 
the sensor package in the ground where it can pick up seismic vibrations. Air dropped 
sensors are generally dart shaped and bury themselves upon impact. Hand implanted 
sensors can be buried or driven into the ground by stepping on them. Industrial 
geophones generally have a 3-inch tapered spike, which is driven into the ground by foot 
before covering the exposed sensor with a sandbag. There is general agreement that the 
deeper the sensor or coupling spike is driven the stronger the target signal. This is 
primarily due to avoiding the root zone, which can both dampen target seismic signals 
and channel wind-induced vibration of surface growth into the ground. However, the 
longer the spike is on a sensor, the harder it is to store the sensor on a small robotic 
platform. As a starting point we decided to use the standard geophone as the baseline and 
investigate alternative coupling devices that are roughly the same 3” length. 
 
The requirement to insert and remove these sensors autonomously dictates a close look at 
the process to ensure maximum reliability. Insertion of a tapered spike using normal 
(vertical) force can be difficult especially in packed or rocky soil. In a packed roadbed we 
were unable to drive the spike in more than about an inch even with over 100 pounds of 
force. Anecdotal information indicated a plain tapered spike sometimes bonded with the 
earth so well it was nearly impossible to remove by hand with an upward pull.  With a 
robotic vehicle, normal force for insertion must be provided by the weight of the vehicle 
or by impulse (jackhammer) forces. Impact methods were ruled out as they can be hard to 
implement in a covert manner and more importantly they may damage the seismic sensor. 
If the insertion mechanism is offset from the vehicle’s center of gravity, the available 
force can be much less than the weight of the vehicle. We are targeting a vehicle weight 
loaded with payload of only 50 pounds, so it would not be able to generate a steady 
normal force in the 100 to 150 pound range. An alternative approach is to use torque 
rather than normal force to insert and remove the coupling device. A vehicle of moderate 
length can create a significant torque, and if more is needed, small penetrators can be 
used to anchor the vehicle to the ground against rotation. Torsional insertion force is 
accomplished by using some form of screw mechanism. Three variations are 
investigated: 
 
1) Threaded body, like a lag bolt. This approach provides a stiff shaft with moderate 

threads to translate rotational motion into a downward or upward thrust.  
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2) Auger, like a wood auger. This approach carves a hole and removes dirt to the top of 
the hole. 

3) Spiral earth anchor, like a dog’s leash stake. The approach just spirals into the 
ground. 

Earth Penetration Tests  
Tests were performed on March 13, 2001 to characterize the performance of a number of 
earth coupling devices in a range of earth types. The penetrators tested and their 
characteristics are listed below in Table 2. 
 

Table 2 - Penetrator Option Parameters 

Description Length (in.) Thread diam. (in.) Shaft diam. (in.)

Spike 3 3/8  
#8 drywall screw 3   
#10 screw 3   
5/8” lag screw 4 5/8 1/2 
3/8” lag screw 4 3/8 1/4 
1/4” lag screw 2-1/2 1/4 3/16 
3/4” wood auger  3/4  
 
The penetrators were tested on three surfaces, a packed dirt/gravel roadway, a somewhat 
packed dirt test track (RVR motocross test track) with a high fraction of small fragmented 
rock, and a soft dirt earth with a moderate fraction of small fragmented rock. All three 
surfaces were just outside the robotic vehicle range (RVR) compound.  
 
In each test the spike was pushed in manually and the rest of the penetrators were 
screwed in with a battery powered drill while a normal force was applied manually. The 
stability of the inserted penetrator was determined by wiggling the projecting head. A 
torque wrench was applied and insertion and removal torques were measured. A dog 
leash spiral earth anchor was tried a few times, but it tended to wander and just create a 
large area of soft dislodged earth as it hit rocks and walked around. It was dropped from 
further consideration. 
 
The packed dirt/gravel roadway was the densest and most difficult to penetrate. We were 
unable to insert the spike more than about an inch with about 100 pounds of normal 
force. All the various screws inserted without difficulty, although the large 5/8” lag screw 
visibly raised the ground around it as it hit and dislodged larger rocks under ground. With 
the exception of the spike, normal force was nominally about 10 pounds, but up to about 
40 pounds when obstacles were encountered. Stability of most of the screw devices 
varied with attempt, sometimes very tight and stable, and sometimes a bit wobbly due to 
wiggling or hitting a rock as it was inserted, creating a shaft of looses dirt around it. 
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Table 3 – Penetrator Dirt Roadway Results 

Penetrator Notes Stability Insert Torque Remove Torque
Spike Only 1” penetration    
#8 screw  Tight 2 in-lb 2 in-lb 
#10 screw  Tight 2 1 
1/4” lag  Tight 2 1 
3/8” lag  Tight 10 5 
5/8” lag  Slight wobble 7 4 
3/4” auger  Slight wobble 5 3 
 
The motocross dirt track was less compacted than the roadway, but still presented a 
significant challenge for inserting the spike. With about 100 pounds of normal force it 
inserted only about 2 inches.  
 

Table 4 – Penetrator Motocross Track Results 

Penetrator Notes Stability Insert Torque Remove Torque
Spike Only 2” penetration    
#8 screw  Tight 1 in-lb 1 in-lb 
#10 screw  Tight 2 2 
1/4” lag  Wobbly 1.5 <1 
3/8” lag  Tight 8 3 
5/8” lag Cracks in the ground Slight wobble 13 5 
3/4” auger  Wobbly 12 4 
 
The final test was run in the dry earth. Penetrators inserted fairly easily, although all 
bounced around to some degree as they hit rocks on the way in.  

 

Table 5 – Penetrator Dry Earth Results 

Penetrator Notes Stability Insert Torque Remove Torque
Spike Only 2” penetration    
#8 screw  Tight <1 in-lb <1 in-lb 
#10 screw  Tight 1 1 
1/4” lag  Wobbly 1 1 
3/8” lag  Tight 4 2 
5/8” lag  Wobbly 4 2 
3/4” auger  Slight wobble 7 7 
 
Our conclusion from observations made during these tests are that the screw-type 
penetrators worked much better than the spike penetrator in rocky soil. Using a drill 
rather than hand-insertion minimized wobbling during entry and led to a tighter coupling. 
The spike penetrator had a very tight coupling with the ground when we could get it 
inserted. This is undoubtably due to its wedge shape. A wedge-shaped screw would 
probably work better than a straight-shaft screw, but those are not readily available. 
Perhaps in the future we could get such a screw fabricated for tests.  The larger screws 
displaced too much ground and were not as secure as the smaller screws. The best size 
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appeared to be the 3/8” lag screw, followed by the #10 screw. Although we tested 4” long 
screws for the most part, we could easily go longer if handling considerations on the 
vehicle permit. 
 
Configuration Evaluation 
The LDRD proposal advanced one concept for the platform/sensor configuration to be 
used in achieving the goal of an adaptable sensor array system. In fact there are several 
possible system configurations, which we will discuss here. The system configuration 
involves the platform (robotic vehicle) size and number, the seismic sensor design (stand 
alone or wired to vehicle), and the deployment vehicle location during measurements 
(stand-off or remain with the sensor). While the nominal design we are pursuing mounts 
the acoustic sensor array on a single vehicle using extendable masts, the acoustic sensors 
could be deployed and reconfigured in precisely the same manner as the seismic sensors. 
They could even be deployed on the same unit as the seismic sensors with the unit 
monitoring either the acoustic or seismic sensor depending on the deployment spacing. 
With this in mind, when discussing deployment of the seismic sensors it will include the 
option for acoustic sensors.  
 
There are four basic platform deployment options: 

Option 1) Multiple identical platforms, each with one sensor. 
Option 2) Single “mother” platform with multiple deployable “daughter” vehicles to 

deploy sensors. 
Option 3) Single platform with multiple sensors that it implants and retrieves. 
Option 4) Single platform with multiple sensors that it abandons when establishing a 

new array. 
 
To make some reasoned conclusions concerning the mix of these different platform, 
sensor, and stand-off options, we need to review some information concerning platform 
and sensor design. Robotic vehicles come in a range of sizes, and size directly affects 1) 
the scale of navigable objects, 2) the payload capability, and 3) the energy storage 
capability. Stored energy determines the range of travel and the duration of on-station 
activities. Table 6 gives specifications for three sizes of RATLER™ vehicle, and Fig. 2 
shows RATLER™ vehicles in the three different sizes.  
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Table 6 – Robotic Vehicle Specification Estimates 

Platform RATLER™
Mini-Sized Mid-Sized Maxi-Sized 

Dimensions
Body

Length 6" 15.5" 36"
Width 4.5" 11" 24"
Height 2.5" 6.5 to 7.5" 11"
Total 67.5 cu in 1278 cu in 9504 cu in

Vehicle incl. wheels
Length 8" 21" 52"
Width 8" 21" 45"
Height 3.5" 10 to 11" 23"

Battery 2 liters
Weight

Vehicle (Total) 5.5lbs 35lbs. 200lbs
Battery 0.5lb? NiCd 11.4lbs SLA 124 lbs SLA

Speed
Max. 2 mph 1.5 to 4mph 1.4 mph
Avg. w/ obst. nav. 1 mph 1mph 1 mph

Energy Storage 17Wh NiCd 168Wh SLA 1920Wh

Range (Pb-acid)  1 to 1.5 mile 4-6 miles  6 mile (est.)

Power
Avg. Drive 10W (est.) 50W avg. 100 to 150W
Components (Active) unknown 10-20W unknown
Components (Sleep)  <1W  <1W unknown

Payload
Dim/Size external 750 cu. in. 0.34 Cu ft.
Weight 2 to 3 lbs 40lbs (est.) 100 lb  
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Figure 2 – The RATLER™ Robotic Vehicle Family 

Obstacle Navigation  
The scale of obstacle a vehicle is able to negotiate is dependent on the scale of the 
vehicle. A small vehicle such as the mini-RATLER™ would have difficulty navigating 
the obstacles present in a multi-kilometer, off-road mission even if it had the necessary 
energy. It would probably be able to navigate the few meters needed to disperse a sensor 
from a larger “mother” vehicle as in Configuration 2. The mid-sized and maxi-sized 
vehicles fitted with autonomous obstacle avoidance software and traveling a course 
selected to avoid large terrain hazards could negotiate such a route.  

Payload Capability  
The main payload of the vehicles in the different configurations will be the sensors and 
the signal processing unit, which will receive and process data from each of the sensors. 
A sensor consists of a small geophone (or microphone). If the unit is intended to operate 
in a stand-alone mode where it is not connected to the signal processing unit by a wire, 
the sensor package needs to include analog-to-digital (A/D) conversion electronics, a 
low-power radio, a small control processor such as a PIC processor to manage the sensor, 
and batteries. The A/D unit, PIC processor, and radio can fit on a small circuit board, 
while the batteries consume the bulk of the sensor package volume and weight. 
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Stand-alone Sensor Package Design  
A low-profile sensor package was scoped out that would contain the necessary 
components. The nominal configuration of the sensor package is a round can 7” in 
diameter (6”ID) and 3” high (85 cu. in.). That should hold a dozen D-cell batteries with 
room in the center for the geophone (Fig. 3). The electronics board would lay across the 
top of the batteries. Tadiran makes a D-cell lithium thionyl chloride (Li/SoCl2) primary 
(single use) battery with an energy density of 460Wh/kg when used at low discharge 
rates.  It has a 13.5 Ah rating at a discharge rate of C/1000 (1000 hours to discharge 
completely), and a nominal voltage of 3.5V. The cell is 33mm in diameter (1.29”) and 
62mm tall (2.42”). Its weight is 100g (0.22lb), so a dozen will weigh 1.2kg or 2.64 lbs 
and have a total energy of 552 Wh. A complete sensor package would weigh about 1.6 to 
1.8kg (3.5 to 4 lbs.), and a suite of six of them on a vehicle would weigh about 10kg (22 
lbs.) and have a packing volume of 14.4L (880 cu. in.). A smaller sensor with half the 
batteries would have a diameter of 6”, a weight of about 1kg, and a packing volume of 
1.7L (108cu. in.). A suite of six of these sensors would have a weight of 6kg (13.2 lbs.) 
and a volume of 10.6L. 
 
 
 

                                      

Figure 3 – Exploded view of large and small stand-alone sensor packages 
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Signal Processing Unit Package  
The signal processing unit consists of a digital signal processing unit (DSP) with the 
capability to rapidly process large volumes of digitized geophone or microphone signals. 
One package is required per array, which could include up to 16 sensors. The package 
would also require a radio to communicate with the sensors, and batteries for power. The 
processor itself is small but it requires up to 3.7W of power during operation. A 1 mega-
bit-per-second (Mbps) local low-power communication unit will draw 300mW in receive 
mode. Assuming it operates at a 50% duty cycle, it would require 1440Wh of energy per 
month of mission, or about 3.2 kg of Li/SoCl2 batteries.  

Mobility Energy  
The energy required to traverse a given distance is dependent on the rate of energy 
consumption. We have measured the energy consumption of a mid-sized (50 lb.) vehicle 
at between 16 Wh/km (27 Wh/mile) for a wheeled vehicle, and 22Wh/km (37 Wh/mile) 
for a tracked vehicle on a hilly road under tele-operation. When operating in an 
automated obstacle avoidance mode under off-road conditions the energy consumption 
may be 3 or 4 times as high. A tracked vehicle traveling 4km would require 350Wh. 
Additionally, the type of battery needs to be one that is capable of producing high power 
in order to supply the power demands of the drive motor. Unless they are quite large, 
Li/SoCl2 batteries do not have sufficient power to be used for drive motors. Some 
rechargeable batteries such as sealed lead acid (20-30Wh/kg), nickel-metal hydride (60-
70Wh/kg), or lithium ion (100-110Wh/kg) batteries have acceptable power 
characteristics, and so does the primary cell (single-use) lithium manganese dioxide 
Li/MnO2 (300Wh/kg) which has been configured in a large pouch-cell battery by Eagle 
Picher. Only about a kilogram of the Li/MnO2 battery would be required for mobility 
purposes. 
 
Insertion of sensors would require the vehicle be active, consuming on the order of 10 to 
20W for position sensors (GPS, compass, tilt sensor, etc.), control electronics, cameras, 
and insertion motors. Insertion or removal may last up to 15 minutes per sensor (mainly 
for position adjustment) for six sensors. They may be inserted and removed up to three 
times, giving a total of about 100Wh plus moving and positioning, another 50 to 100Wh, 
for a total of up to 200Wh. 
 
Table 7 gives a summary of battery load requirements for a hypothetical mission. The 
weight for this battery load is a minimum of 4 to 5 kg using expensive primary batteries. 
This requires at least a mid-sized vehicle. 
 



 24

Table 7 – Battery load requirements for a hypothetical mission 

Load Category Amount Type Quantity 
Mobility 4 km Li/MnO2 350Wh 
Sensor Insert/Remove 6 units/3 times Li/MnO2 200Wh 
Signal Processing 50% duty, per mth Li/SoCl2 1440Wh 
Station Keeping    
Total   1990Wh 

 
Configuration Review 
With this background we are now able to make some conclusions regarding system 
configuration, narrowing the number of options under evaluation from a full matrix of all 
possibilities to a few configurations which merit further evaluation.  

Platform Scale  
The first consideration in vehicle selection is scale. To travel the few kilometers over off-
road terrain required by the mission and to provide the necessary battery weight, the 
vehicle will have to be at least of the mid-sized RATLER™ scale. This vehicle has a base 
weight of 35 to 40 pounds for its body, sensors, controller, communication, wheels or 
tracks, and motors, and is capable of carrying another 20 to 40 pounds. With the right 
design, a vehicle of this scale could perform the proposed mission, carrying at least one 
sensor package and the signal processing unit. 

Sensor/Platform Connection  
There are four possible sensor/platform connection options we considered.  

Option 1) Vehicle stays with sensor – sensor physically attached to platform 
Option 2) Vehicle stays with sensor – sensor attached by wire 
Option 3) Vehicle stands off from sensor – sensor attached by wire 
Option 4) Vehicle stands off from sensor – sensor communicates by radio 

 
Using a wire cable between the sensor and the vehicle dramatically reduces the size of 
the implanted package since both power and data can be sent via the cable. The only 
components needed are the coupling spike, geophone, and housing, leaving a package 
that is at most two inches cubed. The A/D converter, radio, PIC processor, and batteries 
would be eliminated from the sensor. Although the A/D converter would still be needed 
on the vehicle in this case, the radio and PIC processor would not, eliminating the need 
for a significant amount of accompanying battery. The benefits of using a wire include 
having a smaller payload on the vehicle, reducing the size and visibility of the implanted 
sensors, and eliminating RF signature. However, exposed cables present very real issues 
with vehicle entanglement, visibility, and, most importantly, coupling of wind turbulence 
into the seismic sensor. For these reasons we decided not to pursue any option with wires 
strung between a sensor and a vehicle standing off from the sensor, eliminating Option 3.  
 
Staying with the sensor is only an option for Options 1 and 2 where there is one sensor 
per vehicle. In this case the sensor can remain attached to the vehicle or be vibrationally 
isolated from it using a wire. Because of its small size, there is some question as to 
whether a mini-RATLER™ sized vehicle has the mass and torsional resistance to enable 
a sensor to be implanted, but the sensor could still either be pressed to the ground with a 
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hard connection to the vehicle (Option 1), or dropped on the ground with a wire 
connection (Option 2). Option 4, standing off from the sensor, while minimizing the 
chance for coupling wind-induced vehicle vibrations into the sensor, does involve the 
non-trivial complexity of finding and grabbing the sensor to be able to remove it. 

Option Discussion  
Vehicle Option 1 was proposed in the original LDRD proposal. It uses multiple identical 
vehicles each having one sensor. If the system were configured so that each vehicle had 
to make it to the deployment site and then communicate and coordinate with the other 
vehicles to deploy the sensor array, one could argue that the system reliability would be 
reduced from that of a single vehicle. On the other hand, if the vehicles were redundant 
and cooperative, with any particular vehicle being expendable and the rest able to 
compensate for its failure to make it to the deployment site, one could argue the system 
reliability of this configuration is enhanced over that of a single vehicle. However, this 
configuration does involve a significant amount of redundant hardware in the form of the 
vehicles themselves. One mid-sized vehicle capable of travel over off-road terrain can be 
configured to carry multiple sensors. Additionally, the visible, track, and RF signature of 
so many vehicles increases the probability of detection. Even though Sandia has 
significant experience with cooperative vehicles and has developed software to enable 
vehicles within a swarm to adaptively communicate and to locate themselves relative to 
each other (although the acoustic ranging hardware needs further development for 
outdoor use and carries its own signature issues), the use of numerous vehicles adds 
complexity to an already complex mission.  
 
This configuration could employ any of the sensor/vehicle communication options. It 
could implant a seismic sensor and remain physically coupled to it, or it could remain 
attached only by a wire. The first option has a high likelihood of coupling wind vibrations 
into the sensor. The second option could still do so, indirectly, by vibrating the ground 
next to the sensor. This needs to be tested using actual hardware in empirical tests. Both 
of these options place the battery pack, A/D converter, and radio in the vehicle rather 
than in a stand-alone sensor package. The third option uses a stand-alone sensor package 
to communicate directly with the signal processing unit, and the implanting vehicle 
stands-off so that it doesn’t couple wind vibrations into ground adjacent to the sensor 
package.  
 
Vehicle Option 2 uses many identical vehicles to implant sensors similar to Option 1, but 
the vehicles are small and only designed for short-ranged mobility. A larger “mother” 
vehicle is needed for the signal processing and remote communication units that need a 
substantial battery. The small “daughter” vehicles, which could be the size of the mini-
RATLERs™, could be delivered on site by the larger “mother” vehicle or by some other 
means. This approach has many of the same benefits and drawbacks as Configuraton 1, 
but the overall amount of vehicle hardware is less since the vehicles are smaller. This 
option only makes sense if the daughter vehicles stay with the implanted sensors 
eliminating the complexity in finding and retrieving the sensors. If the daughter vehicles 
stand-off from the implanted sensors, there is no benefit over Option 3. 
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Vehicle Option 3 uses one vehicle to implant and retrieve at least multiple and hopefully 
the full array of sensors. This configuration minimizes duplication of mobility, 
navigation, control, and communication hardware by using only one vehicle instead of 
multiple vehicles. It minimizes total system weight and complexity and minimizes system 
signature (tracks, RF etc.) This configuration does require advancement of our capability 
in the area of locating and retrieving the sensors, and it requires developing the capability 
to store and access multiple sensors on the vehicle. Since the vehicle will stand-off from 
the sensor and we have eliminated the option of using wires, this configuration only uses 
the RF communication stand-alone sensor package option. 
 
Vehicle Option 4 is similar to Option 3 except that it abandons sensors rather than 
retrieving and relocating them. It was initially conceived for use with wired sensors 
where only the small thumb-sized geophone is implanted without any stand-alone 
hardware. Many more of these small sensors can be carried on a single vehicle than the 
larger stand-alone sensors, making it easy to carry replacements. This option could also 
be considered when using stand-alone sensors. While it is an acceptable fall-back 
position if it becomes apparent that retrieving sensors is too difficult, the goal would be to 
reuse sensors (Option 3), and when the mission is complete, to remove the sensors 
leaving no sign of the system. 
 
The result of this evaluation of configurations is that Vehicle Option 3 is the preferred 
arrangement. In order to minimize vehicle coupling of wind vibrations into the ground or 
sensor, the vehicle should stand off from the sensor. We decided to abandon wired sensor 
options due to creating vibrations from the wire and due to the high visibility and chance 
for entanglement that wires introduce. Thus the sensors need to stand alone and be large 
enough to contain A/D converters, a small processor, radio, and batteries for the mission 
life. This makes them large enough that it is hard to carry lots of them on a vehicle, and it 
becomes unattractive to abandon them. Having one vehicle per sensor is achievable, but 
it makes the complete system more complex, with a higher signature, and involves 
significantly more hardware than using a single vehicle. Also it is not necessary for 
reasons of rapid array deployment since deployment over a few hours is acceptable. To 
traverse a few kilometers over rugged terrain, insert and remove sensors, and have the 
load capability to support the signal processing unit, the vehicle has to have a minimum 
size that is roughly the size of a mid-sized RATLER™. Carrying several stand-alone 
seismic sensors and an acoustic sensor array won’t make it much larger than carrying just 
one. Using small “daughter” vehicles to insert sensors would be a viable option if they 
could remain with the sensor without coupling noise into the sensor and if they could be 
made small enough that they do not constitute a significant payload increase, but there 
isn’t any significant benefit to this approach. 
 
Outdoor Testing  
Outdoor tests were conducted to obtain empirical evaluations comparing the performance 
of a number of sensor-to-ground coupling configurations and of several vehicle 
configurations. Outdoor tests were also conducted to gather acoustic and seismic data that 
could be used for algorithm development. 
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Sensor-to-Ground Coupling  
The main issues addressed were a) the ground coupling efficiency, i.e. the magnitude of 
the signals using various coupling approaches, and b) the noise floor generated by the 
wind coupling into the sensor via the vehicle and/or sensor package body either directly 
or through the adjacent ground. To make the configurations as realistic as possible, we 
fabricated dummy housings to perform as wind models for the stand-alone sensors. The 
stand-alone housing was simulated by a plastic shape machined to fit the sensor up inside 
it so the bottom of the plastic shape is flush with the ground. The plastic machined 
housing with sensor weighs 3.55 lbs, which is about what is expected for a complete 
system housing 2.6 lbs of batteries. Outdoor tests were conducted at the seismically quiet 
FACT site east of the Sandia Solar Power Tower. Each configuration used an identical 
commercial geophone and was recorded on an 8-channel recording device.  
 
The configurations we planned to test were as follows: 
1) Geophone with standard 3” spike alone or with a sandbag. This is the reference 

configuration normally used in sensing and it will serve as the standard against which 
the other configurations are measured.  

2) Geophone attached to a metal plate laid on the ground. 
3) 1/4” lag screw coupling device with a simulated housing. The 1/4” lag screw 

perfomed the best of the screw options. This arrangement simulates Options 3 and 4 
(or Option 1 with the vehicle standing off). 

4) 1/4” lag screw coupling device with a simulated sensor housing placed next to it. This 
evaluates the effect of separating the sensor package from the sensor to see if this 
reduces wind vibration coupling from the housing directly into the sensor. This 
arrangement adds significant complexity to the deployment and retrieval design, but 
needs to be evaluated to determine wind coupling effects. 

5) 1/4” lag screw coupling device with a robotic vehicle sitting over top of it. This 
simulates Option 1 with the vehicle attached to the sensor by a wire.  

6) 1/4” lag screw coupling device with a simulated housing but with the lag screw 
slightly wiggling in the hole representing a wobbly insertion or “stripped” thread 
condition.  

7) 3/4” auger with a simulated housing.  This represents the auger coupling option for 
Option 3 and 4 (or Option 1 with the vehicle standing off). 

8) Geophone laid on the ground with a mini-RATLER™ vehicle pressing it to the 
ground. This tests Option 2 that uses small “daughter” vehicles deployed from a 
mother vehicle to place the sensors. In this configuration the vehicles do not stand-off 
from the sensor, and they may not be able to insert a penetrating coupling device 
since the vehicle is so small and lightweight (4.8 pounds). 

