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Abstract 

This document introduces the use of Trilinos, version 3.1. Trilinos has been  written 
to support, in a rigorous manner,  the solver needs of the engineering and  scientific 
applications at Sandia National Laboratories. 

Aim of  this manuscript is to  present the basic features of some of the Trilinos 
packages. The presented material includes the  definition of distributed matrices and 
vectors with Epetra, the iterative solution of linear system with AztecOO, incomplete 
factorizations with  IFPACK,  multilevel  methods  with ML, direct solution of linear 
system with Amesos, and iterative solution of nonlinear systems with NOX.  With the 
help of several examples, some of the  most important classes and methods are detailed 
to the unexperienced user.  For  the  most  majority, each example is largely  commented 
throughout the text. Other comments  can  be  found  in the source of each example. 

This document is a companion to  the  Trilinos  User’s Guide [lo] and Trilinos De- 
velopment Guides [ l l ,  121. Also, the documentation included in each of the Trilinos’ 
packages is of fundamental importance. 
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1 Introduction 

The Trilinos Project is an effort to facilitate the design, development, integration and ongo- 
ing support of mathematical software libraries. Goal of the Trilinos Project is develop  par- 
allel solver algorithms and libraries within an object-oriented software framework for the 
solution of large-scale, complex multiphysics engineering and scientific applications. The 
emphasis is on developing robust, scalable algorithm in  a software framework, using  ab- 
stract interfaces for flexible interoperability of components while providing a  full-featured 
set of concrete classes that implement all abstract interfaces. 

1.1 Getting Started with Trilinos 

The Trilinos Project uses a  two-level  software structure designed around collections  of 
packages. A Trilinos package is  an integral unit, usually developed to solve a  specific task, 
by  a (relatively) small group of expert of the field. Packages exist underneath the Trilinos 
top level, which provides a  common look-and-feel. Each package has its own structure, 
documentation and set of examples. In principle, Trilinos packages can live independently. 
However, each package is even more  valuable  when combined with other Trilinos packages. 

Trilinos is a large software project, and currently about twenty packages are included. 
Fully understanding all the functionalities of the Trilinos packages requires time.  The  entire 
set of packages covers a wide range of numerical methods for large scale computing.  Some 
packages are focused on the development of computational schemes, like for instance the 
solution of linear and nonlinear systems, to the  definition of parallel preconditioners for 
Krylov methods, eigenvalue computation. Other packages are more focused on implemen- 
tation issues (like definition of matrices and vectors, abstract classes for linear operators). 
The  first Chapters of this tutorial will be focused on implementation issues, while the last 
Chapters will have a more “mathematical”  taste. 

Each package offers sophisticated features, that  cannot be “unleashed” at a  very  first 
usage. For each package, we will outline only the basic features, and we refer to the 
documentation of each package for a  more  involved usage. Our goal is to present enough 
material so that the reader can successfully use the described packages. In fact, for new 
users, it is neither easy, nor necessary, to manage all the Trilinos hnctionalities. At the 
beginning, it is more important for  them to understand how to manage the basic classes, 
such as vector, matrix and linear system classes. However, it is clear that for a  fine-tuning, 
the reader will  have to look through each package’s documentation and examples. 
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Although  all packages have the same importance in the Trilinos structure, a  typical  user 
will  probably - at least at the beginning - make  use of the following packages: 

0 Epetra. This package defines the basic classes  for  distributed matrices and vectors, 
linear operators and linear problems. Epetra classes are the common language spoken 
by  all  the Trilinos packages (even if some of them can "speak" other languages). 
Each Trilinos package is able to accept in input Epetra objects. This allows powerful 
combinations among the various  Trilinos  functionalities. 

0 AztecOO. This is a linear solve package  based on preconditioned Krylov methods. It 
supports all the Aztec interfaces and  functionality,  but also provides significant new 
functionality. 

0 IFPACK. This is a package to perform  various incomplete factorizations, and it is 
here  used in conjunction with AztecOO. 

0 ML. This is an algebraic multilevel preconditioner package, which provided scal- 
able preconditioning capabilities for a  variety of problem classes. It is here used in 
conjunction with AztecOO. 

0 Amesos. This package provides a  common  interface to various direct solvers (gen- 
erally available outside the Trilinos framework),  both sequential and parallel. 

0 NOX. This is a collection of nonlinear solvers,  designed to be  easily integrated into 
an application and used with many  different linear solvers. 

0 Triutils. This is a collection of  various utilities, that  can  be extremely useful in some 
phases  of software development. 

Table 1 gives  a partial overview of what  can  be  accomplished using Trilinos. 

This tutorial is divided into 10 chapters: 

0 Chapter 2 describes the Epetra-Vector  class; 

0 Chapter 3 introduces the EpetraMatrix class; 

0 Chapter 4 briefly describes some other Epetra classes; 

0 Chapter 5 shows how to solve linear systems with AztecOO; 

0 Chapter 6 presents the basic usage of IFPACK; 
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Task 

AztecOO, Definition of incomplete factorizations: 
tors, like CG, GMRES, Bi-CGSTAB,  TFQMR: 

AztecOO, Belos* solve a linear system with preconditioned  Krylov accelera- 
Epetra Definition of distributed sparse matrices: 
Epetra Definition of serial dense or sparse matrices: 
Epetra, Teuchos* Light-weight interface to BLAS and LAPACK: 
Package 

Definition of a multilevel preconditioner:  ML 
Definition of a one-level Schwarz preconditioner (overlap- AztecOO, 
ping domain decomposition): IFPACK 
Definition  a two-level Schwarz preconditioner, with coarse AztecOO+ML 
grid based on aggregation: 
Solution of systems of nonlinear equations: NOX 
interface with various direct solvers, as UMFPACK, Amesos 
MUMPS, SuperLU and others : 
Computation of eigenvalue of large,  sparse matrices: Anasmi* 
Solution of complex linear equations (using equivalent real 

Stokes equations): 
conditioners (for instance, for  the  incompressible  Navier- 

Meros* Definition of segregated preconditioners and block pre- 
formulation): 

Komplex* 

TSFExtended* and solvers: 
TSF*,  TSFCore*, Definition of abstract interfaces to vectors, linear operators, 

precision arithmetic, parameter lists: 
Teuchos* Templated interface to BLAS and LAPACK, arbitrary- 

IFPACK 

Table 1. Partial  overview of what  can  be done with  Trilinos. *: 
not  covered  in this tutorial. 
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0 Chapter 7 introduces multilevel  preconditioners  based  on ML; 

0 Chapter 8 introduces the Amesos package; 

0 Chapter 9 outlines the main features of the Trilinos nonlinear solver package, NOX. 

0 Chapter 10 presents some tools provided with the Triutils package. 

Remark 1. As alreadypointed out, Epetra objects are meant to  be  the “common language ” 
spoken by all the Trilinos packages, and  therefore the new user must  become familiar with 
those objects. Therefore we suggest to read Chapters 2-4 before considering other Trilinos 
packages. Also, Chapter 5 should be read before Chapters 6 and 7 (even if both IFPACK 
and ML can be compiled and run without AztecOO). 

This tutorial assume a basic background in numerical methods for PDEs, and in iterative 
linear  and  nonlinear solvers. Although  not  strictly  necessary, the reader is suppose to have 
a certain  familiarity with distributed memory  computing  and, to a minor extent, with MPI. 

Note  that this tutorial is not a substitute ofr individual packages documentation. Also, 
for an overview of all the Trilinos packages, the Trilinos  philosophy, and a description 
of the  packages  provided  by Trilinos, the reader is referred to [7]. Developers  should 
also consider the Trilinos Developers’  Guide,  which addresses many topics, including the 
development tools used by Trilinos’ developers, and how to include a new package’. 

1.2 Installing  Trilinos 

To obtain  Trilinos, please refers to the instructions  reported at the following web site: 

http://software.sandia.gov/Trilinos 

Trilinos has been compiled on a variety of architectures, including Linux, Sun Solaris, 
SGI  Irix,  DEC, and many others. Trilinos has been designed to support parallel applica- 
tions, However, it can be compiled and run on serial  computer. Detailed comments on the 
installation,  and  an  exhaustive list of FAQs, can be  found at the web  pages: 

‘Trilinos provides a variety of services to a developer wanting to integrate a package into Trilinos. They 
include Autoconf [ 11, Automake [2] and Libtool [3]. Those tools provide a robust, full-featured set of tools 
for building software across a broad set of platforms. Although these tools are not official standards, they are 
widely used. All existing Trilinos packages use Autoconf and Automake. Libtool support will be added in 
future releases.’ 

10 
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http://software.sandia.gov/Trilinos/installing - manual.htm1 
http://software.sandia.gov/Trilinos/faq.html 

Before using Trilinos, users might decide to set the environmental variables TRILINOS HOME, 
indicating the full path of the Trilinos  directory, TRILINOS LIB, indicating the location 
of the compiled Trilinos library, and TRILINOS ARCH, containing the architecture and 
the communicator currently used. For  example, using the BASH shell, command  lines of 
the form 

- 

export TRILINOS HOME=/home/msala/Trilinos 
export TRILINOS  ARCH=LINUX.MPI 
export TRILINOS-LIB=${TRILINOS - - HOME}/${TRILINOS-ARCH} 

- 

can be places in the users’ . bashrc file. 

Here, we briefly report the procedure  one  should follow in order to compile Trilinos as 
required  by the examples reported in the following chapters 2-lo2. Suppose we  want to 
compile under LINUX with MPI. The installation procedure can be are reported below. ($ 
indicates the shell prompt.) 

$ cd ${TRILINOS  HOME} 
$ mkdir  ${TRILIiOS  ARCH} 
$ cd  ${TRILINOS  ARCH} 
$ ../configure --prefix=~t${TRILINOS~HOME}/${TRILINOS ARCH}” \ 

- 

--enable-mpi  --with-mpi-compilers \ 
--enable-triutils  --enable-aztecoo \ 
--enable-ifpack \ 
--enable-ml  --enable-nox I tee  configure  ${TRILINOS  ARCH}.log 

- 

$ make I tee  make  ${TRILINOS ARCH}.log 
$ make  install I tee make - install - ${TRILINOS - ARCH}. log 

Remark 2. All Trilinospackages can  be  build to run with  or without MPI. IfMPI is enabled 
(using - - enable -mpi), the users must know the  procedure for beginning MPI jobs on 
theit- computer  system(s).  In  some cases, options must be set on the configure line  to  specijj 
the Location of MPI includeJiles and libraries. 

- - 

*Amesos can be more difficult to compile for the unexperienced user, as it required some information 
about the packages to interface. Suggestions about the configuration of Amesos are reported in Chapter 8. 
More details about the installation of Trilinos can be found in [lo]. 
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1.3 Compiling and Linking a  program  using  Trilinos 

In order to compile and link (part of) the Trilinos library, the use can decide to use  a 
Makefile as reported  below. This Makefile  refers to one of the examples, reported in  the 
NOX subdirectory of this tutorial. 

1: TRILINOS - HOME = /home/msala/Trilinos/ 
2 :  TRILINOS  ARCH - LINUX-MPI 
3 : TRILINOS-LIB - = $ (TRILINOS-HOME) $ (TRILINOS-ARCH) 
4: 
5 :  include $(TRILINOS~HOME)/build/makefile.$(TRILINOS~AFXH) 
6 :  
7 :  MY - COMPILER  FLAGS = -DHAVE  CONFIG-H  $(CXXFLAGS) -C -g\ 
8 :  
9 :  

- 
-I$ (TRIZINOS  LIB)  /include/ - 

10: MY-LINKER  FLAGS = $(LDFLAGS)  $(TEST  C  OBJ) \ 
11: 

- 
-L$(TRILINOS-LIB)/lib/ \ 

- -  

12: -1noxepetra  -1nox  -1ifpack \ 
13: -1aztecoo  -1epetra  -1lapack  -1blas  $(ARCH-LIBS) 
14: 
15: exl:  exl.cpp 
16: $ (CXX)  exl.cpp  $(MY-COMPILER  FLAGS) 
17: $ (LINKER)  ex1 . o $ (MY-LINKER-FLAGS) -0 ex1 . exe 

Line  number  have been reported for reader's  convenience. 
i 

The  lines  1-3 can be omitted, see Section 1.2. Line 5 includes basic definitions of 
Trilinos. (Note that, on some architectures, one may  need  to use gmake instead of make.) 
In line 7, the variable HAVE-CONFIG-H is defined. Linker flags of lines 10-13 defines the 
library to link (location of BLAS  and LAPACK can change on different platforms).  The 
variable ARCH - LIBS is defined in line 5 .  

