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ABSTRACT 

 Hydraulic separators are commonly used for particle size classification and gravity 

concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite 

low due to poor equipment design and variations in feed consistency. To help alleviate these 

problems, an industry-driven R&D program has been undertaken to develop a new generation of 

hydraulic separators that are more efficient and less costly to operate and maintain. These units, 

which are commercially called the CrossFlow separator and HydroFloat separator, have the 

potential to improve performance (separation efficiency and throughput) and reduce operating 

costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and 

pilot-scale test units were evaluated at various industrial sites in both the coal and mineral 

industries. Based on promising results obtained from Phase I, full-scale prototypes were 

purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal 

company. The test data obtained from these sites demonstrate that significant performance 

improvements can be realized through the application of these high-efficiency separators.   
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1.0 INTRODUCTION 

1.1 Hydraulic Separation 

1.1.1 Classification Systems 

Hydraulic separators are frequently used in the minerals processing industry to classify 

fine particle according to size and/or density. Although many devices have been developed over 

the years, a technique that has been gaining popularity in recent years is the teeter-bed 

separators. These devices, which are also commonly called hindered-bed or fluidized-bed 

separators, make use of differential particle settling rates to segregate particles according to size, 

shape, and/or density.  

The tradition design of a hydraulic classifier consists of an open top vessel into which 

elutriation water is introduced through a series of distribution pipes evenly spaced across the 

base of the device. During operation, feed solids are injected into the upper section of the 

separator and are permitted to settle. The upward flow of elutriation water creates a fluidized bed 

of suspended particles within the separator. The small interstices within the bed create high 

interstitial liquid velocities that resist the penetration of the slow settling particles. As a result, 

small particles accumulate in the upper section of the separator and are eventually carried over 

the top of the device into a collection launder. Large particles, which settle at a rate faster than 

the upward current of rising water, eventually pass through the fluidized bed and are discharged 

out one or more restricted ports through the bottom of the separator. 

It is obvious from the above description that quiescent flow conditions must exist within 

the separator to maintain a high efficiency. Excessive turbulence or changes in flow conditions 

can result in the unwanted misplacement of particles. Unfortunately, current hydraulic separators 

utilize a feed injection system that discharges directly into the main separation chamber. These 
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simplistic feed systems typically consist of a vertical pipe that terminates approximately one-

third of the way into the main separator body. The pipe discharge is usually equipped with a 

dispersion plate to laterally deflect the feed slurry, but this approach creates turbulence within 

the separator that is detrimental to an efficient separation. In addition, the water that is injected 

with the feed solids must also report to the overflow launder. As a result, the rise velocity of the 

water is substantially increased at the feed injection point. Above the feed point, the liquid rise 

velocity is the sum of the elutriation water and the feed water flow rates. This discontinuity often 

results in a secondary interface of fluidized solids within the separator. In fact, at higher feed 

rates, the volume of water associated with the feed slurry is often greater than the volume of 

elutriation water; thus severely affecting the separation performance. Throughput capacities are 

also limited in conventional hydraulic separators due to the detrimental impact of feed water on 

unit performance. 

Equipment maintenance is also important issue in the design of a hydraulic separator. 

Conventional teeter-bed designs use a series of lateral pipes located in the base of the separation 

zone. These pipes are perforated at regular intervals with large numbers of small diameter holes. 

Elutriation water is injected through these holes over the entire cross-section of the separator. 

The large water flow rates combined with the small injection hole diameters leave the device 

susceptible to frequent blockage/plugging due to contaminants in the process water. When 

several orifices become blocked, a dead zone occurs in the fluidization chamber resulting in a 

loss of performance in this area. As a result, conventional teeter-bed separators have an inherent 

design flaw that limits both the capacity and efficiency of the separator.  
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1.1.2 Concentration Systems 

In addition to particle sizing applications, teeter-bed separators are also frequently used to 

separate various minerals based on differences in particle density. In this case, the coarse high-

density particles settle against the rising flow of water and build a bed of teetering solids. This 

bed of high-density solids has an apparent density much higher than the elutriation water. Since 

particle settling velocity is driven by the density difference between the solid and liquid phase, 

the settling velocity of the particles is reduced by the increase in apparent density of the teetering 

bed. This artificial density forces low-density particles to report to the overflow of the separator 

and high-density particles to report to the underflow.  

Some common examples of density-based teeter-bed applications include the separation 

of coal from rock, silica from iron ore, and silica from various heavy minerals (zircon and 

ilmenite). Unfortunately, the plant data indicate that efficient concentration can only be achieved 

if the particles are in the size range of 200 mesh to several millimeters and if the particle size 

ratio (top size to bottom size) is less than about four-to-one. In practice, coarse low-density 

particles will tend to gather at the surface of the teeter-bed interface because the elutriation water 

velocity is not sufficient to transport these large particles into the overflow launder. The large 

particles continue to gather at the bed interface until mass action forces them into the teeter bed, 

where they eventually misplaced into the high-density product. This inherent inefficiency can be 

partially corrected by increasing the elutriation water velocity to convey the coarser low-density 

solids into the overflow. Unfortunately, this approach is harmful to the concentrate grade since it 

also causes the finer high-density solids to be misplaced into the overflow launder. Because of 

theses shortcomings, the separation efficiency obtained using teeter-bed separators is often poor 

in industrial operations. In most cases, the valuable component (i.e., coal, iron ore, ilmenite and 
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zircon) frequently must be reprocessed in “polishing” circuits to achieve the desired product 

quality. The problem is that conventional teeter-bed separators are inherently inefficient when 

used to treat mineral assemblages that have either a wide particle size distribution or a narrow 

density distribution. 

 

1.3 Literature Review 

1.3.1 Hydraulic Classifier Types 

 There are three main characteristics that distinguish a hydraulic classifier from other 

classifiers. First, discharge of the oversize material from the device depends upon its 

gravitational flow properties and not mechanical means such as a screw or rake. Coarse particles 

settle at a rate faster than the upward current of the elutriation water, and exit the unit through a 

valve or spigot at the base of the unit. The second distinctive characteristic of a hydraulic 

classifier is the unit is not fed under pressure; the primary source of classification is based on 

differential particle settling rates to segregate particles according to shape, size, and/or density. 

Finally, hydraulic classifiers utilize at least one, and sometimes both, of the following two 

mechanisms (NC State, 1992): 

(i) Hindered Settling - An oversized particle settles against upward flowing fluid; the greater 

the density of the fluid, the larger the particle that will remain suspended (or teetered) in 

the fluid. Hindered settling is a function of particle size, density and concentration, liquid 

density and viscosity as well as the charge density.  

(ii) Elutriation - An undersize particle is lifted by an upward flowing stream of water; the 

greater the upward velocity, the larger the particle that will be lifted.  
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When the feed size distribution is within acceptable limits, hydraulic classifiers can also be used 

for the concentration of particles based on differences in density. Over the years, various units 

have been developed and can be primarily categorized by the method in which the coarse 

material is discharged from the separation zone of the unit (Heiskanen, 1993). The two main 

operational categories are: (i) classifiers that operate with free and/or hindered settling that have 

virtually no control of the underflow (or coarse fraction) discharge and (ii) classifiers that do 

attempt to control the underflow discharge causing the formation of a teeter bed. Classifiers that 

do not attempt to control the underflow discharge can be further subdivided into mechanical and 

non-mechanical categories.  

 

1.3.2 Mechanical Hydraulic Classifiers 

 The Hukki Cone Classifier is a mechanical classifier invented by R.T. Hukki in 1967 and 

consists of a cylindrical tank where feed is introduced into the tank on a slowly rotating 

distribution disk, which causes a slight centrifugal action to it. The bottom of the tank is conical 

shape where water sprays are used as elutriation water. Coarse material is discharged through a 

pinch valve in the bottom of the cone. The key to this unit is in the conical section; where a ring 

of vertical, radial vanes are located to allow the pulp to rise upwards in a laminar fashion. The 

unit was originally designed to treat low quality sands, but is not used in practice today. 

 The Sogreah Lavodune Classifier is another mechanical classifier that consists of a 

cylindrical tank and a cone. Lower density counter-current classification is enhanced by laminar 

flow in this unit. A downcomer introduces feed material into the unit approximately one third of 

the distance from the top of the unit. The volume of the unit is restricted in the cone section 

where classification takes place in high suspension densities. The fine material rises and is 
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discharged over the overflow lip of the unit. A plunger in the base of the unit is used to regulate 

the discharge rate through the bottom of the unit. As with the Hukki cone, this unit is not used in 

industry today.  

 

1.3.3 Non-Mechanical Hydraulic Classifiers 

 Linatex classifiers have been in the industry for several years in a variety of applications. 

The Linatex S Classifier is the company’s version of a non-mechanical dense flow hydraulic 

classifier. The pulp is fed by a downcomer into the column where it comes in contact with a 

deflector plate that causes the flow to turn radially outwards and upwards. The ratio of water 

between underflow and feed streams controls the upward current at the deflector plate and thus 

the cut size (Heiskanen, 1993). The unit is very inefficient for sharp separations as it inherently 

bypasses a large volume of material. It is best utilized for slimes removal.   

 The Krebs C-H Whirlsizer is another type of non-mechanical dense flow hydraulic 

classifier. It uses a controlled water addition to a gently swirling pulp to clean the coarse fraction 

from fines (Heiskanen, 1993). The upper part of the unit is cylindrical in shape, with the lower 

unit forming a cone as in many of the other units described thus far. The lowermost section of 

the cylinder contains an internal cone that forces coarse particles into the narrow gap between the 

wall and the cone. Elutriation water is added below this from small holes, moving the pulp in a 

swirling action. While no teeter bed is formed, classification takes place by means of hindered 

settling, allowing the coarse material to settle past the internal cone and the fines to overflow 

through the top of the unit. It is designed for sand classification and targets the non-spherical 

materials such as vermiculite, mica and kyanite (Heiskanen, 1993).   
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1.3.4 Fluidized Bed Hydraulic Classifiers 

 The traditional design of a fluidized bed hydraulic classifier consists of an open top 

vessel into which elutriation water is introduced through a series of distribution pipes evenly 

spaced across the base of the device. During operation, feed solids are injected into the upper 

section of the separator and are permitted to settle. The elutriation fluid in a fluidized bed 

supports the weight of the particles within the bed by flowing between the particles. The small 

interstices within the bed create high interstitial liquid velocities that resist the penetration of the 

slow settling particles. As a result, small particles accumulate in the upper section of the 

separator and are eventually carried over the top of the device into a collection launder. Large 

particles, which settle at a rate faster than the upward current of rising water, eventually pass 

through the fluidized bed and are discharged out one or more restricted ports through the bottom 

of the separator.  

 One of the first hydraulic classifiers to utilize a teeter bed was the Stokes unit which was 

developed to sort the feed to gravity concentrators. Each teeter chamber is provided at its bottom 

with a supply of water under constant head which is used for maintaining a teetering condition in 

the solids that find their way down against the interstitial rising flow of water (Wills, 1992). Each 

chamber is fitted with its own pressure sensor that monitors the conditions in the chamber and 

automatically adjusts the discharge to maintain a balanced pressure caused by the teeter bed. A 

valve at the base of each compartment can be hydraulically or electrically operated to adjust the 

height of the teeter-bed. As the bed level increases, the pressure will also increase and the valve 

will open. Likewise, as the bed lowers, the pressure decreases and the valve will close. This 

action maintains a constant level and, therefore, constant density within the separator.  
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 A more recent hydraulic classifier utilizing the teeter bed is the Linatex Hydrosizer. The 

Linatex Hydrosizer is a non-mechanical, hindered-settling classifier that maintains a fluidized 

teeter bed, but does not have the same elutriation water distribution or feed distribution as the 

CrossFlow separator. The pulp is fed into a central feed column where it comes in contact with a 

deflector plate that causes the flow to turn radially outwards and upwards. Extensive testing of a 

pilot-scale unit at a North Carolina phosphate plant was conducted in the early 1990’s to attrition 

scrub and deslime flotation feed with promising results. Additional testing has been conducted at 

other mineral industries including mineral sands and aggregates. The Linatex Hydrosizer was 

marketed for sizing applications ranging from 28 mesh to 100 mesh, with some preliminary 

testing on finer material (NC State, 1992). 

 Phoenix Process Equipment has developed another type of fluidized bed hydraulic 

classifier called the Hydrosort. This separator and classifier is currently utilized in the aggregate 

industry, as well as some others, for separating light, harmful contaminants, such as lignite and 

wood, in sand washing, and for fractional sand classifications (Phoenix Process Equipment, 

2003). The Hydrosort incorporates a fluidized bed created by an upward current of water flow to 

classify product or separate impurities in the same fashion as the Linatex Hydrosizer. A feature 

emphasized by Phoenix Equipment is the clog-free classifier bottom, which distributes the 

upward water flow equally over the separating area. Unlike in the CrossFlow where feed enters 

the unit tangentially, both the Phoenix Hydrosort and the Linatex Hydrosizer have a feed 

distribution pipe that enters the top of the unit and discharges feed into the separation chamber.  

 The Floatex fluidized-bed classifier (or Floatex Density Separator) is the most recent 

hydraulic separator designed. Like the other units, this separator utilizes a teeter bed which is 

formed by solids settling against an upward current of elutriation water. Coarse material settles 
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through the teeter-bed, while finer particles report to the overflow of the unit. A differential 

pressure cell and discharge valve controls the bed level in the unit. This efficient unit sees very 

little fines bypassed to the underflow and as a result, the unit produces a relatively clean 

underflow.  

 

1.3.5 Hindered Settling 

 Hindered settling is an important phenomenon in all of the aforementioned hydraulic 

classifiers. Hindered settling considers the interaction of other particles in classification systems 

either on a particle-particle level or from the behavior of the particle assemblies. The interactions 

between two particles may be due to particles settling close to each other or to the wake effect of 

a larger particle on the settling of a smaller particle (Heiskanen, 1993). According to Littler 

(1986), the hindered settling phenomenon begins to take place at approximately 20% solids by 

mass. The cohesive force between two particles settling very close to one another is great enough 

for the particles to fall together and be treated as a single particle of greater size and lower 

density. A wake effect is caused when a larger particle captures a smaller particle in its wake as 

it is settling and as a result, the smaller particle falls at a velocity much higher than its free 

settling velocity. In a teeter bed, however, the high solids concentration increases the likelihood 

of particle collision, and these particles lose some of their settling velocity in these collisions. 

The fine particles, therefore, have a higher likelihood of being driven to the overflow launder by 

the upward current of elutriation water. And as a result, hindered settling is more efficient than 

free settling classification due to the decrease in fines entrained in the underflow.  

 An analysis of the behavior of particle assemblies can be categorized into two parts. 

Particle assemblies settling may occupy the whole fluid or they may be considered as clusters of 
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particles which only fill a fractional volume of the fluid (Heiskanen, 1993). When the assemblies 

occupy the entire fluid they may be treated as a uniform pulp where the interactions are between 

the individual particles. As clusters, the particles are analyzed as large particles of reduced 

density and rigidity. The probability of this occurring increases with narrower particle size 

ranges, and is magnified in gravitational classification where high solids contents are present.  