 
The actual test configurations were a slight variation of this plan. By channel number the 
configurations tested were as follows. Only seven channels were available. 
 
1) 3/4” auger with stand-alone sensor package 
2) 1/4” x 3” lag bolt with stand-alone sensor package  
3) standard 3” spike on bare geophone  
4) 1/4” x 3” lag bolt with stand-alone sensor package  
5) standard 3” spike with stand-alone sensor package 
6) metal plate laying on ground 
7) geophone with no coupling device with mini-RATLER™ on top 
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Configuration 7 was located in soft dirt while the other configurations were initially 
located in a packed roadbed and were then relocated to soft dirt for a second test. Figure 4 
shows how the sensors were laid out for the test. Results for the first test showing the 
signal detected after a hammer blow to a plate on the ground 50 yards away are shown in 
Figure 5. Problems were encountered during the tests including excessive noise on the 
recorder and a faulty time stamp on the environmental recorder that prevented correlation 
with wind speed. Still, some conclusions could be drawn. First, all configurations were 
within 30% of each other in signal strength, so it is probably acceptable to eliminate the 
ground coupling spike altogether. Second, we found the signal was greater in the soft 
powdery dirt as compared to the packed roadway dirt. 
 

 

 

Figure 4 – Seismic Coupling Test Layout 
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Figure 5 - Seismic/Acoustic Empirical Test Results of Signal Coupling Devices 
 

Wind Noise Tests  
On May 15, 22 and June 21, 2001 field experiments we conducted to obtain quantitative 
data on the impact wind has on tentative design of the acoustic array subsystem.  Since 
heuristics and operational considerations were used to generate a tentative design for the 
acoustic array, the impact of wind on several elements of the array design needed further 
exploration by quantitative means.  The questions to be answered were: 
- The tentative design called for the acoustic sensors to be mounted on thin, retractable 

booms.  Since the booms are flexible, will an unacceptable amount of noise result if 
wind blows on the booms causing them to flex and will the displacement be large 
enough to produce a significant position error? 

- The initial design of the acoustic array identified the microphones used in cell phones 
as the best candidates for use as the acoustic sensors because they are small, 
lightweight and rugged.  Would these microphones provide an adequate signal for 
this application? 

- The retraction capability of the booms on which the acoustic sensors are mounted 
presents some engineering challenges as far as getting the signal from the microphone 
to an A/D on the robot.  Coiling the leads around the boom in a manner similar to a 
telephone cord is advantageous from a mechanical standpoint.  Would wind acting on 
the leads coiled around the booms introduce noise in the acoustic signal, either 
through mechanical impact on the boom or increasing the amplitude of the boom’s 
flexing in the wind? 
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To answer these questions, the signals from a partial prototype acoustic array were 
recorded over a period of a several hours resulting in data representative of a variety of 
wind conditions.  A speaker emitting a constant 200Hz tone 10m away from the array 
provided a reference acoustic signal to facilitate comparison across different sensor 
configurations and wind conditions. Figure 6 shows the acoustic array configuration on a 
robotic vehicle during the test. Figure 7 shows the test configuration with an acoustic 
generator speaker in the rear.  
 
 

Figure 6 – Acoustic Sensor on Robotic Vehicle During Test 
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Figure 7 – Acoustic Test Configuration 
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Figure 8 - Spectrograms and associated wind speed for a representative segment of data. 

Figure 8 shows three spectrograms and the corresponding wind speed for a representative 
six-minute segment of data.  The top spectrogram is for a microphone on a retractable 
boom with the lead coiled loosely around the boom.  The middle spectrogram is for a 
microphone mounted to a stiff rod with the lead securely fastened to the rod.  The bottom 
spectrogram comes from a microphone mounted on a tripod.  All microphones were 
located within 60cm of each other.  The spectrograms plot the frequency content of the 
recorded signal as a function of time.  The constant 200Hz reference signal shows up on 
the three spectrograms as a horizontal line.  There are three time segments of interest.  
The period from 18:30:20 to 18:30:40 shows the broadband signal produced by a low-
flying jet airliner flying by.  The discrete spectral lines from 18:32:45 to 18:33:15 exhibit 
the Doppler effect as a propeller aircraft passed by.  Finally, there is increased low 
frequency content from 18:34:50 to 18:36:00 due to sustained winds. As illustrated by 
these three spectrograms, the signal from microphones on flexible booms is only slightly 
more susceptible to wind noise than rigidly mounted microphones. Moreover, no 
significant difference was found between the signals from microphones whose leads were 
securely fastened compared to those whose leads were loosely coiled about the flexible 
booms.  The following conclusions were drawn from the experiment. 
 
- The observed amplitude of the wind-induced vibrations did not exceed approximately 

2cm indicating that wind induced vibrations will not result in significant position 
error with respect to the nominal position of the microphone.  Nor did wind induced 
flexure of the retractable booms cause significant levels of noise. 
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- The performance of the cell phone microphones were deemed to be acceptable when 
covered by simple windscreens.  It is expected that more expensive acoustic sensor 
options would not provide a significant performance advantage for the operational 
environment the robot is being designed for. 

- Coiling of the microphone leads did not induce significant noise. 
- Wind introduces noise, primarily at low frequencies.  However, below 10mph, the 

wind noise in the range of target frequencies is minimal.  The acoustic array will be 
able to operate at some reduced capacity at wind speeds between 10 and 20mph, 
especially for high frequency tones.  The acoustic array is expected to have poor 
performance at wind speeds above 20mph. 

 
These results indicate that the features in question of the current acoustic array design do 
not result in significant additional noise in the signal when the array is subjected to wind, 
especially winds below 10mph. 
 

Array Adaptation Simulation Field Experiment  
On July 19 and August 14, 2001, field experiments were conducted which simulated the 
data the robot would record during a mission.  The benefits of this test were threefold. 
- By simulating the array deployment and modification sequence of activities, a better 

understanding was obtained of the actual tasks that a robot would perform.  This 
understanding was intended to aid the LDRD participants in designing a system that 
performs these tasks with the greatest degree of autonomy and effectiveness. 

- Raw data was collected that could be input to signal processing algorithms under 
development.  This was of great utility to the software development effort because 
real data could be included in with the data used to test the software without actually 
deploying the software on the robotic platform. Thus the array signal processing 
software could be further developed before being deployed on the robot. 

- The tests provided early performance data on signal levels, gains from array 
adaptations, etc.  This early performance data helped identify strategies with the 
greatest benefit as well as areas that required attention. 

 
One aspect that the field experiment brought into better focus was the fact that array 
signal processing requires the determination of certain parameters from the signal 
environment that are used in the array design process, in particular medium velocity, 
signal of interest and approximate source location.  These parameters are generally 
supplied by the human who specifies the sensor array configuration, but when the array is 
configured autonomously it must be identified through other means. This field test forced 
us to identify these design parameters and make provision for strategies for their 
evaluation by automated means.  Figure 9 shows traces from this field experiment.  It 
shows a seismic impulse as it travels past increasingly distant seismic sensors in the 
array.  This data will be used in the velocity estimation routines that will estimate 
velocity by relating the pulse’s travel time and the distance to the sensors. 
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Figure 9 -  Propagation of an impulse across a linear array from which velocity can be 
estimated 

Simulation of the process of evaluating array design parameters was just one step 
simulated in this field experiment.  The field experiment also simulated the process by 
which the robot makes an initial mapping of the signals in terms of frequency content and 
approximate location and then modifies the array to refine the initial characterization of 
the environment.  It also simulated the process of adapting an array to respond to the 
introduction of a signal not present during the initial mapping phase. 
 
As part of the initial process of determining the effectiveness of different array 
configurations on signal processing, the graph in Fig. 10 was generated showing the array 
sensitivity vs. source angle. The graph shows two array configurations, one with a normal 
population of sensors and one with a sparse population of sensors. The graph gives the 
sensitivity (y axis) vs. source angle (x axis) for a signal coming from a direction of 5°, 
and it illustrates the different benefits each configuration offers. The sparse array has a 
very narrow main lobe resulting in good angular resolution while the regular array has 
lower side lobes resulting in less interference from energy from other directions. 
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Figure 10 - Signal Processing Model Showing Benefits of Reconfigurable Array 
 
Signal Algorithm Analysis and Design 
During Year One, high-level analysis and design of software for the array signal 
processing subsystem was begun, including identifying the interface between this 
subsystem and the rest of the vehicle.  The array signal processing subsystem interfaced 
with the rest of the system through an embedded real-time software subsystem.  Efforts 
were begun on the design of the interface that supports the transmission of data into and 
out of the array signal processing subsystem with the sensors and the vehicle controller. 
 
An important element guiding the analysis and design process was the creation of a 
scenario of usage.  In this case, the scenario of usage outlines the mission goals and the 
major tasks performed by the robot in pursuit of those goals.  This was used to guide 
more detailed design of the array signal processing software. 
 
The overall array signal processing software subsystem was decomposed into 
approximately twenty software modules.  Each module performs a specific task.  “Stubs” 
were created for these software modules.  The stubs embody the overall high-level 
architecture of the array signal processing subsystem without implementing the details of 
actually performing the work.  The stubs helped validate the decomposition of the high-
level architectural features of the array signal processing subsystem in terms of task 
partitioning, calling sequence/hierarchy, and data flow.  
 
Array Configuration Placement Sequence 
A meeting was held May 4, 2001 with representatives from the sensor array signal 
processing department and the robotic department to jointly define a robust autonomous 
array placement sequence. The sensor department had already defined a flowchart of 
events and decisions mapping the control sequence necessary to perform a site survey 
and then reconfigure for optimal target bearing determination and then gain enhancement 
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for site monitoring. The main issues are that while the signal processing algorithm can 
define the desired new array configuration and communicate that to the robotic vehicle to 
implement, real world conditions will prevent placement of sensors in some locations. 
The meeting explored options to achieve a satisfactory, if not ideal, array configuration 
with the least use of resources, given the limited knowledge base the vehicle will have of 
the site and given operation in an autonomous mode. 
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Figure 11 – High-level Sensor Deployment Sequence State Diagram Showing 
Vehicle/DSP Interaction 

 
The discussion started with a review of available resources and conditions, and a review 
of the desired outcome. From the signal processing side, priorities were identified that it 
is crucial to know the final location of the sensor well and less crucial to have the sensor 
placed exactly in the ideal location. Sensors need to be placed in a configuration relative 
to each other, not in absolute locations. From the vehicle side, we can assume that 
because the vehicle will be navigating autonomously it will have an internal map of the 
region with elevations and some large obstacle data based on the best available photos or 
SAR data. The vehicle will also have obstacle avoidance sensors onboard and will be 
able to locate at least above-ground obstacles (vegetation, rocks, gullies, etc.).  
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In order to minimize interaction between the signal processor and vehicle control 
systems, we decided that the vehicle should be responsible for installing the array 
according to guidelines given by the digital signal processing (DSP) unit. The signal 
processor will provide the vehicle  
1) relative placement information for the sensors, 
2) an acceptable radius about the desired placement point for sensors, and 
3) the minimum number of sensors that must be placed to enable the array to function. 
One possibility is to have the vehicle perform an above-ground site survey prior to 
deciding where to place the array. Alternatively, the vehicle could use its internal map 
with whatever existing data is available to determine the optimal array placement. 
Optimal placement would probably include factors such as ground slope, and distance 
from known obstacles. The vehicle could also place sensors in a sequence that would 
allow it to take advantage of array symmetries (i.e. shifting longitudinally for linear 
arrays in case a sensor could not be placed. As the vehicle worked in the operating space 
it would add to its internal map of known obstacles. If a sensor can not be placed, the 
vehicle would move outwards in a spiral from the target trying to place the sensor until 
the maximum error is achieved.  If the vehicle fails to insert the minimum number of 
sensors, it removes all the sensors and adjusts the array position. Once it completes the 
array installation, the vehicle communicates to the signal processor which sensors were 
installed and each sensor’s actual location. 
 
 
System Configuration 
 
Once we arrived at a design concept, we needed to select specific hardware and 
components. This included the robotic vehicle body and component hardware, ancillary 
operation components, vehicle software, the seismic and acoustic hardware, and signal 
processing electronic hardware and software. This occurred during the latter part of the 
first year and during the second year of the LDRD program. The first task was deciding 
on a vehicle design.  
 
Robotic Vehicle Hardware  
Rather than develop a new vehicle, we decided to use a SandDragon robot as the mobile 
platform. This vehicle was of the necessary size and configuration, and it had the 
processing capability to support autonomous navigation. Appendix A provides a Fact 
Sheet on the SandDragon vehicle. This decision enabled the project to leverage ongoing 
development work on other projects, and we were able to acquire a dedicated vehicle 
with a minimum of additional development work. Thus the project was able to focus on 
advancing the navigational and sensor capabilities needed for this project rather than put 
its efforts on vehicle development.  
 
The decision to deploy multiple sensors from a single vehicle rather than make each 
vehicle be a separate sensor required the development of a sensor deployment and 
retrieval mechanism. Initially we used an existing arm that had become available to 
develop our proof of concepts. By the end of the first year, the project had arrived at a 
first cut configuration of the vehicle concept, shown in Fig. 12.  
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Figure 12 - Acoustic and First Prototype Seismic Sensor Array Deployment Hardware on 
SandDragon Vehicle 

 
This development design was intended for concept and hardware evaluation only. The 
deployment arm was a quick solution available without much development effort, and it 
was intended to be replaced with a more suitable and integrated arm later in the project. 
The project also planned to design a multi-sensor stack loader to enable autonomous 
multi-sensor array deployment. However, inadequate funding in subsequent years kept 
this feature at a low priority and it was eventually never implemented. The SandDragon 
vehicle was large enough to accommodate the acoustic sensor on the rear half and the 
seismic stack loader on the front.  
 
SMART Software Architecture 
The next task was to develop a modular software architecture to replace the single-
threaded software architecture that had be used by Sandia’s Robotic Vehicle Range for 
vehicle control software until this time. Modular software architecture is essential to 
being able to rapidly implement new vehicle control systems. It enables previously 
developed software to be reused with a minimum of effort so only new capabilities need 
to be developed. It also speeds the debugging and quality control of software since each 
module of the software can be individually validated. The existing vehicle code used on 
previous robotic vehicles did not separate or modularize the different capabilities or 
functions so it was time consuming to adapt the code for new applications.  
 
After some review, this project settled on adapting SMART (Sandia’s Modular 
Architecture for Robotics and Teleoperation) for use in this project and as the basis for 
future robotic vehicles developed at the Robotic Vehicle Range. SMART has undergone 
extensive development over more than a decade, and offers many of the advanced yet 
flexible features this project was seeking. It was originally developed for use with 
manually manipulated robotic arms, enabling the use of a wide range of operator control 
input devices and teleoperated arms while guaranteeing dynamic stability.  Some of the 
beneficial features for use as a robotic vehicle control system are given in Table  8. 
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Modular 
- Clearly delineated inputs and outputs 
- Easily tested and validated – improves software QC 
- Portable and reusable code which can be connected with other modules to 

rapidly reconfigure code or develop new code 
- Rapid and clean development and integration of new capabilities (behaviors 

and hardware) with existing code 
Multi-thread 

- The operating system handles scheduling of thread execution so it is 
transparent to the code developer leaving him to focus on module 
functionality 

- Supports modularity architecture 
Multi-OS, Multi-platform ready 

- Enables rapid compilation for multiple operating systems. This enables cross 
platform development work, flexibility in vehicle and target selection, rapid 
upgrade in future evolution or variants 

- Longer code life as systems evolve. 
Control stability 

- Control stability for tele-operated manipulators for a wide range of input and 
actuator devices that can be interconnected and used in a wide range of 
configurations. 

Multiple behaviors 
- Multiple behaviors can co-exist on the controller and can be switched on and 

off independently. 

 

Table 8 – Desirable Modular Features of SMART 

 
 
SMART was written to be highly modular. Each software module encapsulates a certain 
functionality and contains the code to implement that functionality and user-accessible 
configuration parameters to adapt it to a range of applications. Each module contains its 
own data structure with parameters it uses locally, and each includes a test code to 
individually exercise its functionality before it is integrated with other modules. Not only 
is the software modular, but it is very standardized. This makes it easy for the 
programmer to read and understand any of the code. Code functions for initialization, the 
body functionality or thread loop, access to the module’s data structure, and exiting are 
all standardized and follow a set naming convention. Each SMART module consists of a 
standard core set of files, with the flexibility to include additional files needed for 
functionality.  
 
When running, SMART actually operates as an operating system on the target. It is fairly 
mature and sophisticated in that many desirable support features are already developed 
and available to the programmer through function calls. SMART consists of a core set of 
modules that handle SMART’s execution, including initialization of all the user’s 
modules, communication between modules using built-in “connectors” to pass standard 
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position and velocity data, and regular calls to each module to exercise its body code in a 
looping manner. SMART provides support for common data registers that can be 
accessed by any module to pass generic data between modules. SMART includes 
communication modules to transparently pass these data register values between 
processor platforms (targets). SMART enables a module to “register” functions or 
commands so they can easily be accessed by other modules or an operator at a console by 
calling the function with the appropriate parameters. Several utility features have also 
been developed, including print message support, clock/timing support, and support for 
multi-tasking and semaphores. Message printing support provides three levels of message 
priority, message buffering, and the ability to turn message printing on and off. Messages 
include the file and function initiating the call, which facilitates debugging. SMART has 
abstracted calls to functions that are specific to the operating system (OS) or processor 
hardware and remaps them automatically to the OS- or hardware-specific call through the 
use of sophisticated ‘make’ files that automate code compilation. Thus the SMART code 
can be compiled for several different operating systems with no change to the SMART 
code, only by resetting a flag in the make file.  
 
SMART supports the assembly of modules into compiled code using a graphical user 
interface  (GUI) code called the SMART Editor. (Fig. 13) The core SMART modules are 
included automatically behind the scenes, and the application-specific functional modules 
are added and connected graphically on the screen using the cursor and copy/paste 
techniques. Application-specific parameter sets can be selected for each module by 
double clicking the module icon to pull up a selection box, or new selection sets can be 
added by clicking the Edit button to pull up the file needed to add the code. The user 
creates one or more ‘grids’ of SMART modules for each processor/OS platform (target). 
Behaviors are defined by enabling one (or more if they are not mutually exclusive) grids 
on each target. This can be done when operating by using the registered commands.  
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Figure 13 – SMART Editor showing application-specific modules being assembled into a 
grid, and the pop-up window enabling one to select a parameter set for a module 

 
For this project we have three targets; the vehicle RTOS (real time operating system), the 
base station RTOS, and the GUI (graphical user interface). The operator interacts with 
the GUI which is coded in Tcl/Tk, a scripting and graphical toolbox software language 
and is designed to run on the same processor as the base station RTOS, while the two 
RTOS targets perform the operational functionality at the base station and vehicle. There 
are two behaviors; teleoperation and auto-navigation, that use different grids on the base 
station and vehicle targets.  
 
While much of the core code was available in SMART, a significant amount of work was 
needed to add new modules and functionality to enable this project to achieve its goals. 
These included creating the ability to perform waypoint navigation using GPS sensor 
readings for location, falling back to dead reckoning navigation when the GPS data is not 
sufficiently accurate, controlling the sensor deployment/retrieval hardware, creating the 
GUI interfaces for the vehicle and the payload status and commands, and creating the 
interfaces to the compass and GPS sensors and the payload processor to begin with. 
Other tasks included transmitting the GPS differential correction data to the vehicle GPS 
from the base station during the development stage and from a deployable GPS base 
station unit for the final product, and translating the sensor deployment requests of the 
sensor payload into deployment command sequences for the vehicle. 
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Sensor Payload Configuration 
The sensor payload configuration evolved significantly as the AMGS configuration 
coalesced to a radio-connected (for the seismic sensors) central-DSP design. In addition 
to the major challenge of implementing real-time autonomous signal data processing in 
hardware and developing array optimization algorithm software, the payload challenge 
also included developing the hardware and software for multiple real-time data 
transmission and time synching by radio for the seismic signals. None of this had been 
accomplished before. The hardware configuration converged the design shown in Fig. 14. 
It uses a TI C6711DSP processor for the signal processing and array optimization 
software mounted in the vehicle and talking to the vehicle control processor over an RS-
232 serial port. The sensor pod would contain the seismic sensor geophone and a TI 
C5510 processor. Communication would use a wireless LAN (local area network) 
PCMCIA transceiver card on either end. The transmission rate was selected to support up 
to 16 separate sensor pods all transmitting at once.  
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Figure 14 – Sensor System Component Configuration 
 
A modified version of this would be used for the GPS base station which would be 
deployed by the vehicle at the sensor deployment site. Instead of the seismic sensor and 
TI C5510 processor, the GPS base station sensor pod would incorporate a GPS receiver 
and a Tern A-Engine single-board computer interfacing to the wireless LAN transceiver. 
(Fig. 15). Binary differential correction data and ASCII log data from the GPS base 
station and ASCII commands being sent to the GPS unit would be passed through the 
DSP processor to and from the vehicle PC104 stack processor. During the development 
phase, the base station GPS unit is located at the Vehicle Command and Control Station, 
and differential correction data is passed to the vehicle through the control station-to-
vehicle data link. 
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Figure 15 – GPS Base Station Sensor Pod Configuration 
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Vehicle System Hardware Design 
The SandDragon vehicle was selected to be the platform on which the hardware for this 
LDRD was mounted. The base vehicle consists of two bodies that were always 
connected. The front vehicle was used to hold the seismic sensor deployment/retrieval 
hardware and the seismic puck(s). The rear body was designated to hold the acoustic 
sensor mechanism.  
 
SandDragon Robotic Vehicle Hardware 
The existing SandDragon vehicle was modified somewhat for the specific requirements 
of this project, but the core functional features remained essentially unchanged from the 
original design. Figures 16 and 17 shows the main functional systems and interconnects 
for the front and rear bodies of the vehicle as configured for this LDRD. The front 
vehicle contains two PC-104 form factor stacks of boards and one custom sensor stack 
mounted on a custom designed motherboard that acts as the interconnect and distribution 
for the various electrical busses. The rear body contains another custom sensor stack that 
includes the Novatel Pro-Pak-4E-RT2 OEM3 L1/L2 RTK GPS unit, which was installed 
after removing the GPS unit’s Pro-Pak housing. Both bodies contain batteries, motors, 
and motor amplifiers.  

 Figure 16 - SandDragon Robotic Vehicle Front Body Functional Diagram 
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Figure 17 -SandDragon Robotic Vehicle Rear Body Functional Diagram 
 
Batteries are configured so that the vehicle can be run on as little as two or as many as six 
BB-X90 form factor batteries, where the X is replaced by a number designating the 
battery chemistry. (Fig. 18) When running with two batteries, they are mounted in one 
body on the left and right outboard locations leaving the center location free. (Fig. 19) 
Although it is possible to operate when stationary and running forward, this configuration 
tends to lack sufficient power for more aggressive maneuvers, such as spin turns, which 
can cause the computer to reboot. Running with four batteries, in the four corner 
positions works better for any kind of maneuvering. BB-390 Nickle-metal hydride 
(NiMH) batteries and lithium-ion (Li-Ion) rechargeable batteries are available from 
sources such as Brentronics and Ultralife. We used Li_Ion batteries in this project as they 
have twice the capacity and a lower weight than the NiMH batteries. Each 1.3kg battery 
has a nominal 16V operating voltage (in parallel, 32V if wired in series) and 8 amp-hrs of 
capacity (wired in parallel and measured down to 10V). They can be recharged in a unit 
such as is shown in Fig. 20. The battery wiring diagram is given in Fig. 21, shown for 
BB-390 NiMH units. 
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Figure 18 - BB-X90 Form Factor Battery 
 

 
 

Figure 19 - SandDragon Battery Compartment with Two BB-2590 Batteries in Place 
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Figure 20 - Charger for Li-Ion Rechargeable BB-2590 Battery 
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Figure 21 - Wiring Diagram for the SandDragon Batteries 

 

Figure 22 gives the configuration of the front body PC104 stacks, and Fig. 23 gives the 
configuration of the front body sensor stacks. The settings and configuration of all the 
PC104 and custom boards is given in Appendix B, SandDragon Configuration and 
Assignment Document, created by Willy Morse and modified by Alex Maish. Views of 
the front and rear body interiors with the covers removed are given in Figs. 24 and 25. 
The front left PC104 stack contains a 233MHz Pentium CPU board, a utility module 
containing interfaces for an external SVGA monitor, an IDE hard drive, and a floppy 
drive, and a quad serial board adding four serial ports to the two on the CPU board. All 
three are from Real Time Devices (RTD). The front right PC104 stack contains a 
CompactFlash Boot module which holds the operating system and control code, an 
Ethernet utility module, and a Directed Motion four-axis servo motion controller 
consisting of a two-card Galil 1240 set. The Ethernet module is connected to a multi-
outlet Ethernet Hub mounted on top the right PC104 stack allowing simultaneous 
Ethernet connections to the rear Galil Servo Motor PC104 board set and to the external 
base station control computer during development. During development a PC104 Floppy 
Drive board could be connected to the RTD utility module, but once boot software was 



 49

loaded onto the CompactFlash card it was removed and booting occurred from the 
CompactFlash boot drive. In the custom sensor stack, the front body contains a power 
supply board using Vicor +5V and +12V regulators, a Freewave DGR09 digital radio 
board mounted on a custom interface board, and a custom interface board for the 
Honeywell HMR 3000 Compass and the Sony camera. Magnetic interference within the 
vehicle body led to moving the compass to the sensor platform on the roll bar on the top 
of the vehicle. The HMR3000 custom sensor stack card was left since it put power on the 
appropriate serial line for the compass.  
 