To run the compiled example in a sequential environment, simply type 

$ ./exl.exe 

In  a MPI environment, the user might have to use an instruction of type 

$ mpirun -np 2 ./exl.exe 

'1 2 
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Please check the local MPI  documentation for more details. 

1.4 Copyright and Licensing of Trilinos 

Trilinos is released under the  Lesser  GPL  GNU Licence. 

Trilinos is copyrighted by  Sandia  Corporation.  Under the terms of Contract DE-AC04- 
94AL85000, there is a  non-exclusive  license for use of this work by  or on behalf of the 
U.S. Government. Export of this program  may require a license from the United States 
Government. 

NOTICE: The United States Government is granted for itself and others acting on its 
behalf a paid-up, nonexclusive, irrevocable  worldwide license in ths data  to  reproduce, 
prepare derivative  works, and perform  publicly and display publicly. Beginning five ( 5 )  
years from July 25, 2001, the United  States  Government is granted for itself and others 
acting on its behalf a paid-up, nonexclusive, irrevocable worldwide license in this data  to 
reproduce, prepare derivative works, distribute copies to the public, perform publicly  and 
display publicly, and to permit others to do so. 

NEITHER THE UNITED STATES  GOVERNMENT, NOR THE UNITED STATES 
DEPARTMENT OF ENERGY,  NOR  SANDIA  CORPORATION,  NOR  ANY OF THEIR 
EMPLOYEES,  MAKES  ANY WARRANTY, EXPRESS  OR IMPLIED, OR  ASSUMES 

NESS, OR USEFULNESS OF  ANY  INFORMATION,  APPARATUS,  PRODUCT, OR' 
PROCESS DISCLOSED, OR  REPRESENTS THAT ITS USE WOULD NOT  INFRINGE 
PRIVATELY OWNED RIGHTS. 

ANY LEGAL LIABILITY OR  RESPONSIBILITY  FOR THE ACCURACY,  COMPLETE- 

Some parts of Trilinos are dependent on a  third party code. Each third party code 
comes with its own copyright and/or licensing requirements. It is responsibility of the user 
to .understand these requirements. 

1.5 Programming Language  Used  in this Tutorial 

Trilinos is written in C++ (for most  packages), and in C. Some interfaces are provided 
to FORTRAN code (mainly BLAS and LAPACK routines). Even if a limited support is 
included for C programs (and  a  more  limited  for  FORTRAN  code), to unleashed the full 
power of Trilinos we suggest to  use  C++.  All the example programs contained in this 
tutorial will  be in C++; some packages contains examples in C. 
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1.6 Referencing  Trilinos 

The  Trilinos  project can be  referenced  by  using  the  following  BiBTeX citation information: 

@techreport{Trilinos-Overview, 
title = # , { A n  Overview  of Trilinos}tl, 
author = "Michael  Heroux  and  Roscoe  Bartlett  and  Vicki  Howle 
Robert  Hoekstra  and  Jonathan  Hu  and  Tamara  Kolda  and 
Richard  Lehoucq  and  Kevin  Long  and  Roger  Pawlowski  and 
Eric  Phipps  and  Andrew  Salinger  and  Heidi  Thornquist  and 
Ray  Tuminaro  and  James  Willenbring  and  Alan  Williams I t I  

institution = "Sandia  National  Laboratoriesll, 
number = 11SAND2003-29271r, 
year = 2003) 

@techreport{Trilinos-Dev-Guide, 
title = "{Trilinos  Developers  Guide)", 
author = "Michael A. Heroux  and  James  M.  Willenbring  and  Robert Heaphy", 
institution = "Sandia  National  Laboratories", 
number = 11SAND2003-189811, 
year = 2003) 

@techreport{Trilinos-Dev-Guide-11, a 
title = "{Trilinos  Developers  Guide  Part 11: ASCI  Software  Quality a 
Engineering  Practices  Version l.O}ll, 
author = llMichael  A.  Heroux  and  James M. Willenbring  and  Robert Heaphy", 
institution = "Sandia  National  Laboratories", a 
number = "SAND2003-1899", a 
year = 2003) 

a 

a 
@techreport{Trilinos-Users-Guide, 
title = "{Trilinos  Users  Guide)", 
author = "Michael  A.  Heroux  and  James  M.  Willenbringlt, 
institution = "Sandia  National Laboratoriesrf, 
number = 11SAND2003-2952" , 
year = 2003) 

These  BiBTeX  information can be  downloaded from the  web  page 

http://software.sandia.gov/Trilinos/citing.html 
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1.7 A Note on Directory Structure 

Each Trilinos package in contained in the subdirectory 

${TRILINOS-HOME}/packages 

The structure of all packages is quite similar (although not exactly equal). As a general 
line, source files are in 

${TRILINOS - HOME}/packages/cpackage-name>/src 

Example files are reported in 

${TRILINOS - HOME}/packages/cpackage-name>/examples 

and test files in 

${TRILINOS - HOME}/packages/cpackage-name>/test 

The documentation is reported 

${TRILINOS - HOME}/packages/cpackage-name>/doc 

Often, Trilinos developers use Doxygen3. For instance, to create the documentation for 
Epetra, we use can type 

$ cd  ${TRILINOS - HOME}/packages/epetra/doc 
$ doxygen  Doxyfile 

and then browse it using an HTML  reader, or compiling the ETmfile using 

$ cd ${TRILINOS - HOME}/packages/epetra/doc/latex 
$ make 

3Copyright 01997-2003 by  Dimitri van Heesch. More information can by found at the  web  address 
http://www.stack.nl/ dimitri/doxygen/. 
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1.8 List of Trilinos Developers 

A  list of the Trilinos’ developers, updated to December 2003, would include the following 
names (in alphabetical order): 

Roscoe A. Bartlett, Jason A. Cross, David  M.  Day, Robert Heaphy,  Michael A. Her- 
oux  (project leader), Russell Hooper,  Vicki  E.  Howle,  Robert  J.  Hoekstra, Jonathan J. Hu, 
Tamara G. Kolda, Richard B. Lehoucq, Paul  Lin,  Kevin R. Long, Roger P. Pawlowski, 
Michael N. Phenow, Eric T. Phipps, Andrew J. Rothfuss, Marzio Sala, Andrew G. Salinger, 
Paul M. Sexton,  Kendall S. Stanley,  Heidi K. Thornquist, Ray S. Tuminaro, James M. Wil- 
lenbring,  Alan  Williams. 
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2 Working with Epetra  Vectors 

Probably, the first mathematical entities defined  by a numerical method is a vector.  Within 
the Trilinos framework, vectors are usually constructed starting from Epetra Classes. 

Epetra vectors can be  used  to store double  values (like the solution of a PDE  problem, 
the right-hand side of a linear system, or the nodal coordinates), as well as integer  data 
values (such as a set of indexes). 

Epetra vectors can be serial or distributed. Serial vectors are usually small, so that it 
is not  convenient to distribute them across the processes.  Possibly, serial vectors are  repli- 
cated across the processes. On the other hand, distributed vectors tend to be significantly 
larger, and therefore their elements are distributed across the processors. In this latter case, 
users must specify the partition they  intend to use. In Epetra, this is done by specifying a 
communicator (introduced in Section 2.1) and an Epetra object called map  (introduced in 
Section 2.2). A map is basically a partitioning of a list of global IDS. 
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This Chapter will  show  some  of the Trilinos capabilities to work with vectors. Vector 
classed can be used to perform common  vector operations, as  dot products, vector scalings 
and norms, or fill with constant or random  values. 

During the Chapter, the user be introduced to: 

0 The Epetra-Comm object (in Section  2.1); 

0 The Epetramap object (in Section 2.2); 

0 Creating and assembling Epetra vectors (in Sections 2.3 and 2.4); 

0 Redistributing vectors (in Section  2.5). 

2.1 Epetra Communicator  Objects 

The Epetra-Comm class is an interface that encapsulates the general information and ser- 
vices needed for the other Epetra classes to run on a parallel computer. An Epetra-Comm 
object is required for building all Epetralvlap objects, which in turn are required for all 
other Epetra classes. 

EpetraXomm has two basic implementations: 
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0 Epetra-SerialComm (for serial executions); 

0 EpetraMpiComm (for MPI distributed  memory  executions). 

For  most  basic applications, the user can create an Epetra-Comm object using the  fol- 
lowing  code: 

#include  "Epetra-conf  ig . h1I 
#ifdef  HAVE-MPI 
#include  Ilmpi. h" 
#include  "Epetra - MpiComm.h" 
#else 
#include  llEpetra-SerialComm. h" 
#endif 
/ /  . .  other  include  files  and  others . . .  
int  main(  int argv, char  *argv[l) { 
/ /  . .  some  declarations  here . . .  
#ifdef  HAVE-MPI 
MPI  Init  (&argc , &argv) ; 
Epetra - MpiComm  Comm  (MPI-COMM-WORLD) ; 

Epetra-SerialComm  Comm; 
#else 

#endif 
/ /  . . .  other  code  follows . . .  

Note  that the MPI-Init ( ) call  and the 

#ifdef  HAVE-MPI 
MPI Finalize 0 ; 

#endiT 

call,  are likely to be the onb MPI calls users have to explicitly introduce in their code. 

Most  of  Epetra-Comm methods are similar to MPI hnctions. The class provides meth- 
odsasMyPID(),NumProc(),Barrier(),Broadcast(),SumAll(),GatherAll(), 
MaxAll ( ) , Midl 1 ( ) , ScanSum ( ) . For instance, the number of processes in the com- 
municator, NumProc, and the ID of the calling process, MyPID, can be obtained as 

int NumProc = Comm.NumProc ( ; 
int  MyPID = Comm.MyPID0 ; 
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File ${TRILINOSHOME}/doc/tutorial/epetra/exl. cpp presents the use 
of some of the above introduced functions.  For a description of the syntax, please refer to 
the Epetra Class Documentation. 

2.2 Defining a Map 

Very often, various distributed objects such as matrices or vectors, have identical distri- 
bution of elements among the processes. This distribution of elements (or points) is here 
called a map, and its actual implementation within the Trilinos project is given by the  Epe- 
tramap class (or, more generally,  by an EpetraBlockMap). Basically, the class handles 
the  definition of: 

0 global number of elements (called NumGlobalPoints); 

0 the local number of elements (called NumMyPoints); 

0 
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a 

0 the global numbering of all  local nodes (an integer vector of size NumMyPoints, 
called MyGlobalElementsj. 

There are essentially three ways  to  define  an  map. The easiest way is to specify the 
global number of elements: 

Epetra-Map Map(NumGlobalPoints,O,Comm); 

In this case, the constructor takes the global dimension of the vector (here indicated as 
NumGlobalPoints), the base index (0 for C or C++ arrays, 1 for FORTRAN arrays, 
but it can be any number), and an Epe t ra Comm object (introduced in Section 2.1). As a 
result, each process will  be  assigned a contrguous list of elements. 

Another way to build the Epetra-Comm object is to furnish the local number of ele- 
ments: 

Epetra - Map  Map(-l,NumMyPoints,O,Comm); 

This will create a vector of size xi=" NumMyPoints. Each process will  get a 
contiguous set of elements. These two  approached are coded in file 
${TRILINOSHOME)/doc/tutorial/epetra/ex2.~pp. 

NumProc-l 
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Another,  more  involved  way, to create an EpetraMap, is to specify on each process  both 
the  number of local  elements,  and  the  global  numbering of each local  element. To better 
explain  this,  let us consider the  following  code,  in  which a vector, of global  dimension 5, is 
split  among 2 processes p 0 and PI. po owns  nodes 0 an 4, while pl nodes 1 , 2, and 3. 

MyPID = Comm.MyPID ( ) ; 
switch(  MyPID ) { 
case 0: 
MyElements = 2; 
MyGlobalElements = new int[MyElementsl; 
MyGlobalElements [ O ]  = 0; 
MyGlobalElements [11 = 4; 
break; 

MyElements = 3; 
MyGlobalElements = new int[MyElementsl; 
MyGlobalElements [OI = 1; 
MyGlobalElements [11 = 2; 
MyGlobalElements [21 = 3 ;  
break; 

case 1: 

1 
Epetra - Map Map(-1,MyElements,MyGlobalElements,O,Comm); 

Thecompletecodeisreportedin ${TRILINOSHOME}/doc/tutorial/epetra/ex3. cpp. 

