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Abstract 
Measurement of dynamic events at the nano-scale is currently impossible. This paper 
presents the theoretical underpinnings of a method for making these measurements 
using electron microscopes. Building on the work of Möllenstedt and Lichte who 
demonstrated Doppler shifting of an electron beam with a moving electron mirror, 
further work is proposed to perfect and utilize this concept in dynamic measurements. 
Specifically, using the concept of “fringe-counting” with the current principles of 
transmission electron holography, an extension of these methods to dynamic 
measurements is proposed. A presentation of the theory of Doppler electron wave 
shifting is given, starting from the development of the de Broglie wave, up through 
the equations describing interference effects and Doppler shifting in electron waves. 
A mathematical demonstration that Doppler shifting is identical to the conceptually 
easier to understand idea of counting moving fringes is given by analogy to optical 
interferometry. Finally, potential developmental experiments and uses of a Doppler 
electron microscope are discussed. 
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NOMENCLATURE 
 
DEV Doppler electron velocimeter 
FEG field emission gun 
LDV laser Doppler velocimeter 
MEMS microelectromechanical systems 
SEM scanning electron microscope 
TEM transmission electron microscope 
 
p momentum 
m mass 
v velocity 
c velocity of light 
F force 
t time 
W work 
K kinetic energy 
mo rest mass 
E energy 
ΔE energy spread 
h Plank’s constant 
h  h/2π 
e electron charge 
E electric field 
B magnetic field 
U accelerating potential 
k
r

 wave number 
λ wave length 
Ψ wavefunction 
φ phase  
I irradiance or intensity 
Δτ emission time 
Δz longitudinal coherence 
Δx transverse coherence or displacement 
ω angular velocity 
j beam current 
β source brightness 
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1.  INTRODUCTION 
The Doppler electron velocimeter (DEV) is a new measurement concept motivated by the 
increasing importance of nano-scale engineering. As background, microelectromechanical 
systems (MEMS) have benefited greatly from examination of the dynamical characteristics of 
the system. These measurements have traditionally been done using laser Doppler velocimeters 
(LDVs) to scan the part while it is undergoing excitation to examine the resulting modal shapes. 
These investigations have yielded significant information critical to the design, fabrication, and 
use of MEMS products. The limitation of LDVs is their use of visible wavelengths for the probe 
laser beams. As components continue to shrink, the diffraction limitations of the optical 
microscopes used will disallow the use of this technique. This is true even now for some 
specialized MEMS devices that use line widths that are less than one-half micron in size or in 
biological investigations where the cells or cellular features are too small to be probed by the 
laser. This problem will continue to worsen as researchers push from the micro to the nano 
regimes. Current nano-scale research is typically in the materials research area. Even this field 
could benefit from a technique to measure dynamical events at the sub-micron scale. The DEV is 
being developed to meet these needs. This paper covers the theoretical underpinnings for the 
development of the DEV starting with a transmission electron microscope (TEM) as a platform 
for development. The electron microscope community has invested millions of dollars in 
developing optics, electron sources, and detectors that can be used to make dynamic 
measurements at the nano-scale: that is at least the contention of this theory paper. 
 
1.1. Introduction to Doppler Electrons 
The wave-particle duality concept leads to many interesting phenomena, including the concept 
that particles can destructively and constructively interfere. This connection was first made by 
Louis de Broglie, in his doctoral thesis (1924), where he proposed the concept that if light might 
be particles (photons), maybe particles are waves. Subsequent experimentation conducted using 
electron diffraction from crystals (Davisson, Germer, and Thompson) conclusively demonstrated 
this. These experiments have since been extended to both neutrons and atoms [1,2]. Gabor, while 
working with early electron microscopes, proposed using holography to cancel out the effects of 
spherical aberrations in early microscope images [3]. He went on to create optical holography 
using coherent light and photographic techniques to capture the complete information of the light 
wavefront.  
 
The electron microscope, which inspired Gabor, has progressed significantly since the 1950s. 
Commercial transmission electron microscope systems are available with coherent sources of 
good brightness and are even optimized specifically for holography (Hitachi HF-2000). At this 
point, electron analogs for nearly all the traditional optical components required for holography 
have been demonstrated, including beam-splitters, mirrors, and prisms. Following in the tradition 
of the classical interferometric experiments of Fizeau, Michelson, Rayleigh, and Fabry and Perot 
in the optical domain, researchers have conducted similar experiments using the new technology 
of electron microscopes [4,5], including the traditional interferometric arrangements of Young’s 
double hole [6], the Fresnel biprism [7], and Mach-Zehnder [8] and Michelson [9] 
interferometers. A number of good review papers and books cover in more detail the general 
concepts of electron holography, including Tonomura [10], Missiroli [11], and Völkl [12].  
 



