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ABSTRACT

We examine the problem of transmembrane protein structure determination. Like many other
questions that arise in biological research, this problem cannot be addressed by traditional
laboratory experimentation alone. An approach that integrates experiment and computation
is required. We investigate a procedure which states the transmembrane protein structure
determination problem as a bound constrained optimization problem using a special empirical
scoring function, called Bundler, as the objective function. In this paper, we describe the
optimization problem and some of its mathematical properties. We compare and contrast
results obtained using two different derivative free optimization algorithms.
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1 Introduction

In this study, we consider solving the bound constrained nonlinear optimization problem

min f(x)
s.t. L ≤ x ≤ U ,

(1.1)

where f : IRn → IR is a nonlinear function; x,L,U ∈ IRn; and L and U are given lower and
upper bounds on x respectively. In particular, we are interested in an important computational
biology problem, transmembrane protein structure determination, which can be formulated as
(1.1). In this application, the objective function f is an empirical scoring function designed to
rate the validity of proposed transmembrane protein structures. The variable x ∈ IRn represents
the spatial positions of certain components of the transmembrane protein, and the bounds L
and U are derived using some observed properties of these components.

There is a wide variety of optimization methods available for finding a solution to (1.1).
However, the effectiveness and efficiency of these algorithms can be application specific. Hence,
answering the question of which to use is not easy. In this paper, we examine the transmembrane
protein structure identification problem and its model formulation. We choose two different
optimization algorithms are that seem to suit this application. We compare and contrast
numerical results we obtained using real data for a transmembrane protein of known structure.

This paper is organized as follows: In section 2 we discuss the biological significance of
transmembrane proteins and the importance of determining their structures. Then, in section
3, we describe the mathematical formulation of the transmembrane protein structure determi-
nation problem and give some details of the scoring function. We review some of the basic
characteristics of the optimization methods that we applied to the problem and give the details
of our implementation of these algorithms in section 4. The results of our numerical study are
presented in section 5. Finally, in section 6, we summarize our work and draw some conclusions.

2 Biological Background

Approximately one-third of the proteins encoded for by a typical genome are transmembrane
proteins, and they participate in many important cell processes. Some transmembrane proteins
form a channel through which certain ions and molecules can enter or leave the cell. Others
act as signal transduction receptors or play roles in cell recognition, senses mediation, or cell
to cell communication. Many diseases are the result of transmembrane protein malfunction,
absence, or mutation. Hence, these proteins are an important target of drug design. In fact, a
large percentage of the current pharmaceuticals act on transmembrane proteins [55].

Like all proteins, a transmembrane protein is a macromolecule consisting of a chain of amino
acids. The defining characteristic of a transmembrane protein is that this chain traverses the
cell membrane one or more times. For example, a G-protein-coupled receptor, one type of
transmembrane protein involved in signal transduction, spans the cell membrane 7 times. The
portion of the transmembrane protein within the cell membrane consists primarily of hydropho-
bic amino acids, while the portion outside the cell membrane consists mainly of hydrophilic
amino acids. These characteristics, in conjunction with the makeup of the cell membrane,
dictate the overall structure of transmembrane proteins. In particular, due to the chemical
environment of the membrane interior, the amino acids that are inside the cell membrane form
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Figure 1: This is an illustration of the transmembrane protein rhodopsin in a retina cell mem-
brane. The seven linked cylinders, labeled A through G, represent the seven α-helices that
traverse the cell membrane. (This cartoon was obtained from the G-protein-coupled receptor
data base [51].)

stable secondary structures including α-helices and β-sheets. To date, two major structural
classes of transmambrane domains have been observed: all α-helical and all β-stranded. We
will limit the subsequent discussion to the all α-helical case. Hence, for the purposes of our
study, a transmembrane protein consists of a bundle of connected α-helices. Figure 1 contains
an illustration of a transmembrane protein in which the α-helices are represented as cylinders.