A Map  object can be queried  for  the  global  and  local  number of elements, using 

int NumGlobalElements = Map.NumGlobalElements0 ; 
int NumMyElements = Map.NumMyElements0; 

and  for  the  global ID of local  elements, using 

int * MyGlobalElements = Map.MyGlobalElements0; e 
or,  equivalently, 

e 
e 

i n t  MyGlobalElements[NumMyElementsl ; 
Map.MyGlobalElements(MyGlobalElements); 
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The class Epetrahlap is derived  from EpetraBlockMap. This class keeps  information 
that describes the distribution  of  objects  that  have block elements (for example, one or more 
contiguous entries of a vector). This situation is common in applications like  multiple- 
unknown PDE problems. A variety of constructors are available for this class. An example 
ofuseofblockmapsisreportedin ${TRILINOSHOME)/doc/tutorial/epetra/ex23. cpp. 

Note  that different maps can coexist  in  the  same  part  of the code. This allows  the  user 
to easily define vectors with  different  distributions  (even for vectors of the  same  size). Two 
classes are provided to transfer data from  one  map  to  an  other. Those classes (Epetralmport 
and EpetraIxport) are discussed in  Section 2.5. 

Remark 3. Most Epetra objects overload the < < operator.  For example, to visualize infor- 
mation about the Map, one can simply write 

cout < c  Map; 

This Section has presented the construction  of  very basic map objects.  However,  map 
objects of  very general form  can  be  constructed.  First, element numbers are  only  labels,  and 
they do not  have to be consecutive. This means  that we can define a map with  elements 1 , 
100 and  10000 on process 0, and  elements 2,200 and 20000 on process 1. This map,  com- 
posed  by 6 elements, is perfectly legal.  Second, each element can be assigned to more  than 
one  process. Examples ${TRILINOSHOME}/doc/tutorial/epetra/ex20. cpp 
and ${TRILINOSHOME}/doc/tutorial/epetra/ex21. cpp can be  used  to  bet- 
ter understand  the potentiality of EpetraMaps. 

Remark 4. The use of ‘<distributed directory” technology facilitates arbitrary global ID 
support. 

2.3 Creating and Assembling Serial  Vectors 

Within  Epetra, it is possible to define sequential vectors, for serial or for parallel runs. 
A sequential  vector is a vector  which,  in the opinion of  the  programmer,  does  not  need 
to be partitioned among the processes.  Note  that each process defines its own sequential 
vectors, and that changing an element of this  vector on this process will not directly  affect 
the  vectors stored on other processes (if any  have been defined). 

’ To create a sequential vector containing Length elements, one can use  the  following 
command: 
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Epetra-SerialDenseVector x(Length1; 

Other  constructors are available; check the Epetra Class Documentation. 

The class Epetra-SerialDenseVector enables the construction and use of real-valued, 
double-precision dense vectors.  The Epetra-SerialDenseVector class is intended to provide 
convenient  vector notation but derives all significant  functionality fiom EpetraSerialDenseMatrix 
class.  The  vector can be filled using the [ I or ( ) operators. Both methods return the spec- 
ified  element of the vector.  However, using ( ) , bounds, checking is enforced. Using using 
[ ] , no bounds checking is done unless Epetra is compiled  with EPETRA - ARRAY - BOUNDS-CHECK. 

Remark 5. To construct replicated Epetra objects on distributed memory machines, the 
user  may consider the class Epetra LocalMap. This class allows the constructions of those 
replicated local objects and keeps information that describe the distribution. 

File ${TRILINOSHOME}/doc/tutorial/epetra/ex4. cpp shows some ba- 
sic  operations  on  dense vectors. 

2.4 Creating and Assembling a Distributed  Vector 

To create  a distributed vector, the first  step is to defhe a  map.  (Actually, this is true for all 
distributed  Epetra  objects.) After that, an Epetra-Vector object can be constructed with an 
instruction of type 

Epetra - Vector  x(Map) i 

This constructor allocates space for the vector  and set all the elements to zero. A  copy 
constructor can be  used as well: 

I Epetra - Vector y(x) ; 

Alternatively, the user can pass a pointer to an array of double precision values: 

Epetra - Vector x(Copy,Map,LocalValues); 

Note  the  word Copy is input  to the constructor.  Epetra allows two data access modes: 
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1. Copy mode: Allocates memory and makes  a copy of the user-provided data. In this 
case, the user data is not needed after construction; 

2. View mode: Creates a  “view” of the  user’s  data. In this case, the user data is re- 
quired to remain untouched for the life of the vector (or modified carefully). It is 
worth noting that the View  mode is very dangerous from a data hiding perspective. 
Therefore, users are strongly encouraged to develop code using Copy  mode  first and . 
only use View  mode in a  secondary optimization phase. To use the View mode, the 
user has to define the vector entries using  a double vector (of appropriate size), than 
construct an Epetra-Vector  with an instruction of type 

Epetra - Vector  z(View,Map,double - vector); 

where double - vector is a pointer to  the vector of doubles. 

Regardless of how  a vector has been created, one can use the C 1 operator to access a 
vector element: 

x[il = l.O*i; 

where i is in the local index  space. 

Epetra also defines some functions to set vector elements in local or global index  space. 
ReplaceMyValues or SumIntoMyValues will replace or sum values into a  vector 
with  a  given indexed list of values,  with indexes in the local index space; ReplaceGlobalValues 
or SumIntoGlobalValues will  replace or sum values into a vector with a  given in- 
dexed list of values in the global index  space. It is important to note that a process cannot 
set a vector entries locally owner by another process. In other words, both global and local 
insert and replace functions refers to the part of  a vector assigned to the calling process. 
Intra-process communications can be  performed using Import and Export objects, covered 
in Section 2.5. 

Another way is to put vector values  in  a  user-provided  array. For instance, one  may 
have: 

double *x values; 
x  values = new double [MyLength] ; 
x.ExtractCopy(  x - values ) ; 
f o r (  int i=O ; ieMyLength ; ++i ) x - values[i] *= 10; 
for( int i = O  ; icMyLength ; ++i ) 

- 
- 

x.ReplaceMyValues( 1, 0, x - values+i, &i ) ;  
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(File ${TRILINOSHOME}/doc/tutorial/epetra/ex5. cpp reported the com- 
plete  source.) It is important to note that Extract Copy does not give access to the 
vector elements, but only copies them into the user-provided  array. The user must commit 
those changes to the vector object, using, for instance, ReplaceMyValues. 

A further, computationally efficient  way, is to extract a “view” of the (multi-)vector 
internal  data. To that aim, one has to call 

double * pointer; 
x.ExtractView(  &pointer’ ) ; 
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Now, modifying the values of pointer will affect the internal data of the Epetra-Vector x. e 
Anexamp~eoftheuseofExtractViewisreportedinfile${TRILINOSHOME}/doc/tutorial/epetr 

Remark 6. The class Epetra-Vector is derivedfrom  EpetraMultiVectoz  Roughly speaking, e 
a multi-vector is a collection of one or more vectors, all having the  same length and distri- e 
bution. Thereadermaylooktothefile ${TRILINOSHOME}/doc/tutorial/epetra/ex7. cpp 
for an example of use of multi-vectors. 

% 

e 
e 

The  user can also consider the function Resetview, which allows a (very) light- 
weight  replacement of multi-vector values,  created using the EpetraDataMode View. 
Note  that no checking is performed to see if the values  passed in contain valid  data. 
This  method can be extremely useful in situation where a vector is needed for use with 
an Epetra operator or matrix, and the user is not passing in a multi-vector. Use this 
method  with caution as it could be  extremely  dangerous. A simple example is reported 
in${TRILINOSHOME}/doc/tutorial/epetra/ex8.cpp 

It is possible  to perform a certain number of operations on vector objects. Some of them 
arereportedinTable2. Example ${TRILINOSHOME}/doc/tutorial/epetra/exl8 
works  with some of the functions reported in the table. 

CPP 

e 
e 
e 
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0 

e 
2.5 Epetralmport and Epetra-Export e 

e 
Epetralmport and Epetraxxport are two classes meant for efficient importing of off- 
processors  elements. Epetralmport and EpetraXxport are used to construct a commu- e 
nication  plan that can be called repeatedly by computational classes such the Epetra  multi- e 
vectors of the Epetra matrices. e 

e 
e 
0 
e 
e 
e 
e 
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int  NumMyELement ( )  

int  NurnGlobalElementsO 

int  Norml(doub1e  *Result)  const 

Normweigthed(doub1e  *Result)  const 

returns the local vector length on the calling processor 

returns the global length 

returns the 1-norm (defined as cy lzil (see also Norm2 and NormInf) 

returns the 2-norm, defined as - ‘&(w~x~)~) 

computes the dot product of each corresponding pair of vectors 

Replace multi-vector values with scaled values of A, this=ScalarA*A 

compute minimum value of each  vector in multi-vector (see also MaxValue a n c  

7 
int  Dot(const  Epetra  MultiVector A, double  *Result)  const 

int  Scale(doub1e  ScalarA,  const  Epetra  MultiVector &A 

int  MinValue(doub1e  *Result)  const 

Meanvalue 
int  PutScalar(doub1e  Scalar) 

int  Random ( ) 
Initialize all values in a  multi-vector with constant value 

set multi-vector values to random  numbers 

Table 2. Some methods of the class Epetra-Vector 
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Currently, those classes have one constructor,  taking two EpetraMap  or EpetraBlockMap 
objects.  The  first  map  specifies the global IDS that are owned  by the calling processor.  The 
second  map  specifies the global IDS of elements that  we  want to import later. 

Using an Epetralmport object means that  the  calling process knows what it wants to 
receive,  while  an  Epetra-Export object means  that  it  knows  what  it wants to send. An 
Epetra-Import object can be used to do an Export as a reserve operation (and equivalently 
an Epetraxxport can be used to do an Import). In the particular case of bijective  maps, 
either Epetralmport or EpetraExport  is appropriate. 

To better illustrate the hctionalities of these two classes, we consider the follow- 
ing  example. Suppose that vector x of global  length 4, is distributed over two  processes. 
Process 0 own nodes 0,1,2, while process 1 owns  nodes  1,2,3. This means that nodes 
1 and 2 are replicated over the  two  processes.  Suppose that we  want to bring  all  the 
components of x to process 0, summing up the contributions of node 1 and 2 from the 
2 processes. This is done in the following  example (the complete code is reported in 
${TRILINOSHOME}/doc/tutorial/epetra/ex9.cpp). 

int NumGlobalElements = 4; / /  global dimension of the problem 

int NumMyElements; / /  local nodes 
Epetra-IntSerialDenseVector MyGlobalElements; 

if ( Comm.MyPID0 == 0 ) 
NumMyElements = 3; 
MyGlobalElements.  Size 
MyGlobalElements L O 1  = 
MyGlobalElements [11 = 
MyGlobalElements [21 = 

NumMyElements = 3; 
} else { 

{ 

(NumMyElements) ; 
0; 
1; 
2; 

MyGlobalElements.Size(NumMyE1ements); 
MyGlobalElements E01 = 1; 
MyGlobalElements [l] = 2; 
MyGlobalElements [21 = 3 ; 

1 
/ /  create.  a  map 
Epetra-Map Map(-l,MyGlobalElements.Length(), 

MyGlobalElements  .Values ( ) , 0, Comm) ; 
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/ /  create  a  vector  based on map 
Epetra - Vector  x(Map) ; 
for(  int i=O ; i<NumMyElements ; ++i ) 

cout << x; 

/ /  create  a  target  map,  in  which  all  the  elements  are on proc 0 
int  NumMyElements - target; 

if(  Comm.MyPID() == 0 ) 

else 

x[i] = 10* ( Comm.MyPID0 +1 ) ; 

NumMyElements  target = NumGlobalElements; 

NumMyElements - target = 0; 

- 

Epetra - Map TargetMap(-1,NumMyElements - target,O,Comm); 

Epetra - Export Exporter(Map,TargetMap); 

/ /  work  on  vectors 
Epetra-Vector  y(TargetMap); 

y.Export(x,Exporter,Add); 
cout << y; 

Running this code with 2 processors, the  output  will  be approximatively the  following: 

[msala:epetral>  mpirun -np 2 ./ex3l.exe 
Epetra::Vector 

MyPID  GID  Value 
0 0 10 
0 1 10 
0 2 10 

Epetra::Vector 
1 1 20  
1 2 20  
1 3 2 0  

Epetra::Vector 
Epetra::Vector 

MyPID  GID Value 
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10 
30 
30 
20  
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3 Working  with  Epetra Matrices 

Epetra contains several matrix classes. Epetra matrices can be defined  to  be serial orpar- 
allel: 

0 Examples of serial matrices are, for instance, the matrix corresponding to a  given 
element in a finite-element discretization, or the Hessemberg matrix in the GMRES 
method. Those matrices are of small size, and therefore they are not  distributed 
among the processors (but  they can be replicated). 