10 

This paper concerns Doppler interferometry, often referred to as velocimetry. In the literature 
search, only two papers have been published on Doppler effects with electron microscopes. 
Möllenstedt and Lichte have demonstrated the effect of using a rotating electron mirror in a 
Michelson interferometer [13], with good results. Although the paper is only two pages, it shows 
the Doppler modulation of two beams reflected at different velocities and recombined. The other 
is a companion paper on the theoretical treatment of this topic by Scherzer [14]. Since the late 
1970s, the concept of Doppler velocimetry with electrons has not been investigated to my 
knowledge. In fact, the overview books typically do not even mention Doppler effects in electron 
waves. Why has the topic been dropped? Möllenstedt’s results, although of extremely low 
velocities, seemed to be encouraging. Maybe the lack of interest is because of the almost 
exclusive attention paid to image improvement via holography, along with the lack of 
compelling experiments to do with velocimetry at the time. The experimental front has changed 
with the advent of micro- and nano-machines, where dynamic effects are critical and nano-
material design, where knowledge of dynamic property changes may be helpful. We now have a 
compelling need for reviving and perfecting velocimetry at these scales. This paper seeks to 
outline, from the beginning theoretical basis of de Broglie waves, the reasonableness and the 
mathematics required for Doppler velocimetry. Quantum mechanical arguments are discussed 
briefly in this paper that may make Doppler shifting impossible with matter waves. Analogies 
with dynamic optical holography, or fringe counting, and Doppler frequency measurements are 
detailed—that I believe are directly applicable to electron Doppler measurements as 
demonstrated by Möllenstedt and Lichte. In addition, some ideas on experiments that may be 
conducted are outlined with example calculations to prompt discussion and ideas about 
applications of DEV. 
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2. WAVE NATURE OF ELECTRONS (PARTICLES 
2.1. de Broglie Waves 
In 1924, Louis de Broglie postulated that if light was a particle (a photon), then maybe electrons 
can be viewed as waves. Indeed, any particle (defined as a thing with mass) has a wave 
description, although for large (heavy) objects, it is infinitesimally small and not observable. 
Large is a bit of a euphemism; large for these purposes is really anything larger than an electron, 
proton, neutron, or atom. For background purposes, I trace the development of the de Broglie 
hypothesis with the relevant equations, beginning with the relativistic definition of momentum 
[15]: 
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where m is the mass of the particle and p is the momentum. The relativistic momentum is used 
because when dealing with particles, typically the particle speeds (v) that appear can be 
extremely high, approaching the speed of light (c). Note that if v<<c, the equation reverts to the 
nonrelativistic form p=mv. Using the definition of force as F=dp/dt, and taking the partial 
derivative of the relativistic momentum equation (1), holding the mass constant, F may be 
defined as: 
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The work can then be calculated using the following equation: 
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Work by definition equals the change in kinetic energy, and realizing that the initial kinetic 
energy at rest is zero (v = 0 in the integration), the kinetic energy can then be expressed as 
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At nonrelativistic speeds, this of course reduces to the well-known K=1/2mv2 (using a binomial 
expansion on the denominator). It is useful to express this in terms of energy, where the total 
energy equals the kinetic energy plus the rest energy. The rest energy is defined by the famous 
Eo=moc2, the total energy then equals: 

 2cmKE o+= . (6) 

Equation (6) combined with equation (5), can then be simplified to yield the total energy of the 
electron: 
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c
v

cmE o
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This can be solved for the velocity of the electron: 

 2

42

1
E

cmcv o−= . (8) 

To express this equation in terms of momentum, p=mv may be substituted on the left side of the 
equation and also noting that E=mc2, this may be rearranged to be 

 2421
omcE

c
p −= . (9) 

This can be rearranged in terms of total energy to be: 

 42222 cmcpE o−= . (10) 

To reach the final goal of calculating the wavelength (λ) of the electron, the use of Planck’s 
concept of the quantization of energy is required. His basic theory, based on the empirical study 
of blackbody radiation, concluded that matter emitted energy in discrete quanta. In mathematical 
terms,  

 
λ
hchfE == , (11) 

where the λ is the wavelength and h is Planck’s constant. The momentum can be written as 

 
c
Ep = . (12) 

By combining equations (11) and (12), we have the famous de Broglie relationship between 
momentum and wavelength [16]: 

 khp
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Where k
r

= 2π/λ is the wave number, or if dealing with a wavefront, the wavevector as expressed 
in this equation, and h  = h/(2π). Simply substituting this into equation (9) yields the wavelength 
in terms of the total energy and some constants: 

 
422 cmE

hc

o−
=λ . (14) 

This is a compact equation, but with some simplification, it can be made more useful for 
calculating the wavelength of electrons in a typical microscope application. The total energy is a 
combination of the kinetic energy and the rest mass. The kinetic energy of an electron in a 
microscope results from the acceleration potential applied. The force applied to the electron via 
the electric and magnetic fields is supplied by the electron gun and optics. The Lorentz force as 
experienced by the electron is expressed as 

 )( BvEeF
rrr

×+−= . (15) 

This equation expresses the force, F, applied to the electron (e) by the combined magnetic and 
electric fields (B and E). The cathode supplying the electrons is typically maintained at some 
negative potential, and the anode is maintained at zero potential. With no magnetic field applied, 
the work required to accelerate the electron from a kinetic energy of zero to some velocity is 
calculated using the line integral of the electric field and the potential change through which the 
particle was moved [17]. 

 ∫ =⋅=
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eUdsEeK
r

. (16) 

This states that the kinetic energy is a function of only the accelerating potential in volts (U) 
through which it travels, irrespective of path. This gives us an equation of total energy, which is, 
again, the kinetic energy plus the rest mass of the electron: 

 22 cmeUcmKE oo +=+= . (17) 

Combining equations (17) and (14), and using the standard numbers for the constants e, h, c, and 
mo, the following equation can be obtained relating the electron wavelength to the accelerating 
potential of the microscope [18]: 

 ( )UU 6109788.01
226.1

−×+
=λ  (nm)  . (18) 

The previous arguments were developed with relativity in mind. For many applications of 
electron microscopes, with accelerating voltages below 100 kV, a much simpler expression can 
be utilized by neglecting the relativistic mass, with at most a 5% error. The following equation 
expresses the development and final equation for wavelength as a function of accelerating 
potential U (volts): 
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2.2. Interference of Particles (or are they waves?) 
The de Broglie wave has now described the motion of everyday particles as waves, or maybe 
more accurately, wave packets. In everyday physics, this applies to light by means of the photon 
concept, which being both a boson and massless has some properties that heavier particles do not 
exhibit. Electrons, protons, and neutrons are examples of particles that are regularly available 
and accelerated to different velocities and, hence, have different wavelengths. The concept of 
Doppler shifting, required for velocity measurements, could use any of these three particles for 
this purpose. Currently, the focus is on electrons, as there is a ready source of accelerated and 
focused particles for use and the concurrent measurement systems in place to measure them. 
Having noted the wavelength of the particle-wave, a stationary wave propagating in the z-
direction can be described with the wavefunction (Ψ ): 
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where rk vr
⋅  is the direction vector and distance traveled by the wave. For a single wave traveling 