Currently, the protein data bank (PDB) contains over 21,000 structures, and its size is in-
creasing exponentially [5]. However, the majority of the proteins found in the PDB are soluble
proteins. To date, the structures of only about 30 transmembrane proteins have been deter-
mined (see [46] and references therein). This is due to the fact that experimental structure
determination methods such as X-ray crystallography and nuclear magnetic resonance (NMR)
have been difficult to apply to transmembrane proteins. Furthermore, since so few transmem-
brane protein structures have been determined, very few suitable templates exist for homology
modeling [21]. Therefore, the development of an integrated computational/experimental model
to address transmembrane protein structure and function questions is an important challenge
in the field of structural biology.

The modeling of transmembrane proteins can be broken up into separate tasks of defining
the transmembrane helices and determining the relative orientation of these helices. A pro-
cess known as sliding-window hydrophobicity is an accurate and well established method of
predicting transmembrane helices given their amino acid sequences [24, 25, 43]. As of yet, no
widely accepted method has emerged to subsequently ascertain the spatial locations of these
helices. Because the cell membrane does impose certain structural constraints on the positions
of the helices and thus limits the number of possible structures, several ab-initio computational
approaches have been proposed [7, 35, 52]. One such procedure is based on the fact that the
conformational space of membrane proteins can be effectively sampled and gives a technique for
enumerating all the possible helical bundles [7]. However, this method neglects the orientations
of the individual helices around their respective axes. Several other methods seem promising
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Figure 2: These pictures depict the six positional variables associated with each helix. The
image on the left shows the x, y and z translations of the helix which are defined in terms of
the center of mass of the helix in its initial placement. On the right, the x, y and z rotations
are illustrated. We use the initial placement of the helix to define an axial line segment from
two points centered in the terminal turn at each of the helix.

but are biased toward the structures of specific transmembrane proteins and have yet to be
validated for other transmembrane proteins [13, 35, 52].

3 Transmembrane Protein Structure Determination

In [17, 45], a new method is proposed for determining the spatial location of the transmembrane
protein helices. This method focuses on finding a solution to the optimization problem (1.1)
where the objective function f assigns a score to each helical arrangement which is a measure
of how similar it is to the actual structure.

3.1 Mathematical Description of the Problem

In this study, determining the structure of the transmembrane protein is reduced to describing
the relative orientation of the helices, or how they “bundle.” Each helix is assumed to be
a rigid body, and thus we describe its position in space using its center of mass and a line
segment defined by the two points centered in the terminal turns of the helical ends. We define
a three-dimensional reference space for each helix using its initial center of mass and initial
helix axial line segment. In other words, the position of each helix is defined in terms of its
original location. Then, the variables in (1.1) are merely the x, y, and z translations from the
original centers of mass of each helix and the x, y, and z rotations about the initial helix axial
line segment for each helix as illustrated in figure 2. Hence, a transmembrane protein with m
helices has 6m variables. At this time, we do not consider the loops that connect the helices as
part of the structure determination but note that they can be added using existing techniques
after the helical positions have been established [54, 56].
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All 6m variables have simple bounds, most of which derive from the fact that transmem-
brane proteins reside in the cell membrane. The restrictions on the x and y rotations of each
helix are the result of a survey of helix tilt angles described in [6]. The z rotational variables
have no such limitations and are allowed to vary in the entire z-rotational space. Both the
x and the y translations are confined to a space that is approximately one-third of the total
radius of the membrane protein as suggested by a study of helix packing behavior found in
[6]. The z translation variables have the tightest bounds. Their movement is limited by the
membrane itself since the helical portions of the transmembrane protein must remain inside the
cell membrane.