 From an analysis standpoint, hydraulic classifiers are characterized by two factors: (i) the 

size separation and (ii) the sharpness of the separation. For theoretical analyses it is convenient to 

define separation size as that of particles which settle just fast enough on the average, to be 

totally collected in the underflow (Weiss, 1985). Slight variations in settling rates will occur 

between particles of the same size and density due to differences in shape and turbulence in the 

separator. The sharpness of the separation defines how the particles segregate into the product 

and the tails streams. Under ideal conditions, a classifier should partition particles coarser than 

the cut size d50 into the coarse stream and finer particles into the overflow (Heiskanen, 1993). 

The efficiency of this cut is based on the amount of misplaced particles in both streams.   

 

1.4 High-Efficiency Hydraulic Separators  

In order to further promote the use of hydraulic separators, a new generation of teeter-bed 

technologies known as the “CrossFlow Separator” and “HydroFloat Concentrator” has been 

developed by Eriez Manufacturing in conjunction with research universities and mineral 

producers. These new high-efficiency separators incorporate novel design features to improve 

performance (separation efficiency and throughput) and reduce operating costs (power 

consumption, water usage and reagent dosage). Both of these innovative technologies are high-

tech variations of the conventional teeter bed separator concept. As such, these high-efficiency 
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units can be readily adopted by industry once the operational knowledge base has been fully 

developed and the merits have been demonstrated in an industrial environment.  

 

1.4.1 CrossFlow Separator 

Figure 1.1 shows schematic of the CrossFlow Separator. Compared to a conventional 

hydraulic classifier, the CrossFlow design uses an improved feed delivery system that gently 

introduces the feed slurry across the top of the separator as opposed to injecting the slurry at a 

high velocity directly into the teeter-bed. As previously stated, high slurry feed volumes create 

turbulent mixing that has a detrimental impact on separator performance. In the new feed 

delivery system, the feed velocity is reduced using a transition box. The purpose of this box is 

two-fold. First, the feed transition box increases the flow area to the full width of the separator so 

that the slurry velocity, and any associated turbulence, is minimized. The second unique feature 
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Figure 1.1.  Comparison of traditional teeter-bed (left) with CrossFlow (right) classifiers. 
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is its ability to tangentially feed the separator. This stilling-well, which is located at the top of the 

separator, smoothly passes the feed slurry horizontally across the top of the cell. Compared to 

conventional systems, the feed introduction system ensures that variations in feed slurry 

characteristics (e.g., solids content) do not impact separator performance. In the CrossFlow, the 

teeter-water velocity remains constant throughout the separation chamber at all times, while the 

velocity in a conventional classifier generally increases above the feed addition point (Figure 

1.2). A duct plate is also located at the discharge end of the feed introducer to prevent short-

circuiting of solids directly to the overflow launder. 

Another design feature incorporated into CrossFlow classifier is the improved water 
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Figure 1.2.  Comparison of water flow velocities in different classifiers. 
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distribution system. A novel approach has been developed that incorporates a baffle plate to 

disperse the elutriation water across the base of the separator. In this design, a horizontal slotted 

plate is located at the base of the separation chamber. Water is introduced beneath the plate 

through a series of large diameter holes (>1.25 cm). However, unlike existing separators, these 

orifices are located at distant intervals (typically >15 cm) and serve simply to introduce the 

water, while water dispersion is achieved by the baffle plate. This modification essentially 

eliminates problems associated with distributor pipe plugging. The combined use of the 

improved feed injection system and simplified water distribution system makes it possible to 

increase both the separation efficiency and throughput capacity while eliminating mechanical 

problems associated with traditional designs. Because of the higher throughput capacity, the 

operating demands in terms of power, water consumption and maintenance are lower for the 

CrossFlow when reported on a per ton of concentrate basis. 

 

1.4.2 HydroFloat Separator 

It is generally accepted that teeter bed technologies, such as the CrossFlow design, can 

only be applied to mineral systems that have (i) a relatively narrow particle size distribution and 

(ii) a moderately large difference in particle densities. To overcome these limitations, technical 

personnel at Eriez Manufacturing have been working with industry to develop a novel air 

assisted hydraulic concentrator called the HydroFloat separator. This innovative process, which 

is shown in Figure 1.3, combines the flexibility of a flotation process with the high capacity of a 

density separator.  

During operation, particles in the feed stream are treated with a reagent (called a 

collector) so that the surface of one or more of the mineral particles is made hydrophobic. The 
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reagentized feed slurry is then introduced into the top of the separator where the feed particles 

are allowed to settle into the teeter bed at a rate dictated by their size and density. The teeter bed 

is continuously aerated by injecting compressed gas and a small amount of frothing agent into 

the fluidization water. The gas is dispersed into small air bubbles by circulating the water 

through a high-shear mixer in closed-loop with a centrifugal pump. Because of differences in 

wettability, the air bubbles in the fluidization water become selectively attached to hydrophobic 

particles within the teeter bed, thereby reducing their effective density. The lighter bubble-

particle aggregates rise to the top of the denser teeter bed and are collected as overflow from the 

top of the separation chamber. In contrast, air bubbles do not become attached to hydrophilic 
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Figure 1.3.  Schematic drawing of the HydroFloat separator. 
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particles. These particles continue to move down through the teeter bed and are eventually 

discharged as a high solids stream (e.g., 75% solids) through a control valve at the bottom of the 

separator.  

The HydroFloat separator makes it possible to apply density separation technology to 

nearly any mineral system, even if the natural densities of the valuable component and gangue 

are the same. In this case, the surface wettability of different particle species can selectively 

modified to create lighter bubble-particle aggregates that can be separated from unwanted 

gangue particles. For some systems, such as coal, the valuable particles are naturally 

hydrophobic and will spontaneously attach to air bubbles, while associated mineral contaminants 

are hydrophilic and will not attach. Other systems, such as iron ore with a silica contaminant, 

require chemical activation of the silica to promote bubble-particle attachment. The method for 

chemical activation using reagents known as collectors is well known and is routinely used for 

the selective recovery of fine particles (less than 0.2-0.3 mm) using froth flotation processes.  

The HydroFloat separator has several potential advantages compared to conventional 

froth flotation cells. The use of a fluidized bed significantly improves the recovery of coarse 

particles by reducing turbulence, enhancing buoyancy, increasing particle retention time, and 

improving bubble-particle contacting. In addition, the new technology significantly reduces 

energy consumption since no mechanical agitator is required. The system is also capable of 

lowering capital and installation costs since less total cell volume is required per unit of 

throughput capacity due to the high solids content within the teeter bed.  

The unique design features of the HydroFloat separator make it ideally suited for 

recovering very coarse particles that are too large to be upgraded by existing froth flotation 

processes. This capability is very important to several industries (potash, phosphate, coal, etc.) 
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that commonly have difficulties in recovering the coarser particles in the feeds to the plant 

flotation circuits. One reason for the improved recovery of coarse particles is the upward flow of 

elutriation water that helps to lift the larger particles into the product launder. The high content 

of solids and quiescent flow conditions within the teeter bed separator also serve as an ideal 

environment for collision and adhesion of air bubbles and particles. In addition, the high solids 

content within the teeter bed separator makes it possible to treat large tonnages in a very compact 

volume as compared to conventional flotation separations which are conducted at very low solids 

contents using large volume cells. Also, substantial energy savings are possible since the 

countercurrent flow of feed particles and elutriation water eliminates the need for intense 

agitation normally required in conventional flotation machines. 

 

1.5 Project Objectives  

The primary objective of this project is to demonstrate the enhanced capabilities of novel 

high-efficiency hydraulic separators for particle classification and concentration in the mineral 

and coal industries. Preliminary studies suggest that these technologies offer better separation 

efficiency (e.g., higher recovery, improved grade, and increased capacity) and lower operating 

cost (e.g., lower consumption of electrical power, process water, and chemical reagents) than 

conventional processes that are currently used for mineral and coal beneficiation. To meet this 

objective, a two-phase test program was conducted at several industrial plant sites.  

The objective of the Phase I effort was to systematically establish the effects of key 

design and operating variables on the performance capabilities of these high-efficiency 

separators. This effort involved extensive field tests conducted using small pilot-scale units at 

several different mineral processing and coal preparation plants. The pilot-scale tests were 



 17

necessary to collect data that would be impractical or cost prohibitive to gather in full-scale tests 

for single industrial sites. 

The objective of the Phase II effort was to further refine and demonstrate the 

effectiveness of the novel separation technologies by designing, installing and evaluating 

prototype proof-of-concept (POC) separators at commercial sites. This work was required (i) to 

accurately define the performance capabilities of these high-efficiency processes in an industrial 

environment, (ii) to provide critical scale-up criteria for the design of larger production units, and 

(iii) to fully demonstrate the potential economic benefits realized via the implementation of these 

innovative technologies.  
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2.0 EXPERIMENTAL 

2.1 General Approach  

To achieve the stated project objectives, a cooperative R&D program was conducted that 

involved two major research universities (Virginia Tech and University of Kentucky), a leading 

manufacturer of process equipment (Eriez Manufacturing, Inc.), and several mineral processing 

and coal preparation operations (Mosaic Company, TECO Mining and KenAmerica Coal). 

Virginia Tech, which served as the prime contractor for the effort, provided day-to-day 

coordination of project activities and was responsible for the set-up, operation, sampling, and 

evaluation of the proposed test circuits. Personnel from Eriez and the University of Kentucky 

assisted Virginia Tech in this effort by providing on-site personnel during the field installation 

and testing programs. These organizations were assisted by personnel from the participating 

industrial companies who provided critically needed expertise related to the operation of their 

plants. Engineering personnel from these companies also played an active role in the on-site 

coordination of the fieldwork, assisted in the analysis, review, and interpretation of the test data, 

and provided a variety of on-site services such as mechanical/electrical services, sample 

preparation, and sample analysis.  

For management reasons, the project work was performed in two distinct phases 

encompassing twelve individual tasks (see Table 2.1). In Phase I, continuous pilot-scale test 

circuits were set up and tested at several industrial sites. For phosphate operations, the pilot-scale 

tests focused primarily on improving the performance of mineral flotation circuits using the 

HydroFloat separator. Experimental studies were, however, also conducted at this site to evaluate 

the ability of the CrossFlow classifier to simplify plant circuitry and reduce operating costs (i.e., 

power, water and reagent costs). For the coal operations, the pilot-scale test work was conducted 
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using the high-efficiency CrossFlow unit to improve the recovery and quality of saleable 

products from their fine coal processing circuits. The Phase I activities required approximately 

18 months of work for project planning, field testing, process evaluation, sample analysis and 

reporting. Research personnel from the participating universities, equipment manufacturer, and 

mining companies jointly conducted these activities. 

 After successfully completing Phase I activities, suitable industrial locations were 

identified for the installation of production-scale prototypes of both the HydroFloat and 

CrossFlow technologies. Approximately 18 months of additional work was required in Phase II 

for additional project planning, scale-up design/engineering, fabrication and commissioning, 

performance testing, detailed evaluation and reporting. The equipment manufacturer and two 

industrial participants (one mineral and one coal) were largely responsible for the completion of 

these on-site demonstrations.  

 

2.2 Project Tasks for Phase I - Pilot-Scale Testing  

Task 1 – Phase I Project Planning 

Prior to initiation of experimental work, a Detailed Project Work Plan was prepared and 

submitted to DOE for approval. The work plan provided a detailed description of the proposed 

Table 2.1. Listing of project tasks conducted in Phase I and II. 
 

Phase I – Pilot-Scale Testing Phase II – Prototype Testing 
Task 1 - Phase I Project Planning 
Task 2 - Field Testing 
Subtask 2.1 - Equipment Setup 
Subtask 2.2 - Shakedown Testing 
Subtask 2.3 - Detailed Testing 
Task 3 - Process Evaluation 
Task 4 - Phase I Sample Analysis 
Task 5 - Phase I Project Report 

Task 6 - Phase II Project Planning 
Task 7 - Scale-Up Design/Engineering 
Subtask 7.1 - Flowsheet Design 
Subtask 7.2 - Equipment Design 
Task 8 - Fabrication/Commissioning 
Task 9 - Performance Testing 
Task 10 - Detailed Evaluation 
Task 11 - Final Project Report 
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test program, experimental procedures, analytical methods, and reporting guidelines for the 

implementation and completion of the proposed Phase I and Phase II efforts.  

 

Task 2 – Field Testing 

The Phase I field-testing involved (i) equipment setup, (ii) shakedown testing, and (iii) 

detailed testing of pilot-scale separators. Subtask 2.1 (Equipment Setup) focused on the 

transportation and installation of pilot-scale test units for each industrial site. For mineral 

operations, it was also necessary to install conditioning tanks in order to fully evaluate the circuit 

configurations. In addition, a wide variety of ancillary equipment, such as pumps, sumps, meters, 

etc., were also installed at each test site. Personnel from Eriez Manufacturing and the 

participating universities coordinated this effort in conjunction with staff from the participating 

mining companies. Subtask 2.2 (Shakedown Testing) was then initiated to resolve any 

unexpected operational problems that occurred at each site and to confirm that pumping 

capacities, pipe sizes, electrical supplies, control systems, etc., were adequate. Personnel from 

the participating universities and Eriez Manufacturing were largely responsible for the 

completion of this subtask. Finally, in Subtask 2.3 (Detailed Testing), several series of detailed 

tests were conducted using the pilot-scale test units to investigate the effects of the key operating 

and design parameters on separator performance. Important design parameters included (i) feed 

injection depth, (ii) distributor design, (iii) and baffle configuration. Key operating variables 

included (i) fluidization water rate, (ii) solids mass feed rate, (iii) volumetric slurry feed rate, (iv) 

teeter bed depth, and (v) reagent dosage (when required). When appropriate, sampling 

campaigns were also conducted at each of the industrial site to establish the baseline 

performance of the existing plant equipment so that the data could be fairly compared with that 
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obtained from the high-efficiency hydraulic separators. The responsibility for completing this 

work was jointly shared between the university personnel and technical staff from the mineral 

and coal producers.  

 

Task 3 – Process Evaluation 

This task involved the compiling and archiving of the raw test data. In most cases, data 

analysis consisted of evaluating the individual and combined capabilities of the various 

processing circuits examined at the industrial sites. This subtask ran concurrently with the test 

work conducted in Task 2 at each of the industrial test sites. Items addressed in the evaluation 

included (i) a summary of all the major experimental data, engineering analyses, computations, 

and test results; (ii) synopsis of the individual and combined capabilities of the various unit 

operations in terms of separation performance and throughput capacity; (iii) preliminary 

calculations of mass and liquid flow rates based on data obtained from the pilot-scale test work, 

and (iv) a complete listing of key operating demands including power consumption, process 

water usage, and reagent requirements. Criteria used in evaluating process performance included 

product yield, product recovery, product quality, rejection levels, and separation efficiency. To 

ensure that the test data are reliable and self-consistent, the experimental data was analyzed and 

adjusted using a standard mass balance program. Experimental values that were deemed by the 

mass balance routines to be unreliable were removed from the data set.  

 

Task 4 – Phase I Sample Analysis 

Detailed analyses were conducted on each of the samples collected during the proposed 

test program. Unless otherwise specified, these analyses were performed in accordance with 
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ASTM procedures and standards. Representative samples were collected around the various 

pilot-scale unit operations. Mass and liquid flow rates from most streams were directly measured 

using hand samplers or mechanical flow meters. The mass and liquid flow rate of any stream that 

could not be directly measured was back-calculated from sample assays using the two-product 

formula. 