in the x-direction, it simplifies to the second equation. The frequency is f, and/or alternately the 
rotational rate is ω. The analogy of matter waves with photons is useful but not completely 
accurate. One fundamental difference is from the idea of the light quantum Eλ=hc, which is a 
clearly defined attribute of the emission of the photon and completely defines its wavelength and 
energy. For electron waves, this is not the case. The wavelength, as seen explicitly in equation 
(18), is also a function of the electric and the magnetic potential the electron wave travels 
through via the Lorentz force. For electron waves, the frequency and the wavelength are both 
functions of position and are more properly expressed as 
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This is because the wavelength and frequency can be modified by passing through an electric or 
magnetic field and are not uniquely defined properties of the electron wave. This is not critically 
important as the wavelength and frequency are not directly observable properties anyway [17]. 
This fact, however, is not important and may seem odd at any rate as diffraction patterns are 
clearly seen in TEM work—and leads directly to the conclusion that electron waves can interfere 
even if their wavelengths are not clearly defined. This is because, fundamentally, interference is 
the measurement of the change of phase (Δφ) as two waves travel through space and are 
recombined; or it is, alternately, the interference of two point sources at the detector as seen in 
Figure 1.  
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Figure 1. Point source interference model. 

 
The momentum in the presence of the electrostatic and magnetic fields is typically thought of as 
acting on particles but can be generalized in wave behavior to a phase-shift. This phase shift can 
be found by integrating around the path SS2PS1S, as shown in 
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using the canonical expression for momentum, which includes Maxwell’s magnetic field term: 

 kBemvp
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Substituting equation (22) into equation (23), and simplifying via the Stokes theorem, an 
equation expressing the phase change of the electron wave as it passes through the sample can be 
found. Alternately, these equations can be derived from the Schrödinger equations, and using the 
WKB (Wetzel, Kramers, Brillouin) approximation for weak fields, the following phase shift 
equation can be formulated: 

 ( )∫ ⋅×∇−=− rdBemv rr

h
)(1

12 φφ . (24)  

The line integral is carried out along the closed path of the interfering electrons (i.e., along 
SS2PS1S). Separating out the magnetic and electrostatic effects—the equation can be more easily 
understood as 
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Inspecting equation (25) in light of equation (13), we can see that the relation hh
r

// mvpk ==  
remains valid even with the wavelength ambiguity discussed previously. This is true even in the 
presence of a magnetic field, which simply adds an offset φm to the phase change. This returns us 
naturally to equation (20), the wave equation for an electron. For typical interference work, this 
equation simplifies to 
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showing both the trigonometric and complex notation formulation in simplified single wave 
format and vector format. Complex notation is often used in optics because of the simplification 
of some of the [19] mathematics, where j is the imaginary number operator 1− .  
 
That holography works with electrons is not under dispute and has been demonstrated for many 
years. Because of coherence issues, the Möllenstadt electron biprism (Figure 2) is the standard 
interference arrangement for TEM and is briefly explained here as an example of the interference 
of particle beams.  
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Figure 2. Electron biprism. 

 
The biprism is so termed because of its relation to the Fresnel optical biprism interference 
experiments. The biprism is one of a number of simple wavefront splitting interferometers that in 
essence creates two point sources in space from a single source. Young’s double-hole experiment 
is the most famous example of this, but it also includes Lloyd’s mirror, incidence at an angle, and 
reflection and transmission from/through a dielectric layer. These arrangements help ensure the 
temporal and spatial coherence of the overlapping beams and hence their interference by creating 
virtual sources from a single source. In fact, these arrangements can be used to test the coherence 
length by means of changing the path lengths and observing the fringe pattern. Using the 
illustration in Figure 2, the two virtual sources S1 and S2 emit waves that are deflected and added 
together: 

 rkjrkj
T AeAe

rrrr
⋅⋅ += 21ψ . (27)  

Adding the two wavefronts together as shown above and then multiplying by the complex 
conjugate gives the irradiance, which is the value measured at the detector: 

 { }))((Re)Re( 2121* rkjrkjrkjrkj
TT AeAeAeAeI

rrrrrrrr
⋅−⋅−⋅⋅ ++== ψψ  . (28)  

Multiplying out, using Euler’s equation and a trigonometric identity, the intensity as a function 
of the distance along the screen can be obtained: 
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The direction vectors shown in Figure 2 work out to be 
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This makes the final intensity profile over the viewing screen to be 
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In the biprism arrangement, one side of the beam may be passed through a sample, which then 
causes some phase shift in the wavefront, and then it is recombined with the reference wave to 
create an interference pattern. Information about the sample is obtained by measuring the phase 
change, Δφ. This, of course, is subject to a number of constraints, including the inherent 
coherence, both spatial and temporal, of the electron beam. In addition, the elastic and inelastic 
interactions of the electron with the sample affect the fringe contrast. Both types of scattering 
have been shown to interfere; however, beam energies must be matched between the reference 
and object beam by causing both to travel through a scattering medium as demonstrated in a 
number of electron holography papers [20,21,22]. 
 
2.3. Spatial and Temporal Coherence and Limitations on Holography 
Coherence has two components, both of which are important for the discussion of electron 
holography. They are spatial and temporal coherence (often expressed as transverse and 
longitudinal, that is, waves that vibrate in unison for a long period of time over a wide space 
[23]). Thinking about coherence in terms of Young’s double slit experiment is useful to give a 
physical feel for the coherence limits required for fringe formation. The wave packet’s coherence 
must be wide enough spatially to cover both holes (or a in the biprism discussion) and long 
enough to cover the path length change. Both concepts are illustrated in Figure 3. Coherence 
description, with (a) Young’s slit experiment [10], and (b) path length illustration [24]. 
. 
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  (a) (b) 
Figure 3. Coherence description, with (a) Young’s slit experiment [10], and (b) path length illustration [24]. 
 