We now need a way to compare possible structures and decide which one best approximates
the transmembrane protein in question. If the structure were known, such comparisons could
be made simply using root mean square deviation (RMSD)1. However, the overall goal of this
work is to identify unknown transmembrane protein structures, so we must develop another
technique. We use a penalty scoring function, known as Bundler, to rate each structure [45].
Bundler measures how well a structure conforms to specific criteria based on experimental data
and helix bundling features described in the literature, and it does not require any a priori
knowledge of the location of the helices. The Bundler score is smallest for those structures that
most closely meet the specified criteria. Thus, we define an objective function f for problem
(1.1) using Bundler to give this structure a score. Therefore, minimizing f is the computational
tool for determining the structure of a transmembrane protein.

3.2 The Scoring Function: Bundler

As previously stated, the Bundler scoring function combines experimental data and topological
models created from a survey of known transmembrane helix packing interactions. For each
structure, the score is calculated as the sum

P = PE + PI , (3.2)

where PE quantifies the structure’s violation of a set of experimental distance constraints and
PI quantifies how well the structure satisfies some helix packing parameters determined by
analyzing a set of 16 nonredundant membrane proteins. In this paper, we are interested in the
details of optimizing such a function. Hence, we give only a basic description of the Bundler
scoring function. We direct the reader to [45] for further details and more specific explanations
of the function’s development, including the results of a study that show correlation between
scores and RMSDs.

It has been shown that distance constraints are an important aspect in determining trans-
membrane protein structure. In fact, the number of possible structures decreases exponentially
with the number of distance constraints and increases exponentially with the error on the
distance measures [17]. Hence, Bundler incorporates experimental distance constraints in the
term

PE =
∑

(i,j)∈Ω

KE ∗







(dij − `ij)
2, rij < `ij ,

0, `ij ≤ dij ≤ uij ,
(uij − dij)

2, dij > uij ,
(3.3)

1RMSD is a way of comparing two protein structures by calculating the sum of the distances of comparable
atoms. See, for example, [30] for more details.
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where `ij and uij are predetermined upper and lower bounds on the distance between atoms
i and j, respectively; dij is the distance between atoms i and j in the current structure; Ω
is a subset of atom pairs; and KE is a force constant. The distance constraints `ij and uij
are obtained from experimental methods such as chemical crosslinking, dipolar electron para-
magnetic resonance (dipolar EPR), fluorescence resonance energy transfer (FRET), or NMR
for assembling transmembrane helical proteins. Note that these constraints are not procurable
for every pair of atoms in the structure. Instead, experimental distance constraints are only
available for a small subset, Ω, of all atom pairs.

Obtaining enough distance constraints to uniquely determine a structure is difficult, partic-
ularly for transmembrane proteins [16, 17]. Furthermore, these distances are never error free.
Hence, Bundler also includes a term to distinguish between structures that meet observed helix
packing properties (determined from an analysis of known structures) and those that do not.
This term, PI , is actually a sum of 6 different terms, i.e.,

PI = Pδ + Pθ + Pφ + Psc + Pvdw + Pc. (3.4)

Each term checks a different helical bundling property.
The packing distance score, Pδ, and packing angle score, Pφ, consider all the helical pairs

in the bundle and penalize them if they are too far apart or too close together. Let Γ denote
the set of m(m− 1)/2 distinct helical pairs (i, j). Then the packing distance score is defined as

Pδ =
∑

(i,j)∈Γ

Kδ ∗







(δij − δl)
2, δij < δl,

0, δl ≤ δij ≤ δu,
(δu − δij)

2, δij > δu.
(3.5)

Here, δl = δ− 1.5sδ and δu = δ+1.5sδ, where δ and sδ are the mean and standard deviation of
the interhelical distances, respectively, which are calculated using a set of 16 known structures;
δij is the distance between the centers of mass of helices i and j in the current structure; and
Kδ is a given force constant. Similarly, the packing angle score is defined as

Pθ =
∑

(i,j)∈Γ

Kθ ∗







(θij − θl)
2, θij < θl,

0, θl ≤ θij ≤ θu,
(θu − θij)

2, θij > θu,
(3.6)

where θl = θ − 1.5sθ and θu = θ + 1.5sθ, and θ and sθ are the mean and standard deviation of
the interhelical packing angles; δij is the interhelical packing angle between helices i and j in
the current structure; and Kθ is a given force constant.