The rear body contains a Directed Motion two-axis servo motion controller consisting of 
a Galil DMC1425 board.  It also contains a Southern California Microwave video 
transmitter and another power supply board using Vicor regulators. 
 

The Novatel OEM3 RTK GPS unit was mounted in the rear body after the cover was 
removed.  
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Figure 22 – SandDragon Robotic Vehicle Front Body PC104 Stack Configuration 
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Figure 23 – SandDragon Robotic Vehicle Front Body Sensor Stack Configuration 
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Figure 24 – SandDragon Robotic Vehicle Front Body Interior View 
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Figure 25 – SandDragon Robotic Vehicle Rear Body Interior View 
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The serials ports were assigned as shown in Table 9. 
 

Table 9 – Serial Port Assignments on SandDragon Vehicle 

Port Assignment 
1 Data Radio Communication 
2 GPS Differential Corrections 
3 Camera Control 
4 Compass 
5 GPS Log/Command Data 
6 Payload DSP Interface 

 
A structure was fabricated on the rear body of the SandDragon vehicle to mount the 
driving camera, the GPS antenna, and the compass mechanism. It was assembled using 
PVC tubing, as shown in Fig. 26. The Novatel GPS-512 L1/L2 aircraft antenna was 
moved from this structure to the on top of the sensor pod deployment/retrieval 
mechanism to place it closer to the deployment location. 
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Figure 26 – SandDragon Robotic Vehicle Rear Body Sensor Support Structure 
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Sensor Pod Deployment/Retrieval Mechanism 
The sensor pod deployment/retrieval mechanism underwent some evolution during the 
course of this project. Initially it was expected that we would need to drive or screw the 
sensor pods into the ground to achieve good vibrational coupling between the sensor and 
the ground. The sensor pod was designed as a round puck that could be held between 
three wheels and spun by driving one of the wheels so that it rotated the puck about a 
protruding threaded spike. The trial deployment mechanism, mounted on an arm, proved 
this concept would work. The three wheels that held the sensor puck were roller blade 
wheels. Lips on the top and bottom of the sensor puck kept the puck from slipping out 
from between the three wheels. When testing determined that screwing the puck into the 
ground did not confer a significant advantage in signal coupling, the rotating mechanism 
was dropped, but the puck design was retained in case it was necessary to revisit this 
approach.  
 
Once the approach was selected, a new deployment mechanism was designed and built. 
This mechanism did not include an arm but instead raised the sensor puck around the 
body of the vehicle and tilted it horizontally so that it could be placed in a horizontal 
stack with additional pucks. The initial design did not include a multi-sensor stacker, but 
the concept was designed to be easily adaptable to one. A lifting mechanism was 
fabricated that worked like a garage door, with a pair of curved tracks guiding rods that 
held panels. The lower panel supported the gripper mechanism, which included a pair of 
arms and a motor. The motor, acting through a gear, would open and close the gripper 
arms. The original in-line skate wheels were dropped in favor of a configuration of 
spring-loaded curved arms with smaller rollers that could adapt to up to 3 inches of 
misalignment. The final configuration, shown in Fig. 27, was successful in grabbing a 
sensor puck with several inches of misalignment.  
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Figure 27 – Sensor Pod Lift and Grip Mechanism 
 
Although both the lift and grip motors were adapted to use encoder feedback, we needed 
to add limit switches so we could initialize the encoders to zero at one end of travel. The 
lift mechanism used a non-backdriving ball screw that would hold the sensor pod in place 
if the motor was deactivated. To conserve power, the lift mechanism motor software was 
coded to turn off the lift servo control when the encoder stopped changing. This didn’t 
work with the lower-geared grip mechanism, however, and when the motor was 
deactivated the grip mechanism relaxed, dropping the sensor puck. Thus we had to 
program the grip motor to stay on whenever the sensor puck was in the gripper. This 
could be avoided if the jaws were redesigned using a non-backdriving gear element. 
Although we were successful in adding power limit switches to the lift motor to cut 
power to the lift motor whenever it hit the limit, this did not work with the grip motor. 
Instead, when a grip limit was hit, it caused the gripper to drive at full speed in the 
opposite direction due probably to some interaction involving the motion servo system. 
So we hooked the gripper limit switches directly into the Galil motion servo limit inputs, 
which stopped motion in that direction. 
 
Operator Control Unit Hardware 
The Operator Control Unit (OCU) consists of a PC computer, a radio communication unit 
with a small video monitor housed in a portable box, and a gamepad joystick input device 
used during manual teleoperation. (Fig. 28) Additional hardware used in development 
included an additional monitor and keyboard to connect directly to the vehicle, and a 
large monitor to view the vehicle video camera image. An Ethernet connection between 
the vehicle and the OCU base station was also used to facilitate debugging and code 
transfer. A standard desktop computer with keyboard and monitor was used in this 
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project for the base station OCU computer, but a laptop or ruggedized PC could just as 
easily suffice. The radio communication unit contains the digital and video radio 
communication boards and antennas for the base station. It can be run off an internal 12V 
battery or it can be plugged into the wall. It connects to the OCU computer through an 
RS232 serial link, and to the video display with a video connector. The DI gamepad 
joystick unit provides separate joysticks with deadman switches for driving the vehicle 
and driving the lift/grip sensor deployment/retrieval unit. (Fig. 29) 
 
 

 

Figure 28 – Operator Control Unit and Development Hardware 
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Figure 29 – DI Gamepad Unit 
 
Acoustic Sensor Mechanism 
During the first year of the program an acoustic sensor mechanism was developed that 
supported an array of seven sensors, one in the center and six in a circular pattern about 
it. The target half-wavelength for a 150Hz acoustic signal is only 1.1m as compared to 
the 5m spacing for the seismic signals due to the slower signal velocity in air. Thus the 
full array could be mounted on the vehicle rather than having to place sensors on the 
ground. The acoustic sensor spacing could be adjusted between 14 and 39 inches 
enabling it to be tuned to various frequencies. The array is shown in Fig. 6. A turntable is 
used to rotate the array to different directions, and power automotive radio antennas are 
used to extend and retract the sensor arms. The sensors are WP-3502 headset microphone 
units for outdoor use from Emkay Innovative Products and are covered with an acoustic 
foam ball to reduce wind noise. They are designed to survive immersion in water. 



 59

Vehicle System Software Design 
The vehicle system software was written using Sandia’s SMART software Version 0.9. 
Although the code is written in C, not C++, it implements a number of the object oriented 
concepts such as encapsulation. Make files are used to compile the code using the Gnu 
gcc compiler. (Version?) 
 
The SMART software for the SandDragon vehicle for this LDRD consists of three 
separate targets defined in the sanddragon.lab file. (Fig. 30) These targets are the base 
unit’s real-time operating system (RTOS) running on a Windows OS, the vehicle RTOS 
running on a QNX Neutrino real-time OS, and the base unit graphical user interface 
running under Tcl/Tk on a Windows OS.  

 

Figure 30 - Sanddragon Lab File used by the SMART Editor 

#******************************************
# sanddragon.lab 
# This lab is located all around the RVR 
# and consists of the Neutrino based SandDragon system 
# two mounted computers, and a graphical host. 
#  OS options: irix, irix62, linux, lynxos, 
#     neutrino, qnx, solaris, vxworks, 
#     winnt, win98 
#  ARCH options: alpha, 68k, x86, mips, ppc, sparc 
#  defaults: irix->mips, irix62->mips, linux->x86, 
#      lynxos->ppc, neutrino->x86, qnx->x86, 
#      solaris->sparc, vxworks->68k, winnt->x86, 
#      win98->x86. 
#****************************************** 
SMART_LAB sanddragon 
 
TARGET ocu_rtos RTOS 
  OS winnt  
  ARCH x86  
  PORT 2060 
  CPU_NAME "teleopbase" 
TARGET_END 
 
TARGET vehicle RTOS 
  OS neutrino  
  ARCH x86  
  PORT 2060 
  CPU_NAME "sanddragon143" 
TARGET_END 
 
TARGET ocu_gui GUI_HOST  
  OS winnt 
  ARCH x86  
  CPU_NAME "teleopbase" 
TARGET_END 
 
SMART_LAB_DONE 
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Application-specific software configurations are generated graphically in the SMART 
Editor, and consist of grids of SMART modules that implement specific functionalities 
on each platform. Behaviors define what grids (groups of SMART modules) are operable 
on each RTOS platform and enable coordinated activity of the different platforms. There 
are four behaviors defined for the SandDragon system. The active grids on each target for 
each behavior are shown in Table 10. The GUI grid runs all the time independent of 
which behavior is active on the RTOS platforms, so the table only shows the RTOS grids 
that are active for each behavior. The teleop behavior was named joint due to a code 
requirement that the first behavior be named joint. We didn’t track this down and change 
it. The camera grid can run simultaneously with the teleop or autonav_on_veh behaviors. 
The final version of this configuration information developed under this project is saved 
under the workcell named alexnav5v.wk2. 

Table 10 – Grids Active in Each Behavior on each Target 

 Behaviors 
Target Joint (Teleop) Autonav_veh Gps_only Camera 

Base RTOS Teleop Autonav_vehicle Gps_only ptu 
Vehicle RTOS Nav_on_base Autonav_on_veh Nav_on_base  
 
Each module has a function and customizing parameters, called filter constants in 
SMART. These parameters are stored in a configuration file with a configuration name. 
SMART modules communicate either through registers, which are named common 
storage locations, or through connect structures graphically depicted as line connections 
on each side of the module icons in the SMART Editor. SMART implements the 
graphical connection behind the scenes. The functions, filter constant settings, and 
connection values are described for each behavior below. 
 
Tele-operation Behavior 
The tele-operation behavior consists of cooperative grids on the base unit and the vehicle. 
The base unit runs the teleop grid shown in Fig. 31, and the vehicle runs the nav_on_base 
grid shown in Fig. 32. 
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Figure 31 – Base Platform’s teleop SMART grid 
 

 

Figure 32 – Vehicle Platform’s nav_on_base SMART grid 
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Table 11 shows the named variable storage registers used by the joint behavior. Many are 
flagged to be passed between the vehicle and the base platform over the radio serial link 
by the Reg_Serial SMART modules on each platform’s grid.  

Table 11 – Joint (Teleop) Behavior Registers 
Register 
Name 

Type Contents Owner 
Module / Target 

Used By 
Module / Target 

gpsdiff1 bin_blk GPS differential binary log Reg_comm / Base Reg_comm / Veh 
abase twist Vehicle velocity in x and y and 

lift and grip directions. 
Reg_output  Reg_input /Veh 

DR_travel twist Travel distance, left, right, lift, 
grip. 

Sandlizard /Veh Pos_estim / Veh, 
Sandlizard_status / 
GUI 

traj_io_stat
e 

integer Not implemented. Used to feed 
back deploy state to traj_io 
module. 

Not used in this 
behavior 

Sandlizard /Veh 

traj_io_cmd integer Bit commands used to signal 
raise, lower, open and close 
sensor deploy mechanism. 

Not used in this 
behavior 

Sandlizard / Veh 

gps_pos vector Distance from home in m, x (E 
is pos), y (N is pos), z 
using GPS information. 

Novatel_solo / Veh Pos_estim / Veh 
Sandlizard_status / 
GUI 

gps_home vector HOME position in decimal 
degrees and m 

Novatel_solo / Veh Sandlizard_status / 
GUI 

gps_base vector Base GPS fixed position in 
decimal degr and m 

Novatel_solo / Veh Sandlizard_status / 
GUI 

gps_pos_de
c 

vector Vehicle position in decimal 
degrees and m 

Novatel_solo / Veh Sandlizard_status / 
GUI 

gps_sats vector Number of satellites Novatel_solo / Veh Sandlizard_status / 
GUI 

gps_std_de
v 

vector Std deviation of rtk msmt in m 
for x, y, and z 

Novatel_solo / Veh Pos_estim / Veh, 
Sandlizard_status / 
GUI 

gps_rdg_ti
me 

vector Satellite time in week and sec 
of week. 

Novatel_solo / Veh Pos_estim / Veh, 
Sandlizard_status / 
GUI 

gps_rtk_sta
t 

vector Rtk status code Novatel_solo / Veh Sandlizard_status / 
GUI 

gps_base_l
og 

string Base GPS unit log text Not used Novatel_solo / Veh 

hmr_rpy vector Roll, pitch, and yaw in degrees HMR3000 / Veh Pos_estim / Veh 
Sandlizard_status / 
GUI 

compass_st
atus 

integer Status byte HMR3000 / Veh Sandlizard_status / 
GUI 

robot_pos_
x 

twist Distance from home in m, x (E 
is pos), y (N is pos), z 
using better of GPS or DR 
information. Also lift and grip 
in % of travel from up and 
open. 

Pos_Estim / Veh Sandlizard_status / 
GUI 

DR_pos vector Distance from home in m, x (E 
is pos), y (N is pos), z 
using dead reckoning 
information. 

Pos_Estim / Veh Sandlizard_status / 
GUI 
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Base Platform Teleop Grid 
The base platform communicates with the vehicle platform using a pair of Reg_serial 
SMART modules. The base unit is set to a baud rate of 19200 and uses port 3 on the base 
station to talk to the radio. (These parameters are set in the configuration files for each 
module, which are listed in Appendix C.) The Reg_serial SMART module was 
substantially modified under this program to improve communication with the limited 
bandwidth available and the numerous operating values to be monitored at the base 
station. Originally the Reg_serial module only made one pass through the registers each 
minimum-send-time period (which is set to 0.1 seconds in the configuration file) to fill 
the buffer. If there was more data to be sent, it waited until the next time period. This was 
changed so that the software looped through the registers repeatedly, refilling and 
sending the buffer each time period until all awaiting registers were sent. When each 
register is saved, the time_at_last_update timestamp is updated in the reg.c core file, but 
we had to add a ‘reg_sent_timestamp’ to the Reg_serial data structure for each register to 
enable the change. These timestamps are associated with the target being sent to, so they 
were made part of the Reg_serial module instead of the reg.c core file that is associated 
with the registers in order to accommodate multiple Reg_serial modules sending to 
different targets. After this change there was still a problem because some SMART 
modules updated registers repeatedly even if the data hadn’t changed, and this flagged the 
register to be re-sent even if the data hadn’t changed. A significant reduction in register 
data traffic was finally achieved when another timestamp, named time_at_last_change, 
and an associated reg_get_change_timestamp routine were added to reg.c and used to 
enable sending the register data only if it had actually changed since the last send. A full 
send of all the register values is sent every minute (as set in the full_send_time parameter 
in the configuration file) even if the data hasn’t changed.  
 
Next, the Reg_Comm SMART module receives binary differential correction data from 
the base station Novatel GPS unit. The communication rate is 19200 baud over serial port 
5. Data is stored in the gpsdiff1 binary block register and is communicated via the 
Reg_serial modules to the same register name on the vehicle where the correction data is 
passed on to the vehicle’s Novatel GPS unit with another Reg_Comm module. This data 
enables the vehicle’s GPS unit to maintain centimeter accuracy relative to the fixed base 
station position. The base GPS unit is initialized  by sending it the commands given in 
file base.gps shown in Fig. 33.  This is done using the novatel_test.exe executable with 
the ‘base’ option before running the SandDragon executable code. Once the settings are 
sent to the Novatel GPS base unit and saved to non-volatile memory using the 
SAVECONFIG command, the unit will start up with these settings. The commands set it 
to send its position log over its COM1 line (base unit port 4) to the base station every 5 
seconds. This log, which gives the latitude and longitude of the fixed base unit position, 
isn’t monitored by the SMART software but can be read by Novatel’s GPSolution 
software. The base.gps file also commands the Novatel unit to send two differential 
correction logs over its COM2, connected to the Base Station’s serial port 5. These are 
put in gpsdiff1 register by the Reg_Comm module. The first is the RTCAOBS log sent 
every two seconds, and the second is the RTCAREF log sent every 10 seconds, offset by 
a second. Offsets can only be on the whole second, so to avoid having both logs sent at 
once, which would overfill the gpsdiff1 binary block register size, we had to set the 
RTCAOBS log to every other second rather than every second. This is sufficient to 
achieve the desired accuracy according to Novatel.  
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Figure 33 – Novatel GPS Base Unit Command String 
 
Next, the DI_Gamepad SMART software module interfaces with the hardware gamepad 
unit (Fig. 29) with its two joysticks and multiple switches used for tele-operation control. 
Its output is a connection with 4 degrees-of-freedom (dof) of velocity, for the forward 
and lateral motion of the hitch point, and the lift and grip motion of the sensor 
deployment and retrieval mechanism. In the adjacent ‘split’ SMART module, the first 
two dofs, forward and lateral motion, are split off and sent to the Tank Block, which 
translates the motion into left and right track velocity commands. These are recombined 
in the SMART merge module and put into register abase in the Reg_output module to be 
sent to the vehicle platform. 
 

Vehicle Platform Teleop Grid 
The vehicle platform has the Reg_serial module that is complementary to the one on the 
base platform. Its configuration filter constants are set up (Appendix C) to use port 1 to 
talk to the radio at a 19200 baud rate. It also has a Reg_comm module that is set up to 
relay the gpsdiff1 binary block register values to the Novatel GPS unit on port 2 at a rate 
of 19200 baud. Figure 34 lists the setup command string used with the onboard Novatel 
GPS unit. The Reg_input module extracts the four velocity values from the abase register 
and passes it to the Sandlizard module through its right side connection.  

#**** This is the base station setup file for the RVR base station
#****  The Fixed position needs to be adjusted 
# This command should be called from within the GPSolution environment 
# followed by a SAVECONFIG 
# COM1,19200,N,8,1,N,OFF,ON 
UNLOGALL 
UNFIX 
 
#**** THE LOG MESSAGES Depend on which windows are open! **** 
LOG,COM1,POSA,ONTIME,5.00 
 
#**** The position below defines the base position **** 
#To get a FIXED position run the $POSAVE,com1 command within GPSolution 
#Let it run for 24 hours, then come back and record the data off of the Position window. 
#COM is redundant since it won't accept it unless it is already talking at correct rate 
#COM2,19200,N,8,1,N,OFF,ON 
#The value below was averaged over 2 days on 4/15/02 using the antenna on top of RVR control room* 
FIX,POSITION,35.04113166,-106.52210904,1672.318 
#The RTCAREF needs to be done every 10 seconds. Offset from RTCAOBS to not overflow the  
#buffer in SMART, which can be filled by one RTCAOBS reading. Offset may have to be on full sec  
#boundaries. 
LOG,COM2,RTCAREF,ONTIME,10.0,1. 
#The RTCAOBS needs to be sent every second or two.  
LOG,COM2,RTCAOBS,ONTIME,2.0 
SAVECONFIG 
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#**** This is the Vehicle Setup file for the Novatel GPS 
#**** It is read from SMART_RTOS_DIR/novatel/<filename> 
#**** where SMART_RTOS_DIR is defined in rtos/smart_include_dirs 
#**** and is currently set to "/demos" on the vehicle. 
#**** This is read from the vehicle even if telneting from base. 
 
# The COM1 and COM2 settings aren't really needed.  
# If you are talking, it is already correct 
#COM1,19200,N,8,1,N,OFF,ON 
#COM2,19200,N,8,1,N,OFF,ON 
UNLOGALL 
UNFIX 
 
# POSA and GPGGA not normally used 
#LOG,COM1,POSA,ONTIME,1.00 
#LOG,COM1,GPGGA,ONTIME,1.00 
# Accept incoming diff corrections on COM2 
ACCEPT,COM2,RTCA 
# Send out position log on COM1 every second 
LOG,COM1,PRTKA,ONTIME,1.00 
 
# Send out status log every sec offset 0.5 sec for debug 
#LOG,COM1,RCSA,ONTIME,1, 0.5 
 
# This puts values into nonvolatile ROM 
#SAVECONFIG 

Figure 34– Remote.gps command file used to setup the onboard Novatel GPS unit 
 
The Sandlizard module interfaces with the Galil motion controllers to send it commands 
for the four track motors and two sensor deployment/retrieval motors to respond to the 
velocity commands passed in by the Reg_input module. It also retrieves the encoder 
positions for the four front-body motors, left and right, lift and grip, and puts them into 
register DR_travel for use by the Position_estimator module and to be sent back to the 
OCU GUI.   
 
Three other SMART modules in this grid interface with vehicle sensors and components. 
The Sony_Visca module provides control and status communication with the Sony 
camera. The control pendant DI_Gamepad button commands are not put into a register, 
but rather are sent as commands over the Reg_serial link to the Sony_Visca module, 
which translates these into camera commands that it sends over comm port 3. The 
Novatel_solo_block module retrieves position and status information from the Novatel 
GPS unit and puts the data in registers for use by the Pos_Estim position estimation 
module and the OCU GUI for display purposes.  The HOME position is the GPS position 
from which distances are measured. It is set initially to the default in the configuration 
file, which is the location of the Robotic Vehicle Range control room GPS antenna. The 
HMR3000 module interfaces with the Honeywell HMR3000 digital compass and puts the 
tilt, roll, and yaw in degrees into the hmr_rpy register as a vector. It communicates over 
serial port 4. It also puts the compass status information into register compass_status. 
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The pos_estim or position estimation SMART module arbitrates between the GPS 
position and the dead reckoning (DR) position. The algorithm it uses in its decision is a 
rudimentary one at present. It checks the GPS standard deviation error value and if the x 
and y components are within 10 cm, it uses the GPS value and updates the DR value to it. 
Otherwise it uses the DR value. The pos_estim block module provides the robot_pos 
values in its ‘next’ or right side connection which is used in the autonav_on_veh grid, so 
instead of having two versions, this connection is sinked to a do-nothing module called 
pos_estim_conn_block.  
 
 
Autonavigation Behavior 
The autonavigation behavior consists of cooperative grids on the base unit and the 
vehicle. The base unit runs the autonav_vehicle grid shown in Fig. 35, and the vehicle 
runs the autonav_on_veh grid shown in Fig. 36. 
 
 
 

 

Figure 35 - Autonav_vehicle grid used on base platform during autonavigation behavior 
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Figure 36 - Autonav_on_veh grid used on vehicle platform during autonavigation 
behavior 

Table 12 shows the named variable storage registers used by the autonav behavior. Many 
are flagged to be passed between the vehicle and the base platform over the radio serial 
link by the Reg_Serial SMART modules on each platform’s grid.  

Table 12 – Autonavigation Behavior Registers 
Register Name Type Contents Owner 

Module / Target 
Used By 
Module / Target 

gpsdiff1 bin_blk GPS differential binary log Reg_comm / Base Reg_comm / Veh 
DR_travel twist Travel distance, left, right, lift, 

grip. 
Sandlizard /Veh Pos_estim / Veh, 

OCU GUI 
traj_io_state integer Not implemented. Used to feed 

back deploy state to traj_io 
module. 

Traj_io_block / Veh Sandlizard /Veh 

traj_io_cmd integer Bit commands used to signal 
raise, lower, open and close 
sensor deploy mechanism. 

Traj_io_block / Veh Sandlizard / Veh 

traj_tag_info string Trajectory values: %done, 
traj_state, tag_name, and 
io_cmd 

Traj_io_block / Veh Traj_tag / GUI 

gps_pos vector Distance from home in m, x (E 
is pos), y (N is pos), z 
using GPS information. 

Novatel_solo / Veh Pos_estim / Veh 
Sandlizard_status / 
GUI 

gps_home vector HOME position in decimal 
degrees and m 

Novatel_solo / Veh Sandlizard_status / 
GUI 

gps_base vector Base GPS fixed position in 
decimal degr and m 

Novatel_solo / Veh Sandlizard_status / 
GUI 
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gps_pos_dec vector Vehicle position in decimal 
degrees and m 

Novatel_solo / Veh Sandlizard_status / 
GUI 

gps_sats vector Number of satellites Novatel_solo / Veh Sandlizard_status / 
GUI 

gps_std_dev vector Std deviation of rtk msmt in m 
for x, y, and z 

Novatel_solo / Veh Pos_estim / Veh, 
Sandlizard_status / 
GUI 

gps_rdg_time vector Satellite time in week and sec 
of week. 

Novatel_solo / Veh Pos_estim / Veh, 
Sandlizard_status / 
GUI 

gps_rtk_stat vector Rtk status code Novatel_solo / Veh Sandlizard_status / 
GUI 

hmr_rpy vector Roll, pitch, and yaw in degrees HMR3000 / Veh Pos_estim / Veh 
Pos_Offset / Veh 
Trailer / Veh 
Sandlizard_status / 
GUI 

compass_statu
s 

Integer Status byte HMR3000 / Veh Sandlizard_status / 
GUI 

robot_pos_x twist Distance from home in m, x (E 
is pos), y (N is pos), z 
using better of GPS or DR 
information. Also lift and grip 
in % of travel from up and 
open. 

Pos_Estim / Veh Sandlizard_status / 
GUI 

DR_pos vector Distance from home in m, x (E 
is pos), y (N is pos), z 
using dead reckoning 
information. 