Fundamentally, coherence can be thought of as the relationship of the wavefront in a given wave 
packet. The temporal coherence is determined by the energy spread of the beam, and the spatial 
coherence upon the uniformity of the phase front at some point in space. Temporal coherence 
indicates how long a wavefront remains sinusoidal and here is expressed as a distance (Δz). This 
is dictated by the finite length of a wave packet and is related to the emission time Δτ of the 
electron wave. For light, the temporal coherence length Δz is dictated by the emission time and 
the velocity c in the case of light: 

 τΔ=Δ vz . (33)  

For light, with emission times on the order of Δτ ≅10-8 s, this typically leads to meters of 
coherence length. For electrons, Δτ is estimated from the Heisenberg uncertainty relation: 

 hE ≅ΔΔ τ , (34)  

 λ
λ

λ
E
Ez

Δ
=

Δ
=Δ 22

, (35)  

where ΔE is the energy spread of the electron gun, typically 1 eV, and gives a Δτ ≅10-15 s. At 100 
kV, the coherence length is 680 nm or in waves, 2×105 λ [17]. The theoretical temporal 
coherence lengths were confirmed experimentally by applying a known phase offset to one leg of 
the electron biprism and observing when the fringes disappeared. The total phase shift found is a 
measure of the coherence length. This was done by Möllenstedt [25] using a Wien filter and by 
Schmid [26] using metallic tube held at a constant voltage to supply a phase change to the beam. 
Table 1 shows typical coherence lengths at 100 kV for a range of energy spreads from the source 
(ΔE). 
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Table 1. Temporal (longitudinal) coherence length. 
U (kV) ΔE (eV) Δτ (s) v (m/s) Δz (nm)

100 3 1.38E-15 1.64E+08 227
100 2 2.07E-15 1.64E+08 340
100 1 4.14E-15 1.64E+08 680
100 0.5 8.27E-15 1.64E+08 1359
100 0.1 4.14E-14 1.64E+08 6797  

 
The spatial or transverse coherence (Δx) is related directly to the electron source size (b) via the 
van Cittert-Zernike theorem [27]: 

 
b

Lx λ=Δ , (36)  

referring back to Figure 2 for the definition of L. Basically, the smaller the source tip b, the better 
the spatial coherence. Modern electron emission tips are on the order of angstroms and yield 
spatial coherence that completely fills the condenser aperture, and even the fully focused spot on 
the specimen is coherent [19,28]. 
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3. ANALOGY TO OPTICAL TEMPORAL HOLOGRAPHY 
3.1. Introduction to Optical Analogy 
Electron Doppler holography looks to measure the frequency shift of the electron wave and from 
that to infer the velocity (or dynamically changing magnetic or electric field) of the sample. As 
mentioned previously, the electron wave frequency is not measurable because of its extremely 
high frequency. This is also true of optical frequencies. Doppler measurements are successfully 
made via homodyning or heterodyning the optical frequencies down to measurable rates via a 
wavefront splitting interferometer, typically a Mach-Zehnder arrangement. How this might be 
applicable to electron beams may be thought of via the concept of fringe counting. This can be 
understood by thinking of the fringe pattern created by the sample, moving across the detector as 
the phase is dynamically changed. For example, a changing magnetic field causes the phase to be 
shifted, and if this is done slowly, a series of fringe patterns results that can be recorded. If a 
sensor is placed at a single location, a sinusoidal intensity variation results. This single detector 
can typically be much faster and more sensitive than a CCD camera, and this yields benefits in 
terms of speed of response to the changing intensity. It is, however, not intuitively obvious that 
Doppler and fringe counting are identical [29], and the next sections mathematically reconcile 
the two concepts, via optical example and analogy, that is, the “dynamic hologram” and the laser 
Doppler vibrometer. 
 
3.2. Reconciling Temporal Holography and Doppler – the General 

View 
Using a standard Michelson interferometer (a wavefront splitting interferometer like the electron 
biprism) rather than the Mach-Zehnder setup that is more typically used for LDV arrangements, 
the mathematics of both dynamic holography and Doppler velocimetry are outlined and 
reconciled. Some complications of each technique that increase their sensitivity or usefulness 
and have become standard are overlooked in this presentation for the sake of simplicity. These 
complications include frequency shifting used in LDVs for velocity direction determination, 
phase shifting used in dynamic holography to determine sub-wavelength deformations, and any 
imaging optics utilized will be neglected. The following derivation uses the Michelson 
interferometer setup shown in Figure 4. The laser source is split by the beamsplitter and 
illuminates both an object and reference surface. It should be noted that in this setup, because of 
the return path length, a factor of 2 shows up in both velocity and phase measurements as noted 
in the discussion. This arrangement has been accomplished with an electron beam by Lichte and 
Möllenstedt [30]. Measurement of the velocity or deformation of the object may then be made by 
processing the resulting time varying intensity measured by the detector. For LDVs, the detector 
is typically a fast photodiode rather than a camera because of the relatively high frequencies of 
the Doppler signal (typically kHz or MHz) and yields a single measurement location of velocity. 
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Figure 4. Michelson interferometer. 