The packing density is defined as the ratio of atomic volume to solvent accessible volume
[42]. It gages how efficiently a protein folds together or equivalently how much interior space is
left unused. The packing density score is defined as

Pφ = Kφ ∗







(φ− φl)
2, φ < φl,

0, φl ≤ φ ≤ φu,
(φu − φ)2, φ > φu,

(3.7)

where φl = φ − 1.5sφ and φu = φ + 1.5sφ, and δ and sδ are the mean and standard deviation
of the observed packing density; φ is the packing density of the current structure; and Kφ is a
given force constant. It penalizes those structures which are packed too tightly or too loosely.
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In transmembrane proteins, it has been observed that amino acids have a preference for
which amino acids they interact with on neighboring helices [2, 3, 35]. The side-chain interaction
propensity score, Psc, incorporates this into Bundler. It is based on the membrane helical
interfacial pairwise (MHIP) amino acid interaction propensity table proposed in [3], and it
penalizes structures containing amino acid pairs that are in contact contrary to their normal
observed behavior. Let Λi be the set of Cβ atoms in helix i and Υ be the set of m consecutive
helical pairs. Then, the side-chain propensity score is defined as

Psc =
∑

(i,j)∈Υ





∑

a∈Λi,b∈Λj

Ksc ∗ (p− pab)



 , (3.8)

where p is the maximum propensity score in the MHIP table; pab is the MHIP propensity value
of atoms a and b; and Ksc is a constant. Note because we are using the MHIP table, the
side-chain propensity score introduces discontinuities in Bundler.

To prevent interhelical clashes, Bundler includes the van der Waals repulsive function [8]

Pvdw =
∑

(i,j)∈Λ

Kvdw ∗

{

0, rij ≥ sRij ,
(s2R2ij − r2ij)

2, rij < sRij .
(3.9)

Here, Λ is the set of all pairs of Cβ atoms; rij is the distance between Cβ atoms i and j in the
current structure; Rij is the observed distance at which atoms i and j interact or repulse; s is
a predetermined van der Waals scaling factor; and Kvdw is a given constant.

Finally, to ensure that each helix has at least two neighboring helices, Bundler includes a
contact score. This piece of the scoring function guarantees that the helices are packed tightly
and prevents any one helix from being excluded from the bundle. It is defined as

Pc =
∑

i∈∆

Kc ∗

{

0, ci ≥ 2
(2− ci), ci < 2,

(3.10)

where ∆ is the set of helices; ci is the number of helices that helix i is in contact with; and Kc

is a given constant. Two helices are defined to be in contact if their centers of mass are within
a given distance of one another. This distance bound is calculated using the analysis of the 16
known structures.

Note that all the pieces of the Bundler scoring function contain at least one constant as
well as some predetermined bounds. Setting these parameters is an important component of
the transmembrane protein structure determination problem. We do not explicitly give their
values in this paper, but instead direct the reader to [45] for more specific details.

4 Optimization Methods

Because the Bundler scoring function does contain discontinuities, we have chosen two derivative
free methods to obtain a solution to (1.1). Although we focus on two particular methods
here, there are many other derivative free methods (see for example [28, 40] and references
therein). Moreover, finite differencing could be used to approximate the gradient so that we
could utilize any number of derivative based methods. However, because Bundler incorporates
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noisy experimental data, such approximations may contain too much error to be useful. We
are actively pursuing this research direction and hope to communicate our findings in a future
publication. In this paper, we present results using simulated annealing and parallel pattern
search, described below.

4.1 Simulated Annealing

Simulated annealing (SA) is an optimization method that is often applied to molecular con-
formation problems. For a few of the many examples of its use in computational biology,
see [9, 10, 19, 20, 37] and references therein. The SA algorithm is a computational analogue to
the industrial annealing process in which metal alloys are slowly cooled to obtain an optimal
molecular configuration. This controlled cooling process is very important since a less stable
configuration is obtained when the alloy is cooled too quickly. Computationally, annealing is
implemented by allowing optimization steps that do not necessarily reduce the objective func-
tion. The idea is that a few bad steps can be accepted in order to get on the best path to the
solution.

