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Abstract 
LDRD Project 67025 provided support to pursue experiments studying the 

electrodynamic response and possible applications of various innovative semiconductor-
based nanostructures from microwave (approximately 1 GHz) up to millimeter- and 
submillimeter-wave (several hundred GHz) frequencies.  Under this project, the non-
linear behavior of plasmons in a high-mobility GaAs-AlGaAs quantum-well field-effect 
transistor was studied up to 145 GHz using difference frequency mixing techniques.  
Applications of such a plasmon transistor as a millimeter-wave mixer receiver were 
investigated.  Also, negative refractive-index metamaterials consisting of arrays of split-
ring resonators were fabricated and their transmission resonance spectra measured from 
50 to 2000 GHz.  High quality factor resonances with large negative index were 
observed, and applications as a tunable filter or modulator investigated. 
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1. Introduction 
The research done under this LDRD was to characterize the unique electrodynamic 

properties of semiconductor nanostructures at microwave to millimeter-wave frequencies, 

roughly one to several hundred GHz, and to explore applications of the knowledge gained 

to innovative high-frequency devices having radically superior performance resulting 

explicitly from nano-scale or quantum effects.  Specifically, we have worked with 

quantum-well field-effect transistors fabricated from a high-mobility two-dimensional 

electron gas (2DEG) in a GaAs-AlGaAs semiconductor heterostructure.  Such structures 

were found to respond to high-frequency electromagnetic fields via collective excitation 

of charge density oscillations, or plasmons, rather than ordinary electrons.  Such an effect 

is marked by distinctive electrically tunable resonances that can be used to detect and 

manipulate high-frequency signals.  In addition, we have fabricated and investigated the 

anomalous dispersion and negative index-of-refraction resonances in arrays of split ring 

resonators (SRRs) patterned on high-purity GaAs.  Very high quality factor resonances 

were achieved that allowed large negative refraction index values to be obtained.  These 

negative index resonances can be dynamically suppressed via ultra-fast infrared pulses 

generating free carriers in the GaAs substrate.  Such dynamic resonance suppression 

makes possible optically tunable filters and fast modulators for microwave and 

millimeter-wave electromagnetic signals. 

 

2. Frequency mixing in a plasmon quantum-well field-effect transistor 
Coherent charge density oscillations (plasmons) in a high-mobility two-dimensional 

electron gas (2DEG) could be exploited to circumvent physical limits on maximum 

operating frequency in conventional devices based on electron drift.  This speed increase 

arises from the fact that 2DEG plasmons have velocities ~ 108 cm/s, roughly ten times 

faster than uncorrelated electron drift, hence reducing charge transit time between source 

and drain contacts.  Typical 2DEG densities from 1010 to 1012 cm-2 yield plasmon 

frequencies in the 100 GHz to 1 THz range, making plasmon devices attractive for THz 

applications.  In addition, the ability to electrically tune the 2DEG charge density and 

hence the plasmon resonance via a gate voltage in a field effect transistor (FET) offers 

highly desirable new functionalities, such as "spectrometer-on-a-chip" capability. 
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Plasmon resonance effects in semiconductor hetero-structures have been observed for 

many years. [1,2]  Indeed, the microwave conductivity of a gated high-mobility 2DEG 

has been described as the circuit equivalent of a 2D plasmon. [3]  For device applications, 

Dyakonov and Shur [4,5] provided a physical model and calculation framework for 

various plasmon functionalities in high electron mobility transistors (HEMTs).  Popov, et 

al. [6] analyzed in detail absorption by plasmons in a quantum well THz direct detector.  

Only recently have empirical demonstrations of plasmon devices been reported.  These 

have included a THz oscillator using an InGaAs-based HEMT, [7] and various forms of 

direct detectors such as a GaAs-AlGaAs double-quantum-well (DQW) FET, [8] various 

III-V HEMTs, [9,10,11] and a silicon FET. [12]   

Here we present an experimental report on heterodyne mixing in a plasmon-based 

device.  The mixer is a grating-gated GaAs-AlGaAs DQW FET designed to have 

plasmon resonances between 100 to 200 GHz.  The mixing response is found to have two 

distinct regimes dependent on 2DEG density via the gate bias.  Very close to pinch-off 

the device exhibits a broadband response which is well-described by a simple bolometric 

mechanism.  The conducting regime shows a gate-tunable plasmon resonance that has 

more complicated nonlinear behavior than a bolometer.  In either regime the intermediate 

frequency (IF) bandwidth can be fairly wide, > 2 GHz for resonant plasmon mixing.  