 
The electromagnetic equations using complex notation of the light coming from the laser can be 
described by 

 { }tjCetE ωRe)( =  . (37)  

The Real operation will be omitted from this point on and should be assumed by the reader as is 
typical for this type of derivation. The frequency of the light is expressed by ω, time is t, and C is 
the amplitude of the signal. This notation is greatly simplified from the entire vector equation 
shown as a complete description in many sources [31] but is correct for the uniform distribution 
with a planar wavefront in a single direction found in the Michelson interferometer. After 
reflecting from the surface of the object, the light beam is 

 ))(()( ttj
O

ooAetE φω += , (38)  

where A is the amplitude after reflecting from the object and returning through the beamsplitter, 
ωo is the Doppler shifted frequency, and φo is the phase shift from the object. Strictly speaking, 
the phase shift is a function of both space and time. This x, y dependence has been dropped and 
can be thought of as being equivalent to looking at the information for a single pixel or 
photodiode. The equation describing the reference beam after returning through the beamsplitter 
is 

 )()( rtj
R BetE φω += , (39)  

where B is the amplitude after returning from the reference through the beamsplitter, ω is the 
optical frequency, and φr is the phase shift from the reference surface. Upon combining the two 
beams at the detector, the total electromagnetic radiation is 

 )())(()( roo tjttj
T BeAetE φωφω ++ += . (40)  

Detectors (photodiodes and digital cameras) respond to intensity (irradiance) of the signal, which 
is defined as the square of the electromagnetic amplitude: 

 *)( TT EEtI = , (41)  
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where E* represents the complex conjugate. Multiplying this out and noting that there are no 
complex portions to the constants A and B result in the following intensity measured at the 
detector: 

 [ ] [ ]( )))(()())(()(22 2)( ttjttj orooro eeABBAtI φφωωφφωω −+−−−+− +++= , (42)  

or simplify the constants of equation (6) to a single Io and convert to the more familiar 
trigonometric description: 

 [ ]))(()(cos)( ttDItI oroo φφωω −+−+=  , (43)  

where the phase change is often defined as Δφ = φr - φo(t). This equation is both the Doppler and 
ESPI description of the light, depending on how the two terms in the cosine function are defined, 
but if inspected closely, the reader may notice some mathematical legerdemain. That is, a time 
varying phase is by definition the instantaneous frequency, and therefore the ω terms and the φ 
terms are redundant in this presentation. However, for purposes of illustration, if quasistatic is 
assumed (ω = ωο,), the Doppler term goes to zero, leaving the traditional holographic 
formulation; or if one assumes that Δφ is not a function of time, it becomes a constant, yielding 
the typical Doppler formulation. Both descriptions are appropriate and physically identical to the 
sinusoidal intensity change experienced as the fringes are seen moving over a pixel in time 
varying holography, or fringe counting in LDVs. This explanation is expanded and enhanced in 
the following sections by starting from the traditional holography formulations and Doppler 
formulations separately and reconciling them. 
 
3.3. Approach Using Temporal Holography Notation 
Approaching the reconciliation via dynamic holography notation [32], the following equation 
contains the standard description of the light intensity on a given pixel: 

 ( )( )[ ]tItI orO φφγ −+= cos1)(  , (44)  

where Io is the DC intensity averaged on the detector from the high-frequency optical terms, φr is 
the reference beam phase, γ  is the modulation constant, and φo(t) is the phase change caused by 
the object motion. All three variables are of course functions of x and y in the camera image, but 
simplified to a single pixel for this formulation. In the setup in the Michelson interferometer, the 
object motion causes a phase change in φo(t): 

 ( )
λ

φ )(2 txto
Δ=  . (45)  

A deformation of Δx in a given time, Δt, of course, can be expressed as a frequency: 

 
λλ
v

t
txf 2)(2 =Δ=  , (46)  

where the motion in a given time is merely velocity v. The final equation (46) is the Doppler 
frequency change because of the object velocity. With equations (45) and (46), a final 
description of a time varying holography signal is 



24 

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+= tvItI rO λ
φγ 2cos1)(  . (47)  

 
3.4. Approach Using Doppler Frequency Shift Notation 
Approaching the derivation from LDV terminology is slightly different and begins with the 
Doppler frequency shift description for light. An assumption made here that the surface velocity 
is much smaller than the speed of light simplifies the relativistic effects. Referring again to the 
Michelson interferometer, the velocity of the object surface can be shown to cause a frequency 
shift in the impinging light of [33]: 

 

c
v

ffo 21−
=  , (48)  

where v is the velocity of the object, f is the optical frequency, fo is the Doppler shifted frequency 
caused by the object motion, and c is the velocity of the light in air (for this case). When the 
beam is mixed with another beam of the same frequency (as in the Michelson interferometer), 
the resulting heterodyne term, Δω or Δφ, as described in equation (7) becomes 
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If we assume that c>>v and that f=c/λ, the equation can be simplified to 

 
λλ
vffvfff oo

22 +=⇒=−=Δ   . (50)  

By plugging this into equation (43) and using ω=2πf, the following equation is found: 

 ⎥⎦
⎤

⎢⎣
⎡ −Δ+= tvDItI O λ

φ 2cos)(   . (51)  

If a few constants are rearranged, this equation is identical to equation (47) in the dynamic 
holography development. 
 
3.5. Analogy Conclusions 
It is apparent from the above derivations that temporal holography and Doppler are equivalent, 
and are two ways of looking at the same phenomenon. Probably the most intuitive way of 
visualizing it is to think of an imaginary fringe field in front of the detector (as shown in the 
Michelson interferometer) that moves proportionally to the object surface. As the surface moves 
forward, the fringes will alternate from light to dark, creating a sinusoidal waveform on the 
detector as a function of time. Depending on whether you are looking at the fringes passing by 
(fringe counting) or the frequency at which they pass by (Doppler), you get different 
information—namely displacement or velocity. 
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4. THE DOPPLER EFFECT ON ELECTRONS 
4.1. Detailed Discussion of a Doppler Electron Experiment 
Because the work of Möllenstedt and Lichte is so important to the proof of this concept, the work 
presented in their paper [13] is briefly discussed here. A biprism was used to split the electron 
beam into two beams, r and o, as indicated in Figure 5. A magnetic prism was used to deflect the 
beams onto an electron mirror. The mirror was a conducting surface held at a potential with an 
anode in front of it. This electron mirror was then rotated by means of a piezo crystal with an 
applied time-varying voltage, which increased the velocity of one beam and decreased the 
velocity of the other. The beams were sent back through the magnetic prism and recombined via 
a second biprism to interfere them. This setup was exactly equivalent to the Michelson 
interferometer discussed in the optical analogy, and they proposed an equivalent equation to the 
Doppler shift equation (51) derived previously. They showed a set of time varying fringes as in 
Figure 5c. They put a slit detector at a single location under the screen and measured the Doppler 
beat via the intensity measured by the detector. The U plot indicates the voltage applied to the 
piezo, with the positive slope imparting a Δv = 60 pm/s, and the negative slope Δv = 66 pm/s. 
The corresponding beat frequencies are 0.92 Hz and 1.02 Hz, within 10% of the calculated 
theoretical Doppler beat. This is experimental proof that the Doppler electron microscope could 
be a functional tool. 
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Figure 5. Illustrations from paper. 

a) Michelson interferometer, b) electron mirror, c) moving fringes,  
d) voltage applied to piezo, and e) Doppler beat because of velocity of mirror.  