0 For distributed sparse matrices, the basic class is  EpetraXowMatrix. This class is 
meant for double-precision matrices with row access (as required in a  matrix-vector 
product), and it is a pure virtual class. Various classes are derived Epe t ra RowMat rix. 
Among them, here we  recall: 

- 

- Epetra - CrsMatrix for point matrices; 
- Epetra  VbrMatrix for block matrices (that is, for matrices which have  a 

block st&ture, for example the ones deriving from the discretization of a PDE 
problem with multiple unknowns for node); 

from FE discretizations. 
- Epetra FECrsMatrixand Epetra - FEVbrMatrixformatricesarising 

This Chapter will show some of the Trilinos capabilities to work  with matrices. During 
the Chapter, the user be introduced to: 

0 Create (serial) dense matrices (in Section 3.1); 

0 Create sparse point matrices (in Section 3.2); 

0 Create sparse block matrices (in Section 3.3); 

0 Insert non-local elements using finite-element matrices (in Section 3.4). 

3.1 Serial Dense Matrices 

Epetra provides functionalities for sequential dense matrices with the class EpetraSerialDenseMatrix. 
A possible way to create a serial dense matrix D of dimension n by m is 
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Epetra - SerialDenseMatrix  D(n,m); 

One  could also create a zero-size object, 

Epetra - SerialDenseMatrix D ( )  ; 

and  then  shape this object: 

D. Shape (n, m) ; 

(D could  be  reshaped using Reshape ( ) .) 

Epetra-SerialDenseMatrix are stored in  a  column-major order in the usual FORTRAN 
style. This class is built on the  top of the BLAS library, and is derived from EpetraBlas. 
Epetra-SerialDenseMatrix is intended to provide  a  very basic support for dense rectangular 
matrices. 

To access the matrix element at the  i-th  row  and the j-th column, it is possible to use 
the parenthesis operator (A ( i , j ) ), or the bracket operator (A [ j I [ i I , note that i  and j 
are reversed).  The bracket approach is in general  faster, as the compiler can inline the 
corresponding function. Instead, some compiler  have  problems to inline the parenthesis 
operator. 

As an  example of the use of this class, in the following code we consider a matrix- 
matrix  product between two rectangular matrices A and B. 

int  NumRowsA = 2, NumColsA = 2; 
int  NumRowsB = 2, NumColsB = 1; 
Epetra - SerialDenseMatrix A, B; 
A.Shape ( NumRowsA,  NumColsA ) ; 
B.Shape(NumRowsB,  NumColsB); 
/ /  . . .  here  set  the  elements of A and  B 
Epetra-SerialDenseMatrix AtimesB; 
AtimesB.Shape(NumRowsA,NumColsB); 
AtimesB.Multiply(‘N’,’N’,l.O, A, B, 0.0); 
cout c c  AtimesB; 

Thecompletecodeisreportedinfile ${TRILINOSHOME}/doc/tutorial/epetra/exlO. cpp. 
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To solve a linear system with a dense matrix, one has to create an EpetraSerialDenseSolver. 
This class uses the most sophisticated techniques available in the LAPACK  library.  The 
class is built on the top of BLAS and  LAPACK, and thus has excellent performances and 
numerical capabilities. 

Given an Epetra-SerialDenseMatrix and two EpetraDSerialDenseVectors x and b, the 
general approach is as follows: 

Epetra  SerialDenseSolver  Solver(); 
SolverTSetMatrix (D) ; 
Solver.SetVectors(x,b); 

Then, it is possible to invert the matrix  with Invert ( ) , solve the linear system  with 
Solve ( ) , apply iterative refinement with ApplyRef  inement ( ) . Other methods  are 
available; for instance, 

double rcond=Solve.RCONDO; 

returns the reciprocal of the condition number of matrix D (or -1 if not computed). 

File ${TRILINOSHOME}/doc/tutorial/epetra/exll. cpp outlines some 
of the capabilities of the Epetra-SerialDenseSolver class. 

The EpetraLAPACK class provides access to most of the same functionality as Epe- 
tra-SerialDenseSolver. The primary difference is that EpetraLAPACK is a “thin” layer  on 
the top of LAPACK, while Epetra-SerialDenseSolver attempts to provide easy access to 
the more sophisticated aspects of solving dense linear systems. 

As a general rule, we can say that EpetraLAPACK should be preferred when  the  user 
is looking for a convenient wrapper around the FORTRAN  LAPACK routines, and. the 
problem at hand is well-conditioned. Instead, when the user wants (or potentially wants 
to) solve ill-conditioned problems or want to work with a more object-oriented interface, 
he/she will probably use Epetra-SerialDenseMatrix. 

3.2 Distributed Sparse Matrices 

Epetra provided an extensive set of methods to create and fill distributed sparse matrices. 
These classes allow row-by-row or element-by-element constructions. Support is provided 
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for common matrix operations, as scaling, norm, matrix-vector multiplication and matrix- 
multivector multiplication4. 

Application do not  need  to  know about the particular storage format, and other imple- 
mentation details such as data layout, number and location of ghost nodes. Epetra furnishes 
two  basic formats, one suited for point matrices,  the  other for block matrices. The former 
is presented  in this Section; the  latter,  generally  much  more  efficient for problems with 
multiple  degree of freedom per node, is introduced in Section 3.3.  If required, other matrix 
formats can be supported via the Epetra-Operator,  described in Section 4.3. 

Remark 7. Some numerical algorithms require the application of the linear operator only. 
For this reason, some applicationsfind convenient to not store a given matrix. Epetra  can 
handle this situation using with the Epetra-Operator class; see Section 4.3. 

The process of creating a sparse matrix is more  involved with respect to that  of  dense 
matrices. .This  is because, in order to obtain excellent  numerical performances, one has to 
provide an estimation of the nonzero elements on each row of the sparse matrix. (Recall 
that  dynamic allocation of new memory and  copying the old storage into the new one is an 
expensive operation.) 

As a  general rule, the process of constructing a  (distributed) sparse matrix is as follows: 

0 allocate an integer array Nnz, whose length equals the number of local rows; 

0 loop  over the local rows, and estimate the number  of nonzero elements of that row; 

0 create the sparse matrix using Nnz; 

0 fill the sparse matrix. 

As an example, in this Section we will present  how to construct a distributed (sparse) 
matrix, arising from a finite-difference solution of a  one-dimensional Laplace problem. 
This matrix  looks like: 

A =  . . . . . . . . . -1 
\ -1 2 J 

4At  the present stage of development,  no  functions are provided to perfonn  a  matrix-matrix  product  be- 
tween to distributed objects. However,  the interested user can convert the  Epetra  matrix into an ML matrix 
(called  ML-Operator), perform  the  matrix-matrix  multiplication with ML  functions,  and convert  back the 
resulting  ML-Operator into an  Epetra  matrix. 
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The example illustrates how to construct the matrix, and how to perform matrix-vector  op- 
erations. The codecanbe  foundin ${TRILINOSHOME}/doc/tutorial/epetra/exl2. cpp. 

We start by specifying the global  dimension (here is 5, but can be any number): 

int  NumGlobalElements = 5; 

We create a map, and define the local number  of  rows and the global numbering for  each 
local row: 

Epetra  Map  Map  (NumGlobalElements, 0 , Comm) ; 
int  NumMyElements = Map.NumMyElements0; 
int * MyGlobalElements = Map.MyGlobalElements( 1 ;  

- 

In particular, we have that j =MyGlobalElements  [i] is the global numbering for  local 
node i. Then, we have to specify the number  of nonzeros per row. In general, this can be 
done in two ways: 

0 Furnish an integer value, representing the number of nonzero element on each row 
(the same value for all the rows); 

0 Furnish an integer vector NumNz, of length NumMyElements ( ) , containing the 
nonzero elements of each row. 

The second approach can be coded as follows: 

int * NumNz = new  int[NumMyElementsl; 
for( int  i=O ; icNumMyElements ; i++ ) 
if ( MyGlobalElements [il==O I I 

MyGlobalElements[i] == NumGlobalElements-1) 
NumNz [i] = 2; 

NumNz[il = 3 ;  
else 

We are building a tridiagonal matrix where each row has (-1 2 -1). So we need 2 off- 
diagonal terms (except for the first and last equation). Here NumNz [ i I is the Number of 
nonzero terms in the i-th global equation on this process. 

Now,  we create an Epetra-CsrMatrix as 

33 



e 
e 
e 
e 
e Epetra - CrsMatrix  A(Copy,Map,NumNz); 

and  we add rows  one-at-a-time. A has  been  created in Copy mode, and relies on the spec- 
ified  map. To fill its values, we need  some  additional  variables: Indexes and Values. 
Those  will contain the global column  number  and the values of the nonzeros for each row. 

e 
e 
e 
e 

e 
double  *Values = new  double [21 ; e 
Values[O] = -1.0; Values[ll = -1.0; 
int  *Indices = new  int  [21 ; 
double  two = 2.0; e 
int  NumEntries; e 
for(  int i=O ; icNumMyElements; ++i ) { e 
if  (MyGlobalElements [il = = O )  { e 

Indices[O] = 1; e 
NumEntries = 1; e 

e } else  if  (MyGlobalElements[i] == NumGlobalElements-1) { 
Indices[O] = NumGlobalElements-2; 
NumEntries = 1; e 

} else { e 
Indices  [O] = MyGlobalElements [il -1; 
Indices  [l] = MyGlobalElements [il +l; 
NumEntries = 2; e 

A.InsertGlobalValues(MyGlobalElements[i], NumEntries,  Values,  Indices); 
/ /  Put  in  the  diagonal  entry 
A.InsertGlobalValues(MyGlobalElements[i], 1, &two,  MyGlobalElements+i); e 

e 

1 e 

} e 
e 

Note that column indexes have been inserted using global  indexes. As a  final operation, 
we can transform the matrix into local indexes. This phase in required in order to perform 
efficient parallel matrix-vector products and other matrix  operations. 

A. Fillcomplete ( )  ; 

The  above presentation refers to a  rather  common case: In a parallel matrix-vector 
product 

AX = B, 
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the map used to define the parallel distribution of the matrix, is the same of the (multi- 
)vectors X and B. This means that the  rows of A are distributed among the processes  in 
the same way of the elements of X and B. However, Epetra allows the user to handle  the 
more general case of a matrix defined using a Map, is different from that of X and that of 
B. In fact, each Epetra matrix is defined  by four maps: 

0 Two maps, called RowMap and ColumnMap, are used to determine the set of  rows 
and the columns of the elements assigned to a given  processor. In general,  one  pro- 
cessor cannot set elements assigned  to other processors. (However, some classes, 
derived from the EpetraXowMatrix, can perform data exchange; see for instance 
Epetra-FECrsMatrix or EpetraTEVbrMatrix.) RowMap and ColumnMap determine 
the pattern of the matrix, as it is used during the construction. They can be  obtained 
using the methods RowMap ( ) and ColMap ( ) of the EpetraAowMatrix class. Usu- 
ally, the user dos not specify a ColumnMap, which is automatically created by  Epetra. 
RowMap and ColumnMap can differ. 

0 DomainMap and RangeMap define, instead, the parallel data layout of X and By 
respectively. Note that those two maps  can completely different from RowMap  and 
ColumnMap, meaning that a matrix can be constructed using a certain data distribu- 
tion, then used on vectors with another data distribution. DomainMap and  RangeMap 
can differ. Those tow maps can be  obtained using the methods DomainMap ( and 
RangeMap ( ) . 

The potentialities of this approach are better explained using an example, reported in the 
example  file ${TRILINOSHOME}/doc/tutorial/epetra/ex24. cpp. In this  ex- 
ample, to be run using two processors, we  build up two maps: MapA will  be  used  to  con- 
struct the matrix, while MapB to define the parallel layout of the vectors X and B. For the 
sake of simplicity, A is diagonal. 

Epetra - CrsMatrix  A(Copy,MapA,MapA,l); 

As usual in this Tutorial, the integer vector MyGlobalElement  sA contains the  global 
ID of local nodes. To assemble A, we cycle over  all the local rows  (defined  by MapA): 

f o r (  int i = O  ; i<NumElementsA ; ++i ) { 
double  one = 2.0; 
int indices = MyGlobalElementsA[i] ; 
A.InsertGlobalValues(MyGlobalElementsA[i], 1, &one, &indices ) ;  

1 
35 



e 
e 
e 
e 
e 
e 

Now, as both X and B are defined using MapB, instead of calling Fi 11 Complete ( ) , we 
do 

A.FillComplete(MapB,MapB) ; e 
e 

Now,  we can create X and B as vectors based on MapB, and perform the matrix-vector e 
product: e 

e 
e 
e 

e 

Epetra  Vector  'VecB  (MapB) ; Epetra - Vector  VecB2  (MapB) ; 
A.Mult~ply(false,VecB,VecB2) ; 

Remark 8. Although  pi-esentedfor Epetra-CrsMatrix objects, the distinction between RowMay, e 
ColMap, DomainMap, and RangeMap is  validfor all classed derived from Epetra RowMatrix. 