Pos_Estim / Veh Sandlizard_status / 
GUI 

gps_diff bin_blk GPS differential correction 
information passed from 
deployed base unit through 
DSP 

Snsr_dsp / Veh Unused. Alternate path 
for gpsdiff1 

gps_base_log string Deployed GPS unit log data, 
primarily its fixed position 
passed through DSP 

Snsr_dsp / Veh Snsr_status / GUI 
Novatel_solo / Veh 

dsp_msg string Message text from DSP to 
operator 

Snsr_dsp / Veh Snsr_status / GUI 

 

Base Platform Autonavigation Grid 
As with the teleoperation grid, the base platform communicates with the vehicle platform 
using a pair of Reg_serial SMART modules. The configuration settings are the same. The 
base unit is set to a baud rate of 19200 and uses Port 3 on the base station to talk to the 
radio. The only other module in the base platform grid is the Reg_comm module used to 
communicate with the base unit Novatel GPS unit. The settings for this module are also 
identical to those used in the teleoperation grid. 
 

Vehicle Platform Autonavigation Grid 
The vehicle platform has the Reg_serial module that is complementary to the one on the 
base platform. Its configuration filter constants are set as in the teleop grid to a baud rate 
of 19200 on port 1. It also has a Reg_comm module that is set up to relay the gpsdiff1 
binary block register values to the Novatel GPS unit on Port 2. The same settings used on 
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the teleop grid are also used for the Novatel_solo_block, HMR3000_block, 
Sony_Visca_port, Merge, and Position Estimator block SMART modules that interface to 
the GPS unit, digital compass, camera, and the position estimation arbitrator modules. 
The position estimation module arbitrates between the GPS and dead reckoning positions 
and exports the best estimate of the vehicle position in meters from the HOME position 
in the x (east), y (north), and z (up) directions to its right or ‘next’ connector. This is 
imported into the position offset (Pos_Offset) module which uses the compass direction 
from the hmr_rpy register and the offset between the GPS antenna and the vehicle hitch 
from its configuration file to compute and export the position of the hitch in meters from 
HOME. The hitch position, rather than the GPS antenna position, is what we want to 
control, and this is fed into the Pos_Servo module.  
 
The Traj_IO module creates and runs trajectories of waypoints. The waypoint tag files 
are created in the OCU GUI in the Tag_Editor module and are stored in a file on the base 
unit in the $SMART_HOME/rtos/save/vehicle directory. Tag records with the same base 
name and a number suffix (i.e. deploy1, deploy2, etc.) form the waypoints of a trajectory. 
They are downloaded to the vehicle in the Tag_Editor module by highlighting the 
trajectory to send, copying it, and pasting it to the Download window. This causes each 
named tag point to be sent to the Traj_IO module using the tag_add_point command. The 
file vehicle_start.tags is downloaded automatically on startup, but other files can be 
created and downloaded manually. The Traj_IO module stores the tag points in memory. 
The operator then uses the Traj_Tag module in the OCU GUI to send commands to the 
Traj_IO module on the vehicle to run, pause, rewind, or stop available trajectories. When 
the Traj_IO module receives a run command from the OCU Traj_Tag module, it first 
finds the tag records with the same base name, creates a trajectory by inserting necessary 
waypoints to implement transitions at each waypoint (accelerate, decelerate, or round off 
corners as indicated by the tag file record), and runs the trajectory sequence by sending 
out the requested position in its right or ‘next’ connection which is hooked to the 
Pos_Servo module. It puts status data into a register to be sent back to the OCU Traj_Tag 
module for display to the operator. This includes the percent done, the trajectory state 
(PLAYING, REWINDING, AT_END, etc.), the tag number being executed, and the 
io_command being performed. The Pos_Servo module compares the requested position 
with the hitch position provided by the Pos_Offset module, and generates a velocity that 
is proportional to the difference. It also implements a speed limit, in meters per second, 
which is set in its configuration file. This limit is currently set to 0.5 m/s.  
 
Initially we considered implementing the sensor pod deploy/retrieve motion commands 
using the vehicle movement servo loop expanded from two degrees of freedom (2dof) to 
4dof by adding the lift and grip positions. This SMART module is shown in Fig. 37, but 
it was not used. We decided instead to implement a smaller servo loop by sending a flag 
to the SandLizard module to raise, lower, open, or close the sensor gripper. This caused 
the control loop to be handled entirely between the SandLizard module and the Galil 
motion controller rather than involving the SMART module sequencing, which 
nominally runs at 100Hz. While this provides faster control response, it does eliminate 
the possibility of servoing to intermediate lift and grip positions. The binary flag is stored 
in the io_cmd integer as part of the waypoint tag. When the Traj_IO module runs the tag 
point as part of a trajectory, it stores the io_cmd value of the tag in the io_cmd register 
for use by the SandLizard module. The SandLizard module reads this value and runs the 
sandlizard_io_lift_stow (value 1), sandlizard_io_lift_place (value 2), 
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sandlizard_io_grip_open (value 4), or sandlizard_io_grip_close (value 8) command as 
directed. The command sets the lift or grip motor speed command, which is sent to the 
Galil motion controller by the sandlizard_io.c file. For the lift motor, motion stops when 
the mechanism runs into the limit switch, which cuts power. For the grip motor, motion 
stops when the grip encoder position reaches its limit within the operating range and the 
sandlizard_io.c file turns off the appropriate motor.  
 

Figure 37 – Sensor Pod Control Included in SMART Servo Loop 
 
The io_status flag in the tag file and its corresponding register were created to enable the 
status of a directed command to be reported back to the Traj_IO module so that it would 
wait for a status event before proceeding. This could be the success of a directed action, 
or an external event. At present this capability has not been implemented, so instead of 
waiting for the SandLizard module to report back that the lift or grip mechanism has 
successfully completed its command, the waypoint tag file is programmed with a delay to 
enable the command to complete. Likewise, there is no way to redirect the trajectory 
command if the vehicle does not successfully follow the requested path. If the vehicle 
gets too far behind the requested position, the SandLizard module will stop sending a 
velocity request to the Galil motion controller, which stops its servo loop from 
incrementing the requested encoder position, and instead it will just send a motor voltage 
to keep the motor moving. However, if the vehicle gets stuck, say in deep sand, there is 
presently no mechanism for it to recognize this and to implement an alternate maneuver 
to free itself. 
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The Trailer_Block module translates the hitch velocity back to left and right track 
velocities based on the dimensions of the vehicle saved in its configuration file. The 
Reg_Retrieve module retrieves a velocity for the lift and grip motors from an unused 
register, filling them with zero values and essentially placeholding the lift and grip 
velocity request. They get merged with the vehicle velocity request in the Merge module 
and passed to the Sandlizard module where they are sent to the Galil motion controller. 
 
The Snsr_dsp module was written to interface with the payload digital signal processor 
(DSP) module. Appendix E provides the interface document detailing the communication 
interface and sequence of interaction. This interface was tested with the DSP software, 
but the software to implement the sensor deployment sequences was not done. The 
Snsr_dsp module performs several functions. When it is turned on, the DSP sends a 
New_Array command followed by a number of Sensor_Add commands to tell the vehicle 
the relative position of the sensors it wants deployed. The Ack and Resend commands are 
used in response to these data passing commands. As each sensor is placed, the vehicle 
sends a Sensor_Status command to tell the DSP where the sensor is placed. Once the 
array is placed and the vehicle has driven to a stationary ‘hide’ position, it sends an 
Array_Done command indicating it is OK to process signal data. The DSP uses the Send 
command to send text status and results information through the Vehicle control system 
and back to the OCU GUI where it is displayed in the DSP_Status module. 
 
During the development program, the base station GPS unit was located at the operator 
control unit (OCU) station, and differential correction messages were sent from the OCU 
to the vehicle. In operation, the vehicle would drive without differential corrections or 
with satellite-broadcast differential corrections to the deployment site where it would 
place the base station GPS unit. This base GPS unit would have the same size and shape 
as a sensor pod, and would be the first pod that the vehicle would deploy. (Fig. 15) It 
would be set to monitor its position for a while and automatically switch into being a base 
station once it reached a certain position accuracy or after a designated elapsed time. 
(This is supported by a Novatel GPS command.) The unit would then start sending binary 
differential correction signals over one COM line and its fixed position in a log over the 
other COM line to the Tern A-Engine computer board embedded in the base station GPS 
unit. The A-Engine merges these signals into a third COM line which connects to the 
same type of radio (Signal Spectrum 24 802.11b wireless LAN) as is used by the sensor 
pods to relay data back to the DSP radio. The DSP extracts this information and passes it 
to the Snsr_dsp module over a serial line. The Snsr_dsp module can also relay GPS 
commands back to the base station GPS unit over this same route. The command 
originates with the operator interacting with the Snsr_status OCU GUI module. This 
module sends the GPS command embedded as a text string in a command to the Snsr_dsp 
module on the vehicle. The Snsr_dsp module then sends it out the serial communication 
port to the DSP module, which passes it to the sensor radio, which sends it to the GPS 
base station. 
 
Camera Behavior 
The camera behavior is independent of the vehicle operation behaviors previously 
discussed, and it can be active while either the teleoperation (joint) behavior or the 
autonavigation behavior is active. It enables some modules that control a remote tower 
camera located at the Robotic Vehicle Range (RVR). This camera can be zoomed and 
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aimed using GUI controls to display the vehicle as it is tested outdoors on the RVR 
grounds. Its grid is shown in Fig 38. 
 

 

Figure 38 – Camera Grid 
 
GUI Software Grid 
The GUI software is active during all behaviors, and in fact it contains a module that 
enables the operator to control the vehicle behavior by sending commands to the SMART 
RTOS state engine code on the vehicle to change its own behavior. Unlike the RTOS 
code which is written in C, the GUI code is written the Tcl/Tk script language. It is 
created in the SMART Editor as a grid, as shown in Fig. 39. 
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Figure 39 – GUI Grid for the SandDragon Vehicle 

 

Figure 40 – GUI Display Showing SMART Grids Tab 
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The SMART Editor generates the single executable Tcl script from the component GUI 
modules, and the resulting display is shown in Fig. 40 showing the SMART Grids tab 
page. The Behaviors window on the right side of the display enables the operator to view 
and select the active behavior for the system, and the SMART Grids tab page allows the 
operator to select or view the active grid on each target. In the view shown, the behavior 
is autonav_veh and the grids are autonav_on_veh on the sandddragon143 vehicle target, 
and autonav_vehicle on the teleopbase target. The color indicates the state of the grid, 
with blue being Flow_On and green being Activated. Flow_On allows all data to be 
processed but the motors are not energized while the Activated state enable motion. The 
green box is the Block_Show module that gives a visual indication of the position of the 
vehicle. In this application, three cylinders represent the position of the vehicle GPS 
antenna (purple), the vehicle hitch (blue), and the requested servo position for the hitch 
(green). These values are set up in the Block_Show configuration file. The operator can 
switch views from the top view, shown, to a boom camera or a drive camera view. The 
Zoom Control and the Switcher Controls modules control the tower camera zoom and the 
display of one or more images from the tower camera or vehicle camera on the monitor. 
 
Other tabs can be viewed on the GUI tab page. The Sandlizard_Status tab displays 
vehicle status information. (Fig. 41) This figure also shows the boom camera view for the 
Block Show module. 
 

 

Figure 41 – Sandlizard Status Tab  
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The data displayed in the Sandlizard Status tab page is broken into separate named 
frames. This data is originally stored in registers on the vehicle and is passed to the base 
station registers by the pair of Reg_Serial modules. The Sandlizard Status Tcl module 
then displays the data in real time. The named frames contain data on the compass 
reading, the GPS data, and the vehicle position. The digital compass provide roll, pitch, 
and yaw data in degrees, and a status byte is used to turn the value color red if the data is 
not valid. The GPS frame contains several sub frames displaying status data from the 
GPS unit. The first frame gives the GPS position in digital degrees. The next provides the 
HOME position in degrees, minutes, and seconds and is used to reference the vehicle 
position in meters. The default HOME position is set in the configuration file to be the 
RVR base GPS position, however the HOME position can be reset to be any location and 
is best set to be in the vicinity of vehicle operations. The first button in this frame sets the 
HOME position to the current GPS position of the hitch point, which requires that the 
software read the compass yaw direction and the hitch offset from the Pos_Offset 
module. If the vehicle is not in the autonav behavior, the position defaults to setting 
HOME to the current position of the GPS antenna. The second button sets the HOME 
position to the value entered in the adjacent text entry boxes.  The HOME frame is 
followed by frames giving the GPS time, position error, satellite data, and real-time-
kinematic (RTK) status of the solution. The position error is particularly useful as it 
displays when the GPS unit has locked into the 1-cm accuracy range. The vehicle 
position data includes several sub frames displaying position in meters relative to HOME. 
These include the vehicle hitch position, the best estimate of the GPS antenna (robot) 
position, the indicated GPS antenna position from the GPS unit, and the dead reckoning 
estimate of the GPS antenna position. The final sub frame displays the left and right track 
odometer readings used by the dead reckoning algorithm.  
 
The next tab, Fig. 42, displays the data from the payload DSP unit, and enables the 
operator to send commands to the remote GPS base station when it is deployed by the 
vehicle. The first line displays messages sent by the DSP processor unit. The next 
displays log data sent by the remote GPS unit, and has a text entry box for sending 
commands to the remote GPS base station. During the development phase the base 
station GPS unit is located at the operator control station, but during operation it will be 
carried on the vehicle and deployed at the sensing site. In this case, communication with 
the GPS unit is through the DSP unit. The final frame displays the New Array command 
parameters. Other frames can be created to display the sensor requested position and 
deployment position. 
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Figure 42 – DSP Status and Communication Tab 
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Figure 43 – Tag Editor Tab 
 

 
The Tag Editor tab (Fig. 43) provides an interface for the operator to create waypoint tags 
which combine to define trajectories. Clicking on the upper left File label accesses a 
drop-down menu to open saved tag files. The displayed tag file contains several tag 
sequences, in the left display box. Each tag sequence consists of sequential tags with the 
same base name and a sequential suffix number. They are displayed collapsed, with the 
first and last sequence number shown, or they can be expanded to show all the 
component tags by double clicking them. A tag sequence can be sent to the vehicle by 
copying and pasting it to the adjacent Downloads window. The tags can be created or 
edited using the lower part of the window. Here, the tag grip_close2  is being edited. The 
tag entry specifies the x and y position, corresponding to the east and north position of 
the vehicle relative to HOME, the relative speed (rs), the transition speed (ts), where a 
value of 0 means the vehicle stops and the tag and a value of 1 means the vehicle goes 
through the point without slowing, and the delay at the tag point if the vehicle stops. The 
IO_Cmd boxes set the binary flags that signal the Sandlizard module to raise (1) or lower 
(2) or open (4) or close (8) the lift and grip mechanism. Table 13 contains some tag 
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sequences for the vehicle. The tags can be edited in the Tag Editor tab, or in any word 
processor in the tag file. If one is using the Tag Editor, the new or edited tags must be 
resaved, and copy and pasted to the File and Downloads windows.   
 

Table 13 – Sample Tag File with Deploy Trajectory Sequences 

#*************************************************** 
# Name: sandlizard_test.tags 
# Programmer: Generated from tag_file_save by ratler 
# Date: Thu Aug 14 15:42:54 Mountain Daylight Time 2003 
#*************************************************** 
 
# io_cmds 1= lift up, 2=lift down, 4=grip open, 8 = grip closed 
DEVICE: vehicle 
PATH: vehicle 
COLOR: red 
FIELDS: name interp io_cmd ts rs delay xj1 xj2 
deploy_test1 3 0 1.0  1.0 0.0 0.0 0.0 
deploy_test2 3 0 1.0  1.0 5.0 0.0 0.0 
deploy_test3 3 2 1.0  1.0 25.0 0.0 0.0 
deploy_test4 3 4 1.0  1.0 10.0 0.0 0.0 
deploy_test5 3 1 1.0  1.0 25.0 0.0 0.0 
deploy_test6 3 8 1.0  1.0 10.0 0.0 0.0 
deploy_test7 3 0 1.0  1.0 5.0 0.0 0.0 
deploy_test8 3 0 1.0  1.0 0.0 0.0 0.0 
full_deploy1 3 0 1.0  1.0 0.0 4.0 0.0 
full_deploy2 3 0 1.0  1.0 5.0 4.0 0.0 
full_deploy3 3 2 1.0  1.0 30.0 4.0 0.0 
full_deploy4 3 4 1.0  1.0 10.0 4.0 0.0 
full_deploy5 3 1 1.0  1.0 30.0 4.0 0.0 
full_deploy6 3 8 1.0  1.0 10.0 4.0 0.0 
full_deploy7 3 0 1.0  1.0 5.0 3.0 0.0 
full_deploy8 3 0 1.0  1.0 0.0 2.0 -1 
full_deploy9 3 0 1.0  1.0 5.0 1.0 0.0 
full_deploy10 3 0 1.0  1.0 0.0 -2.0 0.0 
full_deploy11 3 0 1.0  1.0 5.0 -1 -1 
full_deploy12 3 0 1.0  1.0 0.0 0.0 0.0 

 
The next tab, the Traj_Tag tab, sends command to the Traj_IO module on the vehicle to 
run or stop trajectories that have been downloaded to the vehicle by the just-mentioned 
copy and paste process. The tab is shown in Fig. 44. The Update Tags button is used to 
display the tag sequences previously downloaded to the vehicle. (If the vehicle software 
has rebooted since the tag files were downloaded, the tag files will still show in this 
window, but they are no longer on the vehicle and will need to be downloaded again.) 
Clicking on the tag sequence in the window loads it into the Trajectory Control window 
where it can be run by clicking on ‘Move Along Path’. The trajectory status, tag name, 
percent done, and IO_Command value are displayed as the data is sent back from the 
vehicle in the traj_tag_info register string.  
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Figure 44 – Traj Tag Tab 
 
The Jog_PTU tab (Fig. 45) provides an interface for the user to control the aiming of the 
tower camera by selecting the motion sensitivity and moving the red aiming ball with the 
cursor. 
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Figure 45 – Jog PTU Tab 
 
The GPS_Map Tab (Fig. 46) is not fully implemented for selecting waypoints or 
displaying the path followed, but it provides an interface between an aerial view and GPS 
coordinates that can be selected with the cursor. We intend to implement this tab to aid in 
creating tag records visually rather than by x and y coordinates.  
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Figure 46 – GPS Map Tab showing the RVR Vicinity 
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Vehicle Testing and Demonstration  
 
Testing proceeded through a sequence of trial and error steps identifying and fixing 
problems. Eventually we reached a point at which we were able to successfully drive 
along waypoints specified in the tag files and to raise, lower, open, and close the sensor 
gripper mechanism. At that point we were able to refine our procedures and tags to 
perform core maneuvers such as approach and recover a previously deployed sensor pod.  
 
The sequence of actions to perform a demonstration is given below. 

1) Power up the vehicle by raising the stop button on the vehicle body. 
2) Open a SMART shell window (click on the SMART_Shell icon), change (cd 

command) to the smart_0.9/rtos/demos directory, and run the appropriate base 
station executable, such as alexnav5v_2.exe. 

3) Power on the radio communication link (portable radio box) and check for video 
from the vehicle on the comm box display. After about 90 seconds, if the vehicle 
boots successfully, the video image will have the voltage and other system data 
superimposed on the video image. If it doesn’t, the vehicle code may have hung 
up (generally during the Galil board initialization) and needs to be restarted by 
cycling the stop button on the vehicle. 

4) The base station code and the vehicle code exchange register data, which can be 
seen on the base station shell window. This takes a minute or two.  

5) Once the base station code has ended its exchange of register data, open a 
SMART_GUI Tcl/Tk console window (SMART_GUI icon) and start the Tcl 
script by typing ‘source alexnav5v.tcl’ substituting the correct file name. 

6) As the Tcl script boots, it creates some registers and passes the default tag file to 
the vehicle. Once it successfully boots, the vehicle behavior module shows the 
vehicle to be in the joint (teleop) behavior mode in the ‘Flow_On’ (blue color) 
state. If it does not successfully boot, generally because the script was launched 
too early, all four behaviors will display a blue box. Click on the console window 
(using the strip at the bottom of the page), type ‘exit’, and then relaunch the Tcl 
script (Step 6). 

7) Click on the Sandlizard_Status tab of the GUI to see the vehicle status variables. 
8) If it isn’t there already, move the vehicle outdoors where it has a clear view of the 

sky. Watch the GPS status variables and wait until the vehicle has acquired 
sufficient GPS satellites and has locked in so that the standard deviation of the 
position error drops to 0.01 meters (1 centimeter). This takes up to 5 minutes. 

9) Click on the autonav behavior and check that the blue box moves to the 
autonav_veh behavior mode.  

10) Click on the Set to Hitch button in the GPS Home frame of the Sandlizard_Status 
tab. This will set the HOME position to the current hitch position. The hitch 
position should go to zero in the Vehicle Position frame.  

11) To operate in the Teleop mode, click on the Joint (Teleop) button in the Behavior 
window and then click on the Activate button. The box next to the Joint mode 
should turn green, indicating the grids on the base station and the vehicle are 
enabled for motion. Depress the deadman button on the left side of the gamepad 
and operate the drive with the left joystick. To operate the lift/grip mechanism, 
use the deadman buttons and joystick on the right side of the gamepad. To 
deactive the vehicle, press the Deactivate button in the Behavior window. 
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12) To operate in the Autonav mode, you first need to download a tag or tag sequence 
to the vehicle.  

a) Click on the Tag_Editor tab and then on the File label. Click Open and 
open the saved tag file, which will load saved tag sequences into the 
window. 

b) To edit or create new tag sequences, click the Joint button in the lower 
half of the window and create or edit the tags. Tags in a sequence have the 
same base name and sequential suffix numbers. There is more information 
on this module in the write-up above. 

c) Download the tag sequence to the vehicle by highlighting the sequence in 
the file window, copying the sequence (Ctrl-C) and pasting to the 
Downloads window (Ctrl-V). This will initiate sending the tag sequence to 
the vehicle. Once this is complete, after a few seconds, the tag sequence 
name appears in the Downloads window. Download all tags you may want 
to use. 

d) Switch to the Trag_Tag tab and click Update to display the tag sequences 
on the vehicle. (If the vehicle has been rebooted since the tags were last 
downloaded they will need to be downloaded again even though they 
appear in this window.)  

e) Click on a sequence to select it, or double click a sequence to expand it 
into its component tags. You can select an individual tag to go to.  

f) In the Behavior window, select the autonav_veh behavior. The hitch and 
robot GPS antenna position should appear as cylinders in the Block_Show 
window. You may need to restart the Block_Show update using the entry 
under the SMART menu. Due to timing issues, sometimes it tries to start 
before the initial position register handshaking has been completed, and it 
shuts itself down. 

g) Check that the vehicle hitch position is zero, or rezero the HOME position 
to the hitch position (Step 10). Check that the GPS standard deviation of 
error is in the centimeter range, if possible. 

h) Click on activate to enable the motors. The vehicle should move around 
slightly, on the order of a centimeter as it adjusts slightly for GPS errors.  

i) On the Traj_Tag tab, Select, Preview, & Execute window, click on the 
Move Along Path button to begin motion. The status of the trajectory will 
be displayed, and the Block_Show display will update the motion progress 
relative to the requested position. 

 
The method of interacting with the vehicle code is through commands that are registered 
with the RTOS in the code. Some of these commands are accessed through the Tcl GUI 
code using buttons. Others that are not accessible through buttons can be accessed 
through the RTOS console by using the ‘reg_serial_send_cmd’ command to send the 
command and its parameters to the vehicle. Available commands that are not part of the 
core SMART architecture are listed in Appendix D. 
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Deployment/Retrieval Demonstration 
Once the vehicle was operating correctly, were able to successfully deploy and retrieve a 
demonstration sensor pod that was fabricated out of a block of plastic. The demonstration 
pod has roughly the same weight as the planned active sensor pod. (Fig. 47) Positional 
accuracy of the vehicle was excellent once the GPS locked in to its centimeter accuracy 
range. The vehicle had a tendency to overshoot and then back up to the correct position, 
which sometimes pushed the pod a few centimeters, but this was reduced by 
programming the vehicle to stop short of the pod, open and lower its gripper, and then 
advance at a reduced speed before closing the gripper about the sensor pod. The gripper 
has about 3 inches of lateral and axial tolerance for pod misalignment, which easily 
accommodates the GPS positional accuracy and some movement of the pod as well. We 
were able to repeatedly return to the same location given the GPS centimeter accuracy 
relative to a fixed base station. 
 

 

Figure 47 - SandDragon Vehicle Holding Sensor Pod Replica 
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Sensor Array and Signal Processing Hardware 
 
The payload system is comprised of a controller unit mounted on the robotic vehicle, and 
multiple sensor pods configured in an interferometric array. The primary function of the 
controller pod is to execute a ‘beam-forming’ algorithm designed to determine the 
location and frequencies of a stationary signal-generating object by processing signals 
measured at each of the sensors. Performing this analysis requires accurate temporal 
(time) alignment of the signal data from each sensor, knowing the exact relative positions 
of the sensors, and having a good estimate of the signal velocity. The signal gain can be 
increased and signal direction determined by properly phase-aligning and analyzing the 
data. Once an initial estimate of the signal source direction and frequency is obtained, the 
controller pod then is responsible for generating and transmitting to the vehicle an 
optimized array configuration for improved signal monitoring. The vehicle is then 
responsible for picking up and repositioning the sensors. 
 