The SA algorithm is based on the Metropolis method [33] of obtaining the equilibrium
configuration of a group of atoms at a given temperature. A connection between the Metropolis
method and Monte Carlo simulation was first described in [39]. Then in [26], Kirkpatrick and
his colleagues propose the simulated annealing optimization technique that is used today. It
begins with a Metropolis Monte Carlo simulation at a high temperature. After a sufficient
number of Monte Carlo steps have been taken, the temperature is reduced and the Metropolis
Monte Carlo is continued. This process is repeated until a specified final temperature is reached.
At high temperatures, a relatively large number of the random steps will be accepted, and as
the temperature decreases, fewer steps are accepted.

The main advantage of SA over other optimization methods is that it is a global method. It
can avoid becoming trapped in bad local minima regardless of the starting point. Furthermore,
SA is easy to implement. Unfortunately, SA also has many well-documented disadvantages.
It requires extensive computational work [1, 15, 34, 53]. Furthermore, SA is sensitive to the
choice of its many parameters which can be difficult to fine tune [1, 15, 38, 41, 47, 53]. For
example, there are at least a dozen different temperature cooling schedule from which to choose
[18, 26, 44, 53]. Finally, because the steps in SA are taken randomly, the algorithm does not
employ any knowledge gained in previous iterations [4].

In our implementation of simulated annealing, we use the geometric annealing schedule,

Tnew = α ∗ Told, (4.11)

where α = 0.95. This parameter was determined using numerical experiments. Each tempera-
ture cycle is terminated after either 1000 structures are generated or after 100 structrues are
accepted. The initial temperature and the number of temperature cycles are determined inde-
pendently for each numerical test. The SA algorithm is implemented in C and uses the PDB
Record I/O Libraries to read and write Brookhaven PDB formatted files [11]. Our implemen-
tation of SA is a serial version. Although some parallelized versions do exist [27, 31, 48], none
are compatible with MPI libraries such as MPICH-1.2.4.
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4.2 Asynchronous Parallel Pattern Search

Pattern search methods are practical for solving problems such as (1.1) when the derivative
of the objective function is unavailable and approximations are unreliable. They utilize a
predetermined pattern of points to sample the given function space. When certain requirements
on the form of the points in the pattern are followed, it can be shown that under other mild
conditions, global convergence to a stationary point is guaranteed [14, 32, 50]. We also note that
pattern search methods are most effective for optimization problems with less than 100 variables.
Most transmembrane proteins have less than 13 helices, and we are interested in proteins that
have 12 or less. Hence, the transmembrane protein structure determination problem that we
consider contains at most 72 variables, and pattern search is a reasonable choice.

The majority of the computational cost of pattern search methods is the function evalua-
tions. Hence, parallel pattern search (PPS) techniques have been derived to take advantage of
parallel platforms in order to reduce the overall computational time. In particular, PPS exploits
the fact that once the points in the search pattern have been defined, the function values at
these points can be computed independently. PPS algorithms calculate these function values
simultaneously [12, 49].

The particular implementation of PPS that we use is asynchrounous. Asynchronous parallel
pattern search (APPS) retains the positive features of PPS, but it does not assume that the
amount of time required for an objective function evaluation is constant or that the processors
are homogeneous. It does not have any required synchronizations and thus requires less total
time to return results that are comparable to those acheived by PPS [23]. Furthermore, it has
been shown that APPS is globally convergent under the standard assumptions for PPS [29].
Finally, there is an existing open source version of APPS, called APPSPACK, which is easy to
install and use [22].