Example ${TRILINOSHOME}/do,c/tutorial/epetra/exl4. cpp shows the 
use  of  some  of the methods of the Epetra-CrsMatrix class. The code prints out several 
information about the structure of the matrix, and some of its properties. The output will 
be approximatively as here reported: 

[msala:epetra]>  mpirun -np 2  ./ex14 
* * *  general  Information  about  the  matrix 
Number  of  Global  Rows = 5 
Number of Global  Cols = 5 
is  the  matrix  square = yes 
I I A l  I-\infty = 4  
I I A l  1-1 = 4  
I I A l  I 2  = 5.2915 
Number  of  nonzero  diagonal  entries = 5 (  100 % )  
Nonzero  per  row : min = 2  average = 2.6  max = 3 
Maximum  number  of  nonzero  elements/row = 3 
min(  a-{i,j} = -1 
max(  a-{i,j} ) = 2  
min(  abs(a-{i,j}) ) = 1 
max(  abs(a-{i,j}) ) = 2 
Number  of  diagonal  dominant  rows = 2 (40 % of  total) 
Number of weakly  diagonal  dominant  rows = 3 (60 % of  total) 
***  Information  about  the  Trilinos  storage 
Base  Index = o  
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i s  storage o p t i m i z e d  = no 
are indices global = no 
i s  matrix lower t r iangular  = no 
i s  matrix upper t r i angu la r  = no 
are there diagonal entries = yes 
i s  matrix sorted = yes 

Other examples are reported for Epetra-CrsMatrix: 

0 Example ${TRILINOSH0ME}/doc/tutorial/epetra/exl3. cppimplements 
a simple distributed finite-element  solver. The code solves a 2D Laplace problem 
with unstructured triangular grids. In this example, the information about the grid 
are hardwired. The interested user can  easily modify those lines in order to  read  the 
grid information from a file. 

0 Example ${TRILINOSHOME}/doc/tutorial/epetra/exl5 .cppexplains 
how to export an Epetra-CrsMatrix to file in a MATLAB format. The output of this 
example will be as follows: 

[msala:epetral> mpirun -np 2 ./ex15 
A = spa l loc (5 ,5 ,13 ) ;  
% On proc 0 :  3 rows and 8 n o n z e r o s  
A ( 1 , l )  = 2 ;  
A ( 1 , 2 )  = -1; 
A ( 2 , l )  = -1; 
A ( 2 , 2 )  = 2 ;  
A ( 2 , 3 )  = -1; 
A ( 3 , 2 )  = -1; 
A ( 3 , 3 )  = 2 ;  
A ( 3 , 4 )  = -1; 
% On proc 1: 2 rows and 5 n o n z e r o s  
A ( 4 , 4 )  = 2 ;  
A ( 4 , S )  = -1; 
A ( 4 , 3 )  = -1; 
A ( 5 , 4 )  = -1; 

A ( 5 , 5 )  = 2 ;  

A companion to this example is 
${TRILINOSHOME}/doc/tutorial/epetra/exl6. cpp,whichexportsan 
Epetra-Vector to MATLAB  format. 
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3.3 Creating VBR Matrices 

The  following code shows how to work with VBR matrices. This format has been designed 
for PDE problems with more than one unknown  per  grid  node. The resulting matrix has  a 
sparse  block structure, and the size of each dense  block equals the number of PDE equations 
defined  on that block. This format is quite general,  and can handle matrices with variable 
block size, as it is done is the following example. 

First, we create a map, containing the distribution of the blocks: 

Epetra-Map Map(NumGlobalElements,O,Comm) ; 

Here, a linear decomposition is used for the sake of simplicity,  but  any map can be used as 
well. Now,  we obtain some information about the map: 

/ /  local number of elements 
int NumMyElements = Map.NumMyElements0; 
/ /  global numbering of local element-s 
int * MyGlobalElements = new int [NumMyElementsl; 
Map.MyGlobalElements(  MyGlobalElements ) ;  

A block  matrix can have blocks of different  size.  Here, we suppose that the dimension of 
diagonal block row i is i + 1. The integer  vector Element S i zeL i s t will contain the 
block size of local element i. 

Epetra-IntSerialDenseVector ElementSizeList(NumMyE1ements); 
for( int i= O  ; icNumMyElements ; ++i ) 
ElementSizeList [i] = l+MyGlobalElements [i] ; 

Here ElementSizeList is declared as Epetra-IntSerialDenseVector, but an int array is 
fine  as  well. 

Now  we can create a map for the block distribution: 

Epetra-BlockMap BlockMap(NumGlobalElements,NumMyElements, 
MyGlobalElements, 
ElementSizeList.Values(),O,Comm); 
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and finally  we can create the VBR matrix based on BlockMap. In this case,  nonzero 
elements are located in the diagonal and the sub-diagonal above the diagonal. 

Epetra - VbrMatrix  A(Copy,  BlockMap, 2); 

int  Indices  [2] ; 
double  Values  [MaxBlockSizel ; 

for(  int i=O ; icNumMyElements ; ++i ) { 
int  GlobalNode = MyGlobalElements[il; 
Indices [OI = GlobalNode; 
int  NumEntries = 1; 
if(  GlobalNode ! =  NumGlobalElements-1 { 
Indices [ l l  = GlobalNode+l; 
NumEntries++; 

1 
A.BeginInsertGlobalValues(GlobalNode,  NumEntries,  Indices); 
/ /  insert  diagonal 
int  BlockRows = ElementSizeList[il; 
for(  int k=O ; kcBlockRows * BlockRows ; ++k ) 

B.SubmitBlockEntry(Values,BlockRows,BlockRows,BlockRows); 
Values[k] = l.O*i; 

/ /  insert  off  diagonal if any 
if(  GlobalNode !=  NumGlobalElements-1 ) { 
int  BlockCols = ElementSizeList[i+ll; 
for(  int k=O ; kcBlockRows * BlockCols ; ++k ) 

B.SubmitBlockEntry(Values,BlockRows,BlockRows~B~ockC~~S~; 
Values [kl = l.O*i; 

1 
B.  EndSubmitEntries ( 1  ; 

1 

Note that, with VBR matrices, we have to insert one block at time. This required two  more 
instructions, one to start this process (BeginInsertGlobalValues), and another one 
to commit the end of submissions (EndSubmitEntries). 

Please refer to ${TRILINOSHOME}/doc/tutorial/epetra/exl7. cpp for 
the entire source. 
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3.4 Insert non-local Elements Using FE Matrices e 
e 

The  most  important additional feature provided  by  the EpetraIECrsMatrix with respect  to e 
Epetra-CrsMatrix, is the capability of setting non-local  matrix elements. We will illustrate e 
thisusingthefollowingexample,reportedin${TRILINOSHOME}/doc/tutorial/epetra/ex23 .cpp.@ 
In the  example, we will set all the entries of a  distributed matrix from process 0. For  the 
sake of simplicity, this matrix is diagonal, but  more  complex cases can be handled as well. e 

a 
First,  we  define the Epetra-FECrsMatrix in Copy  mode as 

Epetra - FECrsMatrix A(Copy,Map,l); 

Now, we  will set all the diagonal entries from process 0: 

if ( C o m r n . ~ y ~ ~ ~ ( )  == o ) { 
for( int i=O ; i<NumGlobalElements ; ++i ) { 
int indices [ 2 ]  ; 
indices[O] = i; indicesrl] = i; 
double value = l.O*i; 
A.SumIntoGlobalValues(l,indices,&value); 

1 
1 

The  Function SumIntoGlobalValues adds the coefficients specified in indices (as 
pair  row-column) to the matrix, adding them to any  coefficient that may exist at the spec- 
ified  location. In a  finite element code, the user will  probably insert more than one coeffi- 
cient  at time (typically,  all the matrix entries corresponding to an elemental matrix). 

At this point, we need to exchange data, to that each matrix element not owned  by 
process 0 could be send to the owner, as specified by Map. This is accomplished by calling, 
on  all  processes, 

A.GlobalAssemble0 ; 

A  simple 

cout < e  A; 

can  be  used to verify the data exchange. 
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4 Other  Epetra Classes 

Epetra includes a certain number of classes that can greatly help to develop parallel codes. 
In this Chapter we will recall the main usage of some of those classes: 

0 Epetra-Time (in Section 4.1); 

0 Epetra-Flops (in Section 4.2). 

0 Epetra-Operator and EpetraiRowMatrix (in Section 4.3); 

0 Epetra-Linearproblem (in Section  4.4). 

4.1 Epetra-Time 

To retrieve elapsed and wall-clock time can be problematic because of several  platform- 
dependent and language-dependent issues. To  avoid those problems, Epetra furnishes the 
Epetra-Time class. Epetra-Time is meant to insulate the user from the specifics of timing 
among a variety of platforms. 

Using Epetra-Time, it is possible to measure the elapsed time. This is the time  elapsed 
between two phases of a program. 

A Epetra-Time object is defined as 

Epetra - Time  time  (Comm) ; 

To compute the elapsed time required by  a  piece of code, then user should put  the  instruc- 
tion 

time  .ResetStartTime ( )  ; 

before the code to the timed. Then, the methods ElapsedTime ( ) and WallTime ( ) 
will return the elapsed time and wall-clock  time,  respectively. ElapsedTime ( ) returns 
the elapsed time from the creation of this object. 
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4.2 Epetra-Flops 

The EpetraIlops class provides basic support and consistent interfaces for counting and re- 
porting  floating point operations performed in the Epetra computational classes. All classes 
based on the Epetra-CornpObject  can  count  flops  by  the  user creating an EpetraIlops ob- 
ject and calling the SetFlopCounter() method for an Epetra-CompObject. 

As an example, suppose you are interested in counting the flops required by  a  vector- 
vector  product (between, say, x and y). The  first  step is to create an instance of  the  class: 

Epetra-Flops counter(); 

Then,  it is necessary to "hook" the counter object to the desired computational object, in 
the  following  way: 

x.SetFlopCounter(counter); 
y.SetFlopCounter(counter); 

Then,  we perform the desired computations on Epetra objects (in this case, the vector- 
vector  problem): 

x. Dot (y, &dotproduct) ; 

Finally  we can extract the number of performed  operations ans stored it in the double 
variable total-f lops as 

total - flops = counter.Flops0; 

which are the  toal number of serial flops. This will also reset the flop  counter. 

Epetra-Time objects can be used in conjunction with EpetraFlops objects to estimate 
the  number of floating point operations per second of a  given code (or a part of it).  One can 
proceed as here  reported: 

Epetra-Flops counter; 
x.SetFlopCounter (counter) ; 
Epetra-Time timer  (Comm) ; 
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x.Dot (y, &dotProduct) ; 
double  elapsed  time = timer.ElapsedTime0; 
double  total  fiops  =counter.  Flops ( 1  i 
cout cc !!Total  ops: cc total  flops <c endl; 
double MFLOP~ = total  flops/elapsed  time/1000000 .o; 
tout cc 1lTotal MFLOPS  for  mat-vec = I' <c MFLOPS cc endlcc  endl; 

- 

- - 

Thiscodeisreportedin${TRILINOSHOME}/doc/tutorial/epetra/ex2O.cpp. 
The output will be approximatively as follows: 

[msala:epetra]>  mpirun -np 2 ./ex20 
Total  ops: 734 
Total  MFLOPs  for  mat-vec = 6.92688 

Total  ops: 734 
Total  MFLOPs  for  mat-vec = 2.48021 

Total ops: 246 
Total  MFLOPs  for  vec-vec = 0.500985 

q dot z = 2 
Total  ops: 246 
Total  MFLOPs  for  vec-vec = 0.592825 

q dot z = 2 

Remark 9. Operation count are serial count, and therefore keep trace of local operations 
only. 

Remark 10. Each computational class has a Flops ( ) method, that can queried for the 
.flop count of that object. 

4.3 Epetra-Operator and  Epetra-RowMatrix Classes 

Matrix-free methods can be easily introduced in the Epetra framework using one of the 
following two classes: 

0 Epetra-Operator; 
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Technically, both classes are pure virtual classes (that is, they specify interfaces only), 
that enable the use of real-valued  double-precision sparse matrices. Epetra-RowMatrix, 
derived  from  Epetra-Operator, is meant for matrices where the matrix entries are intended 
for row access, and it is currently implemented  by  Epetra-CrsMatrix,  Epetra-VbrMatrix, 
Epetra-FECrsMatrix, and EpetraZEVbrMatrix. 