 

Task 5 – Phase I Project Report 

Technical Progress Reports for Phase I activities were prepared and submitted to DOE on 

a quarterly basis using a PowerPoint template (provided by DOE). In addition, a written Phase I 

Topical Report was provided to DOE after the completion of the Phase I activities (Tasks 1-5). 

The draft report included all major experimental data, engineering analyses, computations, test 

results, and major findings from the Phase I work. 

 

2.3 Project Tasks for Phase II – Prototype Testing  

Task 6 – Phase II Project Planning 

This task, which was initiated after successfully completing Phase I, involved updating of 

the Project Work Plan to describe the work activities to be performed under Phase II. The revised 

plan identified the two test sites (one coal and one phosphate) for the installation of the 

production-scale prototype. An experimental test plan was also prepared to describe the sampling 

and analysis required to successfully complete the Phase II work.  
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Task 7 – Scale-up Design and Engineering 

 Subtask 7.1 (Flowsheet Design) involved the development of process flowsheets for the 

production-scale prototypes. The engineering and design work was completed as a coordinated 

effort between personnel from Eriez Manufacturing and the participating mining companies. 

Eriez Manufacturing was solely responsible for completing Subtask 7.2 (Equipment Design), 

which involved the final detailed design and engineering associated with the fabrication and 

construction of the prototype equipment.  

 

Task 8 – Fabrication, Installation, Commissioning 

This task involved the in-house fabrication of the prototype high-efficiency separators at 

the Eriez Manufacturing shop facility. Once fabrication was completed, the prototype units were 

transported to the mine sites and installed by the mining companies. All expenses associated with 

the purchase and installation of the prototype unit were completely covered by the participating 

mining companies. All project participants assisted in the final commissioning and shakedown 

testing of the prototype equipment.  

 

Task 9 – Performance Testing 

After completion of the commissioning work, detailed tests were conducted at each mine 

site in order to evaluate the capabilities of the prototype equipment. This effort, which included a 

wide variety of experimental test runs, required approximately three months of dedicated testing 

at each of the two test sites (one mineral and one coal). In each series of tests, representative 

samples of the product streams were collected and subjected to the appropriate analytical 

analysis procedures. When possible, data from existing plant separators were obtained and 
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compared with those obtained using the prototype equipment. Data logs were maintained by 

plant management to document improvements in separation performance, power consumption, 

process water usage, and reagent dosage. 

 

Task 10 – Phase II Sample Analysis 

Detailed analyses were conducted on each of the samples collected during the prototype 

test program. Unless otherwise specified, these analyses were performed in accordance with 

ASTM procedures and standards.  

 

Task 11 – Technical Evaluation 

The raw test data obtained from the testing of the prototype units was compiled and 

analyzed. A preliminary economic evaluation of the prototype installations was also carried out 

to assess the overall commercialization potential of the proposed high-efficiency hydraulic 

separators. Items examined in the economic evaluation included (i) total capital costs for the full-

scale commercial installation of the proposed circuitry and any required ancillary operations and 

(ii) expected O&M costs including electrical power, reagents, and other consumables. 

 

Task 12 – Final Project Report 

Technical Progress Reports were prepared and submitted to DOE on a quarterly basis as 

PowerPoint files. In addition, Technical Progress Reports were submitted after completing Phase 

I (Pilot-Scale Testing, Tasks 1-5) activities and Phase II (Prototype Testing, Tasks 6-12) 

activities. Information from these documents was used to prepare the Final Project Report (the 

current document). 
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3.0 RESULTS AND DISCUSSION - PHASE I 

3.1 Phase I Testing of Coal Plants 

3.1.1 Testing at Coal Plant A 

Initial field testing of the pilot-scale CrossFlow separator was conducted at Coal Plant A. 

This work involved (i) equipment setup, (ii) shakedown testing, and (iii) detailed testing. The 

goal of this effort was to determine the anticipated product yield and grade, combustible 

recovery, and feed capacity of the unit in order to predict the expected performance of a full-

scale unit. Approximately 3 months of effort were allocated for field-testing.  

 The separator was transported from Eriez Manufacturing Central Research Lab in Erie, 

Pennsylvania, to the preparation plant. With cooperation from the operators and mechanics at the 

plant, a 9x16 inch pilot-scale CrossFlow separator was installed at the Coal Plant A. A splitter-

box, fabricated at Eriez Manufacturing shop in Pennsylvania, was installed to collect the 

underflow of a classifying cyclone. The cyclones classify the raw feed with the overflow 

reporting to the froth flotation circuit and the underflow reporting to the water-only cyclones 

circuit. This splitter was fully adjustable and allowed for the easy regulation of feed rates. The 

feed sample was conveyed by gravity through a 2-inch line to the CrossFlow separator that was 

positioned one level below the classifying cyclone. Underflow and overflow material from the 

separator was discharged to sizing screens in the plant, located on a level below the unit. 

Plant compressed air and 115 volt electrical power were connected to the separator for 

the automated control system. The separator was automatically controlled through the use of a 

simple PID control loop which includes a pressure sensor mounted on the side of the separator to 

measure the relative pressure (level), a single loop PID controller, and a pneumatic pinch valve 

to control the underflow discharge to maintain a constant bed pressure (level). Clarified water 
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was connected to the separator to create the fluidized teeter bed of solids. After completing the 

installation of the test unit, preliminary shakedown testing was conducted to resolve any 

unexpected operational problems that could arise. These tests were necessary to resolve any 

problems that may have been overlooked in the initial engineering and to confirm that feed 

capabilities, pipe sizes, electrical supplies, control systems, etc., were adequate. In addition, these 

tests provided an opportunity to establish approximate settings for the various process variables 

required to provide good separation performance based on visual inspections of the products. 

Two series of detailed test programs were conducted using the pilot-scale CrossFlow 

unit. The first series of tests were performed to investigate the effects of the key design variables 

on separator performance. Important test variables included: feed injection depth and distributor 

design. In addition to determining the optimum operating variables, the first series of test 

simultaneously defined the overall grade and recovery curve for the process. The subsequent 

round of testing was used to investigate the effects of key operating parameters. The variables 

examined included: (i) fluidization water rate, (ii) solids mass feed rate, (iii) volumetric slurry 

feed rate, and (iv) teeter bed depth. A minimum of three settings were examined for each of the 

listed test parameters. For each test, samples were taken from the feed, overflow, and underflow 

streams after conditions were stabilized. Each sample was analyzed for ash and sulfur (in many 

cases on a size-by-size basis).  

 Due to the low amount of rock present in this feed, a higher feed rate was determined to 

be acceptable for this application and was utilized in much of the testing. Feed rates ranged from 

a low of 1 tph/ft2 to a high of 5 tph/ft2. The feed percent solids were reasonably constant at 40%-

50% throughout the test period. A significant difference in the feed for each series of testing 
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must be noted as the average ash content for the first series was nearly 14.0% while the average 

ash content for the second series was only 10.5%.  

 The as-tested coal slurry was found to have a mean particle size of 0.631 mm during the 

first series of testing and 0.572 mm during the second series of testing. The solids specific 

gravity was measured to be 1.55 with a solids content of 50%. The feed size distribution is 

summarized in Table 3.1. Table 3.2 provides a summary of the operating parameters that were 

Table 3.1. Feed size distribution of Coal Plant A. 
 

Size Class Round 1 Round 2 
(Mesh) (% in Class) (% Ash) (% in Class) (% Ash) 

+10 
10x14 
14x28 
28x60 
60x100 

-100 
Overall 

2.38 
8.48 
38.89 
26.53 
11.49 
12.23 
100.00 

14.02 
10.94 
11.77 
11.45 
12.99 
28.28 
13.83 

1.21 
6.92 
34.89 
29.56 
10.38 
17.04 
100.00 

6.67 
7.09 
7.27 
8.60 
9.69 
21.89 
10.39 

 

Table 3.2.  Operating parameters for on-site pilot-scale testing at Coal Plant A. 
 

Round Test  
No. 

Feed 
Flow 
(gpm) 

Feed 
Pump 
(SG) 

Feed 
Solids 
(%) 

Feed 
Rate 

(tph/ft2) 

Teeter 
Water 
(gpm) 

Bed 
Level 
No. 

1 1 
2 
3 
4 
5 
6 
7 
8 

10.0 
10.0 
9.2 
9.7 
9.8 
9.8 
12.6 
12.7 

1.17 
1.17 
1.18 
1.17 
1.17 
1.16 
1.17 
1.18 

40.9 
40.9 
43.0 
39.9 
40.9 
38.9 
39.9 
43.0 

1.2 
1.2 
1.2 
1.1 
1.2 
1.1 
1.5 
1.6 

6 
6 
6 
6 
6 
6 
6 
6 

64 
64 
99 
97 
95 
96 
96 
92 

2 9 
10 
11 
12 
13 
14 

30.0 
35.3 
33.3 
28.6 
28.6 
20.0 

1.21 
1.20 
1.20 
1.20 
1.20 
1.19 

48.9 
47.0 
46.4 
470 
47.0 
44.0 

4.4 
5.0 
4.6 
4.0 
4.0 
2.6 

7 
7 
7 
7 
7 
7 

94 
92 
93 
94 
94 
90 



 28

investigated during both rounds of testing. To ensure the test data was reliable and self-

consistent, all test data was analyzed and adjusted using mass balance software. Experimental 

values that were deemed by the mass balance routines to be unreliable were removed from the 

data set. The participating mining company used the compiled data to establish the metallurgical 

improvement, operating savings and economic payback that may be realized by implementing 

the proposed high-efficiency technologies.  

 The results from the on-site CrossFlow separator investigation are shown graphically in 

Figures 3.1 through 3.3. The results are summarized as: “As-Tested” and “x 100 Mesh” with the 

passing 100-mesh material mathematically removed from the data. This approach is acceptable 

as it is expected that the clean coal product will be deslimed at approximately 0.150 mm. The 

material finer than 100 mesh will be upgraded by flotation at this particular plant. 

 As presented in Figure 3.1, this pilot-scale test work was able to define the expected 
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Figure 3.1.  Combustible recovery vs. product ash content for Coal Plant A. 
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grade and recovery curve for this particular coal. Specifically, the CrossFlow separator is capable 

of providing a clean product ranging between 6% and 8% ash at a combustible recovery of 

greater than 95% (when deslimed at 100 mesh). At maximum separation efficiency, the 

combustible recovery, for this application, approached 98%. The data presented in Figure 3.2 

indicates that the sulfur content of the corresponding product will be approximately 1.75%.  

 Figure 3.3 is included to demonstrate the ability of the CrossFlow separator to provide 

high combustible recoveries even when operated at elevated throughput rates. During the second 

series of testing, the feed rate was increased to a very high value of 5 tph/ft2. During this time, 

the combustible recovery remained unaffected. It must also be noted that the feed ash during this 

second series of testing was significantly lower than the first series of testing, resulting in 

product yields greater than 96%. Simply stated, there was not a significant amount of rock 
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Figure 3.2.  Mass yield vs. product sulfur content for Coal Plant A. 
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present in the feed stream. Regardless, the CrossFlow separator was able to produce a tailings 

stream with an ash content averaging 76.5% and a corresponding sulfur content averaging 

12.20% for this particular feed coal. 

 The material balance presented in Figure 3.4 is included as a summary of the test work 

conducted at the Coal Plant A. This material balance includes all expected metallurgical results, 

ancillary requirements, and volumetric flows for a full-scale installation with the capacity to treat 

150 tph of feed at approximately 50% solids (by weight). For this duty, a 7x7-ft CrossFlow 

separator has been recommended for the operation, offering 49 ft2 of cross-sectional area which 

results in a normalized feed rate of 3 tph/ft2. The current test work has demonstrated the ability 

of the CrossFlow separator to handle this entire flow in a single stage circuit. 
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Figure 3.3.  Combustible recovery vs. feed tonnage for Coal Plant A. 
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3.1.2 Testing at Coal Plant B 

 The next set of field-tests with the pilot scale CrossFlow separator were carried out at a 

second coal plant (Plant B). As before, this work involved (i) equipment setup, (ii) shakedown 

testing, and (iii) detailed testing. In this particular case, the goal of this effort was to determine 

the anticipated product yield and grade, combustible recovery, and feed capacity of the unit for 

comparison against the existing spiral circuit. Approximately 3 months of effort were allocated 

 
 

Figure 3.4.  Material balance for a CrossF;ow separator treating 150 tph. 
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Figure 3.5.  The 9x16 inch pilot-scale Crossflow circuit at Coal Plant B. 

for field-testing. Individuals from Eriez Manufacturing and Virginia Tech participated in the 

testing at Coal Plant B with cooperation from key personnel at the processing plant.   

 The separator was transported from the Coal and Minerals Research Lab at Virginia Tech 

in Blacksburg, Virginia to the preparation plant. The 9x16 inch pilot-scale CrossFlow separator 

was installed at the Coal Plant B as shown in Figure 3.5. Feed was supplied to the CrossFlow 

separator through a 2 inch line connected to existing coal spiral slurry feed distributor. A slurry 

splitter fabricated from PVC pipe with a tee and valves was used to regulate the feed to the unit, 

with the remaining slurry reporting to the spiral circuit. Underflow and overflow material was 

discharged to sizing screens in the plant, located on a level below the unit. 

 Plant compressed air and 115 volt electrical power were connected to the separator for 
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the automated control system. The separator was automatically controlled through the use of a 

simple PID control loop which includes a pressure sensor mounted on the side of the separator to 

measure the relative pressure (level), a single loop PID controller, and a pneumatic pinch valve 

to control the underflow discharge to maintain a constant bed pressure (level). Clarified water 

was connected to the separator to create the fluidized teeter bed of solids. 

 After completing the installation of the test unit, preliminary shakedown testing was 

conducted to resolve any unexpected operational problems that could arise. These tests were 

necessary to resolve any problems that may have been overlooked in the initial engineering and 

to confirm that feed capabilities, pipe sizes, electrical supplies, control systems, etc., were 

adequate.  

 Two series of detailed test programs were conducted using the pilot-scale test unit. The 

first series of tests were performed to investigate the effects of the key design variables on 

separator performance and to simultaneously define the overall grade and recovery curve. The 

subsequent series of testing was performed to investigate the effects of key operating parameters. 

Tests were conducted primarily as a function of teeter bed pressure and fluidization water rate. 

The coal/rock interface, or teeter bed, was adjusted to different levels (i.e. different bed pressure) 

for each steady-state test. Fluidization water was adjusted to fine tune the separation. Other 

variables considered were solids mass feed rate and volumetric slurry feed rate. For each test, 

samples were taken from the feed, overflow, and underflow streams after conditions were 

stabilized. The samples were analyzed for ash and sulfur (by-size).  

 Six test runs were completed during the on-site test work. Additionally, a set of samples 

was taken with regard to the existing coal spirals. The spiral samples were collected during the 

same time frame as tests #3, #4, and #5 of the CrossFlow separator evaluation. 
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The particles in the feed slurry were found to have a mean diameter of 0.406 mm. The 

solids specific gravity was measured to be 1.55. Feed percent solids ranged between 35% and 

40% and the feed rate varied from 2.0-2.8 tph/ft2. The feed size distribution is summarized in 

Table 3.3. Table 3.4 is a summary of the array of operating parameters that were investigated 

during testing. To ensure the test data was reliable and self-consistent, all as-received results 

were analyzed and adjusted using mass balance software. Experimental values that were deemed 

by the mass balance routines to be unreliable were removed from the data set. The participating 

mining company used the compiled data to establish the metallurgical improvement, operating 

savings and economic payback that may be realized by implementing the proposed high-

Table 3.3.  Feed size distribution of Coal Plant B. 