The grating-gated DQW FET has the same basic design as described in detail in Ref. 

8, where direct detection resonances from 570 to 660 GHz were shown.  The main 

difference between the device used here from that of Ref. 8 is that the period of the 

grating gate here is 16 µm (8 µm metal / 8 µm gap) rather than 4 µm.  The larger grating 

period selects out longer wavelength plasmon modes consistent with our 94 to 145 GHz 

mixing measurements.  Otherwise, the composition of the DQW heterostructures are the 

same, i.e. two 20 nm wide GaAs QWs, modulation doped at 1.7 x 1011 cm-2 (upper QW) 

and 2.6 x 1011 cm-2 (lower QW) separated by a 7 nm AlGaAs barrier.  The device area 

covered by the grating gate was 2 mm x 2 mm.  At 4 K the Hall mobility of the 

composite heterostructure was µ ≈ 1.7 x 106 cm2/V·s, giving a momentum relaxation time 

τ = m*µ/e ≈ 65 ps and an elastic mean free path at 4 K exceeding 10 µm, so electrons 

transit the ungated 8 µm gaps beneath the gate grating electrodes in a semiclassical 
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ballistic manner. [13]  Fig. 4 shows drain-source conductance vs. gate bias.  Pinch-off 

occurs near –0.8 V gate bias in the upper QW and around –2.45 V in the lower QW. 

For the mixing measurements, a DQW FET was attached to a 4 K cryostat plate 

behind a cold long-wavelength pass filter and a Teflon window.  The gate-source was 

biased between 0 to –2.5 V, and gate leakage was < 10 pA even at the most negative gate 

bias.  The drain-source was dc biased at 10 µA through a wideband bias tee.  Local 

oscillator (LO) and signal (rf) radiation was provided by a pair of Gunn oscillators 

(maximum output power 35 mW) focused through a 300 mm diameter Gaussian lens 

antenna to a beam waist diameter of ~ 5 mm.  Polarization was orthogonal to the gate 

grating lines.  Attenuation was adjusted so that 0.1 to 1 mW of LO power and 1 to 10 µW 

of rf power were incident at the sample plane as measured by a power meter set at the 

sample position inside the cryostat.  The difference frequency (IF) generated by the mixer 

was output through the bias tee to a low-noise amplifier mounted on the 4 K plate and 

measured by a spectrum analyzer.  The instrumental IF bandwidth was 2 GHz, limited by 

the amplifier and the reactance from a parasitic inductance of a wire bond contact. 

Fig. 1 shows the direct detection responsivity as a function of gate bias Vg at three 

different LO frequencies, 94, 135, and 145 GHz.  The responsivity shown is the change in 
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FIG. 1.  Drain-source conductance and responsivity with 10 µA bias in response to 94, 
135, and 145 GHz radiation, as a function of the gate bias.  The kink in the conductance 
at -0.8 V is the depletion of the upper. Inset:  Responsivity at 94 GHz and the 
temperature slope of the drain-source resistance dRDS/dT plotted against gate bias at 4 K. 
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drain-source voltage δVds at the 37 Hz chopping rate of the incoming LO radiation 

divided by the nominal LO power incident at the sample position.  Two different 

response regimes are evident.  Above pinch-off, a clear resonant response to 145 GHz is 

centered at Vg = –2.11 V, the signature of a plasmon excitation in the same manner as 

reported in Ref. 8 and analyzed in Ref. 6.  The resonant responsivity magnitude is ~2 

mV/W, uncorrected for the fact that the device area is smaller than the nominal beam 

waist.  At slightly more negative gate bias, i.e. lower 2DEG density, a partial resonance 

peak in response to 135 GHz is apparent at Vg ≈ –2.25 V, barely above pinch-off.  This 

resonance redshift is consistent with the decrease in 2DEG density.  No resonance in 

response to 94 GHz is seen as the gate bias required is below pinch-off.  Pinched off at Vg 

< –2.4 V, the responsivity curves for all three frequencies share a common, large rise that 

goes up to almost 50 mV/W independent of frequency.  This larger responsivity near 

pinch-off is thus broadband. 