 
4.2. The impossibility of Doppler—a Counter Argument 

(or fly in the ointment) 
Although the argument from optical analogy seems compelling, electron waves in many ways 
(but not all) behave as light waves. Most importantly for our arguments, they diffract and 
interfere with one another. However, unlike laser light, which may interfere with other photons 
in the wave-train (there is some discussion whether this is the case), electrons only interfere with 
themselves. This is because electrons are fermions or particles with half-integer spins and are 
unable to interfere with each other, whereas photons are bosons, and this exclusion is not 
required. This means that the electron fringe patterns detected are statistically built up over a few 
seconds rather than instantaneously. The time to form this statistical picture is dependent on the 
beam current, or number of electrons per second hitting the detector. With higher beam currents 
fringes could form “instantaneously” as compared with the sampling time. 
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Beyond the time for fringe formation, three other potential counter arguments to my electron 
Doppler hypothesis are presented by F. Zhou in his paper regarding the interference of 
inelastically scattered electrons, where he states that moving fringes are impossible with electron 
beams [34]. The arguments presented in the paper involve three main points: electrons with 
energy changes that are “too large” cannot interfere, the phase incoherence of the source 
precludes moving fringes, and the inelastic scattering in matter puts the electrons in quantum 
mechanically orthogonal states that cannot interfere. From my reading of the literature, there is 
not a complete agreement with his main thesis, and various counter arguments have been 
proposed. I summarize these arguments here, starting with the energy change argument. Zhou 
states that an energy change greater than 10-15 eV would create rapidly moving interference 
fringes that are unobservable with typical sensors. For example, inelastic scattering creates 
energy changes on the order of 0.1 eV to 2 keV, which would make the recording time too short 
to be practical. Interestingly, Zhou’s cutoff energy of 10-15 eV is approximately the energy 
change measured by Möllenstedt and Lichte in their Doppler experiment (i.e., E=hfDoppler ≅ 4×10-

15 eV). A further detail for the electron Doppler measurements is that the electrons are not 
inelastically scattered. They still do, however, experience an energy change (i.e., δE=hf). Van 
Dyck et al. [21] discuss theoretical values for allowable energy change for interfering electron 
beams and develop from quantum mechanical arguments the following equation: 

 
t
hEEE <=− δ10 , (52)  

where t is the record time and h is Plank’s constant. Values of prospective Doppler energy 
changes and sampling times are summarized in Table 2. 
 

Table 2. Sampling rates for different Doppler energy shifts. 
Record t (s) Δ E < h/t (eV) f sample  (MHz)

1 4.14E-15 0.000001
0.1 4.14E-14 0.00001

0.01 4.14E-13 0.0001
0.0001 4.14E-11 0.01

0.00001 4.14E-10 0.1
0.000001 4.14E-09 1  

 
Van Dyck’s interference arguments are most easily visualized by comparing the energy spread of 
the source, and the energy change caused by the frequency shift of the electron beam. This is 
shown in Figure 6, where δE is the energy shift because of scattering, and ΔE is the energy 
spread of the source. Graphically, their argument is summarized by saying that as long as the two 
beam energies overlap, there will be interference. Other researchers have drawn similar 
conclusions, both theoretically and experimentally [20,22,35]. For realistic Doppler sampling 
times of 1 MHz (as seen in Table 2), this would imply a possible maximum energy change of 
10-9 eV, well within the energy spread of a typical source, and yielding realistic velocity 
measurements as will be outlined later in this paper. One last point regarding energy change and 
interference comes from the analogy to light interference, where with even quite large energy 
changes (i.e., frequency changes) the photons still successfully interfere. 
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Figure 6. Schematic of the energy spread and the effect on interference [21]. 

 
Zhou next makes the argument that electron sources are phase incoherent; that is, each electron, 
regardless of whether the energy and wavelength are equal, has a different phase. In the optical 
analogy, this is equivalent to a well-filtered light source, like an arc lamp. He argues that the 
wave functions only describe the behavior of a single electron—and hence, moving fringes 
cannot be observed in an electron microscope. As a counter argument to this, I return to the 
optical domain, where the first interference experiments were conducted with just such a phase 
incoherent but wavelength filtered light source. Arguing from the same concept of a finite wave-
packet (photon) with incoherent phase, Hecht [16] demonstrates that phase incoherence does not 
matter for the interference of the packets as long as there is frequency stability (i.e., a small 
energy spread ΔE, as argued previously). An example of this phenomenon comes from the 
author’s work with laser speckle fields used for Doppler vibrometry, where many laser speckles 
(1000s), all with random phases relative to each other, are combined on a single detector. This 
summation of random phases still yields a measurable Doppler frequency on the photodiode. 
This is analogous to a large number of random phase electrons interfering, and through a random 
walk argument, still yielding measurable Doppler frequencies. 
 