As discussed in the analysis portion of this report, two types of signals can be monitored, 
acoustic and seismic. The acoustic sensor was fabricated and used to conduct field tests 
to gather signal data for the algorithm development (Figs. 6-8). With the exception of the 
signal parameters such as propagation speed, the processing of the two types of signal is 
identical. This project put most of its effort on the harder problem involved with seismic 
sensors, made difficult because the signals need to be transmitted by radio, while 
preserving their time synchronization, back to the controller pod that does the signal 
processing.  
 
For this development program, the sensor pods were simulated using five instrument 
boxes housing the seismic sensors, C5510 processors, radios, and battery power systems. 
In an operational system these would be repackaged into a much smaller optimized 
sensor pod.  
 
 
Payload Controller Unit 
 
The controller unit consists of an Orsys® micro-line™ C6711 DSP board (Fig. 48) and a 
SymbolOEM™ Spectrum 24 802.11b wireless radio in a PCMCIA package used to 
communicate with the deployed seismic sensor pods.  The micro-line™ board has a Texas 
Instruments® TMS320C6711 32-bit floating-point DSP with 100MHz CPU.  It also has 
64MB off-chip SDRAM and a peripheral UART device used for RS-232 
communications with the vehicle controller. Much of the board is not used for this 
application, and for a final product the board could be shrunk significantly by redesigning 
it with only the necessary components. 
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Figure 48 – Orsys DSP Board Controller Unit 
 

The Spectrum 24 radio is connected via the External Memory Interface (EMIF) of the 
DSP, which allows the radio registers to be accessed a byte at a time.   The radio interface 
is interrupt-driven.  The IRQ line of the radio is connected to external interrupt 0 on the 
DSP.   
 
Figure 49 is a conceptual view of the DSP software configuration. The code structure that 
holds it all together is a high-level model consisting of C++ code that was generated 
using the Rational Rose Realtime™ modeling tool.  The high-level model is shown in 
Fig. 49 as the Data Flow Manager. The model links five main capsules: the radio callback 
interface (low-level control interface to the signal pod radio), the UART callback 
interface (low-level control interface to the UART that communicates with the vehicle), 
the beam former (signal processor), the robot interface (high-level state engine) and the 
sensor system interface (high-level state engine).  The beam former capsule implements 
the array-processing algorithm and is represented by all the blocks in Fig. 49 above the 
Data Flow Manager.  The robot interface capsule has the state machine that coordinates 
communications between the robot and the beam former, while the system interface 
capsule coordinates communications between the controller and each of the sensor pods. 
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Figure 49 - Conceptual Diagram of the DSP Software 
 
The UART and radio callback capsules are written in C. The UART code is interrupt-
driven and uses separate tasks to configure the UART, transmit data to the robot, and 
receive data from the robot.  Callbacks are used in the transmit and receive tasks to hook 
into the UART callback capsule of the model. 
 
Similarly, the radio code is interrupt-driven and uses separate tasks to process the data.  
Due to the high volume of data being received over the radio, there are two tasks that deal 
with received data: a task that removes the data from the radio and stores it, and a 
concurrent task that parses the data to figure out what is in the message.   
 

Real-time vs. Pseudo-real-time 
Initially, the system design called for fully real-time acquisition and processing of the 
data.  There were some issues that prevented this method from being feasible in the 
project time frame.  One issue was that there were numerous tasks running on one 
processor.  This created a situation where the processor-intensive beam former was 
stealing CPU cycles from the radio tasks trying to keep up with the incoming data flow, 
causing missed packets and incomplete data sets.  A possible solution is to have a faster 
DSP.  However, even without the beam former running, the sheer volume of incoming 
data from all five pods simultaneously was too much for the master radio to handle.  Each 
pod was trying to send 1024 samples of data broken up into 4 packets.  Due to the high 
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number of incoming packets to the DSP, data packet collision occurred, preventing the 
C5510 pod processor and the DSP processor board from operating in real-time. This issue 
points out the fact that we must have collision avoidance and detection algorithms in 
place before real time DSP algorithms can be implemented. To solve that problem, radios 
with the ability to buffer larger amounts of incoming data are necessary.  Another 
alternative to a faster DSP is to have a distributed computing environment that would 
relieve the processing load on the main DSP. This could be accomplished by pushing 
more of the workload down to the pod processors. Since the pods are only sampling, they 
can do a few more operations and maybe even extract features that are currently done on 
the central DSP.  The idea here is to reduce the number of packets sent to the DSP. Doing 
so will also reduce the size of these packets because ideally these feature sets would be 
smaller than the raw sampled data. 
 
To remedy the problem in the available time, a pseudo-real-time approach was adopted.  
Since the beam former needs a certain amount of time-continuous data samples to 
generate new coordinates for the sensor pods, each pod now buffers 180 seconds worth of 
continuous data samples.  When the samples are collected, each pod notifies the 
controller that it is ready to send the data.  The controller then serially sends requests to 
each pod individually, which enables the start of the data transfer.  After all five sets of 
data are collected on the controller, the data is then fed into the beam former one second 
at a time.  Only after the robot has received and acknowledged new coordinates for the 
sensor pods, and has placed them appropriately, will the controller inform the sensor pods 
to resume buffering real-time sample data.  The major difference between this method 
and a fully real-time method is that there will be a time gap between each 180s data set.  
Since the source is stationary, the time gap does not cause any issues with the validity of 
the array processing. 
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Sensor System Control Algorithm 
The algorithm originally envisioned for the DSP-based signal processing unit was a 
comprehensive one that not only sorted through and identified signals of interest, but it 
would iteratively prioritize and select tones to monitor more carefully, and optimize an 
array configuration to implement, which it would pass to the vehicle. This comprehensive 
algorithm is depicted in Fig. 50. During this project we were able to implement the core 
parts of this algorithm, the seismic/acoustic signal processing and beam-forming 
algorithms, and the array optimization and layout algorithm, and subsequent 
communication of the configuration to the vehicle.  
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Figure 50 - DSP Algorthm Flowchart 
 
Beam-forming / Array Optimization Algorithm 
 
The purpose of the beam-forming algorithm is to extract source characteristics to be used 
in deriving an optimal array for direction of arrival estimation.  The source is assumed to 
be a mono-tonal seismic signal traveling along the surface.  Frequency domain 
conventional (delay-and-sum) beam forming is used to perform frequency-slowness (FK) 
analysis on the received signals.  Frequency domain analysis is chosen over time domain 
to eliminate the need for up-sampling. Array optimization is performed by iteratively 
adjusting the array geometry until the minimum angular resolution is achieved. The 
geometries are adjusted based on the source characteristics obtained by the beam-forming 
algorithm. 
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Algorithm Block Diagram 
Figure 51 gives a block diagram of the beam-forming algorithm sequence. Each block is 
discussed below. 
 

Block 1 - Initial frequency and velocity will be preset parameters based on the source 
and soil characteristics.  From these parameters an initial array configuration 
(sensor location) will be determined.  

Block 2 - The channel signal will then be filtered using a bandpass filter at initial 
frequency. 

Block 3 - The FFT of the filtered signal. 
Block 4 - The spatial correlation matrix is computed using the positive frequency 

values of the FFT results. 
Block 5 - Steering vectors are generated based on the current frequency, velocity and 

sensor locations. 
Block 6 - The algorithm, delay and sum beam-forming, is used to calculate the 

weights (future). 
Block 7  - The beam pattern is generated using steering vectors and spatial correlation 

matrix. 
Block 8 - A direction of arrival is determined using the beam pattern. 
Block 9 – Beam pattern values are stored until all frequencies are processed and a 

target determination is made.  A new array configuration is determined based on 
the frequency, velocity and bearing that result in the highest beam pattern power 
(FK analysis).  

 

Figure 51 – Beam Forming Algorithm Block Diagram 
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Preconditions 
  
To ensure the implemented algorithm performs properly and within time constraints, 
certain preconditions are assumed.   
    

• Sensor locations are known to within 1cm. 
• Source frequency is known +/- 10%. 
• Medium velocity is known +/- 20%. 
• Analog anti-aliasing filter phase shift variance less than 2%. 
• Acoustic signal is suppressed, at least 3dB below seismic. 
• Source seismic signal is at least 6dB above the noise level (6dB above the grass). 
• Sampling lag between pods is less than 1 millisecond (approx). 

 
 

Algorithm Speed vs. Accuracy 
  
Real-time systems required that all processing be completed within a single window of 
time before the next set of data is available. A necessary tradeoff is made between speed 
and accuracy to ensure that this time constraint is achieved. Some of the factors that are 
used in determining these tradeoffs include the following: 
 

• Algorithm complexity. 
• Filtering requirements. 
• Number of sensors. 
• Desired angular resolution. 
• Acoustic coupling. 
• DSP optimized functions. 
• Sampling Rate. 

 
Each of these factors were addressed and some compromises were made in order to 
minimize computational complexity and to maximize detection confidence.  Some of 
these factors were determined using simulation and synthetic data, while others were 
made using real data obtained from a data collect. 
 
Algorithm Complexity. The computational complexity, of beam forming algorithms, 
ranges from the most efficient (delay and sum) to the most computationally expensive 
algorithms (constrained optimization).  Not surprisingly, the efficiency typically 
compromises accuracy.  The delay and sum technique was chosen both because this is a 
first attempt and the algorithm is kept simple.   
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Filtering Requirements.  To prevent erroneous/ambiguous direction of arrival (DOA) 
estimates, the source signal must be filtered.  Filtering is performed using a first order 
Butterworth IIR bandpass filter (combines a first order highpass and lowpass 
Butterworth) . IIR filters tend to reduce computation due to the lower order required to 
perform.  Additionally, where a second order IIR filter requires five coefficients (3 FIR 
coefficients and 2 IIR coefficients), an FIR filter with similar frequency response requires 
128 coefficients.   
 
Number of Sensors.  The number of sensors directly affects the wireless network traffic 
and the computational cost on the processor. The angular resolution increases and the 
signal-to-noise ratio decreases with the number of sensors. However, for this project, the 
number of sensors was limited by the hardware available, and in total, five sensors were 
used.  
     
Angular Resolution.  Angular resolution is the minimum angle at which the source 
direction can be detected. This is determined by several factors, which include the 
following: 

 

• Beamforming algorithm. 
• Number of sensors. 
• Sensor placement (configuration). 
• Signal to noise ratio (SNR). 
• Array unknowns (Sensor misplacement, channel phase and gain loss). 
• Interference signals and multipath. 
• Number of Steering vectors.  

 
With the algorithm choice and number of sensor predetermined, the only controllable 
factors at this point are the sensor placement and number of steering vectors.  The 
algorithm cannot control the remaining factors.  The sensor placement is derived as 
described earlier. The number of steering vectors (180) is chosen based on computation 
expense and the minimum discernable angle with all other factors in place.   
 
Acoustic Coupling Issues.  With truly seismic sources, the wave energy is contained 
below the surface. A negligible amount of energy propagates into the air to produce an 
acoustic wave. Acoustic coupling occurs when the source is above ground and produces 
an acoustic wave. The acoustic energy is coupled into the geophone through the ground 
in the immediate vicinity of the geophone or through the case in which the geophone is 
contained. From data collected at the Robotic Vehicle Range, the acoustic power coupled 
into the geophones for a 25 kW generator at 300 ft from the closest sensor in the array 
was roughly 2 dB below the seismic wave. This results in an apparent seismic wave 
traveling at the speed of sound. Typically, acoustic waves are much smaller than seismic 
waves and may cause spatial aliasing if the array aperture is too large. Spatial aliasing is 
prevented by keeping the array aperture small. The spacing between the sensors that 
make up the array is no more than half the wavelength of an acoustic wave at that 
frequency (minimum velocity is assumed to be 330 m/s). This allows the acoustic wave 
to be identified and ignored.   
 



 93

DSP optimized functions (6711 DSP Library Function).  Some of the most common 
signal functions/transforms can be calculated efficiently (under certain conditions) using 
specialized code available for DSPs.  Texas Instruments provides a signal processing 
library which contains C callable functions that are assembly code hand-optimized for the 
6711 DSP.  The functions used are the radix-2 FFT and the 2nd order IIR Biquad Filter.  
These functions reduce the computation time by one order of magnitude over the C/C++ 
equivalent code.        
 
Sampling.  The wireless network used to send sensor data to the 6711 processor 
obviously has a limit on the data transfer rate.  This in turn places a limit on the sampling 
rate. Early in the project, the sampling rate was 1024 samples per second.  This was later 
lowered to 512 samples per second due to the restrictions discussed above. This sampling 
rate is still well above the Nyquist rate for the sources of interest (less than 100 Hz) and 
above the rule-of-thumb 5-times the highest frequency of interest.   

 
Assuming that the noise is Gaussian wide-sense-stationary, certain assumptions can be 
made on the statistical estimators on the data.  The beam forming algorithm uses a second 
order statistic (Correlation).  Still, the estimate error of the spatial correlation matrix 
increases as the number of samples decrease.   To remedy this, the algorithm averages 
several windows of data in the calculation of the spatial correlation matrix.   
  

Algorithm Testing and Validation 
The algorithm was tested in three steps.  First, the algorithm was written in the form of a 
Matlab script to simulate the functional blocks of the DSP Algorithm.  Using synthetic 
data, the DSP output was compared with the Matlab output at different points in the 
algorithm. The IIR filter, FFT and the beam pattern outputs were compared and the errors 
fell within the numeric precision of the DSP. Next, the Matlab blocks were connected to 
mimic the algorithm on the DSP. The Matlab and DSP results were compared for various 
sources in multiple scenarios (for example; low SNR, high acoustic coupling, inaccurate 
sensor placement, unstable source and various combinations of these).  The DSP was able 
to mimic the Matlab output well within acceptable error. Additionally, this step allowed 
adjustment of the parameters to maximize accuracy without exceeding computation time.  
Finally, all parameters were set to their predetermined values and real data was used to 
test the DSP vs the Matlab.  The outputs were remarkably similar. Source DOA 
detections fell well within minimum performance, given the preconditions described 
earlier.     
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Sensor System Testing and Validation 
Most of the seismic/acoustic sensor system hardware and software was developed and 
tested as components, but funding ran out before a full system demonstration could be 
accomplished. This was probably only a few weeks away. The accomplishments were 
significant. 

1) End-to-end tests were conducted in the laboratory of five C5510 sensor pod 
processors transmitting data over the 802.11b radios to the central DSP processor. 

a. The C5510 processors for the sensor pods were completed.  
b. The radio firmware was completed, and radio hardware was tested and 

integrated.  
c. The analog board was designed, completed, and integrated.  
d. The radio hardware and software necessary for transporting signal data 

from each pod to the central DSP processor was completed and tested. 
e. While real-time transmission from all the pods simultaneously was not 

accomplished, the project did accomplish collecting near-real-time data 
from all five sensors, which was time synchronized and processed by the 
central DSP. 

2) An algorithm was implemented in a stand-alone DSP system that performed 
conventional beam-forming (bearing determination) and additionally 
identification of an optimal array configuration for the measured signal. 

a. The algorithm was tested and validated in Matlab on a workstation, using 
data taken in the field from multiple stationary sources and from a 
generator. The results are that the algorithm gave the correct bearing, and 
an optimal array configuration was identified. 

b. The algorithm was ported to C++ using UML the Rational Rose Real 
Time Tool. 

c. The algorithm was subsequently tested and validated on the DSP 
processor board. The results of the validation test on DSP board consisted 
of using the same data as had been used on the workstation running 
Matlab and verifying that the same answers were obtained on the DSP 
board.   

3) The C6711 DSP software design architecture was completed.  
a. It implemented a basic mediator pattern software control architecture.   

4) The full system simulator was completed, i.e. the project demonstrated all 
software and hardware to go from the signal sensing to communicating the results 
and commands to the robotic simulator. 

a. Signal data was transmitted from the sensor pods to the DSP processor 
b. The beam-forming algorithm performed the bearing estimate and 

determined the optimal array configuration. 
c. The DSP then sent the messages on moving the sensors to the robot 

controller simulator. 
5) One of the five fully built sensor boxes was completed. The other four would 

probably required less than a day to complete. 
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Follow-On Work 
The component elements required to demonstrate a fully functional autonomous system 
to deploy a phased array sensor array, and to autonomously process the signals, 
determine the optimal array for the in-situ conditions, and to redeploy the array into that 
configuration, were successfully developed under this project. Due to funding constraints 
the project was unable to demonstrate the fully integrated system, however the project 
was able to demonstrate the vehicle’s ability to deploy and retrieve individual sensors. 
Follow-on activities needed to achieve the full demonstration originally envisioned 
include completing assembly of the sensor demonstration boxes that simulate the sensor 
pods, integrating the DSP into the vehicle, and testing the full system to ensure correct 
communication from the sensor pods to the DSP and then through the vehicle control 
system to the Operator Control Unit. Software to pass the vehicle-deployed GPS base 
station unit’s signals through the DSP unit and its radio link also need to be added and 
tested.  Finally, software is needed to autonomously generate waypoint tag files from the 
deployment location commands generated by the DSP and to run the waypoint tag files. 
At the conclusion of the project, tag files were generated and run manually. Generating 
and running the waypoint files could most flexibly be done using the Tcl scripting 
language that runs the GUI. The project had investigated creating a mission script 
software engine to run sequences of tag files under the Tcl operating system on the 
vehicle’s control processor rather than on the base station. This requires compiling Tcl 
along with the C code used by SMART in the controller software. Although this 
approach is very flexible and practical, we were unable to complete this task with the 
available funds. Funds also prevented us from fabricating a multi-sensor stack loader for 
the vehicle, so the current hardware only allows one sensor to be carried and deployed or 
retrieved at a time. 
 
Despite not demonstrating all the developed capabilities as a cohesive system, the 
accomplishments that were achieved are very significant and provide the core capabilities 
needed for substantial follow-on programs and investment. Our ability to rapidly 
assemble vehicle control code using SMART enables Sandia to respond rapidly and 
flexibly to new project requirements. We are already benefiting from this ability in other 
projects. Our ability to use GPS and dead reckoning to very accurately control vehicle 
position is an important requirement for a wide range of commercial, defense, and 
government missions. We have used this capability with at least two prospective 
customers to propose projects. The ability to deploy individual or phased-arrays of 
sensors and to autonomously analyze the data on the vehicle is also a high-value enabling 
capability that will enable Sandia to pursue future projects. In summary, this LDRD 
project has significantly advanced Sandia’s technical capabilities in a number of 
strategically important areas in the mobile robotic and deployed sensor fields.  
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1. CPCMC7686GX233HR-128 Real Time Devices Pentium  
 

Table 1 CMC7686 Jumper Settings 

Jumper Setting Use 
J1 2-3 PCI Bus Signal Voltage: 1-2 3.3V; 2-3 

5.0V 
JP1 Open Enable/Disable 120ohm termination 

resistor on COM1 for RS-422/485 mode 
JP2 Open Enable/Disable 120ohm termination 

resistor on COM1 for RS-422/485 mode 
JP5 Open/RESERVED Factory Use 
JP6 Open/RESERVED Factory Use 
B1 RESERVED Factory Use 
B2 RESERVED Factory Use 
B3 RESERVED Factory Use 
B4 RESERVED Factory Use 
B5 RESERVED Factory Use 
B6 1-2 PCI Bus Voltage supply – 1-2 on-board 

voltage regulator; 2-3 voltage supplied 
from pins 10 and 12 on P9 

B7 2-3 Watchdog time out: Open 600ms, 1-2 
150ms, 2-3 1.2 seconds. 

B8 RESERVED Factory Use 
 
 

Table 2 CMC7686 Watchdog Timer 

Watchdog Timer 
I/0 Register 0x1E bit 0 
Set Bit0 High to Enable and Low to Disable 
Timer is reset by reading Register 0x1E 
Time out is 1.2 seconds 
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Table 3 CMC7686 Connectors 

Port Name Connector Connected To Address/IRQ Settings 
COM1 P1 (10 Pin) Freewave 

Radio 
0x3F8/IRQ4  

COM2 P5(10 Pin)  0x2F8/IRQ3  
Parallel P3 (26 Pin) Not used 0x378/IRQ7  
Bus Mouse P6 (4 Pin) RTD  Mouse 

Cable 
 Connector 

plugs in such 
that the marked 
white side is to 
the right toward 
pin 1 

Multifunction P8 (10 Pin) Key Board and 
Reset Button 
Cable 

 Connector 
plugs in such 
that the marked 
white side is to 
the right toward 
pin 1 

Aux Pwr P9 (8 Pin) Not used   
 
 

Table 4  CMC7686: COM1&2 Dual-row Connecter Pin Definition Facing Head On 
9 7 5 3 1 

GND DTR TXD RXD DCD 
GND RI CTS RTS DSR 

10 8 6 4 2 
 

Table 5  CMC6786 COM1 Connection Details 

COM1 – Connector P1 Freewave COM 
Pin Number Signal   Signal Pin Number 
1 DCD   
2 DSR   
3 RXD TXD 5 
4 RTS   
5 TXD RXD 7 
6 CTS   
7 DTR   
8 RI   
9 GND GND 6 
10 GND   
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Table 6  CMC6786 COM2 RS232 Connection Details 

COM1 – Connector P5 FCB-IX470 CN802 
P1 – Pin 
Number 

Signal   Signal Pin Number 

1 DCD   
2 DSR   
3 RXD TXD 1 
4 RTS   
5 TXD RXD 4 
6 CTS   
7 DTR   
8 RI   
9 GND GND 8 
10 GND   
 

Table 7 CMC7686 Realtime Clock 

Real Time Clock Registers 
Index Register Address 0x070 
Data Register Address 0x071 
Registers Number of 

Bytes 
Function 

0x00 1 BCD Seconds 
0x02 1 BCD Seconds 
0x04 1 BCD Hours 
0x06 1 Day of Week 
0x07 1 Day of Month 
0x08 1 Month 
0x09 1 Year 
0x0A-0x31 40 RESERVED 
0x32 1 BCD Century 
0x33-0x3F 13 RESERVED 
0x40-0x7F 64-127 User RAM 
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Table 8 SandDragon I/O Address Map 

Real Time Clock Registers 
Address Range Number of 

Bytes 
Device 

000 - 00F 16 DMA Controller 
010 - 01F 16 Reserved for 

CPU 
020 – 021 2 Interrupt 

Controller #1 
022 – 02F 13 Reserved 
   
040 – 043 4 Timer 
060 – 064 5 Keyboard 

Interface 
070 – 071 2 Real Time 

Clock Port 
080 – 08F 16 DMA page 

register 
0A0 – 0A1 2 Interrupt 

controller #2 
0C0 – 0DF 32 DMA controller 

#2 
0F0 – 0FF 16 Math 

Coprocessor 
1F0 – 1FF 16 Hard Disk 
2F8 – 2FF 8 Serial Port 
300  Ethernet Card 
330 - 333 1/2 GALIL 1240 
378 – 37F 8 Parallel Port 
3BC – 3BF 4 Parallel Port 
3E8 – 3EF 8 Serial Port 
3F0 – 3F7 8 Floppy Disk 
3F8 – 3FF 8  Serial Port 
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Table 9  CMC7686GX233 BIOS Settings 
Real Time Clock Registers 
Major Field Field Selection 

Hard Disk Primary Master Auto 
Hard Disk Primary Slave None 
Hard Disk Secondary Master Auto 
Hard Disk Secondary Slave None 
Drive A 1.44MB 

Standard CMOS 
Setup 
  
  
  

Drive B None 
Virus Warning Disabled 
CPU Internal Cache Enabled 
Quick power on self test Enabled 
Boot Sequence A, C, SCSI 
Swap Floppy Drive Disabled 
Boot up floppy seek Disabled 
Boot up numlock status Off 
Gate A20 option Fast 
Typematic rate setting Disabled 
Typematic rate 6 char/sec 
Typematic delay 250ms 
Security Option Setup 
PCI/VGA Pallette Snoop Disabled 
OS select for DRAM >64 MB Non OS2 
Report No FDD for Win95 Yes 
BIOS Shadowing Enabled 

BIOS Features 
Setup 

Cyrix 6x86/MII CPUID Enabled 
16-bit I/O recovery (Clocks) 5 Chipset Features 

Setup 8-bit I/O recovery (Clocks) 5 
Power Management Disabled 
Doze Mode Disabled 
Standby Mode Disabled 
HDD Power Down Disabled 
Modem Use IRQ NA 
Throttle Duty Cycle 33.3% 
RTC Alarm Function Disabled 
RTC on by date NA 
RTC on by time NA 

Power 
Management 
Setup 

IRQ that will bring CPU out of Pwr Mgmt  IRQ1-ON, Others OFF 
PNP OS Installed NO 
Resources controlled by  Auto 
Reset Configuration Data Disabled 

PNP/PCI 
Configuration 
Setup 

IRQ assigned to Level 
IDE Block Mode Enabled 
Keyboard Controller Input Clock 8 MHz 
Onboard serial port 1 0x3F8/IRQ4 
Mode RS232 
Onboard serial port 2 0x2F8/IRQ3 
Mode RS232 
Onboard Parallel Port 0x378/IRQ7 
Parallel Port Mode ECP + EPP 
ECP mode use DMA 3 
BIOS extension window Disabled 