Stream   Size   Weight Ash 
Description Passing Retained Mean (%) (%) 
Plus 16 M *** 1.000 1.000 6.24 9.94 
16x32 M 1.000 0.500 0.707 23.87 11.23 
32x60 M 0.500 0.250 0.354 29.38 12.53 
60x100 M 0.250 0.150 0.194 22.54 13.75 

Minus 100 M 0.150 *** 0.150 17.97 39.17 
Composite     0.406 100.00 17.12 

 

Table 3.4.  Operating parameters for on-site pilot-scale testing at Coal Plant B. 

Unit Test Feed Level Water 
Operation Number % Solids tph gpm inches gpm 

              
CrossFlow XF1 35.5 2.01 21.90 6.0 4.76 
CrossFlow XF2 36.3 2.38 23.35 12.0 4.76 
CrossFlow XF3 38.5 2.83 26.06 8.0 3.61 
CrossFlow XF4 37.2 2.56 24.79 8.0 4.72 
CrossFlow XF5 35.8 2.49 25.02 8.0 5.51 
CrossFlow XF6 38.1 2.48 24.37 8.0 4.44 

Spiral* 7 38.0 3.50 32.70 n/a n/a 
              

 * Samples taken during tests 3, 4 and 5  
 * Multiple starts, 3 product screen feed, 1 reject screen feed 
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efficiency technologies.  

The as-received results, as analyzed and adjusted using a mass balance program, are 

reported in Table 3.5. The products were sized at 100 mesh so that each fraction could be 

evaluated separately. As expected, the minus 100 mesh product had a higher ash content than the 

plus 100 mesh fraction. This is expected as fine material, especially passing 150 mesh, tends to 

Table 3.5.  In-plant test results for Coal Plant B. 

    Mass Ash Sulfur Comb Sulfur Ash Sulfur
Size Test Yield Assay Assay Rec Rec Rej Rej 

Fraction Number (%) (%) (%) (%) (%) (%) (%) 
                  

Plus 100 XF1 96.04 10.06 4.07 98.80 92.60 23.19 7.40 
Composite XF1 96.54 15.80 5.16 98.91 94.54 14.38 5.46 

Feed XF1 100.00 17.81 5.27 100.00 100.00 0.00 0.00 
                  

Plus 100 XF2 96.22 9.25 3.97 98.50 93.46 21.56 6.54 
Composite XF2 96.80 15.00 4.99 98.67 95.18 12.59 4.82 

Feed XF2 100.00 16.61 5.08 100.00 100.00 0.00 0.00 
                  

Plus 100 XF3 94.09 10.03 4.04 97.94 89.91 30.48 10.09 
Composite XF3 94.87 15.48 5.16 98.14 92.40 19.72 7.60 

Feed XF3 100.00 18.30 5.30 100.00 100.00 0.00 0.00 
                  

Plus 100 XF4 96.16 9.76 4.04 98.75 92.73 22.61 7.27 
Composite XF4 96.76 14.75 5.17 98.90 94.82 13.98 5.18 

Feed XF4 100.00 16.60 5.28 100.00 100.00 0.00 0.00 
                  

Plus 100 XF5 96.70 10.12 4.05 99.17 94.39 20.78 5.61 
Composite XF5 97.21 16.18 5.33 99.25 96.07 12.14 3.93 

Feed XF5 100.00 17.90 5.39 100.00 100.00 0.00 0.00 
                  

Plus 100 XF6 97.03 10.11 4.06 99.26 94.30 19.16 5.70 
Composite XF6 97.47 15.19 5.35 99.34 96.04 11.79 3.96 

Feed XF6 100.00 16.78 5.43 100.00 100.00 0.00 0.00 
                  

Plus 100 Spiral 92.32 8.82 4.08 97.10 87.91 38.82 12.09 
Composite Spiral 90.56 13.75 5.00 96.19 81.84 33.77 18.16 

Feed Spiral 100.00 18.80 5.53 100.00 100.00 0.00 0.00 
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report to the separator overflow due to its relatively small mass. In essence, the teeter water 

overcomes the settling velocity of these particles and flushes them out of the separator. As such, 

the results in this report are compared on a plus 100 mesh basis. This is acceptable as the existing 

circuit incorporates dewatering screens for each of the product streams. 

 The results from the pilot-scale CrossFlow separator investigation are shown graphically 

in Figure 3.6 for the +100 mesh material. The results of the CrossFlow separator are comparable 

to the existing coal spirals. Upon close examination (Figure 3.6 inset), when compared to the 

coal spirals, the CrossFlow separator provides a marginally better clean coal yield at 96% vs. 

92%. However, the higher product yield also generates a product with slightly higher ash content 
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Figure 3.6.  Yield vs. clean coal ash for +100 mesh size fraction at Coal Plant B. 
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at 9.25-10.00% vs. 8.8%. Lower product ash values are possible using the CrossFlow separator 

and can be achieved through lower fluidization rates and/or bed pressures. 

 Data in Figures 3.7 and 3.8 shows the size-by-size results from Table 3.5 graphed by size 

class. In these charts, the left most (i.e., lowest ash and sulfur) data points correspond to the plus 

100 mesh size fraction. The data points in the middle position represent the composite (100 mesh 

x 0) size fraction. The right-most data points (shown at 100% yield) correspond to the feed 

grade. 

 The data demonstrate that for any given product ash content or sulfur content, the 

CrossFlow separator can produce a higher clean coal yield when compared to the existing coal 
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Figure 3.7.  Performance for +100 mesh and composite samples at Coal Plant B. 
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spirals. Essentially, at 10% product ash content, the CrossFlow separator operates with a clean 

coal yield ranging between 96% and 97%, while the spirals produce a yield of approximately 

92%. It should be noted that a 4% difference in clean coal yield for a 200 tph circuit can 

represent a $1,400,000 per year (i.e., 200 tph x 7000 hr/yr x $25/ton x (YieldCF - YieldS)). A 

similar trend is also shown when examining the sulfur data (Figure 3.8). 

 Results indicate that the performance of the CrossFlow separator was equal or superior to 

the performance of the existing spiral circuit for this preparation plant. The material balance 

presented in Figure 3.9 is included as a summary of the test work conducted at the Coal Plant B. 

The material balance includes all expected metallurgical results, ancillary requirements, and 
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Figure 3.8.  Performance for +100 mesh and composite samples at Coal Plant B. 
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volumetric flows for a full-scale installation capable of treating the required 200 tph flow with 

one 7x7-ft CrossFlow separator. 

 

3.1.3 Testing at Coal Plant C 

Additional field testing of the CrossFlow separator was performed for Coal Plant C. This 

work involved equipment setup, shakedown and detailed testing. The goal of this particular 

effort was to determine the anticipated product yield and grade, combustible recovery, and feed 

 

Figure 3.9.  Material balance for two 7x7 ft CrossFlow separators. 
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capacity of the unit. In this case, the CrossFlow separator was to be evaluated as a potential 

replacement for an existing single-stage spiral circuit. Approximately 3 months of effort were 

allocated for field-testing at this site. Individuals from Virginia Tech and University of Kentucky 

participated in the testing at Coal Plant C with cooperation from key personnel at the processing 

plant.   

 The CrossFlow separator was transported from the University of Kentucky in Lexington, 

Kentucky, to the preparation plant. With cooperation from the operators and mechanics at the 

plant, the 12-inch diameter pilot-scale CrossFlow separator was installed at the Coal Plant C (see 

Figure 3.10). Feed was supplied to the CrossFlow separator through a 2-inch line by connecting 

to an existing coal slurry spiral feed distributor. A slurry splitter fabricated from PVC pipe with a 

 

 
 

Figure 3.10.  The12-inch diameter pilot-scale CrossFlow circuit at Coal Plant C. 
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tee and valves was used to regulate the feed to the unit, with the remaining slurry reporting to the 

spiral circuit. Underflow and overflow material was discharged to the spiral underflow launders. 

 As with the other test sites, plant compressed air and 115 volt electrical power were 

connected to the separator for the automated control system. The separator was automatically 

controlled through the use of a simple PID control loop which includes a pressure sensor 

mounted on the side of the separator to measure the relative pressure (level), a single loop PID 

controller, and a pneumatic pinch valve to control the underflow discharge to maintain a constant 

bed pressure (level). Clarified water was connected to the separator to create the fluidized teeter 

bed of solids. 

 After installation was complete, preliminary shakedown testing of the unit was conducted 

to resolve any unexpected operational problems that could arise. These tests were designed to 

resolve any problems that may have been overlooked in the initial engineering and to confirm 

that feed capabilities, pipe sizes, electrical supplies, control systems, etc., were adequate.  

Two series of detailed test programs were conducted using the pilot-scale test unit. The 

first series of tests were performed to investigate the effects of the key design variables on 

separator performance and to simultaneously define the overall grade and recovery curve. The 

subsequent series of testing was used to investigate the effects of key operating parameters. Tests 

were conducted primarily as a function of teeter bed pressure and fluidization water rate. The 

coal/rock interface, or teeter bed, was adjusted to different levels (i.e. different bed pressure) for 

each steady-state test. Other variables that were considered were solids mass feed rate and 

volumetric slurry feed rate. For each test, samples were taken from the feed, overflow, and 

underflow streams after conditions were stabilized. Each sample was sized and analyzed for ash 

and sulfur contents.  
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 Nine test runs were completed during the on-site test work conducted at Coal Plant C. 

Table 3.6 is a summary of the operating parameters that were investigated during testing. The set 

point transition between tests #4 and #5 is due to recalibration of the control system. The 

difference in the set point when treating the Seam A and Seam B is due to the particle size 

distribution difference and the desire to maintain a constant bed height. Additionally, samples 

were collected from the process streams of the existing coal spirals when treating the Seam A 

and Seam B fine coal. 

 To ensure the test data was reliable and self-consistent, all as-received results were 

analyzed and adjusted using mass balance software.  Experimental values that were deemed by 

the mass balance routines to be unreliable were removed from the data set. The participating 

mining company used the compiled data to establish the metallurgical improvement, operating 

savings and economic payback that may be realized by implementing the proposed high-

efficiency technologies.  

 The Coal Plant C treats coal from both the coal seams separately. As such, the teeter-bed 

 

Table 3.6.  Operating parameters for on-site pilot scale testing at Coal Plant C. 

Feed 

Rate Test Seam Set 
Point 

Solid 
Density 

(%) 
Pulp Density 

(gm/cm3) 
Solids 
(%) gpm tph tph/ft2

1 B 46 1.6 1.088 21.57 12 0.7 0.4 
2 A 46 1.6 1.13 30.68 14 1.21 0.69 
3 A 46 1.6 1.09 22.02 11.65 0.7 0.4 
4 A 45 1.6 1.09 22.02 12.32 0.74 0.42 
5 B 78 1.6 1.1 24.24 9.83 0.66 0.37 
6 B 79 1.6 1.13 30.68 9.49 0.82 0.47 
7 A 87 1.6 1.125 29.63 19.47 1.62 0.92 
8 A 88 1.6 1.1 24.24 16.22 1.08 0.61 
9 B 80 1.6 1.13 30.68 10.5 0.91 0.52 
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unit was evaluated for the cleaning potential of the nominal 16 x 100 mesh fractions of both 

coals. Feed percent solids ranged between 22% and 30% during the test program, with variations 

in the mass feed rate to the unit varying from 0.37-0.92 tph/ft2. Samples of the feed to the teeter-

bed unit were taken and subjected to washability and particle size analysis. The washability data 

indicates that both coals can be classified as ‘easy-to-clean’ based on their relatively low 

contents of middling material, their cumulative float ash contents of less than 5%, and 

combustible recovery greater than 95%. The difference in the two coals is that the Seam B coal 

produces a one percentage point lower float ash content. 

The particle size distribution of Seam B feed coal was significantly finer than the Seam A 

coal as shown in Table 3.7. The minus 100 mesh fraction was removed from the particle size 

analysis since the concentration on cleaning potential was isolated on the plus 100 mesh 

material. Both coals only had 1% to 2% by weight of plus 16 mesh material in the feed. 

However, the Seam B material had nearly 12 percentage points less of the coarsest plus 28 mesh 

size fraction. This finding explained the need to operate at this particular site at lower bed 

pressure settings in order to maintain the same fluidized particle bed height. The distributions of 

the ash-bearing material in both coals are nearly equivalent. 

 The CrossFlow unit achieved excellent separation performances for both feed coals as 

 
Table 3.7.  Feed size distribution for Coal Plant C. 

Seam B Seam A Particle Size 
(Mesh) Weight (%) Ash (%) Weight (%) Ash (%) 

+28 16.98 15.63 29.20 17.28 
28 x 48 35.98 18.38 31.56 19.30 
48 x 100 47.04 19.51 39.24 19.20 

Total 100.00 18.44 100.00 18.67 
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shown in Table 3.8 and Figure 3.11. For the Seam B coal, the ash content was reduced from 

17.57% to a value as low as 6.51% while recovering 97% of the combustible material. Similar 

performances were achieved on the Seam A coal with product ash values as low as 7.51%. The 

performances from eight of the nine tests were very close to ideal as indicated by the comparison 

with the washability data in Figure 3.11. The teeter-bed performances compare favorably with 

those achieved by the existing spiral circuit shown in Table 3.9. 

 The size-by-size performance of the test unit is shown in Tables 3.10 and 3.11 for the 

Seam B and Seam A coals, respectively. These results indicate that the teeter-bed unit performed 

exceptionally well on the plus 28 mesh and the 28 x 48 mesh particle size fractions. For example, 

a 2.87% product ash was achieved from the plus 28 mesh Seam B coal, while the tailings ash 

content was maintained at a relatively high 72.26%. However, the separation density appears to 

shift upward significantly with a decrease in particle size as evident by the higher product ash 

contents in the 48 x 100 mesh particle size fractions of both coals. 

 
Table 3.8.  CrossFlow separation performances at Coal Plant C. 

 
Ash (%) Test 

Number Feed Product Tailing 
Yield 
(%) 

Recovery 
(%) 

1 19.96 9.97 86.67 86.97 97.83 
2 20.54 14.55 86.88 91.71 98.63 
3 18.99 8.45 82.06 85.68 96.83 
4 24.05 10.01 76.51 78.89 93.47 
5 17.57 6.51 84.08 85.74 97.25 
6 17.57 7.69 86.43 87.45 97.93 
7 21.44 13.45 86.43 89.06 98.11 
8 21.21 8.86 83.25 83.40 96.47 
9 23.43 7.51 50.09 62.61 75.63 
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3.1.4 Testing at Coal Plant D  

The next coal plant involved in the field-testing of the pilot-scale CrossFlow separator 

was Coal Plant D. As with the other test sites, this work involved (i) equipment setup, (ii) 

shakedown testing, and (iii) detailed testing. The goal of this effort was to determine the 

anticipated product yield and grade, combustible recovery, and feed capacity of the test unit in 

order to predict the expected performance of a full-scale unit. In this particular case, the testing 

was performed to determine whether the installation of one or more full-scale units could be 

justified at a new green-field plant in Kentucky. Approximately 3 months of effort were 
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Figure 3.11.  Comparison of separation performance and washabilities at Coal Plant C. 