Zhou’s final argument is that elastically scattered electrons, if they have different energies, are 
incoherent because of them being quantum mechanically orthogonal to one another. I have no 
counter arguments from electron holography; however, this argument certainly does not apply in 
the optical domain. This would make traditional LDVs nonfunctional, as the Doppler shift is also 
an energy shift via E=hf as discussed earlier—and we know from practice that it does work.  
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In summary, comments regarding moving fringes seem overstated, as researchers using electron 
holography have observed moving fringes at video rates anyway [36], and so the scale of the rate 
must obviously be important. Can you have a faster detector or larger beam current and hence 
see faster moving fringes? I would argue that you can. There also seems to be some 
disagreement with Zhou’s conclusions regarding inelastic scattering, as outlined in a number of 
papers already summarized or referenced in this review. 
 



30 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 



31 

5.  PRACTICAL CONSIDERATIONS FOR THE DEV 
5.1. Introduction to the DEV 
Even if the theoretical considerations indicate that Doppler electron velocimetry should work, 
this does not indicate whether the sources, fringe formation time, sensor sensitivity, and realistic 
experimental energy changes work out to a practical instrument. For a thought experiment on the 
applicability of this concept to a real measurement, I use the concept of a shearing velocimeter 
and a typical MEMS cantilever beam in an electron mirror configuration similar to the work by 
Möllenstedt and Lichte. To begin the practical discussion, Table 3 shows the range of 
wavelengths available in typical TEMs and their accelerating voltages. The main strength of the 
Doppler electron approach is the extremely short wavelengths as clearly illustrated in the table, 
which alleviates the diffraction limitations of optical wavelengths. Even low accelerating 
voltages lead to sub-nanometer wavelengths. The following sections outline practical coherence 
values, energy changes, and the shearing DEV. 
 

Table 3. Electron wavelengths and the corresponding acceleration voltage. 
U (kV) λ (nm) K (1/nm) me/mo v/c

0.1 0.12264 8.154 1.00020 0.01978
1 0.03876 25.797 1.00196 0.06247
5 0.01730 57.796 1.00978 0.13887

10 0.01220 81.935 1.01957 0.19498
15 0.00994 100.592 1.02935 0.23711
20 0.00859 116.434 1.03914 0.27186
30 0.00698 143.284 1.05871 0.32837
35 0.00645 155.132 1.06849 0.35227
50 0.00536 186.729 1.09785 0.41268
75 0.00432 231.347 1.14677 0.48948

100 0.00370 270.163 1.19569 0.54822
150 0.00296 338.173 1.29354 0.63432
200 0.00251 398.732 1.39139 0.69531
250 0.00220 454.824 1.48923 0.74102
300 0.00197 507.933 1.58708 0.77652
400 0.00164 608.289 1.78277 0.82787
500 0.00142 703.594 1.97847 0.86286
600 0.00126 795.666 2.17416 0.88795
700 0.00113 885.514 2.36985 0.90661
800 0.00103 973.753 2.56555 0.92091
900 0.00094 1060.785 2.76124 0.93212

1000 0.00087 1146.886 2.95693 0.94108
2000 0.00050 1982.858 4.91387 0.97907  

 
5.2. Important Properties of Available Electron Sources 
The field emission gun (FEG) has revolutionized electron holography. It combines two very 
important attributes of an extremely small emission area and a low energy spread. Table 1 
outlines a realistic range of energy spreads of commercially available FEGs from 3 eV to 0.1 eV 
and their corresponding longitudinal coherence length. These numbers indicate a very usable 
range of values of nearly 1-micron path length difference between interfering beams. 
Additionally, the spatial coherence is on the order of hundreds of microns, which allows large 
areas of the sample to be coherently illuminated. Modern electron guns, in addition to good 
coherence, are able to supply very high beam currents. Table 4 summarizes the source brightness 
for various electron sources and their beam currents at the sample. 
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Table 4. Typical electron source brightness and beam current. 
Electron Beam 
Sources 

Required 
Vacuum 
(Torr) 

Virtual Source 
Diameter 

(μm) 

Energy 
Width 
(eV) 

Acceleration 
Voltage 

(kV) 

Measured 
Brightness, β 
(A cm-2 sr-1) † 

Current Density 
at Specimen 

(A cm-2) * 
Heated Field 
Emission 10-8-10-9 0.1 0.8 100 107-108 20 

RT Field 
Emission 10-10 0.002 0.28 100 2×109 4000 

Hair-Pin 
Cathode 10-5 30 0.8 100 5×105 1 

Tungsten (W) 
Cathode 10-6 10 – 50 1-2 100 1 to 5×105 3 

LaB6 Cathode 10-6 5 – 10 1 75 7×106 14 
†β in Equation 53. *With 0.8 mrad illuminating aperture (A cm-2). jSpecimen in Equation 53. 

 
The current j at the sample can be calculated from the following equation: 
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Specimen πβπβθ , (53)  

where β is the source brightness in A/cm2/sr, rCA2 is the radius of the condenser aperture, and D3 
is the distance to the sample from the aperture. Additionally, the beam current at the image plane 
can be calculated from 

 2Mag
j

j Specimen
image = . (54)  

For a typical FEG source, A/cm2 can typically be obtained. When a large magnification is used, 
this will lead to nAmps at the detection screen, but for the DEV, we are using scanning points, so 
the entire source current is theoretically available for detection. In taking these numbers along 
with a typical semiconductor detector response rate of 100 kHz with a beam current of 10-11 A 
[17], there is plenty of dynamic range to work with for making measurements. Even using a 
traditional fast phosphor screen (P-47 for example) and a photodiode, response times could be 
achieved in the kHz range rather easily. 
 
5.3. A Shearing DEV Measuring MEMS Beam Vibration 
A shearing velocimeter is proposed as a possible “real-life” experimental example. This concept 
builds on the Doppler experiment of Möllenstedt and Lichte but adds a MEMS component and 
the idea of shearing velocimetry. The shearing concept allows the maximum velocity difference 
between the two probe beams to be controlled by controlling how far apart the two beams are—
or the shearing distance. The MEMS component is a simple cantilever beam with a thickness of 
2 microns and a length of 500 microns. This leads to a typical fundamental frequency of 20 kHz. 
Both the cantilever beam and the shearing interferometer are shown in Figure 7.  
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Figure 7. Shearing interferometer and typical MEMS beam. 