In our implementation, we opted to use the MPI mode of APPSPACK2. This mode requires
a minimum of three processors: one master agent to coordinate the search, one cache agent
to save and look up points at which the function has already been evaluated, and at least one
worker to perform function evaluations. The default MPI version of APPSPACK requires that
the function evaluations be run as seperate executables and communicates with the worker
tasks via file input and output. In our case, the system calls and file I/O add substantial time
to the overall runtime. Hence, we customized APPSPACK to avoid this overhead.

One of the main advantages of APPS is that it requires few parameters and very little
tuning. We used the default values for all the parameters except the convergence tolerance
which we set to be 0.01. We also note that our implementation uses the coordinate direction
search pattern.

5 Numerical Results

In this section, we present some numerical results obtained using experimental distance con-
straints for rhodopsin. Rhodopsin is a transmembrane protein that is located in the retinal
rods of the eye, and it plays a role in vision. It is a G-protein-coupled receptor and is made up
of 7 transmembrane helices and thus has 42 variables in its structure determination problem.
The 3-D structure of the dark-adapted form of rhodopsin is known, having been determined

2APPSPACK is available in MPI, PVM and serial modes.
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(a) Simulated Annealing (b) APPS

Figure 3: In both cartoons, the gray cylinders represent the α helices of dark-adapted rhodopsin.
On the left, in picture (a), the blue cylinders show the locations of the helices found using
simulated annealing. In picture (b) on the right, the positions of the helices as determined by
APPS are depicted by the red cylinders.

using x-ray crystallography [36]. Moreover, a set of experimental distance constraints for dark-
adapted rhodopsin has been compiled in [57]. Thus, dark-adapted rhodopsin is an appropriate
test case for our numerical experiments. Because we are using a known structure in our tests, we
can compute the difference between the true structure and any other structure using RMSD.
Although we cannot use RMSD when trying to ascertain structures that have not yet been
determined, we use it in our study to add clarity to some comparisons.

In our first test case, we randomized the true structure of rhodopsin to give us an initial
guess. The subsequent starting structure has an initial Bundler score of 11, 342.56 and an
RMSD of 15.02. We first tried optimizing this structure using SA with a starting temperature
of 500 and 290 temperature cycles. After fine tuning the algorithm, the best structure we
were able to produce has a score of 377.21 and an RMSD of 4.54. Next, we applied the APPS
algorithm. This method required no fine tuning and on our first try, we were able to produce
a structure with a score of 122.59 and an RMSD 3.41. Figure 3 shows the spatial positions of
the helices relative to the known structure. Note that APPS determines the orientation of all
seven helices relatively well. In contrast, two of the helices determined by SA are not a good
match.

To make a more complete comparison, we also consider the computational efficiency of
each method. As previously discussed, SA often requires extensive computational work. Our
numerical test was no exception. The SA algorithm required 81, 800 function evaluations and
61 hours of run time on a single processor. In comparison, the APPS algorithm required only
32, 458 function evaluations and 17 minutes of run time on 86 processors. Since the two tests
were run on the same machine, we can conclude that APPS was more efficient than SA as it
required fewer function evaluations. Moreover, since APPS used 84 worker nodes, each processor
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Figure 4: This graph shows the distribution of the Bundler scores for the 87 initial structures
generated using the procedure outlined in [17]. The average initial score is 26, 555 with a
maximum of 76, 080 and a minimum of 8, 608.

completed about 386 function evaluations. If SA were parallelized in the most efficient manor
possible so that it could be executed on 86 processors, each processor would need to compute
approximately 950 function evaluations, and it would still take almost 45 minutes to obtain a
solution.

For our second set of tests, 87 structures were generated using the procedure outlined in
[17] and a set of 27 distance constraints, D1, obtained from [57]. This procedure resulted in
structures that have no experimental distance penalty, i.e., PE = 0, where PE is as defined in
(3.3), for each of the 87 structures with respect to D1. Hence, to fully test the capabilities of the
optimization methods, we use a different set of distance constraints, D2. The set D2 contains
upper and lower bounds for the same 27 pairs of atoms as D1, but the range of these bounds is
tighter as detailed in [45, 57]. The average Bundler score of the starting structures is 26, 555.
The distribution of these scores is shown in figure 4.