 46

allocated for field-testing. Individuals from Eriez Manufacturing participated in the testing at 

Coal Plant D with cooperation from key personnel at the preparation plant.  

 The CrossFlow separator was transported from Eriez Manufacturing Central Research 

Lab in Erie, Pennsylvania to the preparation plant. The 9x16 inch pilot-scale CrossFlow 

separator was installed at the Coal Plant D (as shown in Figure 3.12), with the cooperation from 

the operators and mechanics at the plant. Feed was supplied to the CrossFlow separator through a 

 
Table 3.9.   Separation achieved by the existing spiral circuit at Coal Plant C. 

 
Ash (%) Test 

Number Seam 
Feed Product Tailing 

Yield 
(%) 

Recovery 
(%) 

1 SEAM B 17.57 5.22 85.51 84.61 97.29 
2 SEAM A 21.44 7.49 85.07 82.03 96.58 

 
 
 

Table 3.10.  Size-by-size performance for Seam B fine coal at Coal Plant C. 
 

Feed Product Tailings Particle 
Size 

(Mesh) 
Weight 

(%) 
Ash 
(%) 

Weight
(%) 

Ash 
(%) 

Weight
(%) 

Ash 
(%) 

Yield 
(%) 

Recovery 
(%) 

+ 28 
28 x 48 
48 x 100 

16.98 
35.98 
47.04 

15.63 
18.38 
19.51 

17.32 
44.87 
37.81 

2.87 
4.53 
11.70 

22.74 
49.12 
28.14 

72.26 
85.86 
89.96 

81.61 
82.97 
82.97 

93.95 
97.05 
98.76 

Total 100.00 18.44 100.00 6.95 100.00 83.92 85.07 97.06 
 
 
 

Table 3.11.  Size-by-size performance for Seam A fine coal at Coal Plant C. 
 

Feed Product Tailings Particle 
Size 

(Mesh) 
Weight 

(%) 
Ash 
(%) 

Weight
(%) 

Ash 
(%) 

Weight
(%) 

Ash 
(%) 

Yield 
(%) 

Recovery 
(%) 

+ 28 
28 x 48 
48 x 100 

29.20 
31.56 
39.24 

17.28 
19.30 
19.20 

22.38 
34.84 
42.78 

5.01 
7.66 
12.03 

44.45 
38.69 
16.86 

74.48 
84.48 
87.81 

82.34 
84.85 
90.54 

94.55 
97.09 
98.57 

Total 100.00 18.67 100.00 8.94 100.00 80.60 86.42 96.76 
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2 inch line connected to the existing coal spiral slurry feed distributor. A slurry splitter fabricated 

from PVC pipe with a tee and valves was used to regulate the feed to the unit, with the remaining 

slurry reporting to the spiral circuit. Underflow and overflow material was discharged to sizing 

screens in the plant, located on a level below the unit. 

 Plant compressed air and 115 volt electrical power were connected to the separator for 

the automated control system. The separator was automatically controlled through the use of a 

simple PID control loop which includes a pressure sensor mounted on the side of the separator to 

measure the relative pressure (level), a single loop PID controller, and a pneumatic pinch valve 

to control the underflow discharge to maintain a constant bed pressure (level). Clarified water 

was connected to the separator to create the fluidized teeter bed of solids. 

 

 

Figure 3.12.  The 9x16-inch pilot-scale CrossFlow circuit at Coal Plant D. 
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Preliminary shakedown testing was conducted after completing the installation of the test 

unit to resolve any unexpected operational problems that could arise. These tests were conducted 

to resolve any problems that may have been overlooked in the initial engineering and to confirm 

that feed capabilities, pipe sizes, electrical supplies, control systems, etc., were adequate.  

 Two series of detailed test programs were conducted using the pilot-scale test unit. The 

first series of tests were performed to investigate the effects of the key design variables on 

separator performance and to simultaneously define the overall grade and recovery curve. The 

subsequent series of testing was performed to investigate the effects of key operating parameters. 

Tests were conducted primarily as a function of teeter bed pressure and fluidization water rate. 

The coal/rock interface, or teeter bed, was adjusted to different levels (i.e. different bed pressure) 

for each steady-state test. Fluidization water was adjusted to fine tune the separation. Other 

variables considered were solids mass feed rate and volumetric slurry feed rate. For each test, 

samples were taken from the feed, overflow, and underflow streams after conditions were 

stabilized. The samples were analyzed for ash and sulfur contents on a size-by-size basis.  

 To ensure the test data was reliable and self-consistent, all test data was analyzed and 

adjusted using mass balance software. Experimental values that were deemed by the mass 

balance routines to be unreliable were removed from the data set. The participating mining 

company used the compiled data to establish the metallurgical improvement, operating savings 

and economic payback that may be realized by implementing the proposed high-efficiency 

technologies.  

 Nine test runs were completed during the on-site test work.. The parameters of these tests 

are summarized in Table 3.12. The results from the on-site CrossFlow separator investigation are 

shown graphically in Figures 3.13 and 3.14. The results are summarized as: “As-Tested” and “x 
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100 Mesh” with the passing 100 mesh material mathematically removed from the data. This 

approach is acceptable as it is expected that the clean coal product will be deslimed at 

approximately 0.150 mm and the fine material upgraded by flotation. 

 As shown in Figure 3.13, this pilot-scale test work was able to define the expected grade 

Table 3.12.  Operating parameters for on-site pilot-scale testing at Coal Plant D. 
 

Test Feed Level Water 
Number % Solids tph gpm inches gpm 

1 32.55 1.83 20 14.5 8 
2 34.44 1.95 20 20.0 8 
3 35.24 2.00 20 10.0 8 
4 35.71 1.73 17 10.0 9.5 
5 32.90 2.22 24 14.5 9.5 
6 32.71 1.84 20 20.0 9.5 
7 35.21 2.00 20 20.0 6.5 
8 34.10 1.93 20 14.5 6.5 
9 33.55 1.89 20 10.0 6.5 
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Figure 3.13.  Recovery vs. product ash content of +100 mesh coal at Coal Plant D.  
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and recovery curve. Specifically, the CrossFlow separator is capable of producing a product 

ranging between 6% and 11% ash at a combustible recovery of greater than 97% (when deslimed 

at 100 mesh). At maximum separation efficiency, the combustible recovery, for this application, 

approached 98%. The data presented in Figure 3.14 indicates that the sulfur content of the 

corresponding product will be approximately 1.50%. Table 3.13 is a summary of test results of 

the “x 100 Mesh” material for all nine tests conducted during this series.  

 The material balance outlined in Figure 3.15 is included as a summary of the test work 

conducted at the Coal Plant D. This material balance includes all expected metallurgical results, 

ancillary requirements, and volumetric flows for a full-scale installation with the capacity to treat 

175 tph of feed at approximately 50% solids, by weight. A 9x9-ft CrossFlow separator has been 

recommended for the circuit, offering 81 ft2 of cross-sectional area which results in a normalized 

feed rate of 2.1 tph/ft2. The current test work has demonstrated the ability of the CrossFlow 
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Figure 3.14.  Mass yield vs. product sulfur content of +100 mesh coal at Coal Plant D. 
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separator to handle this entire flow in a single-stage circuit. After successful completion of 

testing at Coal Plant D, the participating company agreed to install a prototype of the CrossFlow 

technology at one of their processing facilities.  

 

3.1.5 Testing at Coal Plant E 

The last set of field tests with the CrossFlow unit were conducted at Coal Plant E. This 

effort involved equipment setup, shakedown and detailed testing. The goal of this effort was to 

determine the anticipated product yield and grade, combustible recovery, and feed capacity of 

the unit for comparison against the existing clean coal effluent cyclones at the plant. The plant 

personnel desired to classify minus 28 mesh clean coal slurry into plus 100 mesh and minus 100 

mesh fractions. Individuals from Virginia Tech participated in the testing at Coal Plant E with 

cooperation from key personnel at the preparation plant.   

 The 9x16 inch CrossFlow separator was transported from the Coal and Minerals 

Research Lab at Virginia Tech in Blacksburg, Virgina to the preparation plant. With cooperation 

from the operators and mechanics at the plant, the separator was installed at the plant (Figure 

Table 3.13. Test results for +100 mesh coal at Coal Plant D. 

  Feed   Comb. Ash 
Test Rate Ash Yield Recovery Rejection 
No. (tph) (%) (%) (%) (%) 
1 1.83 9.08 88.99 97.92 53.48 
2 1.95 11.35 91.20 98.49 42.20 
3 2.00 9.96 92.92 98.79 39.55 
4 1.73 8.67 91.60 98.52 47.37 
5 2.22 5.95 91.05 98.52 58.58 
6 1.84 7.59 89.26 98.13 57.50 
7 2.00 10.32 93.37 98.97 37.39 
8 1.93 9.66 89.10 97.87 51.51 
9 1.89 8.82 88.50 97.47 54.64 
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3.16). Feed was supplied to the separator through a 2 inch line by connecting to a sampling port 

located on the feed manifold for the existing clean coal effluent cyclones. Underflow and 

overflow material was discharged to sizing screens in the plant, located on a level below the unit. 

 Plant compressed air and 115 volt electrical power were connected to the separator for 

the automated control system. The separator was automatically controlled through the use of a 

simple PID control loop which includes a pressure sensor mounted on the side of the separator to 

measure the relative pressure (level), a single loop PID controller, and a pneumatic pinch valve 

 
 

Figure 3.15.  Material balance for a CrossFlow separator treating 175 tph. 
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to control the underflow discharge to maintain a constant bed pressure (level). Clarified water 

was connected to the separator to create the fluidized teeter bed of solids. 

 After completing the installation of the test unit, preliminary shakedown testing was 

conducted to resolve any unexpected operational problems that could arise. These tests were 

normally necessary to resolve any problems that may have been overlooked in the initial 

engineering and to confirm that feed capabilities, pipe sizes, electrical supplies, control systems, 

etc., were adequate. In addition, the shakedown tests provided an opportunity to roughly 

determine the ranges of operating conditions that would be most appropriate for this particular 

application. 

 

Figure 3.16.  The 9x16-inch pilot-scale CrossFlow circuit at Coal Plant E. 
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 Two series of detailed test programs were conducted using the pilot-scale test unit. The 

first series of tests were performed to investigate the effects of the key design variables on 

separator performance and to simultaneously define the overall grade and recovery curve. The 

subsequent series of testing was used to investigate the effects of key operating parameters. Tests 

were conducted primarily as a function of teeter bed pressure and fluidization water rate. The 

coal/rock interface, or teeter bed, was adjusted to different levels (i.e. different bed pressure) for 

each steady-state test. Fluidization water was adjusted to fine tune the separation. For each test, 

samples were taken from the feed, overflow, and underflow streams after conditions were 

stabilized. Five test runs were completed during the on-site test work.  

 Due to the low percent solids, the fine size distribution, and the low specific gravity of 

the material, bed development in the CrossFlow separator was very difficult for this particular 

application. Initial plans to feed the unit at 1 tph/ft2 could not be obtained due to the turbulence 

occurring in the bed formation area. Feed rates were slowly reduced over time until a 0.10 tph/ft2 

feed rate with a water addition rate of 1.5 gpm produced a stable bed in the unit. Even at this low 

feed rate, an appreciable amount of plus 100 mesh material was still reporting to the overflow. 

Five sets of samples were collected of the feed, overflow, and underflow streams. However, 

laboratory analyses were not conducted on these samples because visual observations of the 

product streams indicated poor performance at attempting to classify the feed stream.  

 The coal slurry evaluated in this series of experiments possessed a mean particle size of 

0.075 mm. Table 3.14 is a summary of the array of operating parameters that were investigated 

during testing. The feed slurry specific gravity was measured to be 1.05 with an average of 12% 

solids. The feed rate was varied from 0.02-0.09 tph/ft2. Due to the poor separation performance, 

the classification of very fine coal slurry using the CrossFlow is not recommended for this site. 
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3.1.6 Discussion of Coal Plant Results 

A comprehensive study of the CrossFlow separator was conducted at four coal 

preparation plants located in the eastern United States. In-plant testing of a 9 x 16 inch unit 

resulted in separation efficiencies at or above existing classification equipment in the size class 

of 0.2 to 1.0 mm. The data demonstrated that for any given product ash content or sulfur content, 

the CrossFlow separator produced a higher clean coal yield and higher combustible recoveries at 

higher feed rates when compared to the existing coal spirals. The CrossFlow also demonstrated 

its ability to handle the entire flow of multiple spirals in a single-stage circuit. For the case where 

the ultimate goal was to compare results against the existing clean coal effluent cyclones (28 

mesh by zero material at 100 mesh), it was determined that the material was too fine to develop 

the necessary teeter-bed, and the project was therefore abandoned. On the other hand, the test 

work conducted in this series of tests supports the replacement of spirals with the CrossFlow 

technology for several applications. As a result, one of the coal mining companies participating 

in this project agreed to purchase a prototype separator for evaluation under Phase II.  

Table 3.14.  Operating Parameters for On-Site Pilot Scale Testing at Coal Plant E. 
 

Unit Test Feed Bed Water 
Operation Number % Solids tph gpm Level Gpm 
CrossFlow F1 12 0.09 2.8 80 4.0 
CrossFlow F2 12 0.09 2.8 80 4.0 
CrossFlow F3 12 0.05 1.6 80 3.0 
CrossFlow F4 12 0.04 1.2 80 1.5 
CrossFlow F5 12 0.02 0.5 80 1.5 
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3.2 Phase I Testing of Phosphate Plants  

3.2.1 Testing at Phosphate Plant A 

The Phase I field-testing of the HydroFloat separator involved equipment setup, 

shakedown and detailed testing at the Phosphate Plant A. The goal of this effort was to compare 

the unit to existing conventional cells in several different areas of the plant by analyzing the 

anticipated product grade and recovery, insol content, reagent consumption, and feed capacity at, 

and above, design feed rates of the unit. The three areas of the plant where the HydroFloat 

separator was tested included the fine feed, amine flotation and coarse feed circuits.    

 The main objective of the fine and coarse phosphate testing was to demonstrate the 

potential of the unit as a candidate for the process equipment in a proposed plant design with 

both fine and coarse circuits. The main objective of the amine flotation testing was to 

demonstrate the feasibility of using the unit for silica flotation and to develop data to determine 

its potential application for use in the amine flotation circuit at Phosphate Plant A. 

Approximately 6 months was allocated to this task.  

 Individuals from Eriez Manufacturing and Virginia Tech participated in the testing at 

Phosphate Plant A with cooperation from key personnel at the processing plant.  Additional tests 

were conducted by Phosphate Plant A representatives to expand the data base for evaluating the 

potential of incorporating the HydroFloat separator into proposed circuit upgrades.  

 Preliminary shakedown testing was conducted after completing the installation of the test 

HydroFloat unit to resolve any unexpected operational problems that could arise. These tests are 

normally necessary to resolve any problems that may have been overlooked in the initial 

engineering and to confirm that feed capabilities, pipe sizes, electrical supplies, control systems, 

etc., are adequate. An average of six shakedown tests per circuit was conducted with the unit. 
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 Two series of detailed test programs were conducted using the pilot-scale test unit. The 

first series of test were performed to investigate the effects of the key design variables on 

separator performance and to simultaneously define the overall grade and recovery curve.  