Integrated 
Peripherals 
Setup 

FailSafe DOS Boot Up (Orig D000:0000) Disabled  
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2. CM202 NE2000 Ethernet utilityModule; Real Time Devices  
 

Table 10 CM202 Software Configured Settings; NE2000 Compatible; PnP Disabled 

Option Setting 
I/O Address 0x300 
Interrupt IRQ5 
Media  Auto 
BPROM 0x0 [No BPROM] 
  
 

Table 11 CN3 RJ45 Ethernet 10Base-T Pinout (Coax is 10Base-2) 

Pin Signal  Function 
1 TX+ Transmit + 
2 TX- Transmit - 
3 RX+ Receive + 
4 NC Not Connected 
5 NC Not Connected 
6 RX- Receive - 
7 NC Not Connected 
8 NC Not Connected 
 
 

Table 12 Diagnostic LEDS 

LED Name Meaning Normal State 
D1 COL Collision Detect OFF 
D2 LNK Link Established (UTP) On (10 Base T Only) 
D3 RXD Receive From Network Flashing 
D4 TXD Transmitting to Network Flashing 
D5 POL Polarity of Signal Incorrect OFF 
D6 PWR -9 Volt Pwr Present (BNC) On (10Base-2) 
 

Table 13 SandDragon CPU IP Addresses 

Serial No. IP Machine Name 
4560136 134.253.218.136 SandDragon136 
4560137 134.253.218.137 SandDragon137 
4560138 134.253.218.138 SandDragon138 
4560140 134.253.218.140 SandDragon140 
4560142 134.253.218.142 SandDragon142 
4560143 134.253.218.143 SandDragon143 
4560144 134.253.218.144 SandDragon144 
4560145 134.253.218.145 SandDragon145 
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3. CM112 Super VGA + Flat Panel utilityModule; Real Time Devices 
 

Table 14 CM112 Jumper Settings  

Jumper Setting Use Result 
JP1 1-2 Floppy Drive 

Controller 
Enabled 
(address 
0x3F0-0x377) 

JP2 2-3 IDE Hard Drive 
Controller 

Disabled 

JP3 2-3 IRQ9 from VGA 
controller to Bus 

Disabled 

JP4 1-2 VGA BIOS Factory BIOS 
JP5 1-2 VGA BIOS 

Programming 
Disables User 
BIOS 
programming 

JP6 1-2 Back light voltage +12V 
JP7 1-2 Flat Pannel 

Blank*/DE signal 
M signal to 
Blank*/DE pin 

JP8 NC Factory Use Only Factory Use 
Only 

JP9 1-2 IDE Drive 
Primary/Secondary

Primary 

JP10 NC Factory Use Only Factory Use 
Only 

JP11  NC Factory Use Only Factory Use 
Only 

 
 

Table 15 CM112 Connectors  

Connector Function Size 
CN1 Floppy Drive 34 Pin 
CN2 IDE Hard Drive 40 Pin 
CN3 HDD activity LED 2 Pin 
CN4 VGA Monitor 10 pin 
CN5  Flat Panel 40 pin 
CN6 Flat Panel Pwr 10 pin 
CN7 Pwr Down Control 4 pin 
CN8 Pwr Connector 10 Pin 
CN9 PC/104 XT Bus 64 pin 
CN10 PC/104 AT Bus 40 pin 
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4. CM310 Quad Serial Port utilityModule; Realtime Time Devices 
 

Table 16 CM310 Jumper Settings; Boards Silked Screened With IRQ Numbers 

Jumper Pin Numbers/IRQ Function 
JP1 3-4 / 4 IRQ4 for 1st COM (SandDragon COM3) 
JP2 1-2 / 3 IRQ3 for 2nd COM (SandDragon COM4) 
JP3 5-6 / 5 IRQ5 for 3rd COM (SandDragon COM5) 
JP4 13-14 / 10 IRQ10 for 4th COM (SandDragon 

COM6) 
JP5 2-3 / NA 1.8432 MHZ input clock select 
 
 

Table 17 CM310 Switch Settings  

DIP Switch No. Position Function/Setting 
Switch 1 1 Down (Closed) 
 2 Down (Closed) 
 3 Down (Closed) 
 4 Down (Closed) 

COM3 0x3E8 
COM4 0x2E8 
COM5 0x280 
COM6 0x288 

Switch 2 1 Up (Open) COM3 Enabled 
 2 Up (Open) COM4 Enabled 
 3 Up (Open) COM5 Enabled 
 4 Up (Open) COM6 Enabled 
 5 Down (Closed) COM3 RS232 
 6 Down (Closed) COM4 RS232 
 7 Down (Closed) COM5 RS232 
 8 Down (Closed) COM6 RS232 
Switch 3 1 Up (Open) COM3 RXD No Termination 

Resistor RS232 
 2 Up (Open) COM3 CTS No Termination 

Resistor RS232 
 3 Up (Open) COM4 RXD No Termination 

Resistor RS232 
 4 Up (Open) COM4 CTS No Termination 

Resistor RS232 
Switch 4 1 Up (Open) COM5 RXD No Termination 

Resistor RS232 
 2 Up (Open) COM5 CTS No Termination 

Resistor RS232 
 3 Up (Open) COM6 RXD No Termination 

Resistor RS232 
 4 Up (Open) COM6 CTS No Termination 

Resistor RS232 
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Table 18 CM310 Port 1 (COM3) RS232/485 Signals  

CN3-Pin 
Number 

RS232 Signal RS485 
Signal 

1 DCD RTS- 
2 DSR RTS+ 
3 RXD RXD- 
4 RTS TXD+ 
5 TXD TXD- 
6 CTS RXD+ 
7 DTR CTS- 
8 RI CTS+ 
9,10 GND GND 
 

Table 19 CM310 Port2 (COM4) RS232/485 Signals  

CN4-Pin 
Number 

RS232 Signal RS485 
Signal 

1 DCD RTS- 
2 DSR RTS+ 
3 RXD RXD- 
4 RTS TXD+ 
5 TXD TXD- 
6 CTS RXD+ 
7 DTR CTS- 
8 RI CTS+ 
9,10 GND GND 
 

Table 20 CM310 Port3 (COM5) RS232 Signals  

CN3-Pin 
Number 

RS232 Signal 

1 DCD 
2 DSR 
3 RXD 
4 RTS 
5 TXD 
6 CTS 
7 DTR 
8 RI 
9,10 GND 
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Table 21 CM310 Port 4 (COM6) RS232 Signals  

CN3-Pin 
Number 

RS232 Signal 

1 DCD 
2 DSR 
3 RXD 
4 RTS 
5 TXD 
6 CTS 
7 DTR 
8 RI 
9,10 GND 
 



Adaptive and Mobile Ground Sensor Array LDRD Project Report 

 B - 12

 
5. SandDragon Motherboard 

 

Table 22 SandDragon Motherboard Connectors 

Connector Function Connected To Controls 
SER1 Serial 

Connection  
CMC7686 PORT1 
(COM1) P1 

Links to 
FreeWave 
Transceiver 

SER2 Serial 
Connection  

CMC7686 PORT1 
(COM2) P2 

Novatel GPS 
COM2, send 
differential 
corrections 

SER3 Serial 
Connection  

CM310 PORT1 CN3 FCB-IX470 
Camera 

SER4 Serial 
Connection 

CM310 PORT2 CN4 HMR3000 
compass 

SER5 Serial 
Connection 

CM310 PORT2 CN5 Novatel GPS 
COM1, log and 
command data 

SER6 Serial 
Connection 

CM310 PORT4 CN6 For use with 
payload DSP 
processor 

P1 Amp Pwr Port Fwd Motor (X-Axis) Unregulated 
Battery 

P2 Amp Pwr Stbd Fwd Motor (Y-Axis) Unregulated 
Battery 

P5 Amp Pwr Camera Tilt Motor Unregulated 
Battery 

P6 Amp Pwr Camera Mast Motor Unregulated 
Battery 

J3 Amp Control 
Lines 

Port Fwd Motor (X-Axis) Galil X-Axis 

J4 Amp Control 
Lines 

Stbd Fwd Motor (Y-Axis) Galil Y-Axis 

J16 Amp Control 
Lines 

Camera Tilt Motor Galil Z-Axis 

J17 Amp Control 
Lines 

Camera Mast Motor Galil W-Axis 

J6 Motor Encoders Port Fwd Motor (X-Axis) Feedsback to 
Galil X-Axis 

J7 Motor Encoders Stbd Fwd Motor (Y-Axis) Galil Y-Axis 
J18 Motor Encoders NC NC 
J19 Motor Encoders Camera Mast Motor Galil W-Axis 
9,10 GND GND  
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Table 23 SandDragon Motherboard Jumper Settings for setting RS485 or RS232 
communications.  Note that Jumper 1 is closest to the outer board edge; it is not clearly 

labeled.  

 

Jumper Series Jumper Use Result 
1 Installed 
2 Removed 
3 Removed 
4 Installed 

J20 

5 Installed 

RS232 

1 Installed 
2 Removed 
3 Removed 
4 Installed 

J21 

5 Installed 

RS232 
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6. DMC1240 4-Axis PC/104 Motion Controller; Galil 

 
I/0 Address: 0x330 or decimal 816 
IRQ: None 
X-Axis – Port Maxon Drive Motor (Servo with reversed polarity & reversed quadrature) 
Y-Axis – Stbd Maxon Drive Motor (Servo with reversed polarity & normal quadrature) 
W-Axis – Camera Mast Motor 
Z-Axis – Camera Tilt Motor 
 

Table 24 DMC1240 Jumper Settings 

Jumper Setting Use 
A8 Out 
A7 In 
A6 In 
A5 Out 
A4 Out 
A3 In 

JP5 

A2 In 

Sets the Memory Address: A2-A5 set 
the second byte, A6-A8 Set the Firts 

byte, Third byte is zero.  Therefore 011 
0011 000, or 0x330 or 816. 

IRQ5 Out 
IRQ9 Out 

IRQ10 Out 
IRQ11 Out 
IRQ12 Out 

JP3 

IRQ15 Out 

Interrupt Request Lines; None 
Selected 

UPGRD Out 
MRST Out 

JP4 

FEN Out 

MRST, Master Reset Enable.  Returns 
controller to Factory Default settings 

and erases EEPROM.  Requires 
power-on or RESET active 

OPT Out 
SMW Out 
SMZ Out 
SMY Out 
SMX Out 

JP21 

E-H Out 

Sets Servo Motor (SM) type.  In 
specifies a stepper motor.  Label for 
each axis SMX, SMY, SMZ, SMW 

JP 7 All OUT Factory 
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Table 25  DMC-1240 Connector J8 (A-D Axes) 50 Pin IDC Interconnection 
DMC1240 Motor Amps and Encoders Axis 
Pin Signal Signal Pin Amp Encoder  
1 Analog Gnd     
2 Ground -REF_IN 5 

3 
X,Y 
Z,W 

 

3 +5V     
4 Error Output     
5 Reset     
6 Encoder-Compare Output     
7 Ground     
8 Ground     
9 Motor Command D(W) +REF_IN 1 W  
10 Sign D / Dir D(W)     
11 PWM D / Step D(W)     
12 Motor Cmd C(Z) +REF_IN 1 Z  
13 Sign C / Dir C(Z)     
14 PWM C / Step C(Z)     
15 Motor Cmd B(Y) +REF_IN 4 Y  
16 Sign B / Dir B(Y)     
17 PWM B / Step B(Y)     
18 Motor Cmd A(X) +REF_IN 4 X  
19 Sign A / Dir A(X)     
20 PWM A / Step A(X)     
21 Amp Enable D(W) 12V Control 4 W  
22 Amp Enable C(Z) 12V Control 4 Z  
23 Amp Enable B(Y) (INHIBIT) IN 11 Y  
24 Amp Enable A(X) (INHIBIT) IN 11 X  
25 A+ A(X) Chan_A 3  X 
26 A- A(X)     
27 B+ A(X) Chan_B 1  X 
28 B- A(X)     
29 I+ A(X) Chan_I 4  X 
30 I- A(X)     
31 A+ B(Y) Chan_A 3  Y 
32 A- B(Y)     
33 B+ B(Y) Chan_B 1  Y 
34 B- B(Y)     
35 I+ B(Y) Chan_I 4  Y 
36 I- B(Y)     
37 A+ C(Z) Chan_A 3  Z 
38 A- C(Z)     
39 B+ C(Z) Chan_B 1  Z 
40 B- C(Z)     
41 I+ C(Z) Chan_I 4  Z 
42 I- C(Z)     
43 A+ D(W)     
44 A- D(W)     
45 B+ D(W)     
46 B- D(W)     
47 I+ D(W)     
48 I- D(W)     
49 +12V     
50 +12V     
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Table 26  DMC-1240 Connector J6 (A-D Axes) 50 Pin IDC Interconnection 

DMC1425 Motor Amps and Encoders Axis 
Pin  Signal Signal Pin Amp  

Other 

1 No Connection     
2 Gnd     
3 +5V     
4 No Connection     
5 Home D(W)     
6 Reverse Limit D(W)     
7 Forward Limit D(W)     
8 Home C(Z)     
9 Reverse Limit C(Z)     
10 Forward Limit C(Z)     
11 Home B(Y)     
12 Reverse Limit B(Y)     
13 Forward Limit B(Y)     
14 Home A(X)     
15 Reverse Limit A(X)     
16 Forward Limit A(X)     
17 Gnd     
18 +5V     
19 No Connection     
20 Latch A(X) FAULT OUT 14 X  
21 Latch B(Y) FAULT OUT 14 Y  
22 Latch C(Z)     
23 Latch D(W)     
24 Input 5     
25 Input 6     
26 Input 7     
27 Input 8     
28 Abort     

29 Output 1 Dout_1 HBus   Video TX  ON/OFF Control -
Radio Not Present 

30 Output 2     
31 Output 3     
32 Output 4 Dout_4   Mother Board LED 
33 Output 5     
34 Output 6     
35 Output 7     
36 Output 8 Dout_8   DMC1425 Reset Control 
37 +5V     
38 Gnd     
39 Gnd     
40 Gnd     
41 Analog Input 1    Temp Sense (MB) 
42 Analog Input 2 Current Monitor Out 8 X  
43 Analog Input 3 Current Monitor Out 8 Y  
44 Analog Input 4    Battery Voltage Sense (CB) 
45 Analog Input 5    +12V Sense (CB) 
46 Analog Input 6    5V Sense (CB) 
47 Analog Input 7    -12V Sense (CB) 
48 Analog Input 8     
49 -12V     
50 -12V     

  Continuous Current Limit (HB 
available) 10 X,Y,

W,Z  
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Table 27 DMC-1240 J7 (A-D Axes) Auxiliary Encoder; 20 Pin IDC 
J7 
Pin Number Signal 

Connection 

1 +5V 
2 Gnd 
3 A+ Aux A(X) 
4 A- Aux A(X) 
5 B+ Aux A(X) 
6 B- Aux A(X) 
7 A+ Aux B(Y) 
8 A- Aux B(Y) 
9 B+ Aux B(Y) 
10 B- Aux B(Y) 
11 +5V 
12 Gnd 
13 A+ Aux C(Z) 
14 A- Aux C(Z) 
15 B+ Aux B(Z) 
16 B- Aux B(Z) 
17 A+ Aux D(W) 
18 A- Aux D(W) 
19 B+ Aux D(W) 
20 B- Aux D(W) 

No 
Connection 
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7. DMC1425 2-Axis Ethernet Motion Controller; Galil 
 
 
X-Axis – Stbd Maxon Drive Motor (Servo with reversed polarity & normal quadrature) 
Y-Axis – Port Maxon Drive Motor (Servo with reversed polarity & reversed quadrature) 
 
 

Table 28  Galil 1425 IP Addresses 

Serial No. IP Machine Name 
DMC-1425-AO260 134.253.218.160 GalilAO260 
DMC-1425-AO261 134.253.218.161 GalilAO261 
DMC-1425-AO262 134.253.218.162 GalilAO262 
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Table 29  DMC1425 Board (IP Address 134 253 218 160)  J3 General I/O; 37-Pin D-
Type 

DMC1425 Motor Amps and Encoders 
Pin  Signal Signal Pin Amp Encoder 

Other 

1 Reset     Pulled low by 
10K Resistor; 
Pulled high by 
1240 Dout8 

2 Amp Enable (INHIBIT) IN 
(INHIBIT) IN 

11 
11 

X 
Y 

  

3 Digital Output 3 A1/MUX    Selects Analog 
Inputs 1-7  

4 Digital Output 1 Dout_1 HBus    Video TX 
ON/OFF Control 

5 Analog Input 1 COMA/MUX    See Mux Tab 
6 Main Index (Digital In 7) Chan_I 4  Y  
7 Reverse Limit Y (Digital In 5)      
8 Digital Input 3      
9 Digital Input 1      
10 +5V +5V     
11 Ground Gnd     
12 +12V +12V     
13 Ground Gnd     
14 X Encoder A-       
15 X Encoder B-      
16 X Encoder I-      
17 Y Encoder A-      
18 Y Encoder B-      
19 ACMDY +REF_IN 1 Y   
20 Error      
21 ACMDX +REF_IN 1 X   
22 Digital Output 2 A0/MUX    Selects Analog 

Inputs 1-7  
23 Circular Compare      
24 Analog Input 2 COMB/MUX    See Mux Tab 
25 Home Y (Digital In 6)      
26 Forward Limit Y (Digital In 4)      
27 Digital Input 2 (Y Latch)      
28 Forward Limit X      
29 Reverse Limit X      
30 Home X      
31 -12V -12V     
32 Encoder A+ X Chan_A 3  X  
33 Encoder B+ X Chan_B 1  X  
34 Encoder I+ X Chan_I 4  X  
35 Encoder A+ Y Chan_A 3  Y  
36 Encoder B+ Y Chan_B 1  Y  
37 Encoder I+ Y Chan_I 4  Y  
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Table 30 DMC1425 Jumper Settings 

Jumper  Setting Function 
JP1 MR Removed IRQ4 for 1st COM (SandDragon 

COM3) 
 UP Removed IRQ3 for 2nd COM (SandDragon 

COM4) 
 96 Removed 96 and 12 Removed sets Baud Rate to 

19200 
  12 Removed 96 and 12 Removed sets Baud Rate to 

19200 
JP3 MC Installed Motor Command 
 SD Removed Step and Direction 
 
 

Table 31 DMC1425 Indicator LEDs 

LED Name Meaning Normal State 
Green Power +5V has been applied 

properly 
ON 

At least one axis has 
position error greater than 
the error limit. 
Reset line is being held low 
or is being affected by noise. 
Controller failure and the 
processor is resetting. 

Red Status/Error 

Output IC failure which 
drives the error signal. 

Flashes on initial power 
up and stays lit for 1-8 
seconds.  Will 
illuminate solid red 
during error conditions.  
Normal condition is 
OFF 

Green Link Lit when there is an Ethernet 
connection to the controller.  
Tests only for physical 
connection, not for active or 
enabled link. 

ON 

Yellow Activity Indicates traffic across the 
Ethernet connection.  Shows 
both TX and RX activity. 

Flashing during activity.  
If there is no Ethernet 
connection or IP 
address assigned, the 
LED will flash at 
regular intervals to 
show that the BOOTP 
packets are being 
broadcast. 
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Table 32  DMC1425 Analog Input Mutilpexer  

A1 A0 Pin Analog 
Input 

Description Pin Axis 

0 0 NO1A 2 Current Monitor 
Out 

8 X 

0 1 NO4B 1  MB 
Temperature 

  

1 0 NO3A 4 Battery Voltage 
Sense (CB) 

  

1 1 NO4A 5 +12V Sense 
(CB) 

  

0 0 NO1B 3 Current Monitor 
Out 

8 Y 

1 0 NO3B 6 5V Sense (CB)   
1 1  7 -12V Sense 

(CB) 
  

 
 

Table 33  DMC1425 J5 Power; 5(6) Pin Molex 
Pin 
Number 

Signal Signal 

1 Motor A NC 
2 Motor B NC 
3 Motor C NC 
4 Ground GND 
5 V+ Input +12V 
 

Table 34 DMC-1240 EEPROM Setting 
Description Galil 

Command 
X-Axis Y-Axis Z-Axis W-Axis 

Proportional Constant KP 0.0 0.0 6.0 1000.0 
Derivative Constant KD 240.0 240.0 64.0 200.0 
Integrator Constant KI 0.0 0.0 0.0 5.0 
Torque Limit TL 9.998 9.998 9.998 9.998 
Off-on-error Function OE 0 0 0 0 
Motor Type (1 = Servo, 
-1 Servo Reversed 
Polarity) 

MT -1 1 1 1 

Configure Encoder ( 0 
= Normal Quadrature, 
2 = Reversed 
Quadrature) 

CE 2 0 0 2 

Acceleration AC 699392 699392 9216 9216 
Deceleration DC 699392 699392 9216 9216 
Acceleration 
Feedforward 

FA 0 0 0 0 

Velocity Feedforward FV 0 0 0 0 
Integrator Limit IL 9.9982 9.9982 9.9982 9.9982 
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Table 35 DMC-1425 EEPROM Setting 
Description Galil 

Command 
X-Axis Y-Axis 

Proportional Constant KP 27.75 27.75 
Derivative Constant KD 282.38 282.38 
Integrator Constant KI 0.0 0.0 
Torque Limit TL 9.998 9.998 
Off-on-error Function OE 0 0 
Motor Type (1 = Servo, 
-1 Servo Reversed 
Polarity) 

MT 1 -1 

Configure Encoder ( 0 
= Normal Quadrature, 
2 = Reversed 
Quadrature) 

CE 0 2 

Acceleration AC 699392 699392 
Deceleration DC 699392 699392 
Acceleration 
Feedforward 

FA 0 0 

Velocity Feedforward FV 0 0 
Integrator Limit IL 9.9982 9.9982 
 
 
 
Galil Board Installation Notes 
To talk to the galil code, make sure to disconnect the reset line on the back end so that the rear galil board 
can boot up! 
 
All galil boards are set at the same address, GalilAO260 - 134.253.218.160, but to get the /etc/hosts file to 
work correctly the /etc/hosts file needed to be created without any ^M characters (not seen on Windows 
side!). 
 
This was done by doing the following 
 
echo '127.0 localhost' > /etc/hosts 
echo '134.253.218.160 GalilAO260' >> /etc/hosts 
echo '134.253.218.66 teleopbase' >> /etc/hosts 
 
When the system complained about not being able to find a number of services in the inetd.conf file, it was 
because the /etc/services file had not been installed. 
 
 
With the SandDragon build it is possible to create local passwords.  From the login type 
 
Passwd 
 
This will then run a script which will create the necessary passwd file. 
 
 
The system had a number of other complaints: 
It wouldnt allow a setsockopt call in syslogd 
It needed a valid location in syslog.conf , so I made the entry 
*.*    /home/demos/syslog 
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When finally connected with the updated version, the system kept running and crashing after first 
failing to connect to the galil board, and then receiving an signal 11 error. 
 
#define SIGSEGV     11  /* segmentation violation */ 
 
This seemed to point to a new coding error.  So I recompiled the libraries, 
and tried again! 
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Advance Motion Control Motor Amplifier 25A8 

Table 36  25A8 DIP Switch Settings  

25A8 Current Mode Operation 
Dip Switch  Signal Setting 
1 Voltage Feedback OFF (open) 
2 Current Integrator OFF (open) 
3 Velocity Integrator ON (closed) 
4 Test/Offset OFF (open) 
 

Table 37 25A8 Pot Adjustments 

25A8 Pot Settings 
Pot  Signal Setting 
1 Loop Gain Full CCW 
2 Current Limit Full CW 
3 Reference In Gain Full CW 
4 Test/Offset Using a zero offset, Galil Command (OF 

0,0) and derivative gain of 0 (KD 0) 
adjust until all motion is stopped.   

 

Table 38 25A8 Definitions.  The Green Phoenix Contact Connector is at the bottom of 
the Amplifier and the bottom most pin is pin number 5. 