To optimize the 87 structures, we applied both APPS and SA. In this case, the SA algorithm
used a starting temperature of 300 and completed 125 temperature cycles. The results of
this second test set are displayed in figures 5 and 6. By using 87 starting structures, we are
applying 87 different starting points. As figure 5 shows, APPS achieves a much wider variety
of final scores than SA. However, this is no surprise since APPS is a local optimization method.
Moreover, it appears that a few starting structures get stuck in bad local minimas. In contrast,
SA is a global method. In theory, all 87 starting structures should achieve the same score. We
do catch a glimpse of this in figure 5. Note that 40 of the 87 structures attain a score that
is between 111 and 117 However, there are two structures with significantly lower scores and
many other structures whose final scores are considerably higher.

We can conclude that overall, this implementation of SA more effectively reduces the Bundler
score than APPS. However, some of the scores achieved by APPS are comparable. Furthermore,
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Figure 5: The graph on the left (in blue) shows the final Bundler scoring distribution for the
SA algorithm. About half the structures achieve the same score. This is not unexpected since
SA is a global method. However, there are some high scores which are difficult to explain. On
the right (in red) is the final Bundler scoring distribution for the APPS algorithm. Despite the
fact that SA is more effective overall, APPS does achieve some low scores which are comparable
to those attained by SA.
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evaluations (in thousands) required to achieve these results. This implementation of SA uses an
initial temperature of 300 and completes 125 temperature cycles. Although SA more effectively
reduces the Bundler score, it requires significantly more function evaluations.
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Figure 7: The bar graph on the left compares the final values of the Bundler scoring function (in
hundreds) attained by APPS and SA2 and the graph on the right shows the number of function
evaluations (in thousands) required to achieve the results. The simulated annealing algorithm,
SA2, uses an initial temperature of 300 and does 65 temperature cycles. Note that the average
number of function evaluations performed by APPS and SA2 is comparable. However, APPS
appears to have more success reducing the scoring function below 200.

as figure 6 shows, the computational cost of the success of SA is quite high. It requires a
minimum of 49, 500 function evaluations. In comparison, the maximum number of function
evalutions needed by APPS is 48, 812 and 24 of the runs required less than 20, 000. Therefore,
we conclude that APPS more efficiently reduces the Bundler scoring function.

We now want to more closely examine SA and make a more complete comparison of APPS
and SA by reducing the number of SA function evaluations. One way this can be achieved
is by reducing the number of temperature cycles. We use SA2 to denote the results of the
SA procedure after only 60 temperature cycles, or approximately one-third of the number of
function evaluations of the previous implementation. The results of this comparison are shown
in figure 7. Here, APPS and SA now do a similar number of function evaluations. The SA
algorithm is no longer more effective than APPS at reducing the scoring function. In fact,
SA now attains only 16 scores below 200 while APPS achieves twice that many. Moreover,
the distribution of the final SA Bundler scores is now much wider, as shown in figure 9 in the
appendix.

Another way to reduce the number of SA temperature cycles is to use a lower starting
temperature. To test this procedure, we use an initial temperature of 30 and do 75 temperature
cycles. By beginning with a lower temperature, we will not accept as many randomized steps
and thus are in effect doing a more localized search. We use SA3 to denote this test and
summarize its results in figure 8. Note that we are again able to significantly reduce the number
of SA function evaluations. However, the SA algorithm is no longer very successful at reducing
the Bundler scoring function. Only two of the SA final scores are below 300 whereas 52 of the
APPS final scores are below 300. The final Bundler scoring distribution given in figure 10 (in
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Figure 8: The bar graph on the left shows the Bundler scoring function values (in hundreds) and
the graph on the right displays the number of function evaluation (in thousands) performed
by the APPS and SA3 algorithms. The simulated annealing algorithm SA3 uses an initial
temperature of 30 and completes 75 temperature cycles. Overall, APPS more effectively reduces
the scoring function despite the fact that number of function evaluations performed by APPS
and SA3 is comparable.

the appendix) further illustrates the ineffectiveness of SA. Therefore, we can conclude that the
simulated annealing algorithm that uses these particular parameters, a low initial temperature
and a small number of temperature cycles, is not a viable alternative for solving our problem.