 
Assuming a parabolic velocity profile, and making measurements at the tip and a defined 
shearing distance away from the tip, Doppler frequencies and their concomitant energy change 
can be calculated. The equations used for these calculations were derived by Sherzer [14]. It 
should be noted that there is a factor of 4/3 in the equation rather than the typical 2 found 
previously (Eq. 51), and this is because of the effect of the electron mirror on the motion of the 
electron beam. The equation that relates the velocity difference between the two beams (Δv) and 
the Doppler frequency is 

 
λ3

4 v
h
EfDoppler

Δ=Δ= . (55)  

Using this equation and some proposed tip velocities and shearing distances, Table 5 indicates 
frequencies and energy shifts that have been calculated based on the beam above. The tip 
displacement range is varied from 2 microns to 15 pm, which covers the entire range from 
reasonably large deflections to the thermal excitation of the beam at rest. Doppler frequencies 
range from 57 MHz to 4 Hz in the table, depending on the tip displacement and the shearing 
distance. The table indicates that for reasonable tip motions of 10 nm and a shearing distance of 
1 micron, the Doppler frequency is 288 kHz—a very reasonable value for measurement with a 
fast semiconductor device. Another point to note regards the energy change of the beam (ΔE), 
where for most of the table, the values are much larger than the 10-15 eV proposed by some 
researchers as the theoretical limit, but much less than the typical energy spread of the source 
(>0.1 eV) proposed as the limit by others. In addition, Table 2 outlines required sampling rates 
and the related energy changes that are comparable to those in Table 5. 
 

Table 5. Shearing velocity calculations for MEMS beam. 
Beam length = 500 μm - Parabolic velocity distribution

λ (nm) 0.0037
Tip (μm) fTip (kHz) Tip v (mm/s) Shearing (μm) Δv (mm/s) Δv (nm/s) ΔE (eV) fDoppler (kHz)

2 20 40 1 0.15984 159840 2.382E-07 57600
0.1 20 2 1 0.007992 7992 1.191E-08 2880

0.01 20 0.2 1 0.0007992 799.2 1.191E-09 288
0.001 20 0.02 1 7.992E-05 79.92 1.191E-10 28.8

1.50E-05 20 0.0003 0.01 1.19999E-08 0.012 1.788E-14 0.0043243  
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6. EXPERIMENTAL IDEAS 
6.1. Introduction to Experimental Ideas 
Is this an instrument in search of a problem? Maybe. Of course, as micro- and nano-machines 
continue to shrink in size, dynamic measurements will continue to be important for 
characterizing and testing the designs. It will not be long before current optical techniques will 
not work—prompting the same transition that has made the electron microscope successful. 
What could be measured? Typically, any dynamic event on a small scale would be a candidate, 
including mechanical, electrical, and magnetic events. Here in no particular order are some ideas 
for developing and applying DEV. 
 

1. Of course, repeating Möllenstedt’s work would be a good starting point. This could use a 
vibrating MEMS component as the electron mirror, with the substrate next to it being the 
reference surface. 

2. If the velocity differential is too great between the reference and object beams of the 
interferometer, a “shearing” interferometer setup could be used to find the incremental 
change between two points near one another. Figure 7 shows the conceptual setup of the 
shearing electron velocimeter. By placing these points arbitrarily close, the velocity 
gradient can be controlled. Then, by scanning the points, the velocity profile can be built 
up. 

3. An example of time varying magnetic fields is in Curie temperature effects on magnetic 
fields in metals. A very slow version of this was demonstrated by Hirayama [36]. 

4. Young’s fringe experiment with holes that move would cause moving fringes. 

5. Using the biprism and a dynamic electric field in the object path, rather than a sample, 
could yield a controllable, known dynamic Doppler shift. 

6. In the “way in the future” possibilities, the DEV could be used as a data storage device by 
measuring the Doppler shift of the magnetic field in a recording medium as it traveled 
under the probe beam. 

7. Additional ideas yet to be developed… 

 
6.2. Unknowns and Challenges 
At this point in the research, there are two unknowns regarding the potential success of DEV. 
The first is the coherence length drawbacks of electron microscopy. Work has been ongoing to 
improve the sources; and I think for preliminary work, current technology is certainly more than 
adequate. In addition, electron detection equipment is potentially sensitive enough and fast 
enough to be used for Doppler detection, possibly up to the MHz rate. However, this is 
dependent on a source that supplies a high enough coherent beam current. While the electron 
optics such as biprisms and mirrors have been demonstrated, their availability is unknown and 
most likely will have to be improved to create a high-resolution DEV. Probably the largest 
unknown is the quantum mechanical aspects of electron interference. Doppler electron research 
in general is both a challenge and an interesting untested regime for particle wave interference. 
Can moving fringes be detected? Why or why not? The literature I have found is mixed on this 
topic, and it seems that interesting physics can be conducted beyond the creation of a practical 
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electron velocimeter. Another interesting concept is to enforce phase coherence on the electron 
beam to create an “electron laser.” There are some possibilities in this direction by exploiting 
work done with free electron lasers. The general concept is to use the electric field of a laser 
beam to bunch the electrons together, enforcing phase coherence [38,39]. If successful, this 
could potentially help electron holography in general. 
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7. CONCLUSIONS—IS DOPPLER ELECTRON VELOCIMETRY 
POSSIBLE? 

This question remains unanswered. I think the arguments from optical analogy comparing fringe 
counting and Doppler, along with demonstrated moving fringes, at least at video frame rates, 
make the concept a distinct possibility. In addition, the demonstration of electron Doppler 
shifting, while at an extremely low energy and velocity, is also promising. However, there 
remain some unanswered physics questions that beg to be researched further. 
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