Type No. Description 
1 Loop Gain 
2 Current Limit 
3 Reference In Gain Trim Pot 

4 Test/Offset Gain 
4 Test/Offset  
3 Velocity Integrator  
2 Current Integrator DIP Switch 

1 Voltage Feedback 
1 +5V 3mA Out 
2 Signal Ground 
3 -5V 3mA Out 
4 +REF IN 
5 -REF OUT 
6 - TACH IN 
7 -TACH/GND 
8 Current Monitor Out 
9 Current Reference Out 
10 Continuous Current Limit 
11 (INHIBIT) IN 
12 (+INHIBIT) IN 
13 (-INHIBIT) IN 
14 FAULT OUT 
15 NC 

MOLEX Connector 

16 NC 
LED 1 GREEN = OK; RED = FAULT 

1 - MOTOR 
2 + MOTOR 
3 Power GND 
4 Power GND 

Phoenix Contact 
Connector 

5 High Voltage 



Adaptive and Mobile Ground Sensor Array LDRD Project Report 

 B - 25

 
8. Embedded Designs Plus PC104 CompactFlash Boot Drive 

 

Table 39  Embedded Designs Plus PC104 CompactFlash Boot Drive  
Jumper 
Number 

Description Jumper Condition

S2 Primary/Secondary 
Master Drive Selection 

Removed Primary 
Master 

S3 LED Bus Activity Indicator Installed  LEDs 
Disabled 
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9.  APEX SA60 Compact Motor Driver Card 

Table 40 Compact Motor Driver Card Jumper Settings 

Jumper Setting Function 
J1 Installed  

J5 Installed  
J6 1-2 Installed 

3-4 Removed 
 

 
 
 

Table 41 Apex SA60 Interface Connector Definition 
 Signal Label Pin Description 

Analog In Ain 1 Galil J8 Pin 9 Motor Cmd 
D(W) 

Digital In Din 2  
Signal Gnd SGnd 3 Galil J8 Pin 2 Gnd 
12 Volt 
Control of 
DC/DC 
Converter 

12V Cntl 4  

Vehicle Raw 
Voltage 

Vveh 5  

Grip Motor 
(W-Axis) 

Vehicle 
Ground 

Gnd 6  

Analog In Ain 1 Galil J8 Pin 12 Motor 
Cmd C(Z) 

Digital In Din 2  
Signal Gnd SGnd 3 Galil J8 Pin 2 GnD 
12 Volt 
Control of 
DC/DC 
Converter 

12V Cntl 4  

Vehicle Raw 
Voltage 

Vveh 5  

Lift Motor 
(Z-Axis) 

Vehicle 
Ground 

Gnd 6  
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10. FreeWave Digital Radios 
 

Table 42  FreeWave DGRO9RAS Connection Details 

Freewave COM CMD6786 COM1 – 
Connector P1 

Signal Pin 
Number 

Pin 
Number 

Signal   

B+ Input 1     
Interrupt 2     
DTR 3     
GND 4     
TXD 5 3 RXD 
GND 6 9 GND 
RXD 7 5 TXD 
Carrier 
Detect 

8     

RTS 9     
CTS 10     
 

Table 43 FreeWave DGRO Front Panel LEDs MultiPoint Communications (NA, For 
information only) 

Master Slave Repeater Condition 
CD TR CTS CD TR CTS CD TR CTS 

Powered, 
Disconnected 

SR SD  O SR O BR SR O BR 

Repeater and 
slave connected 
to master, no 
data 

SR SD O  SG O SR* SG SD SR* 

Repeater and 
slave connected 
to master, master 
sending data to 
slave 

SR SD   O SG O SR* SG SD SR* 

Repeater and 
slave connected 
to master, slave 
sending data to 
master 

SG
-
SR 

SD  IF SG IF SR* SG SR SR* 

*CTS will be Solid Red with a solid link, as the link weakens the CTS light on the 
repeater and slave will begin to flash. 
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Table 44  FreeWave DGRO LED Legend 

LEGEND 
BR Blinking Red 
FO Flashing Orange 
IF Intermittent Flash 

Red 
O Off 
SD Solid Red, Dim 
SG Solid Green 
SR Solid Red, Bright 
LED Name  
CD Carrier Detect LED 
CTS Clear to Send LED 
TR Transmit LED 
 

Table 45 FreeWave DGRO Front Panel LEDs Point-to-Point Communications (NA, For 
information only) 

Master Slave Repeater Condition 
CD TR CTS CD TR CTS CD TR CTS 

Powered, 
Disconnected 

SR SR  SR SR O BR SR O BR 

Connected, no 
repeater, sending 
sparse data 

SG  IF IF  SG IF IF    

Master calling 
slave through 
repeater 

SR SD   SR SR O BR SR O BR 

Master connected 
to repeater, not to 
slave 

FO SD  SR SR O BR SR SD SR 

Repeater 
connected to 
slave 

SG IF IF SG IF IF SG IF IF 

Mode 6, 
disconnected 

SR O BR SR O BR    

Setup Mode SG SG SG SG SG SG SG SG SG 
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Figure 1 
 
 

 

Figure 2 
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Figure 3 
 

 

Figure 4 
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11. Power Distribution Board 

 
 

Table 46 Pwr Distribution Board LEDs 

LED Name Inidcates 
D7 Neg 12V 
D6 +5V 
D5 +12V 
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12. Video Transmitter Board 

 
Frequency Agile 1710-1830 MHz 
 

Table 47 Video Transmitter Board Jumper 

Jumper Condition Result 
J2 Removed High Power TX 
 
 

Table 48 Video Transmitter Freq Select Dials (from left to right, 0 on top) 

Dial Condition Result 
1 8 
2 1 
3 5 

1,815 MHz 
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13. Camera/Compass Board 

 

Table 49 Camera/Compass Board Jumper 

Jumper Pin Condition Result 
1 Removed 
2 Removed 
3 Removed 

J1 

4 Removed 

RS485 Selected 
when installed 

 

Table 50 Camera/Compass Board Connector 

Connector PIN Description Result 
1 +5V  J2 
2 GND  
1 +12V  J3 
2 GND  
1 +12V  J4 
2 GND  
1 +5V  J5 
2 GND  
1 GND 
2 TX 

J7 

3 RX 

Tied to Motherboard 
Serial 3 

1 GND 
2 TX 

J8 

3 RX 

Tied to Motherboard 
Serial 4 

J9 SMA Video From Camera   
J10 SMA Video feed to Back Half   

1 12V  
2 GND  
3 Video  
4 GND  
5 TX  

J11 

6 RX  
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14. Software Installation Notes 

 
To install the software on Sanddragon the following steps must be taken. 
 
First, get a 64 MByte SanDisk card and configure it for Neutrino operation following the SMART 
Neutrino installation notes for a flash target. 
 

Use fdisk add qnx 2m 
fdisk add qny all 

 
Copy over the x86.simple code from teleopbase.  
 
Mount the smart directories and copy over $SMART_HOME/galil/galil_test.exe and 
$SMART_HOME/demos/sandblock_2.exe to the /home/demos directory. 
 
Edit the /bin/startup script to launch the sandblock_2.exe code. 
 
Create an /etc/hosts entry for the GalilA0260 board. 
 

To edit the Galil parameters execute the $SMART_HOME/galil/galil_test.exe code using 
galil_test.exe 1 to talk to the front end, and galil_test.exe 6 to talk to the back end. 

 
The original sand_start script had the following: 
 

echo "In /bin/sand_start" 
alias rtos="cd /home/smart_nto/rtos" 
echo "cd /home/x86/demos" 
cd /home/x86/demos 
echo "Calling ./sandblock_2.exe" 
./sandblock_2.exe 

 
The original /etc/hosts file had the following 
 

# 
# Host database 
# 
127.1         localhost.localdomain localhost 
134.253.218.28 willysolo 
134.253.219.98 fangslaptop01 
134.253.79.224 vanilla 
134.253.218.160 GalilAO260 

 
To add the keyboard support: Attach the keyboard cable to port c44 of the CMC7686GX 
computer board. The white painted side of the berg connector should connect towards the 
center of the board. 
 
To add the monitor support: Attach a CM112 Utility module to the top of the stack (on top of the 
CMC768 board).  Attach the monitor cable to the CN4 port of the module.  Pin 1 (square pin) 
should correspond to the red wire of the monitor cable. 
 
To add internet support:  Detach the keyboard from the back half of the robot and plug it in to one 
half of the triangular internet coupler (PC end).  Then take two Cat 5 cables connected to the hub 
and plug one back into the ethernet card, and the other to the other end of the coupler.
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Appendix C 
SandDragon SMART Software 

Filter Constant (Configuration) Settings 
 
Target: ocu_rtos  Grid: teleop & autonav_vehicle  Module: reg_comm_block    
 

#if MODULE_CONFIG == 4 
  #define CONFIG_NAME "port5 GPS for AlexBot on OCU" 
 
  #ifdef INCLUDE_HEADER 
/**** reg_comm0 parameters ****/ 
static int reg_comm0_baud = 19200; 
static int reg_comm0_port_no = 5; 
static char* reg_comm0_recv_name = "gpsdiff1"; 
static char* reg_comm0_send_name = 0; 
static double reg_comm0_wait_time = 0.1; 
static CommType reg_comm0_comm_type = COMM_LOCAL_TYPE; 
static int reg_comm0_reg_no = -1; 
   #endif 
 
   #ifdef INCLUDE_USER_INIT 
    /**** REG_COMM_BLOCK definitions for base station for AlexBot ****/ 
  { 
    int target_no; 
    target_no = smart_register_get_target_no("sanddragon143"); 
 
    /**** get camera switch register and set initial value ****/ 
    reg_comm0_reg_no = smart_get_register(IS_BINARY_BLK, reg_comm0_recv_name); 
    if (target_no < 0) { 
      print_msg(fname, MSG_INFO, "No target sanddragon143 recognized\n", 0); 
    } else { 
      smart_register_set_xmit_flag(reg_comm0_reg_no, target_no); 
    } 
  } 
 
   #endif 
#endif 
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Target: ocu_rtos  Grid: teleop Module: di_gamepad_block     
 

/**** defines for Obstacle demo ****/ 
#if MODULE_CONFIG == 1 
  #define CONFIG_NAME "Sanddragon" 
  #ifdef INCLUDE_HEADER 
 
  /***** Direct Input Joystick constants for Gravis Gamepad for targetting ****/ 
  /*** Note 0.2 is the maximum value allowed for RCP PAN1 packets ***/ 
static Twist di_gamepad0_gain = {{  -2.5f, -2.5f, -0.1f,  0.1f, 0.1f, 0.1f, 0.1f, 0.01f}}; 
static double di_gamepad0_omega = 10.0; 
static int di_gamepad0_deadzone = 80; 
static int di_gamepad0_type = 0; 
static char *di_gamepad0_reg_name = "di_gamepad_reg"; 
static int di_gamepad0_mappings[8] = {1, 0, 3, 2, 4, 5, 6, 7}; 
static Bool di_gamepad0_integrate_dof[8] = {True, True, True, True, True, 
        True, True, True}; 
static int di_gamepad0_zoom_switch_reg = -1; 
  #endif 
 
  #ifdef INCLUDE_USER_INIT 
 
 /* ### 10 bits */ 
 /* bits 9 - 7 = camera ID, value 0 - 7            */ 
 /* bit 6 = camera power; 0 = off, 1 = on          */ 
 /* bit 5 = manual iris open; 0 = false, 1 = true  */ 
 /* bit 4 = manual iris close; 0 = false, 1 = true */ 
 /* bit 3 = focus out; 0 = false, 1 = true         */ 
 /* bit 2 = focus in; 0 = false, 1 = true          */ 
 /* bit 1 = zoom out; 0 = false, 1 = true          */ 
 /* bit 0 = zoom in; 0 = false, 1 = TRUE           */ 
  /**** get camera switch register and set initial value ****/ 
  { 
    int target_no; 
    target_no = smart_register_get_target_no("sanddragon143"); 
    di_gamepad0_zoom_switch_reg = smart_get_register(IS_INT, "cam_bits"); 
    smart_register_set_int(di_gamepad0_zoom_switch_reg, 0x0); 
 
    /**** get camera switch register and set initial value ****/ 
    if (target_no < 0) { 
      print_msg(fname, MSG_INFO, "No target sanddragon143 recognized\n", 0); 
    } else { 
      smart_register_set_xmit_flag(di_gamepad0_zoom_switch_reg, target_no); 
    } 
  } 
  #endif 
 
    #ifdef INCLUDE_USER_UPDATE 
/**** di_gamepad 'Sanddragon' mode ****/ 
 { 
    static int buttons, grid_no; 
 
    /**** direct input update code for "sanddragon" ****/ 
    buttons = di_gamepad_block_get_buttons(smart_sp(DIPADB0)); 
    if (buttons & 0x200) { 
      smart_module_deactivate(smart_sp(DIPADB0)); 
    } 
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   if (buttons & 0x100) {    
     grid_no = smart_module_get_grid_no(smart_sp(DIPADB0)); 
      if (grid_no >= 0 && !smart_is_grid_activated(grid_no)) smart_module_activate(smart_sp(DIPADB0)); 
    } 
 
 /**** Set buttons for camera controls ****/ 
 smart_register_set_int(di_gamepad0_zoom_switch_reg, buttons & 0xf); 
  } 
  #endif 
 
#endif 

 
Target: ocu_rtos  Grid: teleop  Module: tank_block    

 
#if MODULE_CONFIG == 1 
  #define CONFIG_NAME "Sanddragon" 
 
  #ifdef INCLUDE_HEADER 
/**** TANK_BLOCK module, Wheel base for Sanddragon ****/ 
static double tank_block0_d_wb = 18.25 * INCH_TO_METER; 
   #endif 
 
#endif 

 
Target: ocu_rtos Grid: teleop  Module: reg_output_block    
 

#if MODULE_CONFIG == 2 
  #define CONFIG_NAME "alexbot base" 
 
  #ifdef INCLUDE_HEADER 
/**** test parameters ****/ 
static char* reg_output0_base_name = "abase"; 
static char* reg_output0_target_name = "sanddragon143"; 
   #endif 
#endif 
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Target: ocu_rtos Grid: teleop& autonav_vehicle  Module: reg_serial_port    
 

#if MODULE_CONFIG == 14 
  #define CONFIG_NAME "on teleopbase to alexbot pt 3" 
 
  #ifdef INCLUDE_HEADER 
/**** Receive module robande reg ****/ 
 
/**** On Wolverine reg_serial0 parameters ****/ 
static int reg_serial0_baud = 19200; 
static int reg_serial0_port_no = 3; 
static char* reg_serial0_remote_target_name = "sanddragon143"; 
static double reg_serial0_min_send_time = 0.1; 
static double reg_serial0_max_send_time = 1.0; 
static double reg_serial0_id_send_time =  10.0; 
static double reg_serial0_full_send_time = 60.0; 
static Bool reg_serial0_comm_type = COMM_LOCAL_TYPE; 
static Bool reg_serial0_is_server = False; 
   #endif 
 
   #ifdef INCLUDE_USER_INIT 
  /**** Initialize remote server ****/ 
  if (smart_server_remote_init(2020, "sanddragon143") == SS_ERROR) { 
    print_msg(fname, MSG_WARNING, "Unable to inialize remote server\n", 0); 
    return(SS_ERROR); 
  }; 
   #endif 
#endif 
 

 
Target: vehicle  Grid: nav_on_base & autonav_on_veh  Module: reg_serial_port    
 

#if MODULE_CONFIG == 13 
  #define CONFIG_NAME "on alexbot" 
 
  #ifdef INCLUDE_HEADER 
/**** Receive module robande reg ****/ 
 
/**** On Wolverine reg_serial0 parameters ****/ 
static int reg_serial0_baud = 19200; 
static int reg_serial0_port_no = 1; 
static char* reg_serial0_remote_target_name = "teleopbase"; 
static double reg_serial0_min_send_time = 0.1; 
static double reg_serial0_max_send_time = 1.0; 
static double reg_serial0_id_send_time =  20.0; 
static double reg_serial0_full_send_time = 60.0; 
static Bool reg_serial0_comm_type = COMM_LOCAL_TYPE; 
static Bool reg_serial0_is_server = True; 
   #endif 
 
#endif 
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Target: vehicle  Grid: nav_on_base & autonav_on_veh Module: reg_comm _block 
 
#if MODULE_CONFIG == 3 
  #define CONFIG_NAME "port2 19200 On AlexBot" 
 
  #ifdef INCLUDE_HEADER 
/**** reg_comm0 parameters ****/ 
static int reg_comm0_baud = 19200; 
static int reg_comm0_port_no = 2; 
static char* reg_comm0_recv_name = 0; 
static char* reg_comm0_send_name = "gpsdiff1"; 
static double reg_comm0_wait_time = 0.1; 
static CommType reg_comm0_comm_type = COMM_LOCAL_TYPE; 
 
static int reg_comm0_reg_no = -1; 
   #endif 
   #ifdef INCLUDE_USER_INIT 
    /**** REG_COMM_BLOCK definitions for AlexBot ****/ 
  { 
    int target_no; 
    target_no = smart_register_get_target_no("teleopbase"); 
 
    /**** get camera switch register and set initial value ****/ 
    reg_comm0_reg_no = smart_get_register(IS_BINARY_BLK, reg_comm0_send_name); 
    if (target_no < 0) { 
      print_msg(fname, MSG_INFO, "No target teleopbase recognized\n", 0); 
    } else { 
      smart_register_set_recv_flag(reg_comm0_reg_no, target_no, reg_comm0_send_name); 
    } 
  } 
 
   #endif 
#endif 

 
Target: vehicle  Grid: nav_on_base  Module: reg_input_block 
 

#if MODULE_CONFIG == 8 
  #define CONFIG_NAME "Alexbot" 
 
  #ifdef INCLUDE_HEADER 
/**** Receive module robande reg ****/ 
 
/**** Wolverine base parameters ****/ 
static char* reg_input0_blk_target_name = "teleopbase"; 
static char* reg_input0_blk_base_name = "abase"; 
static double reg_input0_blk_max_delay = 3.0; 
static Twist reg_input0_blk_vmax = { 2.0, 2.0, 2.0, 2.0 }; 
static Twist reg_input0_blk_amax = { 10.0, 10.0, 10.0, 10.0 }; 
#define DEG5 (5.0*DEG_TO_RAD) 
static Twist reg_input0_blk_max_error = {DEG5, DEG5, DEG5, DEG5}; 
   #endif 
#endif 
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Target: vehicle  Grid: nav_on_base  Module: sandlizard_block 
 

#if MODULE_CONFIG == 2 
  #define CONFIG_NAME "Sandlizard with traj on base" 
 
  #ifdef INCLUDE_HEADER 
/** Values for SANDLIZARD_BLOCK module **/ 
/** static const**/ char* base_name = "teleopbase"; 
static char* sandlizard0_galil_host_name = "GalilAO260"; 
static char* sandlizard0_DR_travel_reg_name = "DR_travel"; 
/**static const**/ char*  sandlizard0_io_state_reg = "traj_io_state"; 
/**static const**/ char*  sandlizard0_io_cmd_reg = "traj_io_cmd"; 
 
 
  #endif 
 
  #ifdef INCLUDE_USER_INIT 
   /**** SANDLIZARD_BLOCK definitions for Sandlizard with traj on base ****/ 
 
  { 
    int io_cmd_reg_no, io_status_reg_no, target_no; 
 
    io_cmd_reg_no = smart_get_register(IS_INT, sandlizard0_io_cmd_reg); 
    target_no = reg_get_target_no(base_name); 
    if (io_cmd_reg_no == SS_ERROR) { 
      print_msg(fname, MSG_WARNING, "io_cmd_reg_no\n", 0); 
   } else if (target_no < 0) { 
      print_msg_with_string(fname, MSG_INFO, "No target %s recognized\n", base_name); 
    } else { 
      reg_set_recv_flag(io_cmd_reg_no,  target_no, sandlizard0_io_cmd_reg); 
    } 
   
    io_status_reg_no = smart_get_register(IS_INT, sandlizard0_io_state_reg); 
    if (io_status_reg_no == SS_ERROR) { 
      print_msg(fname, MSG_WARNING, "Can't get data register\n", 0); 
   } else if (target_no < 0) { 
      print_msg_with_string(fname, MSG_INFO, "No target %s recognized\n", base_name); 
    } else { 
      reg_set_xmit_flag(io_status_reg_no, target_no); 
    } 
  } 
  #endif 
#endif 

 
Target: vehicle  Grid: nav_on_base & autonav_on_veh  Module: sony_visca_port 
 

#if MODULE_CONFIG == 5 
  #define CONFIG_NAME "Port 3 with RCP zoom" 
 
  #ifdef INCLUDE_HEADER 
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/**** SONY_VISCA module (Port 3 camera 1) ****/ 
static CommType sony_visca0_comm_type = COMM_LOCAL_TYPE; 
static int sony_visca0_port_no = 3; 
static int sony_visca0_camera_no = 1; 
static char* sony_visca0_device_name = NULL; 
 
/*** Application code register (from gamepad!) ***/ 
static int sony_visca0_switch_reg = -1; 
#define ZOOM_IN_BIT 0x01 
#define ZOOM_OUT_BIT 0x02 
#define FOCUS_NEAR_BIT 0x04 
#define FOCUS_FAR_BIT 0x08 
#define TOGGLE_FOCUS 0x0c   /** Press 3 & 4 to toggle focus state **/ 
#define TOGGLE_BACKLIGHT 0x09  /** Press 1 & 4 to toggle backlight **/ 
#define TOGGLE_LOW_LUX 0x0a  /** Press 2 & 4 to toggle low lux **/ 
#define TOGGLE_IR 0x06  /** Press 3 & 2 to toggle IR **/ 
   #endif 
 
   #ifdef INCLUDE_USER_INIT 
 
  /**** Sony VISCA camera definitions ****/ 
  { 
    int target_no; 
    target_no = reg_get_target_no("teleopbase"); 
 
    /**** get camera switch register and set initial value ****/ 
    sony_visca0_switch_reg = reg_get(IS_INT, "cam_bits"); 
    reg_set_int(sony_visca0_switch_reg, 0x0); 
    if (target_no < 0) { 
      print_msg(fname, MSG_INFO, "No target teleopbase recognized\n", 0); 
    } else { 
      reg_set_recv_flag(sony_visca0_switch_reg, target_no, "cam_bits"); 
    } 
  } 
 
   #endif 
 
   #ifdef INCLUDE_USER_UPDATE 
  /**** Sony VISCA control ****/ 
  { 
    int camera_bits; 
    static Bool is_zooming = False; 
    static Bool is_focusing = False; 
    static int old_camera_bits = 0; 
 
    camera_bits = 0; 
    reg_get_int(sony_visca0_switch_reg, &camera_bits); 
    camera_bits &= 0xf; 
 if (camera_bits != old_camera_bits) { 
      if (camera_bits == TOGGLE_FOCUS) { 
        if (sony_visca_is_manual_focus(0)) sony_visca_send_command(0, "auto_focus_on"); 
        else sony_visca_send_command(0, "auto_focus_off"); 
      } 
      if (camera_bits == TOGGLE_IR) { 
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        if (sony_visca_is_ir_on(0)) sony_visca_send_command(0, "ir_off"); 
        else sony_visca_send_command(0, "ir_on"); 
      } 
      if (camera_bits == TOGGLE_BACKLIGHT) { 
        if (sony_visca_is_backlight_on(0)) sony_visca_send_command(0, "backlight_off"); 
        else sony_visca_send_command(0, "backlight_on"); 
      } 
      if (camera_bits == TOGGLE_LOW_LUX) { 
        if (sony_visca_is_low_lux_on(0)) sony_visca_send_command(0, "low_lux_off"); 
        else sony_visca_send_command(0, "low_lux_on"); 
      } 
      else if (camera_bits == ZOOM_IN_BIT) { 
        sony_visca_send_command(0, "zoom_in"); 
        is_zooming = True; 
      } 
   else if (camera_bits == ZOOM_OUT_BIT) { 
        sony_visca_send_command(0, "zoom_out"); 
        is_zooming = True; 
      } 
      else if ((camera_bits == FOCUS_FAR_BIT) && sony_visca_is_manual_focus(0)) { 
        sony_visca_send_command(0, "focus_far"); 
        is_focusing = True; 
      } 
      else if ((camera_bits == FOCUS_NEAR_BIT) && sony_visca_is_manual_focus(0)) { 
        sony_visca_send_command(0, "focus_near"); 
        is_focusing = True; 
      } 
   else { 
        if (is_zooming) sony_visca_send_command(0, "stop_zoom"); 
        if (is_focusing) sony_visca_send_command(0, "stop_focus"); 
        is_zooming = False; 
        is_focusing = False; 
      } 
      old_camera_bits = camera_bits; 
    } 
  } 
 
   #endif 
 
#endif 

 
Target: vehicle  Grid: nav_on_base & autonav_on_veh Module: novatel_solo_block 
 

#if MODULE_CONFIG == 2 
  #define CONFIG_NAME "Alexbot port 5" 
 
  #define KEY_WORDS " virtual " 
 
  #ifdef INCLUDE_HEADER 
/**** Novatel constants for "RVR site control room" ****/ 
#include "comm.h" 
static CommType novatel0_comm_type = COMM_LOCAL_TYPE; 
static int novatel0_port = 5; 
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/**** These values are for Albuquerque, RVR site, 6970 Pad ***/ 
const NovatelLatLongType novatel0_latitude = {35, 02, 28.073976, 'N'}; 
const NovatelLatLongType novatel0_longitude = {106, 31, 19.592544, 'W'}; 
const Vector novatel0_scale = {{-25.36, 30.83, 1.0}}; 
const double novatel0_altitude = 1667.289; 
const char* novatel0_pos_reg_name = "gps_pos"; 
const char* novatel0_gps_home_reg_name = "gps_home"; 
const char* novatel0_gps_base_reg_name = "gps_base"; 
const char* novatel0_gps_pos_decimal_reg_name = "gps_pos_dec"; 
const char* novatel0_gps_pos_sats_reg_name = "gps_sats"; 
const char* novatel0_gps_std_dev_reg_name = "gps_std_dev"; 
const char* novatel0_gps_rdg_time_reg_name = "gps_rdg_time"; 
const char* novatel0_gps_rtk_stat_reg_name = "gps_rtk_stat"; 
const char* novatel0_gps_base_log_reg_name = "gps_base_log"; 
const Bool novatel0_is_upload = True; 
  #endif 
 