In the following, we consider for instance how to  apply  a matrix to a  vector  without 
explicitly constructing the matrix. The matrix is the classical finite-difference discretization 
of a  Laplace on a 1D grid with constant grid-size.  For  the sake of simplicity, we  avoid  the 
issues  related to intra-process communication (hence this code can be run with one process 
only). 

The  first step is the definition of a class, here  called TriDiagonalOperator, and 
derived from the Epetra-Operator class. 

class  TriDiagonalOperator : public  Epetra-Operator { 
public: 

private : 
/ /  . .  definitions  here,  constructors  and  methods 

Epetra-Map  Map-; 
double  diag - minus-one-; / /  value  in  the  sub-diagonal 
double  diag-; / /  value  in  the  diagonal 
double  diagglus-one-; / /  value  in  the  super-diagonal 

I 

As the class Epetra-Operator implements several  virtual  methods, we have to specify all 
those  methods in our class. Among them, we are interested in the Apply method, which 
may  be  coded as follows: 

a 
a 
a 
a 
a 
a 
a 

int  Apply(  const  Epetra-MultiVector & X, Epetra-MultiVector & Y ) const { 
int  Length = X.MyLength0; a 
/ /  need t o  handle  multi-vectors  and  not  only  vectors 
for(  int vec=0 ; veccX.NumVectors0 ; ++vec { 

/ /  one-dimensional  problems  here a 
if ( Length == 1 { 'a 
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Y [vecl [OI = diag - * X[vecl [OI ; 
break; 

1 
/ /  more  general  case  (Lenght >= 2) 
/ /  first  row 
Y [vec] [O] = diag- * X[vecl  [OI + diag_plus-one- * X[vecl [ll ; 

/ /  intermediate  rows 
for(  int i=1 ; iclength-1 ; ++i ) { 
Y [vecl [il = diag - * X[vecl [il + diag_plus-one- * X[vecl  [i+lI 

1 
+ diag-minus-one - * X[vecl [i-11 ; 

/ /  final  row 
Y [vecl  [Length-11 = diag- * X[vecl  [Length-11 

+ diag  minus  one- * X[vecl  [Length-21 ; 
1 

- - 

return  true; 
1 

Now, in the main function, we can define a TriDiagonalOperatr object using the specified 
constructor: 

TriDiagonalOperator TriDiagOp(-1.0,2.0,-1.OrMap) ; 

and we can apply this operator to a vector  as: 

${TRILINOSHOME)/doc/tutorial/epetra/ex21. cppreportes the  entire  source 
code. 

Remark 11. The  clear disadvantage of deriving Epetra-Operator or  EpetraRowMatrix 
with respect to  use Epetra-CrsMatrix or Epetra-VbrMatrix, is  that  users must spec@ their 
communication patterns for intra-process data exchange. For this purpose, Epetra _Import 
classescan  beused. File ${TRILINOSHOME}/doc/tutorial/epetra/ex22.  cpp 
shows how to extend ex2 1 . cpp to the multi-process case. This example makes use of the 
Epetrahport class to exchange data. 
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Another use of Epetra-Operator and EpetraXowMatrix is to allow support for user's 
defined matrix format. For instance, suppose that your code generates matrices in MSR 
format (detailed in the Aztec documentation). You can easily create an Epetra-Operator, 
that applies the MSR format to EpetraMultiVectors. For the sake of simplicity,  we  will 
limit ourselves to the monoprocess case.  Extentions to multi-processes case requires to 
handle ghost-nodes updates. 

As a  first step, we create a class, derived  from the Epetra-Operator class, 

class  MSRMatrix : public  Epetra - Operator 
I 
1 

public: e 
e 
e 
e 

{ I  e 
e 

t ,  e 

/ /  constructor 
MSRMatrix(Epetra  Map  Map,  int * bindx,  double * Val) : 
Map-(Map) , bindx  (bindx) , val-(val) - 

"MSRMatrixO / /  destructor 
i j  

/ /  Apply  the  RowMatrix  to  a  MultiVector 
e 
e 

int  Apply(const  Epetra-MultiVector & X, Epetra  MultiVector & Y ) const 
{ 

- 
e 

int  Nrows = bindx-[O] -1; 

for(  int i=O ; icNrows ; i++ { 
/ /  diagonal  element 
for(  int vec=0 ; veccX.NumVectors0 ; ++vec { 

1 
Y[vec] [i] = val-[il *X [vecl  [il ; 

/ /  off-diagonal  elements 
for(  int  j=bindx - [il ; jcbindx-[i+ll ; j++ 1 { 
for ( int vec=0 ; veccX.NumVectors ( 1  ; ++vec ) { 

Y [vec]  [bindx- [ j I 1 += Val- [ j I *X [vecl  [bindx- [ j 1 1 ; 
1 

1 
I 
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return 0; e 
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1 / *  Apply * /  
. . .  other  functions . . .  

private : 

1 
int * bindx - ; double * val ; - 

As stated by the fragment of code above, the constructor take the two MSR vectors,  and  an 
EpetraMap.  Thecompletecode is reportedin ${TRILINOSHOME)/doc/tutorial/epetra/ex2! 

4.4 EpetraLinearProblem 

A linear problem of type AX = B is defined by  an EpetraLinearProblem class. This class 
required an  EpetraXowMatrix  or an Epetra-Operator object (often an Epetra-CrsMatrix or 
Epetra-VbrMatrix), and  two (multi-)vectors X and B. X must have been defined  using a 
map equivalent to the DomainMap of A, while B using a map equivalent ot the RangeMap 
of A (see Section 3.2). 

Linear problems can be used to solve linear systems with iterative methods (typically, 
using AztecOO, covered in Chapter 3 ,  or with direct solvers (typically, using  Amesos, 
described in Chapter 8. 

Once the linear problem has  been  defined, the user can: 

0 scale the problem, using Lef tScale (D) or Rightscale (D) , D being am Epe- 
tra-Vector of compatible size; 

0 define a preconditioner for the iterative solution; 

0 change X and B, using SetRHS (&B) and SetLHS (&X) ; 

change A, using Setoperator (&A 

4.5 Concluding Remarks 

More details about the Epetra project, and a technical description of classes and  methods, 
can be found in [ 5 , 9 ] .  
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5 Iterative Solution of Linear  Systems with AztecOO 

AztecOO is package which extends the  Aztec  library [20]. Aztec is the legacy  iterative 
solver at the Sandia National Laboratories. It has been extracted from the MPSalsa reacting 
flow  code [ 17, 151, and it is currently installed in dozens  of  Sandia's applications. AztecOO 
extends this package, using C++ classes to enable more sophisticated use. 

AztecOO is intended for the iterative  solution of linear systems of the form 

A X = B ,  (1) , 
when A E Etnx" is the linear system matrix, X the solution, and B the right-hand side. 
Both X and B are Epetra-Vector objects. 

In this Chapter, we will: 

0 Outline the basic issued of the iterative  solution of linear systems (in Section 5.1); 

0 Present  the basic usage of AztecOO (in Section  5.2); 

0 Define  one-level  domain  decomposition  preconditioners (in Section 5.3); 

0 Use  of  AztecOO problems as preconditioners to other AztecOO problems (in Sec- 
tion 5.4). 

5.1 Theoretical Background 

Aim  of this Section is  to briefly present some aspects of the iterative solution of linear 
systems, to establish a notation. The Section is not  supposed to be exhaustive, nor complete 
on this  subject.  The reader is referred to the existing literature for a rigorous presentation. 

One can distinguish between two different aspects of the iterative solution of a linear 
system.  The first one in the particular acceleration technique for a sequence of iterations 
vectors,  that is a technique used to construct  a  new approximation for the solution, with 
information  from previous approximations. This leads to specific iteration methods, like 
conjugate  gradient or GMRES. The second aspect is the transformation of the given  system 
to one  that can be more efficiently  solved  by  a  particular iteration method. This is called 
preconditioning. A good preconditioner improves the convergence of the iterative method, 
sufficiently to overcome the extra cost of its construction and application. Indeed, without 
a  preconditioner the iterative method  may  even  fail  to  converge in practice. 
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The convergence of iterative methods depends on the spectral properties of the linear 
system matrix. The basic idea is to replace the original system (1) by 

P-lAX = P-lB 

(left-preconditioning), or  by 
AP-IPB = B 

(right-preconditioning), using a linear transformation P-’, called preconditioner, in order 
to improve the spectral properties of the linear system matrix. In general terms,  a  precon- 
ditioner is any kind of transformation applied to the original system which  makes  it easier 
to solve. 

In a modern perspective, the general problem of finding an efficient  preconditioner is 
to identify a linear operator P with the following properties: 

1. P is a good approximation of A is some sense. Although no general theory is avail- 
able, we can say that P should act so that P-lA is near to being the identity matrix 
and its eigenvalues are clustered within a  sufficiently small region of the complex 
plane; 

2. P is efficient, in the sense that the iteration method converges  much  faster, in terms 
of CPU time, for the preconditioned system. In other words, preconditioners must  be 
selected in such a way that the cost of constructing and using them is offset by the 
improved convergence properties they  permit to achieve; 

3. P or P-’ can take advantage of the architecture of modern supercomputers, that is, 
can be constructed and applied  in parallel environments. 

It  should  be stressed that computing the inverse of P is not mandatory; actually,  the role 
of P is to “preconditioning” the residual r,  through the solution of the additional system 
Pz, = r,. This system Pz, = r,  should be much easier to solve than the  original 
system. 

The choice of P varies from “black-box” algebraic techniques which can be applied 
to general matrices to “problem  dependent” preconditioners which exploit special  features 
of a particular class of problems. Although problem dependent preconditioners can be 
very powerful, there is still a practical need  for  efficient preconditioning techniques  for 
large classes of problems. Between these two extrema, there is a class of preconditioners 
which are “general-purpose” for a particular - although large - class of problems. These 
preconditioners are sometimes called “gray-box” preconditioners, since the user  has to 
supply few information about the  matrix and the problem to be solved. 
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AztecOO itself implements a  variety of preconditioners, from “classical” methods such 
as Jacobi  and Gauss-Seidel, to polynomial and domain-decomposition based precondition- 
ers.  More preconditioners can be  given  to an AztecOO Krylov accelerator, by using the 
Trilinos packages IFPACK and ML,  covered in Chapter 6 and 7, respectively. 

5.2 Basic Usage of AztecOO 

To solve  a linear system with AztecOO, one must create an Epetra-Linearproblem 
object  with  the  command 

Epetra - Linearproblem  Problem(&A, &x, &b) ; 

where A is an Epetra matrix, and x, b two  Epetra vectors5. Then, the user must create an 
AztecOO object, 

AztecOO  Solver  (Problem) ; 

and  specify  how to solve the linear system.  Ail  AztecOO options are set using two vectors, 
options (integer)  and params (double), as detailed in the Aztec’s User Guide. 

To choose among the different AztecOO  parameters, the user can create two vectors, 
usually called opt ions and params, set them  to the default values, and then override 
with  the desired parameters: Default values can be set by 

int options [AZ-OPTIONS SIZE] ; 
double  params [AZ-PARAMS-STZEI ; 
AZ - defaults(options,  params); 

followed  by, for instance, 

Solver.SetAllAztecOptions( options ) ;  
Solver.SetAllAztecParams( params ) ;  

5At the current stage of development, AztecOO does not handle EpetraMultiVectors.  It accepts 
Multi-Vectors, but it will solve the linear system corresponding to the first multivector only. 
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a 
Those two functions will copy the values of opt ions and params in internal variables 
of the AztecOO object. 

Alternatively, it is possible to set  specific parameters without creating opt ions and 
params,usingtheAztecOOmethodsSetAztecOptionO andsetAztecparams 0 .  
For instance, 

Solver.SetAztecOption(  AiJrecond,  AZ - Jacobi ) ;  
Solver.SetAztecParams(  AZ - tol,  le-12 ) ;  

to specify a point Jacobi preconditioner, and a tolerance of (We refer to the Aztec 
documentation for more details about the various Aztec settings.) 

To solve the linear system the user  may call 

Solver.Iterate(1000,1E-9) ; 

The complete code is in ${TRILINOSHOME}/doc/tutorial/aztec/exl .cpp. 

Note that the matrix must be in local coordinates (that is, the command A.  Fi 11 Complete ( ) 
has been called before attempting to solve the linear system).  Note also that the procedure 
to solve a linear system with AztecOO is identical for sequential and parallel runs.  How- 
ever (for certain choices of the preconditioners), the convergence rate can change as the 
number of processes used in the computation varies. 