The resonant plasmon and broadband pinch-off regimes have very distinct mixing 

characteristics.  Fig. 2 shows spectra of the IF power generated by the mixer for a 145 

GHz rf signal and a LO detuned to give a fundamental IF of 87 MHz.  Fig. 2(a) shows the 

spectrum with Vg = –2.11 V, the peak of the 145 GHz plasmon.  This spectrum shows a 
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FIG. 2.  Power spectrum of the IF output with a rf of 145 GHz and fixed 87 MHz IF.  All
measurement parameters are held constant except that in (a) the gate bias is held at the peak
of the 145 GHz plasmon resonance response, while in (b) the gate bias is held in the
broadband pinch-off response.  Harmonics of the fundamental IF are indicated. 
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complicated series of harmonics of the IF, with the 2 IF harmonic smaller than but 

comparable to the fundamental, and detectable harmonics up to 9 IF.  Fig. 2(b) shows the 

spectrum for the same parameters except with Vg = –2.42 V, in the pinch-off response.  In 

contrast to Fig. 2(a), Fig. 2(b) is uncomplicated, consisting almost solely of the 

fundamental IF with only a very small 2 IF distortion.  It is clear that the IF generation 

mechanisms for the resonant plasmon and broadband pinch-off responses are 

fundamentally different  

Likewise, the IF bandwidth for mixing on the plasmon resonance shows basic 

differences from the pinch-off response.  Fig. 3 shows the mixer conversion gain η = 

PIF/Prf, where PIF and Prf are the IF output and rf input powers at a fixed LO power of 0.1 

mW, as a function of the IF with the rf set at 145 GHz.  The data have been corrected for 

the losses and gains in the IF signal chain.  The data in Fig. 3(a) is taken at Vg = –2.11 V, 

on the 145 GHz plasmon resonance.  Here the IF bandwidth, defined as the IF where η 

falls 3 dB below its low-frequency value, significantly exceeds the 2 GHz instrumental 

limit, which on this plot appears as a rapidly degenerating signal-to-noise.  The data in 

Fig. 3(b) is again the same parameters except with Vg = –2.42 V, in the pinch-off 
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FIG. 3.  IF dependence of the mixer conversion gain, normalized to 17 MHz, for a 145
GHz rf.  Conversion gains are corrected for the IF amplification chain.  In (a) Vg is held at 
the 145 GHz plasmon resonance, while in (b) Vg is held in the broadband pinch-off 
response (see Fig. 1).  The red curve in (b) is a fit to the data using a Lorentzian, which
gives a –3dB bandwidth of 620 MHz.   
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response.  In this regime the IF bandwidth is < 1 GHz and can be reasonably fit to a 

Lorentzian, which yields an IF bandwidth of 620 MHz. 

To understand the physical basis of the mixing, we begin with the pinch-off regime 

since Figs. 2(b) and 3(b) present a simpler case compared to the plasmon regime.  The 

fact that the IF is nearly free of harmonic distortion means that the difference frequency 

is generated to a high degree of accuracy by a pure cross multiplication term 

(ELOcos[ωLOt] × Erfcos[ωrft]).  The most straightforward nonlinearity that has no higher 

order cross terms is a square-law response.  A very pure square-law response is 

characteristic  of bolometric mixers, which are usually broadband detectors as well.  

Further evidence supporting bolometric mixing near pinch-off is in the shape of the 

conversion gain roll-off in Fig. 3(b).  For bolometric mixing the IF dependence of η 

should be a Lorentzian: η = (1 + (fIF/f3dB)2)-1, where the IF bandwidth f3dB is set by the 

thermal relaxation time.  This Lorentzian shape is the basis of the fit in Fig. 3(b).  The 

620 MHz f3dB near pinch-off is more consistent with a hot-electron bolometer 

(HEB),[13,14,15,16] rather than a conventional bulk bolometer which usually has f3dB in 

the kHz to few MHz range.  Finally, the definitive aspect of bolometric behavior is the 

proportionality between response and the resistance vs. temperature slope dR/dT.  This 

relation is shown in Fig. 1 (inset), which plots both the responsivity at 94 GHz and 

dRDS/dT as a function of VG near 4 K.  The responsivity tracks closely the behavior of 

dRDS/dT as a function of Vg, both quantities being small and nearly independent of Vg for 

most of the range but showing a sudden large and proportionate increase at the same Vg. 