 The HydroFloat separator is designed for feed rates of 2 tph/ft2 and 1 tph/ft2 rougher 

concentrate, which allows the test unit to operate at 4 tph feed and 2 tph concentrate, 

respectively. The initial testing in the fine and coarse circuit evaluated the unit at loading rates 

much higher than design to establish the recovery fall-off. The design rates for the amine 

flotation circuit were not precisely known going into the testing, but were thought to be similar 

to those for rougher flotation. Part of the amine testing program was devoted to determining the 

design rates and evaluating the HydroFloat separator performance across the board, both at the 

design rate and above.  

 With the recovery fall-off determined for each circuit and unit configuration, the 

subsequent series of testing was used to investigate the effects of key operating parameters. Tests 

were conducted to establish reagent consumption (fatty acid, surfactant, amine and diesel oil), to 

investigate the bed levels and sparger water required for the best unit operation and to investigate 

the variability associated with the overall system. For each test, samples were taken from the 

feed, concentrate and tailings streams after conditions were stabilized. The samples were 

analyzed for BPL, MgO and insol contents. All as-received results were analyzed and adjusted 

using mass balance software to ensure the test data was reliable and self-consistent.  Any 

experimental values that were deemed by the mass balance routines to be unreliable were 

removed from the data set. The participating mining company used the compiled data to 

establish the metallurgical improvement, operating savings and economic payback that may be 

realized by implementing the proposed high-efficiency technologies.  
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 The process evaluation has been divided into three sections including (i) fine feed circuit, 

(ii) amine flotation circuit, and (iii) the coarse feed circuit. 

 

a) Testing at Phosphate Plant A - Fine Circuit 

 The installation of the pilot-scale unit in the fine feed circuit at Phosphate Plant A was the 

main objective of this task. The separator was transported from the Eriez Manufacturing Central 

Research Lab in Erie, Pennsylvania to the processing plant. With cooperation from the operators 

and mechanics at the plant, the 18-inch diameter pilot-scale HydroFloat separator was installed at 

the fine circuit at Phosphate Plant A as shown in Figure 3.17. Reagentized feed was supplied to 

the HydroFloat separator through a 2 inch line connected to the existing plant conditioning tanks. 

 

 

Figure 3.17.  The 18-inch diameter pilot-scale HydroFloat circuit at Phosphate Plant A. 
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Concentrate and tailings streams were discharged into floor sumps.  

 The unit was operated as a column flotation cell, utilizing the HydroFloat separator air 

sparging system. The test unit included three compartments that allowed more water and air to be 

added (up to 60 gpm water and 10 cfm air). There was no teeter-bed required in this system. 

Plant compressed air and 115 volt electrical power were connected to the separator for the 

automated control system. The separator was automatically controlled through the use of a 

simple PID control loop which includes a pressure sensor mounted on the side of the separator to 

measure the relative pressure (level), a single loop PID controller, and a pneumatic pinch valve 

to control the underflow discharge to maintain a constant bed pressure (level).  

 Fifty-three tests were conducted during the fine circuit testing at Phosphate Plant A. 

Testing in the fine circuit produced an average of 10% higher BPL recoveries with a 0.8% lower 

BPL rougher tail in the HydroFloat separator than in the plant Wemco cells. Figure 3.18 displays 
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Figure 3.18.  Comparison of recovery at Phosphate Plant A (Fine Circuit). 
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the HydroFloat separator and plant tails percent BPL for each test. The plant Wemco cells 

averaged only about 0.7% BPL higher-grade rougher concentrates than the HydroFloat as shown 

in Figure 3.19. An average HydroFloat separator rougher concentrate grade of 54.9% BPL is 

satisfactory considering the test feed grade only average 8% BPL through most of the testing.  

 During testing, several attempts were made to obtain final grade concentrates (7% insol) 

with one stage of flotation. The results show that insol concentrates between 9-10% produced 

only 74-76% recoveries, and dropping the insol to 7-8% reduced recoveries to 70% or less. 

Further testing in this area needs to be conducted utilizing more selective reagents or higher feed 

grades to achieve the desired 7% insol concentrates in a one step flotation process with the 

HydroFloat separator.  

 One of the most important operating parameter to consider for fine flotation is the ability 
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Figure 3.19.  Comparison of rougher BPL grade at Phosphate Plant A (Fine Circuit). 
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of the process equipment to recover coarser material into an acceptable concentrate: i.e., recover 

coarse phosphate without recovering fine silica. Comparison testing of the HydroFloat separator 

with the Wemco Cell produced promising results. As shown in Figure 3.20, the HydroFloat 

separator recovered 80%, 83%, and 88% of the plus 20 mesh, 20 x 28 mesh, and 28 x 35 mesh 

phosphate, respectively. The performance values were well above those established for the plant; 

the plant recovered only 24% of the plus 35 mesh and 67% of the plus 48 mesh phosphate.  

 Percent solids in the tailings averaged between 20-30% at optimum testing conditions. 

During less than optimum conditions, the solids were as high as 53%. Optimum conditions 

occurred at 70-75 bed levels, with between 50-60 gpm of sparger water, and 4 tph feed. While 

higher bed levels and less sparger water could produce a slightly higher percent solids in the 

tailings, this adversely affected the recovery and concentrate grades. Using the unit with three 

compartments and with bed levels of 70-75, the optimum froth depths were 15-20 inches. 

 Reagent dosages were affected by the poor water quality and excessive slimes in the feed 
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Figure 3.20.  Fine phosphate results at Phosphate Plant A (Plant Circuit #2). 
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during the testing program. The fatty acid dosage in the plant ranged from 0.80 to 1.20 lb per ton 

of fine feed during testing, whereas the fuel oil dosage in the plant ranged from 0.35 to 0.55 lb 

per ton fine feed. The fuel oil dosage was slightly higher than average dosage at Phosphate Plant 

A, which is partially to blame for the poorer than expected recoveries.  

 The recommended surfactant dosage was 0.13 lb per ton at design rates, with actual 

results being slightly higher. Dosage in the HydroFloat ranged from 0.20 to 0.32 lb per ton of 

feed (6.9 to 10.4 cc per minute). Projected surfactant dosage for the fine circuit can not be 

determined, but it is estimated that it is just slightly higher than the recommended dosage. 

 While the operation of the HydroFloat separator for fine flotation was difficult to 

optimize due to various outside variables affecting the system, a significant number of tests were 

conducted at differing operating variables under varying operating conditions to achieve 

optimum operating conditions. The optimum conditions for the HydroFloat separator for use in 

fine flotation as defined by this testing program are: three compartment unit, with bed level 

between 70-75, a froth depth of 15-20 inches, sparger water between 55-60 gpm, air flow of 10 

cfm, and a surfactant dosage of at least 0.2 lb per ton of feed. The measured recovery values and 

concentrate grade at these design rates were acceptable. Based on this data, the HydroFloat 

separator can successfully be implemented into the Phosphate Plant A fine flotation circuit.  

 

b) Testing at Phosphate Plant A - Amine Circuit 

 The same separator used in the fine circuit was also used in the amine flotation circuit. 

With cooperation from the operators and mechanics at the plant, the 18-inch diameter pilot-scale 

HydroFloat separator was installed in the amine circuit at Phosphate Plant A. Reagentized feed 
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was supplied to the HydroFloat separator through a two-inch line connected to the existing plant 

conditioning tanks. Concentrate and tailings streams were discharged into floor sumps.  

 The unit was operated as a column flotation cell, utilizing the HydroFloat separator air 

sparging system. The test unit included three compartments that allowed more water and air to be 

added (up to 60 gpm water and 10 cfm air). There was no teeter-bed required in this system. 

Plant compressed air and 115 volt electrical power were connected to the separator for the 

automated control system. The separator was automatically controlled through the use of a 

simple PID control loop which includes a pressure sensor mounted on the side of the separator to 

measure the relative pressure (level), a single loop PID controller, and a pneumatic pinch valve 

to control the underflow discharge to maintain a constant pressure (level). 

 Twenty-four tests were conducted during the amine flotation circuit testing at Phosphate 

Plant A. HydroFloat separator testing in the amine flotation circuit produced an average of 1.3% 

higher insol concentrate and recovered about 8% less insol to the amine tailings than in the Plant 

Wemco Cell. Figure 3.21 displays the concentrate grade for the HydroFloat separator and the 

plant for each test. The plant Wemco cells averaged only about 0.5% higher BPL recovery than 

the HydroFloat separator as shown in Figure 3.22.  

 The HydroFloat separator performed virtually the same as the plant Wemco cell for 

amine flotation over the range 3 to 18% concentrate insol and 95 to 99% BPL concentrate 

recovery. The unit demonstrated it could effectively recover coarse silica. The HydroFloat 

separator insol recovery values were about 3% lower on average than those in the plant at above 

design feed rates. The differences ranged from 6% to 11% in the 35 mesh and 48 mesh fractions 

to 2% in the finer fractions. The HydroFloat separator insol recovery values were about 2% 

higher on average than those in the plant at the lower feed rates.   
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  One of the most important operating parameters to consider for amine flotation is the 

ability of the process equipment to recover coarse silica without recovering phosphate. 

Comparison testing of the HydroFloat separator with the Wemco Cell produced promising 

results.  As shown in Figure 3.23, the HydroFloat separator had just slightly less recoveries than 

the plant for all of the size fractions except the 35 mesh, where it had a nearly 6% increase in 

BPL recovery than the plant.  

 Reagent dosages were affected by the poor water quality and excessive slimes in the feed 

during the testing program. The surfactant dosage for the HydroFloat separator ranged from 0.13 

to 0.40 lb per ton of feed. The recommended dosage was 0.14 lb per ton at design rates. 

 The interactions of varying diesel fuel dosage rates were studied during the amine circuit 

testing. Amine flotation circuits use diesel oil or polymer occasionally to modify the froth when 
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Figure 3.21.  Comparison of concentrate grade at Phosphate Plant A (Amine Circuit). 
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slimy water is present. Froth stability was investigated, but was difficult to determine due to the 

lack of air flow measurement available at the time of testing. Exact diesel fuel dosage rates are 

unknown at this time.  

 While the operation of the HydroFloat separator for amine flotation was difficult to 

optimize due to various outside variables affecting the system, a significant number of tests were 

conducted at differing operating variables under varying operating conditions to achieve 

optimum operating conditions. The optimum conditions for the HydroFloat separator for use in 

amine flotation as defined by this testing program are: three compartment sections, with bed 

level between 70-75, a froth depth of 15-20 inches, sparger water at 25 gpm, air flow of 10 cfm, 

and a surfactant dosage of at least 0.2 lb per ton of feed. Additional testing will be needed in the 

future to validate these recommendations. The measured silica recovery values and concentrate 
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Figure 3.22.  Comparison of BPL recovery at Phosphate Plant A (Amine Circuit). 
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grades at these design rates were acceptable. Based on this data, the HydroFloat separator can 

successfully be implemented into the Phosphate Plant A amine flotation circuit.  

 

c) Testing at Phosphate Plant A - Coarse Circuit 

 The same separator used in the fine and amine flotation circuits was also used in the 

coarse circuit, with one modification. The center compartment was removed from the unit, so as 

to allow the unit to operate with a typical teeter-bed (a total of two compartments). With 

cooperation from the operators and mechanics at the plant, the 18-inch diameter pilot-scale 

HydroFloat separator was installed in the coarse circuit at Phosphate Plant A. Reagentized feed 

was supplied to the HydroFloat through a 2-inch line connected to existing plant conditioning 

tanks. Concentrate and tailings streams were discharged into floor sumps.  
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Figure 3.23.  Comparison of test results for amine phosphate (Plant Circuit #2). 
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 Electrical power at 115 volt and plant compressed air were connected to the separator for 

the automated control system. The separator was automatically controlled through the use of a 

simple PID control loop which includes a single loop PID controller, a pressure sensor mounted 

on the side of the separator to measure the relative pressure, and a pneumatic pinch valve to 

control the underflow discharge to maintain a constant bed pressure. 

 Twenty-four tests were conducted during the coarse circuit testing at Phosphate Plant A. 

Testing in the coarse circuit produced an average 12% higher BPL recovery with a 3.5% lower 

BPL rougher tail in the HydroFloat separator than in the Plant Wemco Cell. Figure 3.24 displays 

the HydroFloat separator and plant tails percent BPL for each test. Figure 3.25 displays the 

concentrate recovery for the HydroFloat separator and Plant Wemco Cell. The plant average 

about 6% BPL higher-grade rougher concentrates than the HydroFloat separator as shown in 

Figure 3.26. However, the average concentrate grade of 62.6% BPL was still considered 
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Figure 3.24.  Comparison of tailings grade at Phosphate Plant A (Coarse Circuit).  
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satisfactory for the testing.  

  As with the fine and amine flotation circuits testing, poor water quality played an 

important role in the overall performance of the reagents during testing. Fatty acid dosage in the 

plant ranged from 2.04 to 3.61 lb per ton of coarse feed during testing, while fuel oil dosage 

ranged from 1.06 to 1.68 lb per ton of feed. Both of these values are considered high for 

Phosphate Plant A, and hindered recoveries as a result.  

 Surfactant dosage for the HydroFloat ranged from 0.23 to 0.77 lb per ton of feed, which 

was also considered to be a high dosage, mostly attributable to the high fatty acid-fuel oil dosage 

in the plant. Other contributing factors were the poor water quality and the need to set the 

surfactant dosage rates higher than normal in the plant to maintain an adequate froth bed depth. 

This was the case in the fine and amine flotation circuits testing as well. 
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Figure 3.25.  Comparison of recovery at Phosphate Plant A (Coarse Circuit). 
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 The ability of the unit to recover coarse material into an acceptable concentrate proved to 

be successful during the testing program. One test achieved an overall BPL of 92% at a feed rate 

of 3.92 tph (98% of design) and a concentrate overflow froth rate of 1.56 tph (78% of design). 

The associated concentrate grade was 61% BPL. Screen and chemical analyses were conducted 

on selected tests to determine the recovery values for various mesh sizes. The HydroFloat 

separator recovery values are considered to be excellent as shown in Figure 3.27.  

 Percent solids in the tailings averaged 75.8% for all tests. The HydroFloat separator was 

configured with two compartments, with bed levels between 82 and 87, and with a recommended 

level of 85. This resulted in optimum condition of: froth depths between 15 and 20 inches, 

sparger water near 20 gpm, and air flow at 5.0 cfm. The measured recovery values and 

concentrate grade at these design rates were acceptable. Based on this test data, the HydroFloat 
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Figure 3.26.  Comparison of BPL grade at Phosphate Plant A (Coarse Circuit). 
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can successfully be implemented into the Phosphate Plant A coarse flotation circuit with a 

relatively high degree of confidence that the unit will perform exceptionally well. 

 

3.2.2 Testing at Phosphate Plant B 

Equipment setup, shakedown testing, and detailed testing comprised the phase I field-

testing of the HydroFloat separator at Phosphate Plant B. The goal of this effort was to compare 

the unit to existing hydroclassifiers and conventional cells by analyzing the anticipated product 

grade and recovery, insol content, reagent consumption and feed capacity at, and above, design 

feed rates of the unit. The main objective of testing was to determine if the HydroFloat separator 

could achieve higher recoveries of the ultra-coarse particles than the existing second-stage 

hydroclassifer at the plant. Further investigations of the coarse and fine matrices were conducted, 

comparing results against the existing conventional cells currently in operation at the plant. 
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Figure 3.27.  Comparison of test results for coarse phosphate (Plant Circuit #1). 
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Approximately 12 months was allocated to this task. Individuals from Eriez Manufacturing and 

Virginia Tech participated in the testing at Phosphate Plant B with cooperation from key 

personnel at the processing plant. 