When this function returns, one can retrieve the number of iterations performed  by the 
linear solver using Solver  .NumIters ( ) , while Solver.  TrueResidual ( ) gives 
the (nonscaled) norm the residual. 

5.3 One-level Domain Decomposition Preconditioners with  AztecOO 

In this Section, we will consider preconditioners based on one-level overlapping domain 
decomposition preconditioners, of the form 

i=l 

where P is the preconditioning operator, A4 the number of subdomains. Ri is a rectangular 
matrix, composed by 0’s and 1 ’s, which restricts a  global vector to the subspace defined  by 
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5.4 Use of AztecOO Problems as a Preconditioner for AztecOO e 
e 

the interior of each subdomain, and Ai is an  approximation of 

e 
e 
e 
e 
a 

Ai = KART. (3) a 
e 

e 
e 

(Ai can be equal to Ai). Typically,  differs  from Ai when incomplete factorizations are 
used  in (2) to apply AF1, or when a matrix different  from A is used in (3). 

In order  to use a preconditioner of the form (3), the user has to specify 

Solvex.SetAztecOption( AZJrecond, AZ - dom - decomp ) ;  

followed  by the choice of incomplete factorization  (and possibly with that of corresponding 
parameters,  for instance the level-of-fill), 

Solver.SetAztecOption( AZ ilu, AZ subdomain-solve ) ;  
Solver. SetAztecOption ( AZ-graph - - fill, 1 ) ; 

By  default,  AztecOO will consider zero-overlap  among  the  rows of A6. However, this value 
of overlap can be changed by, for instance, 

Solver.SetAztecOption( AZ-overlap, 1 1 ;  

Remark 12. By using AztecOO in conjunction  with ML, one can easily implement a two- 
level  domain decomposition schemes.  The  reader is referred to Section 7.3. 

Remark 13. Another Trilinos package can be used to compute incomplete factorizations, 
IFPACK. It  is covered in Chapter 6. 

e 

One  may  wish to use an AztecOO solver in the  preconditioning phase, as done in $ { TRILINOS HOME} /doc / tb 
The  main steps are here reported. e 

First,  we  have to specify the linear problem to be  solved (set the linear operator, the e 
solution and the  right-hand  side), and create an AztecOO  object: e 

6For  point  matrices arising from  the FE discretization of the PDE problem  with local functions, this is e 

0 
e 
e 
e 
e 
e 
e 
e 

equivalent to one mesh element  of overlap. e 
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Epetra-Linearproblem A  Problem(&A, &x, &b); 
AztecOO A-Solver (A - Problem) ; 

Now, we have to define the preconditioner.  For the sake of simplicity, we here suppose to 
use the same Epetramatrix A in the preconditioning phase.  However, the two matrices can 
in principle be different (although of the same size). 

Epetra - CrsMatrix  P (A) ; 

(This operation is  in general expensive as involves the copy constructor.) Then, we create 
the linear problem which will be used as preconditioner. This requires several steps. (Note 
that all the P prefix identifies preconditioner’ objects.) 

1. We create the linear system solve at  each prec step, and and we assign the  linear 
operator (in this case, the matrix A itself) 

Epetra  Linearproblem  P  Problem; 
P-Problem. Setoperator (&P) ; 

2. As we wish to use AztecOO to solve the prec step (in a  recursive  way),  we  have  to 
define an AztecOO object: 

AztecOO  P  Solver(P  Problem); - - 

3. Now, we customize certain parameters: 

P-Solver.SetAztecOption(AZ_precond, AZ - Jacobi); 
P - Solver.SetAztecOption(AZ - output, AZ - none); 
P-Solver.SetAztecOption(AZ - solver, AZ-cg); 

4. The last step is to create an  Aztec00-Operator, so that we can set the  Aztec’s pre- 
conditioner with, and we set the user’s  defined preconditioners: 

Aztec00-Operator 
P-Operator(&P Solver, 10); 
A - Solver.  SetPrecOperator (&P - Operator) ; 

(Here 10 is the maximum number of iterations of the AztecOO solver in the precon- 
ditioning phase.) 
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5. Finally,  we solve the linear system: 

int Niters=100; 
A - Solver.SetAztecOption(AZ-kspace, Niters); 
A-Solver.SetAztecOption(AZ-solver, AZ-gmres); 
A - Solver.Iterate(Niters, 1.OE-12); 

5.5 Concluding Remarks 

The  following methods are often used: 

0 NumI ters ( ) returns the total  number  of iterations performed on this problem; 

0 TrueRes idal ( ) returns the true unscaled residual; 

0 ScaledResidual ( ) returns the unscaled residual; 

0 SetAztecDef aults ( ) can be  used to restore default values in the options and 
params vectors. 

The  official documentation of  Aztec00 can be  found in [8]. 
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6 Incomplete  Factorizations  with IFPACK 

IFPACK provides a suite of object-oriented algebraic preconditioners for the solution of 
preconditioned iterative solvers. IFPACK offers a variety of overlapping (one-level) Schwarz 
preconditioners, The packages uses Epetra for basic matrix-vector calculations, and accepts 
user matrices via abstract matrix interface. A concrete implementation for Epetra matrices 
is provided. The package separates graph construction for factorization, improving perfor- 
mances in a substantial manner with  respect to other factorization packages. 

In this Chapter we present how to use IFPACK objects as a preconditioner for an 
Aztec00 solver. 

In this Chapter, we will 

0 Set the notation (in Section 6.1); 

0 Show  how to compute incomplete Cholesky factorizations (in Section 6.2); 

0 Present IFPACK’s  RILU-type factorizations (in Section 6.3). 

6.1 Theoretical  Background 

Aim of this Section is to briefly present some aspects on incomplete factorization methods, 
to establish a notation. The Section is not  supposed to be exhaustive, nor complete on this 
subject. The reader is referred to the existing literature for a rigorous presentation. 

A broad class of effective preconditioners is  based on incomplete factorization of the 
linear system matrix, and it is usually indicated as ILU. The ILU-type preconditioning tech- 
niques lie between direct and iterative methods and provide a balance between reliability 
and numerical efficiency. 

The preconditioner is given in the  factored  form P = io, with and 0 being  lower 
and upper triangular matrices. Solving with P involves  two triangular solutions. 

The incomplete LU factorization of a  matrix A can be described as follows. Let A0 = 
A. Then, for k = 2,. . . , n, we have 
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Thus, we can write the k-step of the Gaussian  elimination in a block form as 

where A k  = c k  - EkBL'Fk. If BI, is a  scalar, then we have the typical point-wise fac- 
torization, otherwise we have  a block factorization.  Pivoting, if it is necessary, can be 
accomplished  by reordering A k  at every step. 

To make the factorization incomplete, entries as dropped in A k ,  i.e. the factorization 
proceeds with 

& = A k  - R h  , 

where R k  is the matrix of dropped entries. 

Dropping can be performed by  position,  for  example, dropping those entries in the up- 
date matrix EkBLIFk that are not in the pattern of ck. This simple ILU factorization is 
known as ILU(0). Although effective,  in some cases the accuracy of the ILU(0) may  be 
insufficient  to  yield an adequate rate of convergence.  More accurate factorizations will dif- 
fer  from  ILU(0)  by allowing somefill-in. The resulting class of methods is called ILU( f ) ,  
where f is the  level-of-fill.  A  level-of-fill is attributed to each element that is processed 
by  Gaussian elimination, and dropping will  be  based  on the level-of-fill. The level-of-fill 
should  be  indicative of the size of the element:  the  higher the level-of-fill, the smaller the 
elements. 

Other strategies consider dropping by  value - for example, dropping entries smaller 
than  a  prescribed threshold. Alternative  dropping  techniques can be based on the numeri- 
cal  size  of  the element to be discarded.  Numerical  dropping strategies generally yield more 
accurate factorizations with the same amount of fill-in than level-of-fill methods. The  gen- 
eral strategy is to compute an entire row of the and 0 matrices, and then keep only the , 

biggest entries in a certain number.  In this way, the amount of fill-in is controlled; how- 
ever, the structure of the resulting matrices is undefined. These factorizations are usually 
referred  to as ILUT, and a  variant which performs  pivoting is called ILUTP. 

6.2 Incomplete Cholesky Factorizations 

Ifpack-CrsIct is a class for constructing and using incomplete  Cholecky factorizations of 
an Epetra-CrsMatrix. The factorization is produced  based on several parameters: 

0 Maximum number of entries per row/column.  The factorization will contain at most 
this number of nonzero elements in each row/column; 
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0 Diagonal perturbation. By  default,  the  factorization  will  be  computed on the input 
matrix.  However, it  is possible to modify  the diagonal entries of the matrix to be fac- 
torized, via functions SetAbsoluteThreshold ( ) and SetRelativeThreshold ( ) . 
Refer to the IFPACK’s  documentation for more  details. 

It is very easy to compute the incomplete  factorization. First, define  an  Ifpack-CrsIct 
object, 

Ifpack-CrsIct * ICT = NULL; 
ICT = Ifpack - CrsIct(A,DropTol,LevelFill); 

where A is an  Epetra-CrsMatrix  (already  FillComplete’d),  and DropTop and Leve 1Fi 11 
are  the drop tolerance and the level-of-fill,  respectively.  Then, we can set the  values  and 
compute  the factors, 

ICT->Initvalues (A)  ; 
ICT->Factor 0 ; 

IFPACK can compute the estimation  of  the  condition  number 

c o n d ( ~ i ~ i )  = ll(LU)-lellm, 

where e = (1,1, . . . , l)T. (More  details can be found in the IFPACK’s documentation.) 
This estimation can be  computed as follows: 

double  Condest; 
ICT->Condest(false,Condest); 

Please refer to file ${TRILINOSHOME}/doc/tutorial/ifpack/exl. cpp for  a 
complete example of incomplete Cholesky  factorization. 

6.3 RILU Factorizations 

IFPACK implements various  incomplete  factorization for non-symmetric  matrices.  In  this 
Section, we will consider the Epetra-CrsRiluk class, that can be  used to produce RILU 
factorization of a Epetra-CrsMatrix. The  ,class required an Ifpack-OverlapGraph in the 
construction phase. This means that the factorization is split into two parts: 
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1. Definition  of the level  filled graph; 

2. Computation of the factors. 

This  approach  can significantly improve the performances of code, when an ILU precon- 
ditioner has to be computed for several matrices, with different entries but with the same 
sparsity  pattern. An IfpackJlukGraph object of an Epetra matrix A can be constructed as 

Ifpack IlukGraph  Graph = 
Ifpack - IlukGraph (A. Graph ( ) , LevelFill,  Leveloverlap) ; 

Here, Levelover  lap is the required overlap  among  the  subdomains. 

A call to Cons tructFi 1 ledGraph ( 1 completes the process. 

Remark 14. An  IfpackllukGraph object has two Epetra-CrsGraph objects, containing the 
Li and Ui graphs. Thus, it  is  possible  to manually insert and delete gruph  entries  in Li  and 
Vi via the Epetra-CrsGraphInsertIndices and RemoveIndices3mctions. However, in this 
cas FillComplete must be called before the graph is used for subsequent operations. 

At this point, we can create an Ifpack-CrsRiluk  object, 

ILUT = Ifpack - CrsRiluk(Graph); 

This phase defined the graph for the incomplete factorization, without computing the  actual 
values  of the Li and Ui factors. Instead, this operation is accomplished with 

int initerr = ILUT->InitValues(A); 
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The  ILUT object can be  used with Aztec00 simply setting a 
solver.SetPrecOperator(1LUK); 

a 
a 

where solver isanAztecOOpbject. Example ${TRILINOSHOME}/doc/tutorial/ifpack/ex2. cp 
shows the use of Ifpack-CrsRiluk class. t 

a 
The application of the incomplete factors to a global  vector, z = (LiUY1)r, results 

in redundant approximation for any element of z that correspond to rows that are part of 
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more than one local ILU factor.  The  OverlapMode  defines  how those redundant values are 
managed. OverlapMode is  an Epetra-CombinedMode enum, that can assume the following 
values: Add, Zero I Insert I Average I AbxMax. The default is to zero out all 
the values of z for rows that were not part of the original matrix row distribution. 

6.4 Concluding Remarks 

More documentation on the IFPACK  package  can  be  found in [6,4]. 
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7 Multilevel  Methods  with  ML 

The ML package  defines  a class of preconditioners based on multilevel methods [ 181. 
While  technically  any linear system can be considered,  ML  should be used on linear sys- 
tems on linear systems, like elliptic PDEs, that are  known to work well with multilevel 
methods. 