The broadband pinch-off response of the DQW FET is thus best described as 

bolometric.  This contrasts with the nonresonant direct detection near conduction 

threshold in a HEMT as reported in Ref. 10, which was attributed to excitation of 

overdamped plasmon modes.  In the case of the DQW FET, electrons in the ungated QW 

regions between grating-gate fingers have ω0τ ≈ 40 for a 94 GHz drive, which is well into 

the underdamped plasmon regime defined by ω0τ > 1.  This and the bolometric signatures 

presented rule out overdamped plasmon response in the DQW FETs.  It is certainly 

possible that the threshold response in the DQW FET and the HEMT result from different 

physical mechanisms. 
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The physics underlying the mixing on the plasmon resonance is significantly more 

difficult to analyze, so only a few general conclusions can be drawn here.  It is obvious 

that the IF harmonics generated by plasmon mixing are incompatible with a square-law 

response and hence rule out bolometric mixing.  In terms of nonlinear mechanisms, the 

cross term used in Ref. 5 to describe plasmon mixing was only the leading order term in a 

series expansion of field products, while Ref. 6 did not treat nonlinear response, so there 

exists no firm theoretical guidance on the plasmon mixing process. While the physical 

mechanism of the plasmon nonlinear behavior is uncertain, in general it is tied to 

plasmon interactions that also affect the plasmon lifetime τplas, such as plasmon-plasmon 

scattering or dissipation of the plasmon via phonons or electrons not in the coherent 

density oscillation.  In such a case the IF bandwidth of a plasmon mixer should be of 

order 1/τplas.  From Fig. 1, the f0 = 145 GHz plasmon has an “electrical” Q, defined as the 

resonant gate voltage divided by the voltage full-width at half-maximum, of 8.  The IF 

bandwidth would then be of order f0/2Q = 9 GHz. 

It is important to note that the plasmon responsivity is very low, only about 2 mV/W.  

By contrast, Ref. 5 calculated that responsivities up to 103 V/W are possible on the 

resonance of an underdamped plasmon.  Whether this large discrepancy arises from 

intrinsic reasons or correctable extrinsic reasons, such as poor radiation coupling into the 

2DEG, is being investigated. 

 

3. Electric and Magnetic Metamaterial Electrodynamic Response 
Artificial materials which exhibit a designed electromagnetic (EM) response have 

recently generated great interest [17]. This is due in part from the ability of these 

materials to exhibit an EM response not readily available in naturally occurring materials 

such as: negative refractive index [18], artificial magnetism [19], super focusing [20,21] 

and reduced lens aberrations [22]. Another advantageous and distinguishing property of 

EM metamaterials is that resonant structures can be designed over a large portion of the 

electromagnetic spectrum ranging from radiofrequency [23] through the terahertz [24] 

and near infrared regimes [25]. Thus, regions devoid of natural material response, such as 

the so-called terahertz gap, can be targeted for metamaterial applications. Further, the 

majority of metamaterials use elements (typically highly conducting metals such as Cu, 
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Ag, or Au) that are common in conventional microfabrication techniques, offering 

considerable flexibility in the design of new structures or in the incorporation of 

additional functionality into existing devices. 

For many potential applications, it would be desirable to create metamaterials that 

exhibit a controlled active, dynamical, and/or tunable response. For example, the 

dynamic control of metamaterial properties has been demonstrated at microwave 

frequencies [26]. However, while resonant metamaterials have been fabricated which 

operate at terahertz [24] and higher frequencies, dynamic control has yet to be 

demonstrated.  Specifically, a dynamic metamaterial response has yet to be demonstrated 

at terahertz frequencies. 

An issue regarding the practicality of metamaterials as devices involves their 

potentially complicated EM response.  Many metamaterial structures (though 

geometrically simple) exhibit a bianisotropic response, making a full electromagnetic 

characterization difficult and complicating their utilization as devices. For example, the 

split ring resonator (SRR) was originally designed for its unique magnetic response. 