6 Conclusions

Our numerical tests illustrate some of the previously mentioned characteristics of simulated
annealing. First, the algorithm is slow and requires significant computational work. If too few
temperature cycles are completed, the algorithm does not perform well. Secondly, the choice
of SA parameters can greatly affect the outcome of the algorithm. In our tests, we varied
only the number of temperature cycles and the initial temperature and obtained remarkably
varied results. Finally, we did see a glimmer of the global convergence property of simulated
annealing. In the test with 125 temperature cycles, 40 of the 87 different starting structures
achieved essentially the same score.

Similarly, our experiments demonstrate some features of APPS. In this study, the most
notable advantage of APPS is that it requires little to no parameter tuning. We opted to use a
relatively large convergence tolerance. Decreasing this parameter results in an increase in the
total number of function evaluations but only minor reduction in the final Bundler scores. By
setting a relatively high convergence tolerance, we were able to limit the number of function
evaluations and still achieve reasonable final scores. We did see some examples of structures
getting stuck in local minima; however, APPS is not a global optimization method and this is
to be expected. Moreover, this problem can be overcome by using multiple starting points.
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Solving the transmembrane protein struture determination problem requires an optimization
method which is both effective and efficient. As previously discussed, the Bundler scoring
function incorporates real data obtained via laboratory experiment. Hence, there is a certain
amount of noise in our objective function. At present, there is no regularization term in the
Bundler scoring function to prevent fitting this noise, and hence it is not productive to apply an
optimization algorithm that yields a structure with a Bundler score of zero. Moreover, we have
observed that small variations in Bundler scores results in only noise level differences. Therefore,
we do not require an extremely high level of accuracy in the optimization. Instead, it is to our
benefit to use an algorithm which sacrafices some accuracy to improve the overall efficiency.
The procedure we used in our numerical experiments to generate the 87 initial structures is
part of the transmembrane protein structure determination process proposed in [17, 45]. Future
projects will require optimizing thousands of structures to attain one final candidate which can
be further studied in the laboratory. Hence, computational time is of the essence, and we favor
optimization methods that limit the number of computations. To illustrate this point, we note
that SA required approximately 5 million function evalutions to optimize the 87 structures
in our test while APPS required only about 2.2 million. Moreover, using local optimization
methods is not a disadvantage on such a project. Enough significantly different initial points
will be used, and thus the final outcome will not be adversely affected if some of the starting
points end up stuck in bad local minima.

In this paper, we discuss one particular aspect of the transmembrane protein structure iden-
tification method propsed in [17, 45], optimizing the Bundler scoring function. However, there
are many other interesting and important facets of this computational biology problem. Future
work includes investigating alternative optimization methods and making minor modifications
to the Bundler function.
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Appendix

0

250

500

750

1000

1250

1500

1750

Distribution of SA2 Scores

Figure 9: This graph shows the distribution of the Bundler scores achieved by the SA2 al-
gorithm. SA2 is an implementation of simulated annealing that uses the geometric cooling
schedule with α = 0.95, an initial temperature of 300, and 60 temperature cycles. The average
final Bundler score is 305.8 with a maximum of 1882.6 and a minimum of 132.4.
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Figure 10: This is a graph of the distribution of the Bundler scores achieved by the SA3
algorithm. SA3 is an implementation of simulated annealing that uses the geometric cooling
schedule with α = 0.95, an initial temperature of 30, and 75 temperature cycles. The average
final Bundler score is 561.1 with a maximum of 2385.7 and a minimum of 274.1.
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