 The separator was transported from the Eriez Manufacturing Central Research Lab in 

Erie, PA to the processing plant. With cooperation from the operators and mechanics at the plant, 

the 1-foot diameter pilot-scale HydroFloat separator was installed at each circuit (ultra-coarse, 

coarse and fine) for a period of several weeks for each circuit at Phosphate Plant B as shown in 

Figure 3.28. Reagentized feed was supplied to the HydroFloat separator through a 2-inch line 

connected to the existing plant conditioning tanks. Concentrate and tailings streams were 

discharged into floor sumps. Plant compressed air and 115 volt electrical power were connected 

  

 

Figure 3.28.  Pilot-scale HydroFloat circuit at Phosphate Plant B. 
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to the separator for the automated control system. The separator was automatically controlled 

through the use of a simple PID control loop which includes a pressure sensor mounted on the 

side of the separator to measure the relative pressure (level), a single loop PID controller, and a 

pneumatic pinch valve to control the underflow discharge to maintain a constant bed pressure 

(level).  Clarified water was connected to the separator to create the fluidized teeter bed of solids. 

 After completing the installation of the test HydroFloat unit in each circuit, preliminary 

shakedown testing was conducted to resolve any unexpected operational problems that could 

arise. Shakedown test are commonly utilized to resolve any problems that may have been 

overlooked in the initial engineering and to confirm that feed capabilities, pipe sizes, electrical 

supplies, control systems, etc., are adequate.  

 Two series of detailed test programs were conducted for each circuit using the pilot-scale 

test unit. The first series of test were performed to investigate the effects of the key design 

variables on separator performance and to simultaneously define the overall grade and recovery 

curve.  

The HydroFloat separator is designed for feed rates of 2 tph/sqft and 1 tph/sqft rougher 

concentrate, which allows the test unit to operate at 4 tph feed and 2 tph concentrate, 

respectively. The initial testing in the coarse circuit evaluated the unit at loading rates much 

higher than design, to establish the recovery fall-off. With the recovery fall-off determined for 

each circuit and unit configuration, the subsequent series of testing was used to investigate the 

effects of key operating parameters. Tests were conducted to establish reagent consumption 

(fatty acid, surfactant, and diesel oil), to investigate the bed levels and sparger water required for 

the best HydroFloat separator operation, and to investigate the variability associated with the 



 73

overall system. For each test, samples were taken from the feed, concentrate and tailings streams 

after conditions were stabilized. The samples were analyzed for BPL, MgO, and insol contents. 

 To ensure the test data was reliable and self-consistent, all as-received results were 

analyzed and adjusted using mass balance software.  Experimental values that were deemed by 

the mass balance routines to be unreliable were removed from the data set.  The participating 

mining company used the compiled data to establish the metallurgical improvement, operating 

savings and economic payback that may be realized by implementing the proposed high-

efficiency technologies.  

The process evaluation has been divided into three sections including the (i) ultra-coarse 

rock feed, (ii) the coarse rock feed, and (iii) the fine feed circuits.  

 

a) Testing at Phosphate Plant B – Ultracoarse Feed 

 Grade versus recovery data for the in-plant evaluation of the HydroFloat had BPL 

recoveries of 87% to 99% with product grades ranging between 5% and 14% insols. The 

resulting products contained, on average, 67% BPL. Figure 3.29 is a graph of the grade versus 

recovery data for the in-plant testing and earlier laboratory-scale testing. Size-by-size analysis of 

the HydroFloat was conducted and results are presented in Figure 3.30. The HydroFloat is 

capable of high BPL recoveries for even the coarsest size fractions, where 96.7% of the available 

BPL in the +16 mesh size class was recovered.  

 

b) Testing at Phosphate Plant B – Coarse Feed 

 Figure 2.16 summarizes the grade and recovery data for the coarse feed test work. BPL 

recoveries ranged from 90% to 98% while product grades averaged 24.7% insols. The resulting 
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products contained, on average, 55% BPL by weight. Figure 3.31 also illustrates that the results 

for the laboratory evaluations were superior to those produced for the in-plant trials. This 

occurrence is a direct result of the mean particle size difference found between the samples used 

for the laboratory and in-plant testing. It was calculated that the sample used for the coarse 

matrix laboratory testing was as coarse (mean size: 0.706 mm) as the sample provided for the 

ultra-coarse testing (mean size: 0.721 mm). During the in-plant trials, it was observed that the 

coarse matrix was significantly finer, amplifying any occurrence of hydraulic carry-over or 

activation of fine floatable insols. 
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Figure 3.29.  BPL recovery vs. product insol for ultra-coarse feed at Phosphate Plant B. 
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c) Testing at Phosphate Plant B – Fine Feed 

 The results from the in-plant testing on the fine matrix are shown in Figure 3.32. BPL 

recovery ranged from 88% to 97% using the HydroFloat. When operated as an open column, 

BPL recoveries ranged from 85% to 92%, though at a significantly lower product insol (37% vs. 

22%, respectively). Results from samples collected around the existing plant rougher-scavenger 

swing circuit are also presented in Figure 3.32 for comparison. The findings indicate that the 

open column cell (w/ HydroFloat sparging system) is able to achieve incrementally higher BPL 

recoveries at lower product insol grades compared to either the HydroFloat or the existing 
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Figure 3.30.  Size-by-size recovery and grade for ultracoarse feed at Phosphate Plant B. 
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column technology. The corresponding product grade (%BPL) averaged 55% for the open 

column system as seen in Figure 3.33. As with the ultra-coarse and coarse circuits, the 

HydroFloat achieved an acceptable product grade and recovery in the fine circuit.   

 

3.2.3 Discussion of Phosphate Plant Results 

 The in-plant evaluation of the HydroFloat separator demonstrated that this novel 

separation device can successfully treat the three different size fraction in a typical phosphate 

processing plant. For the ultra-coarse rock, the separator produced a high grade phosphate 

product (+66% BPL) at BPL recoveries exceeding 95%. For the coarse sized feed fraction, the 
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Figure 3.31.  BPL recovery vs. product insol grade for coarse feed at Phosphate Plant B. 
 



 77

separator produced a 99% BPL recovery at an 8% insol grade. Significant improvements were 

also achieved in the fine feed fractions where a BPL recovery greater than 90% was achieved 

with product insoles ranging between 22-25%. 

 The test data indicated that several advantages can be realized through implementation of 

the HydroFloat system. The system can provide a higher product mass recovery, superior 

metallurgical results, lower reagent costs and lower power requirements, with the greatest 

advantage being the higher separation efficiency. A higher product mass recovery with a better 

product quality is a significant achievement for this application. The HydroFloat has a 

substantially lower operating cost due to reduced reagent consumption and power requirements 

compared to conventional equipment.  
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Figure 3.32.  BPL recovery vs. product insol grade for fine feed at Phosphate Plant B. 
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One of the goals of this project is to successfully prove the technology in a sufficient 

period of time to minimize the financial risk that will be taken by industry. The previous years 

test work has eliminated the uncertainties associated with the HydroFloat separator by proving 

plant scale units do in fact work. This can be seen by the fact that industry leaders have 

submitted purchase requests for full scale units in their preparation plants. Based on the 

successful installation of these full scale units, further implementation of additional units can be 

utilized in a broad spectrum of companies and industries.  

 Key design and operating variables have been established based on the performance 

capabilities of the HydroFloat separator. From here, proof-of-concept (POC) tests using a 

production-scale unit can be implemented at the various test locations where full scale prototypes 
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Figure 3.33.  BPL recovery vs. product BPL grade for fine feed at Phosphate Plant B. 
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are being installed. The POC-scale tests will identify critical scale-up criteria for the design of 

industrial applications. The POC-scale tests will also be used to define the performance 

capabilities of the high-efficiency processes in an industrial setting and to fully demonstrate the 

potential economic benefits that can be realized with the HydroFloat separator.  

 Finally, it should be emphasized that the pilot-scale testing at Phosphate Plant B proved 

to be successful. As a result, the participating mining company agreed to purchase a prototype 

HydroFloat separator for testing and evaluation. The prototype unit was compared to existing 

flotation cells in the coarse recovery circuit under Phase II of this project. This effort is discussed 

in detail in the following section of this report. 
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4.0 RESULTS AND DISCUSSION - PHASE II 

4.1 Phosphate Size Classification Using the CrossFlow Classifier  

4.1.1  Pilot-Scale Test Results 

An on-site test program was conducted at an industrial phosphate plant to evaluate the 

potential benefits of the CrossFlow separator for particle classification. The 2 x 2 ft pilot-scale 

unit was installed to partition the 16 x 150 mesh plant feed for the existing flotation circuits into 

narrowly-sized fractions. Comparison tests were also performed using a pilot-scale conventional 

classifier so that any improvements in sizing performance could be accurately quantified. Table 

4.1 provides a summary of the operating conditions examined for each classifier. For each test, 

representative samples were collected from the feed, overflow, and underflow. The samples were 

subjected to sieve analysis and the results were mass balanced using a sum-of-least-squares 

method to assess the reliability of the experimental data. Data that mass balanced poorly were 

deemed unreliable and eliminated from the analysis.  

The mass balanced data were used to construct partition curves for each test run 

performed for the two classifiers. Figure 4.1 shows an example of a partition curve obtained 

using the CrossFlow separator. The partition number represents the recovery of dry solids from 

the feed to the underflow (oversize) product for each size class. The partition curves were used to 

determine the imperfection (I) for each test. The imperfection is a dimensionless number 

 

Table 4.1.  Conditions used for the CrossFlow pilot-scale tests. 

Test Variable Conventional CrossFlow 
Feed Rate (tph/ft2) 
Feed Solids (%) 

Water Rate (gpm) 

2-9 
15-40 
190 

1-7 
15-50 
40-90 
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commonly used to quantify the efficiency of sizing units. A lower number represents a steeper 

curve and thus a better separation. A vertical line represents a perfect separation. The 

imperfection (I) is determined by: 

 
I = (d75-d25)/2d50         [1] 

 
Using this approach, the test results were analyzed to compare the performance of each 

separator. These results, which are compared in Figure 4.2, show the imperfection of each unit as 

a function of dry feed rate. The test results indicate the CrossFlow unit consistently performed at 

a higher level of efficiency (lower imperfection). Close examination of the test results indicated 

that the lower efficiency associated with the conventional classifier was due to misplacement of 
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Figure 4.1.  Example of a CrossFlow partition curve. 
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coarse material to the overflow product created by the higher flow rate and greater turbulence 

within the upper section of the conventional sizer. On the other hand, the CrossFlow hindered-

bed separator maintained a uniform (laminar) flow pattern and thus the amount of misplaced 

material was minimized.  

It is also important to note that the unique design of the CrossFlow makes it possible to 

accurately control the particle size cut size. (The cut size is defined as the particle size 

corresponding to the 50% recovery point on the partition curve, and is considered to be 

separation size for a given test.) As stated previously, variations in the characteristics of the feed 

(such as solids content) do not significantly impact the cut size since the teeter water velocity 

remains constant throughout the unit. As a result, the particle size cut size is controlled 
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Figure 4.2.  Imperfection versus superficial solids feed rate. 
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predominantly by the teeter water flow rate. In fact, the data in Figure 4.3 show that an 

approximately linear relationship exists between flow rate and particle cut size. As a result, on-

line adjustment of size of the overflow and underflow products can be achieved through simple 

water flow control for the CrossFlow classifier.  

 

4.1.2  Full-Scale Prototype Test Results 

In light of the promising results obtained using the pilot-scale CrossFlow unit, a full-scale 

classifier at an industrial phosphate beneficiation plant was retrofit using the CrossFlow feeding 

system. The results obtained from this unit were then compared to those obtained from the 

conventional full-scale classifiers operating in parallel to the CrossFlow system at the plant. Due 
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Figure 4.3.  Particle cut size versus fluidization water rate. 
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to fluctuations in the plant feed tonnage, the test results are reported as an average of seven sets 

of experiments conducted over a range of dry solids feed rates from 1270 to 1800 tph (circuit). In 

each test, representative samples of feed, oversize and undersize solids were collected and 

subjected to sieve analysis. The resulting size data were used to construct partition curves for 

both the conventional and CrossFlow units. The data points were then fit using an empirical 

partition function given by: 

 
P = (exp{α(d/d50)}-1) / (exp{α (d/d50)- exp{α}-2)     [2] 

 
in which P is the partition factor, d the particle size, d50 the particle size cutpoint (defined at 

P=50%), and α is a parameter that reflects the sharpness of the size separation (defined as the 

slope at P=50%). Note that a larger value of α indicates a sharper (more efficient) particle size 

separation.  

The results of the side-by-side comparison of the conventional and CrossFlow classifiers 

are provided in Table 4.2. As expected from the laboratory and pilot-scale data, the full-scale test 

results show that the CrossFlow reduced the particle cut size from 729 to 362 microns while 

maintaining the same feed throughput. At the same time, the CrossFlow substantially improved 

the efficiency of sizing (α increased from 3.4 to 8.1). In fact, the amount of misplaced coarse 

 
Table 4.2.  Comparison of full-scale conventional and CrossFlow classifiers. 

 
Test Variable Conventional CrossFlow 

Particle Cut Size 
Alpha Value 

Misplaced +35 Mesh 

29 μm 
3.4 

9.0% 

362 μm 
8.1 

1.7% 
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(+35 mesh) solids in the fine product overflow was reduced by more than five-fold (from 9.0% 

to 1.7%). These impressive results illustrate the superior performance of the CrossFlow separator 

for industrial classification applications. 

 

4.2 Phosphate Upgrading Using the HydroFloat Concentrator  

4.2.1  Pilot-Scale Test Results 

Several series of in-plant tests were conducted to assess the capabilities of the HydroFloat 

separator for upgrading coarse phosphate matrix. The test program was carried out using a pilot-

scale HydroFloat unit. Feed for the test unit was taken from an existing slurry distributor that fed 

an identical pair of 8-foot diameter rougher-scavenger flotation cells. Prior to flotation, the feed 

was reagentized with a fatty-acid/fuel oil blend and conditioned in stirred-tank conditioners at 

72% solids. Soda ash was used to control pH. During testing, fluidization (teeter) water was 

introduced into the bottom of the separator to create a fluidized bed of phosphate particles. Air 

and frother were passed through a bubble generator and injected through the water distribution 

network. The air bubbles, which selectively attached to hydrophobic particles, created low-

density bubble-particle aggregates that were recovered as overflow product. The hydrophilic 

particles (sand) were rejected as a waste stream through a discharge valve at the bottom of the 

unit. Twelve test runs were completed using the test conditions summarized in Table 4.3.  