However, great care must be taken in characterizing or utilizing this magnetic response 

since, as symmetry arguments reveal, the magnetic μ(ω) and electric ε(ω) resonances 

occur at the same frequency [27].  Additionally, a coupling exists between the frequency 

dependent electric and magnetic responses. This is characterized by off diagonal terms in 

the magneto-optical permittivity, and, thus, the SRR is bianisotropic [27,28].  

Nonetheless, with careful characterization, such complications can be avoided or even 

taken advantage of, as new unique EM properties emerge for bianisotropic materials [29].  

Although much work has been completed on investigation of the magnetic SRR response, 

the electric and magneto-optical response has yet to be fully characterized or utilized. 

Here we utilize terahertz time domain spectroscopy [30] to characterize the 

electromagnetic response of a planar array of SRRs fabricated upon semi-insulating 

GaAs.  In addition to characterizing both the μ(ω) and ε(ω) responses, we demonstrate 

for the first time the potential for creating dynamic SRR structures.  This is accomplished 

through photoexcitation of free carriers in the GaAs substrate, which short out the SRR 

gap, thereby turning off the electric resonance, demonstrating the potential of SRR-based 

artificial materials as terahertz switches.  As mentioned, EM metamaterials have been 
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demonstrated over many decades of frequency.  Thus, our results are not limited only to 

terahertz frequencies but may be used over much of the electromagnetic spectrum. 

A planar array of SRRs are fabricated from 3 µm thick copper on a 670 µm thick high 

resistivity GaAs substrate.  The outer dimension of an individual SRR is 36 µm and the 

unit cell is 50 µm [31].  We characterized the frequency dependent electric and magnetic 

response using terahertz time domain spectroscopy (THz-TDS) where the transmitted 

electric field is measured for the SRR sample and a suitable reference, which in this case 

is a bare GaAs substrate. Dividing the Fourier transformed sample and reference 

waveforms yields the complex transmissivity t(ω) = (T(ω))1/2exp(iφ(ω)) of the sample 

under investigation.  This phase sensitive characterization further permits determination 

of the frequency dependent optical constants, e.g., ε(ω) = ε1(ω) + iε2(ω), through 

inversion of the Fresnel equations without model assumptions.  Utilization of GaAs as a 

substrate provides the opportunity to dope the substrate by optical excitation.  This is 

accomplished using optical-pump terahertz probe spectroscopy [32], whereby a ~50 fs, 

 
 
FIG. 4.  The frequency dependent transmission spectra T(ω) of the SRR sample is 
shown in (a), and in (b) the corresponding phase of the transmission is shown.  In (a) 
and (b), the electric field is perpendicular to the SRR gap [red curves] and parallel to 
the SRR gap [blue curves] at normal incidence. (c) and (d) are the surface current 
densities for the ω0 (0.5 THz) and ω1 (1.6 THz) resonances, respectively, as calculated 
by simulation.  
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800 nm pulse excites carriers across the 1.42 eV band gap in GaAs.  The lifetime of the 

photodoped carriers is 1 ns, thus allowing for characterization of the quasi-steady state 

response of the SRRs as a function of the carrier density by simply changing the 

excitation fluence. 

In the following, we first consider the SRR response without photoexcitation. In Fig. 

4(a), we show the transmission spectra and, in Fig. 4(b), the corresponding phase.  Since 

the measurements are obtained at normal incidence and the magnetic field lies completely 

in the SRR plane,  the measurements focus solely on the electric resonant response.  The 

red curves are the response with the electric field (E) polarized perpendicular to the SRR 

gap [depicted in Fig. 4(c)], while the blue curves are with the electric field oriented 

parallel to the SRR gap.  On the low frequency side, the transmission is high and 

approaches 95% for both polarizations.  With the electric field perpendicular to the SRR 

gap, a pronounced resonance ω0 = 0.5 THz is observed where the transmission decreases 

to ~15%.  In addition, there is a second absorption resonance near ω1 = 1.6 THz.  In order 

to understand the origin of the ω0 and ω1 resonances, we have performed numerical 

simulations of the SRR response using commercial code.  Figures 1(c) and 1(d) show the 

results of the calculated surface currents at ω0 and ω1, respectively.  The low energy ω0 

absorption, due to an electric response ε(ω) of the SRRs, occurs at the same frequency as 

the magnetic μ(ω) resonance [27].  This is evidenced by the observation of the circulating 

currents shown in Fig. 4(c) produced from the incident time varying electric field which 

generates a magnetic field polarized parallel to the surface normal of the SRR.  This is 

not surprising since,  as mentioned, SRRs are bianisotropic, meaning that the electric and 

magnetic responses of the SRR are coupled ε(ω) ⇔ μ(ω).  In contrast, the higher energy 