#endif 
 

 
Target: vehicle  Grid: autonav_on_veh  Module: sandlizard_block 
 

#if MODULE_CONFIG == 1 
  #define CONFIG_NAME "Sandlizard with traj onboard" 
 
  #ifdef INCLUDE_HEADER 
/** Values for SANDLIZARD_BLOCK module **/ 
static char* sandlizard0_galil_host_name = "GalilAO260"; 
static char* sandlizard0_DR_travel_reg_name = "DR_travel"; 
static const char*  sandlizard0_io_state_reg = "traj_io_state"; 
static const char*  sandlizard0_io_cmd_reg = "traj_io_cmd"; 
 
 
  #endif 
#endif 
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Target: vehicle  Grid: nav_on_base & autonav_on_veh Module: hmr3000_port 
 

#if MODULE_CONFIG == 2 
  #define CONFIG_NAME "Port 4 hmr_rpy" 
 
  #ifdef INCLUDE_HEADER 
 
/**** Honeywell HMR3000 Compass port 4 ****/ 
#include "comm.h" 
static int hmr30000_port_no = 4; 
static char *hmr30000_rpy_reg_name = "hmr_rpy"; 
static char *hmr30000_status_reg_name = "compass_status"; 
static Bool hmr30000_is_upload = True; 
 
  #endif 
#endif 

 
Target: vehicle  Grid: nav_on_base & autonav_on_veh  Module: pos_estim_block 
 

#if MODULE_CONFIG == 1 
  #define CONFIG_NAME "Sandlizard with gps hmr compass" 
 
  #define KEY_WORDS " virtual " 
 
  #ifdef INCLUDE_HEADER 
/*** values for POS_ESTIM_BLOCK ***/ 
static char* gps_pos_reg_name = "gps_pos"; 
static char* gps_std_dev_reg_name = "gps_std_dev"; 
static char* gps_rdg_time_reg_name = "gps_rdg_time"; 
static char* DR_travel_reg_name = "DR_travel"; 
static char* rpy_reg_name = "hmr_rpy"; 
static char* robot_pos_reg_name = "robot_pos_x"; 
static char* DR_pos_reg_name = "DR_pos"; 
static Bool is_upload = True; 
 
  #endif 
#endif 
 

 
Target: vehicle  Grid: autonav_on_veh  Module: pos_offset_block 
 

#if MODULE_CONFIG == 4 
  #define CONFIG_NAME "alexbotv" 
 
  #ifdef INCLUDE_HEADER 
 
static double pos_offset_block0_dx = (28.0 * INCH_TO_METER); /** Distance from gps antenna to hitch 
**/ 
static double pos_offset_block0_dy = (0.0 * INCH_TO_METER); /** Same in y, positive to left **/ 
static const char* pos_offset_block0_reg_name  = "hmr_rpy"; 
static const SmartRegisterType pos_offset_block0_reg_type = IS_VECTOR; 
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static int pos_offset_block0_heading_map_type = 1;  /** Use compass heading **/ 
   #endif 
#endif 

 
Target: vehicle  Grid: nav_on_base & autonav_on_veh  Module: traj_io_block 
 

#if MODULE_CONFIG == 2 
  #define CONFIG_NAME "Sanddragonv" 
 
  #ifdef INCLUDE_HEADER 
/**** TRAJ_IO_BLOCK module,  ****/ 
 
/**** traj_io_block parameters ****/ 
static /**const**/ char* robot_name = "sanddragon143"; 
static /**const**/ char*  traj_io_block_state_reg = "traj_io_state"; 
static /**const**/ char*  traj_io_block_cmd_reg = "traj_io_cmd"; 
static /**const**/ char*  traj_io_block_tag_info_reg = "traj_tag_info"; 
static const Twist traj_io_block_vmax = {{2.0f, 2.0f, 0.2f, 3.9f, 4.16f, 3.93f}}; 
static const Twist traj_io_block_amax = {{2.0f, 2.0f, 18.7f, 69.0f, 74.0f, 70.0f}}; 
static const Real traj_io_block_percent_speed = 0.5f; 
  #endif 
  #ifdef INCLUDE_USER_INIT 
   /**** TRAJ_IO_BLOCK definitions for Sanddragonv ****/ 
  { 
    int io_cmd_reg_no, io_state_reg_no, io_tag_info_reg_no, target_no; 
 
    io_cmd_reg_no = smart_get_register(IS_INT, traj_io_block_cmd_reg); 
    target_no = reg_get_target_no(robot_name); 
    if (io_cmd_reg_no == SS_ERROR) { 
      print_msg(fname, MSG_WARNING, "io_cmd_reg_no\n", 0); 
   } else if (target_no < 0) { 
      print_msg_with_string(fname, MSG_INFO, "No target %s recognized\n", 
robot_name); 
    } else { 
      reg_set_xmit_flag(io_cmd_reg_no,  target_no); 
    } 
   
    io_state_reg_no = smart_get_register(IS_INT, traj_io_block_state_reg); 
    if (io_state_reg_no == SS_ERROR) { 
      print_msg(fname, MSG_WARNING, "Can't get state register\n", 0); 
   } else if (target_no < 0) { 
      print_msg_with_string(fname, MSG_INFO, "No target %s recognized\n", 
robot_name); 
    } else { 
      reg_set_recv_flag(io_state_reg_no, target_no, traj_io_block_state_reg); 
    } 
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    io_tag_info_reg_no = smart_get_register(IS_STRING, traj_io_block_tag_info_reg); 
    if (io_tag_info_reg_no == SS_ERROR) { 
      print_msg(fname, MSG_WARNING, "Can't get tag_info register\n", 0); 
   } else { 
      reg_queue_for_upload(io_tag_info_reg_no); 
    } 
  } 
  #endif 
 
#endif 

 
Target: vehicle  Grid: nav_on_base & autonav_on_veh  Module: pos_servo_block 
 

#if MODULE_CONFIG == 2 
  #define CONFIG_NAME "low speed tankpos" 
 
  #ifdef INCLUDE_HEADER 
/**** pos_servo0 parameters for tankpos  ****/ 
   static double pos_servo0_alpha = 0.5; 
   static Twist pos_servo0_vmax = {{1.0, 1.0, 1.0, 10.0, 10.0, 10.0, 10.0, 10.0}}; 
  #endif 
#endif 
 
 

 
Target: vehicle  Grid: nav_on_base & autonav_on_veh  Module: trailer_block 
 

#if MODULE_CONFIG == 3 
  #define CONFIG_NAME "alexbot" 
 
  #ifdef INCLUDE_HEADER 
 
static double trailer_block0_d_wb = (22.0 * INCH_TO_METER); /** spacing of treads 
**/ 
static double trailer_block0_d_lh = (25.0 * INCH_TO_METER); /** vehicle center to 
hitch **/ 
static const char* trailer_block0_reg_name  = "hmr_rpy"; 
static const SmartRegisterType trailer_block0_reg_type = IS_VECTOR; 
static const int trailer_block0_heading_map_type = 1; /** Use compass for heading **/ 
   #endif 
#endif 
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Target: vehicle  Grid: nav_on_base & autonav_on_veh  Module: reg_retrieve_block 
 

#if MODULE_CONFIG == 2 
  #define CONFIG_NAME "armpos" 
  #ifdef INCLUDE_HEADER 
/****  parameters for REG_RETRIEVE ****/ 
static char* reg_retrieve0_base_name = "armpos"; 
static SmartRegisterType reg_retrieve0_reg_type = IS_VECTOR; 
   #endif 
#endif 

 
Target: vehicle  Grid: nav_on_base & autonav_on_veh  Module: merge_block 
 

#if MODULE_CONFIG == 3 
  #define CONFIG_NAME "prev 0 1 bot 2 3" 
 
  #ifdef INCLUDE_HEADER 
/**** merge0 parameters prev 0 1 bot 2 3 ****/ 
static int merge0_prev_map[MAX_DOFS] = {0, 1}; 
static int merge0_bottom_map[MAX_DOFS] = {2, 3}; 
  #endif 
#endif 

 
Target: vehicle  Grid: autonav_on_veh  Module: snsr_dsp_block 
 

#if MODULE_CONFIG == 1 
  #define CONFIG_NAME "Alexbot" 
 
  #ifdef INCLUDE_HEADER 
/**** parameters for SNSR_DSP  module ****/   
#include "comm.h" 
static CommType snsr_dsp0_comm_type = COMM_LOCAL_TYPE; 
static int snsr_dsp0_port = 6; 
 
static char *snsr_dsp0_diff_reg_name = "gps_diff"; 
static char *snsr_dsp0_log_reg_name = "gps_base_log"; 
static char *snsr_dsp0_dsp_msg_reg_name = "dsp_msg"; 
static char *snsr_dsp0_gps_cmd_reg_name = "gps_cmd"; 
static Bool snsr_dsp0_is_upload = True; 
 
  #endif 
#endif 
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Appendix D 
 

SandDragon Module Registered Commands  
 

 
All the available commands can be viewed using the command ‘info’ at the console 
prompt. There are numerous commands that are part of the standard SMART core 
modules, and they will not be detailed here. A problem occurs when running the vehicle 
remotely and there isn’t a console available on a display. If a command is not instantiated 
through the GUI, it is still possible to send it to the vehicle over the reg_serial 
communication link from the remote (base station) console using the command: 
 
reg_serial_send_cmd <string>  
 
where the string contains the command name, the argument type(s), the return type, and 
the argument value(s). For example, to send the command “gps_lat_long” which takes 
the smart module type as an argument (type number 0x1, value 5) and returns a string 
(type 0x4), use the command: 
 
reg_serial_send_cmd “gps_lat_long 0x1 0x4 {5}” 
 
A command which takes multiple arguments looks like: 
 
reg_serial_send_cmd “gps_prtk_repeat_pos 0x22 0x2 {0 10}” 
 
The commands specific to the modules for this project are shown below. 
 
 

Module: novatel 
 
Cmd: gps_prtk_pos <SMART module number> 
Use: Remote call returning string with GPS status data 
Arg Type: 0x1 
Return Type: 0x4 
Calls: novatel_solo_get_pos_string  
Returns: String:  
NSVS %d SDEV %.3f x %.3f y %.3f alt %.3f wk %d sec %.3f age %.3f\n 
Containing  
NSVS: number of satellites,  
SDEV: sqrt of sum of squares of lat and long standard deviation of position error in 
meters. 
x: longitudinal distance from HOME in meters (East is positive) 
y: latitudinal distance from HOME in meters (North is positive) 
alt: altitude above HOME 
wk: GPS week 
sec: GPS second of the week 
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age: Age of the differential correction in seconds 
 
Cmd: gps_prtk_repeat_pos <instantiation number (normally 0)> <# loops> 
Use: Multiple printouts of GPS status to Console 
Arg Type: 0x22 
Return Type: 0x2 
Calls: novatel_gps_prtk_pos_display 
Returns: Status: SS_OK or SS_ERROR 
Action: Prints to console  
NSVS: number of satellites,  
SDEV: sqrt of sum of squares of lat and long standard deviation of position error in 
meters. 
x: longitudinal distance from HOME in meters (East is positive) 
y: latitudinal distance from HOME in meters (North is positive) 
alt: altitude above HOME 
wk: GPS week 
sec: GPS second of the week 
age: Age of the differential correction in seconds 
 
Cmd: gps_lat_long <SMART module number> 
Use: Returns string with lat/long of vehicle position in deg:min:sec 
Arg Type: 0x1 
Return Type: 0x4 
Calls: novatel_solo_get_lat_long 
Returns: string 
 
Cmd: gps_get_home <SMART module number> 
Use: Returns string with lat/long of HOME in deg:min:sec 
Arg Type: 0x1 
Return Type: 0x4 
Calls: novatel_solo_get_home_string 
Returns: string 
 
Cmd: gps_home_set_prtk <instantiation number (normally 0)> <lon_offset_in_m> 
<lat_offset_in_m> 
Use: Sets HOME to the current GPS position and adds the offset in m 
Arg Type: 0x233 
Return Type: 0x2 
Calls: novatel_gps_home_set_prtk 
Returns: Status: SS_OK or SS_ERROR 
 
 
Cmd: gps_home_set_lon <instantiation number (normally 0)> <lon_degr> 
<lon_min> <lon_sec> 
Use: Sets HOME longitude to the specified deg:min:sec. Negative degree is W. 
Arg Type: 0x2333 
Return Type: 0x2 
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Calls: novatel_gps_home_set_lon 
Returns: Status: SS_OK or SS_ERROR 
 
Cmd: gps_home_set_lat <instantiation number (normally 0)> <lat_degr> <lat_min> 
<lat_sec> 
Use: Sets HOME latitude to the specified deg:min:sec. Negative degree is S. 
Arg Type: 0x2333 
Return Type: 0x2 
Calls: novatel_gps_home_set_lat 
Returns: Status: SS_OK or SS_ERROR 
 
Cmd: gps_home_set_elev <instantiation number (normally 0)> <alt_m>  
Use: Sets HOME elevation to the specified height in m. 
Arg Type: 0x23 
Return Type: 0x2 
Calls: novatel_gps_home_set_elev 
Returns: Status: SS_OK or SS_ERROR 
 
Cmd: gps_config_file_download <instantiation number (normally 0)> <filename>  
Use: Sends the named file to the GPS. The file needs to already be on the vehicle. 
Arg Type: 0x24 
Return Type: 0x2 
Calls: novatel_config_file_download 
Returns: Status: SS_OK or SS_ERROR 
 
Cmd: gps_config_cmd_download <instantiation number (normally 0)> <command>  
Use: Sends the command to the GPS.  
Arg Type: 0x24 
Return Type: 0x2 
Calls: novatel_config_cmd_download 
Returns: Status: SS_OK or SS_ERROR 
 

Module: sandlizard 
 
Cmd: sdb_print  
Use: Prints the sandlizard_io structure to the console  
Arg Type: 0x0 
Return Type: 0x2 
Calls: sandlizard_io_print 
Returns: Status: SS_OK or SS_ERROR 
 
Cmd: sdb_reset 
Use: Turns off the motion, clears the galil buffer, and resets the rear galil board. 
Arg Type: 0x0 
Return Type: 0x2 
Calls: sandlizard_io_reset 
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Returns: Status: SS_OK or SS_ERROR 
 
Cmd: sdb_set_volt_max <max voltage> 
Use: Sets the max voltage value that is sent by the Galil motion controller for the track 
drive motors. Output values range from 0 to 10V. 
Arg Type: 0x3 
Return Type: 0x2 
Calls: sandlizard_io_set_voltage_max 
Returns: Status: SS_OK or SS_ERROR 
 
Cmd: sdb_reset_pos 
Use: Zeros the position encoders for the left and right tracks and the lift and grip 
encoders. 
Arg Type: 0x0 
Return Type: 0x2 
Calls: sandlizard_io_reset_pos 
Returns: Status: SS_OK or SS_ERROR 
 
Cmd: sdb_stop 
Use: Sends a stop command to the Galil motion controllers, and sets the speed 
parameters to zero. 
Arg Type: 0x0 
Return Type: 0x2 
Calls: sandlizard_io_stop 
Returns: Status: SS_OK or SS_ERROR 
 
Cmd: sdb_set_speed <left speed> <right speed> <lift speed> <grip speed> 
Use: Sets the requested speed parameters for the left, right, lift, and grip motors to the 
indicated value (by calling sandlizard_io_assign_speed), and sends the values to the Galil 
motion controllers. Left and right are in m/sec, lift and grip in % of travel range per 
second. 
Arg Type: 0x3333 
Return Type: 0x2 
Calls: sandlizard_io_set_speed 
Returns: Status: SS_OK or SS_ERROR 
 
Cmd: sdb_assign_speed  <left speed> <right speed> <lift speed> <grip speed>  
Use: Sets the requested speed parameters for the left, right, lift, and grip motors to the 
indicated value. Left and right are in m/sec, lift and grip in % of travel range per second. 
Arg Type: 0x3333 
Return Type: 0x2 
Calls: sandlizard_io_assign_speed 
Returns: Status: SS_OK or SS_ERROR 
 
Cmd: sdb_motion_on 
Use: Sends ‘servo_here’ command to the Galil motion controllers to turn on and servo to 
the present location . 
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Arg Type: 0x0 
Return Type: 0x2 
Calls: sandlizard_io_motion_on 
Returns: Status: SS_OK or SS_ERROR 
 
Cmd: sdb_motion_off 
Use: Sets the velocity command parameters to zero, and sends a zero “offset” command 
to the Galil motion controllers followed by a ‘stop’ command and a ‘motor_off’ 
command.  
Arg Type: 0x0 
Return Type: 0x2 
Calls: sandlizard_io_motion_off 
Returns: Status: SS_OK or SS_ERROR 
 
Cmd: sdb_get_speed 
Use: Reads the speed from the Galil motion encoders and puts them in the local structure 
variables.  
Arg Type: 0x0 
Return Type: 0x2 
Calls: sandlizard_io_get_speed 
Returns: Status: SS_OK or SS_ERROR 
 
Cmd: sdb_get_pos 
Use: Reads the position from the Galil motion encoders and puts them in the local 
structure variables.  
Arg Type: 0x0 
Return Type: 0x2 
Calls: sandlizard_io_get_pos 
Returns: Status: SS_OK or SS_ERROR 
 
Cmd: sdb_zero_l_and_g 
Use: Drives lift and grip motors to their up and open positions, and zeros their counters. 
Arg Type: 0x0 
Return Type: 0x2 
Calls: sandlizard_io_zero_lift_grip 
Returns: Status: SS_OK or SS_ERROR 
 

Module: pos_estim 
 
Cmd: robot_pos <SMART module number> 
Use: Returns string containing robot distance from HOME in meters in longitude, 
latitude, elevation directions, and also includes reading time. 
Arg Type: 0x1 
Return Type: 0x4 
Calls: pos_estim_block_get_pos_string 
Returns: String containing text and data 
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Cmd: robot_repeat_pos <instantiation number (normally 0)> <# times to print> 
Use: Prints out pos_estim structure the indicated number of sequential times. 
Arg Type: 0x22 
Return Type: 0x2 
Calls: pos_estim_pos_display 
Returns: Status: SS_OK or SS_ERROR 
 
Cmd: pos_estim_zero_dr_pos <instantiation number (normally 0)> <offset long> 
<offset lat> 
Use: Sets the dead reckoning position to the offset value indicated. 
Arg Type: 0x233 
Return Type: 0x2 
Calls: pos_estim_zero_dr_pos 
Returns: Status: SS_OK or SS_ERROR 
 
 
 

Module: snsr_dsp 
 
Cmd: gps_base_cmd_send <instantiation number (normally 0)> <text msg> 
Use: Packages the msg with the necessary header and footer and sends to the DSP to pass 
on to the GPS base unit. 
Arg Type: 0x24 
Return Type: 0x2 
Calls: snsr_dsp_gps_cmd_recv 
Returns: Status: SS_OK or SS_ERROR 
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Appendix E 
Adaptive and Mobile Ground Sensors LDRD 

DSP/PC104 Communication Protocol Interface 
Document 

 
 
 
Introduction 
This interface document discusses the protocol and message sequencing to be used 
between the SandDragon PC104 stack processor and the payload DSP processor as part 
of the AMGS LDRD. A sequence of messages and acknowledging handshakes are 
required to be passed back and forth as part of the planned operation. Communication 
will be over a serial communication line (COM line) at a baud rate to be agreed upon 
(9600 or 19200 most likely). 
 
Packaging: 
Each message string will be packaged with start sequence consisting of four ASCII dollar 
sign characters ($$$$), a message type integer character, data characters specific to that 
message type, and a CRC (cyclic redundancy check) sequence. The CRC will fill two 
bytes of a four byte integer value. Some messages will be of known and fixed length, 
while others will necessarily be of variable length. The variable length messages will 
have as its first data integer byte the length of the full message, including the CRC value 
but excluding the initial preamble ‘$$$$’ characters and the message type integer.  
 
Messages and Sequences 
The following 10 message types (shown with their integer type representation) are passed 
between the processors. Each message has a sequence of data sent with it, shown in the 
subsequent header file.  
 
SEND 1 
GPS_DIFF         2 
GPS_CMD              3 
GPS_LOG      4 
NEW_ARRAY        5 
ACK              6 
SENSOR_ADD       7 
SENSOR_STATUS    8 
ARRAY_DONE       9 
RESEND          10 
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The sequence used in communicating these commands is given by the following 
exchange information. 
 
Command Arguments  Usage  
Sent by DSP Unit to PC104 
SEND unsigned char “$$$$” Alpha/Numeric message of up to 128    
 unsigned long msgType characters to be sent on to the base 
 unsigned long length station.  (The PC104 puts it into a register 
 unsigned char[128] msg         which gets passed to the OCU and 
 unsigned long  checksum    displayed.) PC104 will reply with ACK 

msg. 
 
GPS_DIFF unsigned char “$$$$” The Novatel gps unit sends a variable-length 
 unsigned long msgType binary string of up to 250 characters. This 
 unsigned long length needs to be packaged by the sensor 
 unsigned char[250] msg         processor and sent along with gps ASCII 
 unsigned long checksum    data to the DSP which forwards it along to 

the PC104. When it gets to the DSP it will 
have been packaged by the sensor processor 
with a leading length byte, so it just needs to 
be additionally wrapped by the DSP and 
passed on to the PC104. (The PC104 puts it 
into a register for the Reg_Comm module to 
forward to the GPS.) No ACK msg will be 
sent in reply. 

 
GPS_LOG unsigned char “$$$$” The Novatel gps unit sends a variable-length 
 unsigned long msgType log file which is already packaged in a 
 unsigned long length          NEMA package. The DSP will further 
 unsigned char[128] msg         package it in the presently described format 
 unsigned long checksum  and pass it to the PC104. The PC104 puts 

this into a register, which is parsed by the 
GPS module to extract the base position, 
which is put into another register and passed 
to the OCU. No ACK msg will be sent in 
reply.  

  
Sent by PC104 Unit to the DSP 
GPS_CMD unsigned char “$$$$” Commands can be sent from the OCU  
 unsigned long msgType through the PC104 (via a register) to the 
 unsigned long length          DSP to be passed on to the sensor processor 
 unsigned char[128] msg          which sends it to the base station GPS unit. 
 unsigned long checksum     This command is already packaged and just 

needs to be passed on. No ACK msg will be 
sent in reply.  
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Deploy/Retrieve Exchange Commands/Data: 
 
Category Arguments  Usage 
 
<Vehicle drives to deployment site using mission script.> 
<Vehicle powers up the DSP, which sends its first array configuration to the PC104.> 
 
NEWARRAY unsigned char “$$$$” The DSP decides the configuration and   
 unsigned long msgType number of sensors. It sends this number and 
 long int num_sensors the “style,” which indicates what type of 
 *unsigned long style     array this will be. This is used by the PC104  
 unsigned long checksum to determine whether to deploy the array or 

if it is the initial list of what it is carrying. 
The first NEWA list will be style 1, what is 
on the vehicle. The second will be style 3, 
what is to be deployed. The vehicle 
determines what sensor goes where. The 
PC104 responds with an ACK msg that 
includes the index number assigned by the 
PC104, for use in future references. 

 * Style (not implemented): 
    EMPTY = 0,    No sensors in the array 
    VEHICLE = 1,  Stack loader on the vehicle 

is an array 
    STORE = 2,   Used to hold inactive sensors 
    DEPLOY = 3,  Used to hold deployed array 

of sensors   
   
ACK unsigned char “$$$$” 
 unsigned long msgType  
 unsigned long array_index 
 unsigned long checksum  
 
RESEND unsigned char “$$$$” If the CRC checksum doesn’t match, this is 
 unsigned long msgType sent (by either the PC104 or the DSP)  
 unsigned long checksum instead of the ACK. 
 
<The DSP then sends the num_sensors number of SENSOR_ADD messages> 
 
SENSOR_ADD 
  unsigned char “$$$$”  The DSP 

sends this info for each sensor. 
 unsigned long msgType The stimulus tells if stimulation is to be 
 unsigned long snr_index  (thumping the ground) before moving on. 
 float x_pos_req X and Y location are all relative. The PC104 
 float y_pos_req can place the array anywhere locally as long 
 *float circular_error as it preserves the relative position of the 
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 *unsigned long stimulus sensors. The PC104 sends an ACK msg with 
 unsigned long checksum the sensor_index number when it receives a 
  msg. 
  * These two parameters unimplemented   
 
 
<Vehicle proceeds to set up array when it can. It puts a sensor in an array and if array was 
marked for thump testing, calls DSP before sending out a thump. At present we have not 
defined the interface for stimulus testing. Once the sensor is place, the PC104 sends the 
sensor status:> 
 
SENSOR_STATUS 
  unsigned char “$$$$” 
 unsigned long msgType The PC104 sends information on each  
  unsigned long list_index sensor as it is 

placed. The DSP responds 
  unsigned long snr_ID  with an ACK 

that includes the list_index. 
  float x_pos_act 
  float y_pos_act 
  unsigned long checkSum 
 
<This get repeated for each sensor until the array is completed> 
<Then the vehicle sends the array data> 
   
 
ARRAY_DONE 
  unsigned char “$$$$”   
 unsigned long msgType The PC104 sends this to tell the DSP the 
 unsigned long checksum     array is in place and the vehicle in parked so 

that monitoring can begin. The DSP 
responds with an ACK msg that includes the 
array_index..  
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