The results from the in-plant testing of the pilot-scale HydroFloat separator are 

summarized in Table 4.4. The BPL recoveries ranged from a low of 90.1% to a high of 98.2% 

over the range of test conditions evaluated. Under optimal conditions (i.e., highest separation 

efficiency), the HydroFloat provided a product grade of 11.4% insol and 64.6% BPL. These 

single-stage results compare very favorably to the existing two-stage rougher-scavenger flotation 
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circuit currently in operation at the plant. The two-stage circuit historically provides a froth 

product containing about 20% insol and 60% BPL. Therefore, these results indicate that the 

HydroFloat can achieve a comparable separation after only a single-stage of processing.  

 

Table 4.3.  Test conditions for the pilot-scale HydroFloat concentrator. 

Test 
Run 

Teeter Water  
Rate (gpm) 

Aeration 
Rate (scfm/ft2) 

Reagent 
(lb/ton) 

 
1 
2 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 

 
13.4 
13.4 
10.2 
11.5 
11.5 
11.5 
11.5 
11.5 
11.5 
11.5 
11.5 

 
1.27 
1.27 
1.27 
1.06 
1.06 
1.06 
1.06 
1.06 
0.85 
0.85 
0.64 

 
0.80 
0.80 
0.80 
0.90 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

 Note: Feed Rate = 1.3 tph/ft2; Feed Solids = 50% 

 

Table 4.4.  Test results for the pilot-scale HydroFloat concentrator. 

Conc. Grade (%) Distribution (%)  
No. BPL Insol  BPL Insol 

Effic. 
(%) 

 
1 
2 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 

 
36.9 
46.3 
60.5 
53.0 
64.6 
59.8 
50.8 
60.4 
55.8 
56.1 
63.4 

 
50.2 
37.6 
17.8 
26.6 
11.4 
18.7 
30.1 
17.9 
24.6 
23.3 
13.9 

 
98.2 
98.2 
94.0 
93.0 
90.1 
96.6 
97.8 
95.8 
94.6 
97.8 
93.5 

 
50.3 
63.3 
77.0 
84.7 
88.1 
74.9 
54.1 
77.4 
67.8 
66.5 
81.6 

 
48.5 
61.5 
71.0 
77.7 
78.2 
71.4 
51.9 
73.1 
62.4 
64.3 
75.1 

 Note: Average Feed:  BPL = 35.8%, Insols = 51.8% 
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4.2.2  Full-Scale Prototype Test Results 

Based on these very promising results of the pilot-scale tests, several sets of follow-up 

tests were undertaken at the industrial plant site using a full-scale (8 ft diameter) column cell that 

had been retrofit with the HydroFloat technology. For comparison, samples were collected from 

the plant conventional rougher flotation cell so that a fair performance comparison could be 

made.  

Figures 4.4 and 4.5 show the recovery-grade curves obtained from the pilot- and full-

scale HydroFloat test programs, as well as data from the conventional rougher flotation bank at 

the plant site. Several important observations can be made. First, the data points appear to fall 

along essentially the same recovery-grade curves, suggesting that the selectivity of the separation 

is largely dominated by the surface properties (wettability) of the particles. Second, the results 

suggest that the performance of the full-scale HydroFloat unit can be projected based on test data 

obtained from the pilot-scale test unit. This finding is particularly important for scale-up reasons. 

Finally, the side-by-side comparison clearly demonstrates that the HydroFloat technology is 

capable of providing a significantly higher recovery of valuable product than can be obtained 

using a comparable volume of single-stage conventional flotation cells. For the current test 

program, the best full-scale HydroFloat test run provided a BPL recovery of 95.9% with a 

product having BPL and insol contents of 68% and 7.7%, respectively. In comparison, the 

conventional froth flotation column was able to achieve a BPL recovery of just 82.8%. Thus, 

additional stages of conventional scavenger flotation are required at the plant in order to improve 

the recovery to an acceptable level. 

  

 



 88
 

0

20

40

60

80

100

0 10 20 30 40 50 60

Insol Content (%)

B
PL

 R
ec

ov
er

y 
(%

)

Rougher
Pilot-Scale
Full-Scale

(a)

 
Figure 4.4. Recovery versus insol content for different test runs. 
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Figure 4.5. Recovery versus BPL content for different test runs. 
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The results obtained from the industrial site indicate that the HydroFloat also offers 

significant cost advantages by consuming less electrical power, process water, and chemical 

reagents than conventional processes. For example, Table 4.5 compares the expected power and 

reagent usage for the HydroFloat and conventional circuits for the test site described above. In 

this case, the installation of the HydroFloat technology would be expected to reduce the net 

horsepower requirement by 8.4%. In addition, the HydroFloat would require 40% less frother, 

20% less fatty acid/fuel oil mixture (rougher), and 100% less fuel oil (scavenger). 

 

4.3 Fine Coal Cleaning Using the CrossFlow Concentrator  

4.3.1  Pilot-Scale Test Results 

This task involved the testing of a pilot-scale CrossFlow separator to determine whether 

the installation of one or more full-scale units could be justified at a new plant in Kentucky. 

Since the plant did not yet exist, the pilot-scale testing was performed at a nearby facility treating 

a similar coal feed. The goal of this effort was to determine the anticipated product yield and 

grade, combustible recovery, and feed capacity of the test unit in order to predict the expected 

performance of a full-scale prototype.  

Table 4.5.  Comparison of power and reagent demand. 

 
HydroFloat 

Circuit 
Existing 
Circuit 

Net 
Change 

Power Usage:    
Water (HP) 

Air (HP) 
Net Total (HP) 

46.6 
38.0 
84.6 

92.4 
0.0 
92.0 

--- 
--- 

-8.4% 
Reagents:    

Frother (lb/t) 
FA/FO (lb/t) 

FO (lb/t) 

0.05 
0.80 
0.00 

0.08 
1.00 
0.60 

-40.0% 
-20.0% 
-100% 
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The 9 x 16 inch CrossFlow separator was transported from the manufacturer’s site to the 

coal preparation plant and was installed with assistance provided by the plant operators and 

mechanics. Feed was supplied to the unit through a 2-inch feed line connected to the existing 

coal spiral slurry feed distributor. A slurry splitter fabricated from PVC pipe with a tee and 

valves was used to regulate the feed to the unit, with the remaining slurry reporting to the spiral 

circuit. Underflow and overflow material was discharged to sizing screens in the plant, located 

on a level below the unit. Plant compressed air and electrical power were connected to the 

separator for the automated control system. The separator was automatically controlled through 

the use of a simple PID control loop, which includes a pressure sensor mounted on the side of the 

separator to measure the relative pressure (level), a single-loop PID controller, and a pneumatic 

pinch valve to control the underflow discharge to maintain a constant bed pressure (level). 

Clarified water was connected to the separator to create the fluidized teeter bed of solids. 

Preliminary shakedown testing of the pilot-scale unit was conducted after completing the 

installation to resolve any unexpected operational problems that could arise. Once the circuit was 

operational, two series of detailed tests were then conducted. The first series of tests were 

performed to investigate the effects of the key design variables on separator performance and to 

simultaneously define the overall grade and recovery curve, while the second series of tests were 

conducted to investigate the effects of key operating parameters. The most important operating 

variables were found to be teeter bed pressure and fluidization water rate. The coal/rock 

interface, or teeter bed surface, was adjusted to different levels (i.e. different bed pressure) for 

each steady-state test. Fluidization water was adjusted to fine tune the separation. Other variables 

examined included solids mass feed rate and volumetric slurry feed rate. For each test, samples 
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were taken from the feed, overflow, and underflow streams after conditions were stabilized. The 

samples were analyzed for ash and sulfur contents on a size-by-size basis.  

As shown in Table 4.6, nine test runs were completed during the on-site test work. The 

experimental results are shown graphically in Figures 4.6 and 4.7. The results are plotted as with 

the passing 100 mesh material mathematically removed from the data. This approach is 

acceptable as it is expected that the clean coal product will be deslimed in the plant at 100 mesh 

(0.150 mm) using sieves and the fine material upgraded by flotation. 

As shown in Figure 4.6, the pilot-scale test work was clearly able to define the expected 

grade and recovery curve for this particular coal. Specifically, the CrossFlow separator was 

capable of producing a clean coal product having 6-11% ash at a combustible recovery of greater 

than 97% (when deslimed at 100 mesh). At the maximum separation efficiency, the combustible 

recovery for this application approached 98%. The data presented in Figure 4.7 indicates that the 

sulfur content of the corresponding product was 1.50%.  

 
Table 4.6.  Test conditions used for the on-site pilot-scale testing of the CrossFlow unit. 

 
Test Feed Level Water 

Number % Solids tph gpm inches gpm 
1 32.55 1.83 20 14.5 8 
2 34.44 1.95 20 20.0 8 
3 35.24 2.00 20 10.0 8 
4 35.71 1.73 17 10.0 9.5 
5 32.90 2.22 24 14.5 9.5 
6 32.71 1.84 20 20.0 9.5 
7 35.21 2.00 20 20.0 6.5 
8 34.10 1.93 20 14.5 6.5 
9 33.55 1.89 20 10.0 6.5 
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Figure 4.6.  Recovery versus product ash for the plus 100 mesh coal. 
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Figure 4.7.  Mass yield versus product sulfur for the plus 100 mesh coal. 
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4.3.2  Full-Scale Prototype Test Results 

Following the successful completion of the pilot-scale testing, the participating coal 

company elected to install a full-scale prototype CrossFlow separator for cleaning the 

intermediate size fraction (2.0 x 0.25 mm) of raw coal for a new 650 tph green-field preparation 

plant in Kentucky. The expected material balance for the prototype circuit is shown in Figure 

4.8. The feed to the prototype unit was expected to contain approximately 175 tph of feed coal at 

about 50% solids. The pilot-scale test work demonstrated the ability of the CrossFlow separator 

to handle this entire flow using a single-stage 9 x 9 ft separator (offering 81 ft2 of cross-sectional 

 
 

Figure 4.8.  Mass balance sheet for the full-scale prototype CrossFlow. 
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area at a normalized feed rate of 2.1 tph/ft2). The remaining tonnage in other size fractions fed to 

the plant were treated with heavy medium cyclones (2 inch x 2 mm) and conventional froth 

flotation cells (0.25 mm x 0). 

The CrossFlow separator was manufactured by Eriez Manufacturing and installed in the 

new preparation plant by the participating coal company. A photograph of the installed prototype 

separator is shown in Figure 4.9. The clean coal product (overflow) from the unit is deslimed at 

65 mesh (0.25 mm) using a sieve screen and horizontal vibrating screen, combined with the 

flotation product, and dewatered in a screen-bowl centrifuge circuit. The reject (underflow) is 

dewatered on horizontal vibrating dewatering screens and directed to the plant rejects conveyor. 

  Shakedown testing for the prototype unit included a visual inspection of all the 

components after the installation, operating the unit on water to check the control devices, and 

 
 

 
 

Figure 4.9.  Photograph of the installed full-scale CrossFlow separator. 
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tuning the control system after adding raw coal feed. The teeter-bed density, which controls the 

separating density, is automatically maintained by a PID controller with an input from a 

differential pressure (DP) cell transmitter located in the lower section of the separating zone. The 

output from the controller manipulates a proportional valve on the underflow discharge pipe. The 

elutriation water is controlled manually using a simple valve arrangement. During start-up and 

commissioning, the unit produced a clean coal product with an ash content of approximately 

10% at a combustible recovery of better than 90%.   

After shakedown testing, three sequential series of evaluations were conducted during the 

11 month period after start-up. In each series of tests, the feed, product, and reject streams were 

sampled during a normal operating shift. A sample of the feed was also taken and subjected to 

float-sink analysis so that the theoretical best level of performance could also be established for 

this particular feed coal. The results from the first series of “preliminary tests” are presented in 

Figure 4.10. The performance data show that the combustible recovery regularly exceeded 90% 

with product ash values ranging between 10% and 12%. While these results were very good, the 

second series of “detailed tests” were conducted with the objective of further improving recovery 

while maintaining product grade. The evaluations were conducted while running the unit at the 

highest available teeter-bed pressure (bed level) while varying the elutriation water rate. The 

maximum level was limited by the calibration of the existing DP cell transmitter. As shown in 

Figure 4.11, the detailed tests resulted in an incremental improvement in separation performance. 

By operating with the teeter-bed at the highest level, the average combustible recovery and yield 

improved by nearly 2%, while the product ash remained in the 10% to 12% range. This series of 

testing suggested that further performance improvements could be realized by increasing the 

teeter-bed level. 
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The third series of testing was performed after recalibration of the DP cell transmitter so 

that the unit could be operated at higher teeter-bed levels than those that were used during the 

first two series of tests. The results of these “optimization tests” are also presented in Figure 

4.10. By operating the unit at a higher teeter-bed level (higher densities), the recovery was 

improved by an additional 2 percentage points. In fact, this mode of operation provided a 

separation performance that was in very good agreement with that projected based on the pilot-

scale experiments. The systematic approach of optimizing the CrossFlow separator resulted in an 

average increase in product mass yield of over 4 percentage points, which equates to about 5.9 

tph of additional clean coal. Using the current typical market price for thermal coal of $50.00 per 

ton and scheduled production of 4,000 hours per year, this improvement increased the annual 

revenue from this circuit by about $1.2 million.  

 
 

Figure 4.10. Experimental results from three series of full-scale CrossFlow tests. 
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After optimizing the performance of the unit, a long-duration test run was performed 

under the optimum conditions identified from the earlier test runs. In this case, sample 

increments were collected at regular intervals during an 8-hour shift for the feed, product, and 

reject streams. The resultant samples were combined and subjected to laboratory analyses. The 

results obtained from this test run are shown in Table 4.7. The separator produced a clean coal 

ash of about 9.5% at a mass yield of 84.7% and combustible recovery of 93.5%. At the same ash 

content, the float-sink data for this particular sample was found to produce a theoretical clean 

coal yield of 87.1%. As such, the CrossFlow separator provided an exceptionally good organic 

efficiency of 97.3% for this particular application. 

 

 
Table 4.7.  Results of a long duration (8 hr) CrossFlow test under optimum conditions. 

 
Feed Ash 

(%) 
Product Ash 

(%) 
Reject Ash 

(%) 
Mass Yield 

(%) 
Combustible 
Recovery (%) 

17.95 9.51 64.80 84.74 93.46 
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5.0 CONCLUSIONS 

 Hydraulic separators are used in the mineral and coal processing industries to classify 

and/or upgrade particles according to size, shape or density. Unfortunately, current designs are 

typically inefficient, resulting in substantial losses of valuable resources. In response to this 

problem, a new generation of hydraulic separators, known as the CrossFlow Classifier and 

HydroFloat Separator, has been developed based on fundamental processing engineering 

knowledge. In order to promote industry implementation, a field study was undertaken (i) to 

further develop these new technologies through systematic pilot-scale testing of key design and 

operating variables and (ii) to demonstrate the improved performance at industrial sites using 

full-scale prototypes.  

 The pilot-scale data collected to date indicate that these high-efficiency separators can 

substantially improve the performance of classification and concentration circuits. In light of 

these promising results, full-scale prototypes of the CrossFlow and HydroFloat technologies 

have been purchased by mining companies for further testing and evaluation. Two of the 

prototype units were installed by a major U.S. phosphate producer and one by a major coal 

producer. The field data obtained from the full-scale evaluations demonstrated that these 

technologies offer significant improvements in terms of metallurgical performance (e.g., higher 

recovery and throughput capacity) and lower operating cost (e.g., lower consumption of 

electrical power, process water, and chemical reagents) than conventional processes.  
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