ω1 resonance at 1.6 THz is from the half wave resonance due to the side length L = 36 

µm of the SRR, consistent with the calculated surface currents shown in Fig. 4(d) [33]. 

Upon rotating the SRR sample by 90° such that E is parallel to the SRR gap, a 

different electrical resonant behavior is observed [blue curves in Figs. 4(a) and 4(b)].  In 

particular, there is only a single broad absorption at ω|| = 1.38 THz.  We have verified 

through simulation that this resonance is analogous to the ω1 half wave resonance.  The 

redshift and broadening of the ω||  resonance in comparison to the ω1 is consistent with 
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the fact that there are now two L = 36 µm side lengths per unit cell resulting in enhanced 

dipolar coupling [34].  Importantly, there is no electric resonance that is analogous to the 

ω0 resonance for this orientation; i.e., there is no response with E producing circulating 

currents with an associated magnetic field directed perpendicular to the GaAs substrate. 

This is expected as a detailed group theoretical analysis has revealed [27]. 

To further investigate the nature of the ω0 resonance, the SRR response was measured 

at various angles of incidence.  Measurements were performed with E parallel to the SRR 

gap so that there is no electrically active ω0 resonance to complicate determination of the 

μ(ω) response.  In particular, the SRR is rotated about an axis parallel to the split gap of 

the SRR. This permits characterization of the magnetic response of the SRR since μ(ω) 

increases for increasing angles with a maximum occurring for Θ = 90°. The results for 

angles of incidence Θ = 0, 23°, and 45° are shown in Fig. 5.  The normal incidence data 

for E perpendicular to the SRR gap [from Fig. 4(a)] is replotted as a dashed red line as a 

reference.  For normal incidence [blue curve], there is no discernible feature at 0.5 THz.  

However, at the incident angle Θ = 23° (black curve), a slight dip begins to develop at ω0.  

The magnetic coupling to this mode can be further strengthened by increasing the 

incident angle, and this is apparent and for 45° [green curve], where there is a well 

 
 
FIG. 5.  Transmission spectra of the magnetic response of the SRRs. The dashed red 
curve is the electric response (i.e., E perpendicular to the SRR gap, normal incidence) 
replotted from Fig. 4.  As the SRR is rotated about an axis parallel to the electric field, 
an absorption dip due to the magnetic response μ(ω) of the SRRs is observed at ω0. 
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developed absorption obvious in transmission at ~0.5 THz. This behavior is consistent 

with the development of a resonant μ(ω) response since, with an increasing angle of 

incidence, a correspondingly larger component of the incident magnetic field is projected 

normal to the plane in of the SRRs (i.e., perpendicular to the GaAs substrate).  In 

addition, as the black dashed vertical line in Fig. 5 reveals, the μ(ω) and ε(ω) responses 

both occur at ω0 as discussed above.  The combined results of Figs. 1 and 2 provide a 

fairly complete description of the electromagnetic response of the SRRs in the absence of 

photoexcitation. 

Finally, we focus on induced changes in the electric resonant response (i.e., ω0 and 

ω1) following photoexcitation.  Since the ω0 resonance shown in Fig. 4(a) has been 

shown to focus strong electric fields within the split gap of the SRR [29], it is expected 

that the resonance at ω0 should strongly depend upon materials placed in or near the gap.  

Our approach to study the change in resonant response of the SRR is to change the 

background dielectric of the substrate material as a function of photodoping. The 

dielectric function of GaAs is changed dynamically with a ~50 fs optical pulse that 

creates free carriers in the conduction band.  The resulting effect on the resonant SRR 

response is studied as a function of pump power.  The pump pulse is timed to arrive 5 ps 

before the peak of the THz waveform, ensuring that a long-lived carrier density has been 

established.  Since the lifetime of carriers in GaAs is significantly longer than the 

picosecond waveform, this allows us to characterize the quasi-steady state response of the 

SRRs as a function of incident power (i.e., carrier density in the GaAs substrate). 

In Fig. 6(a), we show the dependence of both electric resonances ω0 and ω1 on pump 

power in transmission.  The solid red curve in Fig. 6 is the response of the SRRs replotted 

from Fig. 4(a), i.e., the electric response of the SRRs at zero pump power. At a pump 

power of 0.5 mW  [green curve in Fig. 6], the overall transmission decreases and the 

strength of the ω0 resonance significantly weakens.  In our experiment, 0.5 mW 

corresponds to a fluence of 1 J/cm2 resulting in a photoexcited carrier density n ~ 2 x 1016 

cm3.  Although ω0 is strongly affected by pump powers as small as 0.5 mW, it is 

interesting to note that ω1 is not significantly altered.  When the pump power is increased 

to 1 mW the low energy resonance ω0 associated with circulating currents in the SRRs is 
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nearly entirely quenched.  In this case, the transmission at ω0 increases from ~15% to 

over 70%.  Further, T(ω) continues to decrease over all frequencies characterized which 

is due, in part, to the free carrier response of the photoexcited GaAs.  Notice that, 

although ω0 has been short-circuited, there is still little change in ω1.  At 5 mW of pump 

power, T(ω) further decreases and finally ω1 begins to weaken. 

The dependence of ω0 and ω1 on pump power can be understood by considering the 

different nature of these two resonances.  As mentioned, the lower energy resonance is 

attributed to circulating currents within the SRR.  Thus, by providing free charges within 

the substrate, it becomes possible to short-circuit the response and, as the gap in the SRR 

is relatively small (~2 µm), only low pump powers are required. However, ω1 is due to 

the side length of the SRR, and, therefore, more charges (and thus more power) are 

required to effectively screen this resonance. 

 
 
FIG. 6. (a) Transmission spectra as a function of photodoping fluence for the electric 
resonance of the SRRs.  The polarization of the incident EM wave is as shown in Fig. 
4(c).  As the power is increased, the first mode is shorted out and the overall 
transmission decreases.  At higher powers, the second mode can also be seen to die 
off.  (b) Corresponding change of the real dielectric constant ε1 of the SRRs as a 
function of power. 



20 

We now discuss the real part of the dielectric function ε1(ω), displayed in Fig. 6(b).  

This further highlights that, for low excitation densities, the ω0 resonance completely 

disappears, while the ω1 survives to slightly higher fluences.  Notice, for zero pump 

power, the SRR metamaterials obtain a region of negative ε1(ω) for both the ω0 and ω1 

resonances.  The region of negative ε1(ω)  for ω0 spans from 550 to 600 GHz and reaches 

a maximum negative value of –2.5 at 560 GHz, while ω1 spans from 1.6 to 1.66 THz and 

obtains a slightly greater value of –2.6.  For a pump power of 0.5 mW, the ω0 resonance 

is reduced greatly and the ε1 <0 response destroyed.  Thus, one scenario permitting these 

metamaterials to be used as dynamical devices involves a photoinduced bandpass 

response.  For example, if used at 560 GHz, where the transmission has a minimum, a 1 

mW pump pulse increases T(ω) by ~60% and, consequently, changes the SRR 

metamaterial medium from absorbing to transparent. 

The results of Fig. 6 were obtained for SRRs fabricated on intrinsic GaAs substrates.  

In this case, the recombination time of the carriers in GaAs is greater than 1 ns,  meaning 

that the switched state of the SRR structure  (i.e., the photoinduced increase in 

transmission) is long-lived.  However, it would be possible to fabricate identical SRR 

structures on low temperature grown gallium arsenide or GaAs:ErAs semiconductor 

heterostructures [35], the latter of which allows for engineered picosecond (1 to 10 ps) 

carrier recombination times.  This would enable picosecond on/off switching times of the 

SRR electric response, enabling optically controlled high frequency modulation of 

narrow band high-frequency sources.  Furthermore, with electrical carrier injection, 

another possibility would be to create all-electrical high-frequency modulators. 
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