ML is a  large package, that can be  used  to  a  variety of purposes. ML provides multi- 
level  solvers, as well as multilevel preconditioners,  and it can handle geometric as well as 
algebraic  methods. 

In this Chapter we present: 

0 Outline the basic issues of multilevel  schemes (in Section 7.1); 

Present the use of ML objects as a  preconditioner for an Aztec00 solver objects (in 
Section 7.2); 

0 Outline the steps required to implement  two-level  domain decomposition methods, 
with  a coarse grid defmed using aggregation procedures (in Section 7.3). 

As other Trilinos packages, ML can be  compiled and run independently from Epe- 
tray that is, it can accept input matrix in formats  different from the Epetra-RowMatrix 
or Epetra-Operator. Should the reader be  interested in running ML without Epetra, or 
using  a C code  (and not a C++ code), then we  refer  to the ML guide, contained in the 
${TRILINOS-HOME}/packages/ml/doc/. 

7.1 Theoretical Background 

Aim of this Section is to briefly present  some aspects on multilevel methods. The  Section 
is not  supposed to be exhaustive, nor  complete on this subject.  The reader is referred to the 
existing literature for a rigorous presentation. 

Multilevel methods require the operator to be  defined  on  a sequence of coarser spaces, 
an  iterative  method that evolves the solution  (called  a smoother) and interpolation opera- 
tors  that transfer information between the  spaces.  The  principle behind the algorithm is 
that the high-frequency errors can be  efficiently  solved on the fine space, while the  low- 
frequency are treated on the coarser one, where there frequencies manifest themselves as 
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high-frequencies. A very popular multilevel methods are multigrid methods. Geometric 
multigrid (GMG) methods cannot be applied without the existence of an underlying  grid 
(this is their major limitation). This  led  to  the  development of algebraic multigrid  method 
(AMG), initiated by Ruge and Stiiben. In AMG, both the matrix hierarchy and the  pro- 
longation operators are constructed just from the stiffness matrix. Since the  automatic 
generation of a grid-hierarchy for GMG  and especially the proper assembly of all  com- 
ponents would be a very difficult task for unstructured problems, the automatic algebraic 
construction of a virtual grid is a big advantage. 

A finction to solve (1) using a multilevel  method can be  defined as follows: 

MGM( X, B, k) 
{ 
i f ( k = = O )   X = A k \ B ;  
e l s e  { 

- 

X = S knl (X, B )  ; 
D = R-{k-l,k} - ( B - A k X ) ;  
v = 0; 
MGM( V, D, k-1 1 ;  
X = X + P {k,k-1) V; 
X = S kA2( U, B 1 ;  

- 

- 
- 

1 
1 
In the above method, si and si are two smoothers, R k - l , k  is a restriction operator from 
level 5 to k - 1, and P k , k - l  is a prolongator from IC - 1 to IC. 

In a variational setting, the matrices Ak can be constructed as 

Ak = R k - l , k A k P k , k - l .  

Alternatively, when a grid is available at level k - 1, one can discretize the PDE operator 
on  grid I; - 1. 

Remark 15. In this tutorial, we will  consider multilevel methods based  on  aggregation 
schemes only. 

7.2 ML as a Preconditioner for  AztecOO 

In order to use ML as a preconditioner, we need to define an AztecOO Solver, as outlined 
in Chapter 5. 
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ML requires the user to define a structure, to store internal data. This structure is usually 
called ml - handle: 

ML *ml - handle; 

We intend to use ML as a “black-box”  (or  gray-box) multilevel preconditioner, using 
aggregation procedures to define the multilevel  hierarchy. The variable 

int  N - levels = 10; 

defines  the  maximum number of levels,  while 

ML - Set - PrintLevel(3) ; 

toggle  the output level (from 0 to 10, 10 being  verbose  mode and 0 silent mode). 

The ML handle is created using 

ML - Create(&ml - handle,N-levels); 

ML can accept  in  input  very  general  matrices.  Basically, the user has to specify the number 
of local  rows, and provide a function to update  the  ghost nodes (that is, nodes requires in 
the  matrix-vector product, but assigned to another  process).  For Epetra matrices, this is 
done  by  the following function 

EpetraMatrix2MLMatrix(ml-handle, 0 ,  & A ) ;  

Note  that A is not converted to ML format. Instead, proper wrappers are defined. (Here, A 
is the  Epetra matrix for which we aim to construct a multilevel  preconditioner.) 

ML requires another structure, called MLAggregate, to store the information about the 
aggregates  at  various  levels: 

ML-Aggregate  *agg-object; 
ML - Aggregate-Create(&agg-object) ; 

The  multilevel hierarchy is constructed with the instruction 
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N-levels = ML - Gen - MGHierarchy-UsingAggregation(m1 - handle, 0, 
ML - INCREASING, 
agg-ob j ec t 1 ; 

Here, 0 is the index of the finest level, and the index of coarser levels will  be  obtained 
by incrementing this value. (We refer to the ML manual for more details about the  input 
parameters.) 

We still need to  define the smoother,  for instance a symmetric Gauss-Seidel: 

ML - Gen - Smoother - SymGaussSeidel(m1  handle,  ML ALL-LEVELS, 
MLBOTH, - 1, ME - DEFAULT) ; 

and to generate the solver as 

ML-Gen-Solver (ml-handle, ML - MGV, 0, N - levels-1); 

Finally, we can create an Epetra-Operator,  based on the previously defined ML hierar- 
chy 

Epetra - -  ML  Operator  MLop(m1 - handle,comm,map,map); 

and set the preconditioning operator of our Aztec00 solver, 

solver.SetPrecOperator(&MLop 

At this point, we can call Iterate ( ) 

) ;  

as usual, 

solver.Iterate(Niters,  le-12); 

Theentirecodeisreportedin${TRILINOSHOME}/doc/tutorial/ml/exl.cpp. 
The output will be approximatively as reported below. 

[msala:mll>  mpirun -np 2 ./exl.exe 

* ML  Aggregation  information * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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.............................................................. ___-_--_____________------_-------_----------------------__--- 
ML - Aggregate : ordering = natural. 
ML  Aggregate : min  nodes/aggr = 2  
ML  Aggregate : max  neigh  selected = 0 
ML  Aggregate : attach  scheme 
ML  Aggregate : coarsen  scheme = UNCOUPLED 
ML  Aggregate : strong  threshold = 0.000000e+00 
ML-Aggregate : P  damping  factor = 1.333333e+00 
ML - Aggregate : number  of  PDEs = 1  
ML  Aggregate : number  of  null  vec = 1 
ML  Aggregate : smoother  drop  to1 = 0.000000e+00 
ML  Aggregate : max  coarse  size = 1  
ML  Aggregate : max  no.  of  levels = 10 

ML  Gen  MGHierarchy : applying  coarsening 
ML  Aggregate-Coarsen  begins 
ML  Aggregate - CoarsenUncoupled : current  level = 0 
ML-Aggregate - - CoarsenUncoupled : current  eps = 0.000000e+00 
Aggregation(WB) : Total  nonzeros = 128  (Nrows=30) 
Aggregation(UC) : Phase 0 - no.  of  bdry  pts = 0 
Aggregation(UC) : Phase 1 - nodes  aggregated = 28  (30) 
Aggregation(UC) : Phase 1 - total  aggregates = 8 
Aggregation(UC-Phase2 3) : Phase 1 - nodes  aggregated = 28 
Aggregation(UC-Phase2-3) : Phase  1 - total  aggregates = 8 
Aggregation(UC-Phase2-3) : Phase 2a- additional  aggregates = 0 
Aggregation(UC-Phase2-3) : Phase 2 - total  aggregates = 8 
Aggregation(UC-Phase2-3) : Phase  2 - boundary  nodes = 0 
Aggregation(UC-Phase2-3) : Phase  3 - leftovers = 0 and  singletons = 0 

Gen-Prolongator : max  eigen = 1.883496e+00 
ML-Gen-MGHierarchy : applying  coarsening 
ML - Gen - MGHierarchy : Gen-RAP 
RAP  time  for  level 0 = 5.319577e-04 
ML-Gen-MGHierarchy : Gen-RAP  done 
ML  Gen-MGHierarchy : applying  coarsening 
ML-Aggregate-Coarsen  begins 
ML-Aggregate-CoarsenUncoupled : current  level = 1 
ML Aggregate-CoarsenUncoupled : current  eps = 0.000000e+00 
Aggregation(WB) : Total  nonzeros = 46  (Nrows=8) 
Aggregation(UC) : Phase 0 - no.  of  bdry  pts = 0 

- 
- 

= MAXLINK - 
- 
- 

- 
- 
- 
- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- - 
- 

- 

Aggregation  time = 1.854551e-03 

- 

- 
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Aggregation(UC) : Phase 1 - nodes  aggregated = 6  (8) 
Aggregation(UC) : Phase  1 - total  aggregates = 2 
Aggregation(UC-Phase2-3) : Phase 1 - nodes  aggregated = 6 
Aggregation(UC-Phase2  3) : Phase  1 - total  aggregates = 2 
Aggregation(UC-Phase2  3) : Phase 2a- additional  aggregates = 0 
Aggregation(UC  Phase2 3) : Phase  2 - total  aggregates = 2 
Aggregation(UC-Phase2 - 3) : Phase 2 - boundary  nodes = 0 
Aggregation(UC - Phase2 3) : Phase 3 - leftovers = 0 and  singletons = 0 

Gen  Prolongator : max  eigen = 1.246751e+00 
ML Gen  MGHierarchy : applying  coarsening 
ML Gen MGHierarchy : Gen - RAP 
RAP time  for  level 1 = 4.489557e-04 
ML Gen  MGHierarchy : Gen  RAP  done 
ML Gen  MGHierarchy : applying  coarsening 
ML  Aggregate  Coarsen  begins 
Aggregation  total  setup  time = 8.903003e-02  seconds 
Smoothed  Aggregation : operator  complexity = 1.390625e+00. 

- 
- 

- - 

Aggregation  time = 1.679042e-03 
- 

- 
- - 

- - - 
- - 
- - 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * * * *  Preconditioned  CG  solution 
*****  Epetra  ML - Operator 
* * * * *  No scaling 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

iter: 
iter: 
iter: 
iter: 
iter: 
iter: 
iter: 
iter: 
iter: 

residual 
residual 
residual 
residual 
residual 
residual 
residual 
residual 
residual 

Solution  time:  0.005845  (sec.) 
total  iterations:  8 

Residual = 6.99704e-13 

= 1.000000e+00 
= 1.289136e-01 
= 4.710371e-03 
= 7.119470e-05 
= 1.386302e-06 
= 2.477133e-08 
= 6.141025e-10 
= 6.222216e-12 
= 1.277534e-13 
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7.3 Two-level Domain Decomposition Preconditioners with ML 

In order  to  use  the example reported in this Section, one should compile ML with the 
configure  flag - -wit h-ml met i s. In this way,  ML  will use the graph decomposition 
library  METIS to create the coarse-level  matrix7. 

Two-level  domain decomposition methods  have  been  proved to be  very  effective  for the 
iterative  solution of many different kind of linear systems.  For some classes of problems, 
a  very  convenient  way  to  define the coarse grid operator is to use aggregation procedure. 
This is very  close to what presented in Section 7.2.  The  main difference is that only  two 
level  methods are considered, and that the coarse  grid remains of (relatively) small size. 
The  idea is to define  a small number of aggregates on  each process, using a graph decom- 
position  algorithm (as implemented in the library  METIS, for instance)8. This can be done 
as follows. 

First, we need  to  define an Aztec00 problem, an ML structure, and an MLAggregate 
structure. Then, we limit ourself to  2-level  scheme. 

i n t  N - levels = 2; 

Then,  we  specify the aggregation scheme as 

ML - Aggregate - Set-Coarsenscheme - METIS(agg - object); 

and  define  the number of aggregates (here, 4) to  be  defined on each process as 

ML-Aggregate-Set-LocalNumber( ml-handle, agg - object, 0, 4 ) ;  

As smoother,  we can adopt a  subdomain-based  Gauss-Seidel  smoother. 

The  creation of the multilevel hierarchy and the solution of the linear system will  be as 
reported in Section 7.2. 

The entirecodeisreportedin ${TRILINOSHOME}/doc/tutoria~/m~/ex2. Cpp. 

’Note  that ML has to be  aware  of  the  location  of  the METIS include files and  the  METIS library. The 
User can use  the  configure flags --with-incdirs and --with-ldflags. Please  type configure 
- -help for more information. If you  don’t  have METIS, or you  don’t want to re-configure  ML, YOU will be 
able to  run the  example of this Section. However,  you  will be  limited to use  only  one  aggregate  per  process. 

*Aggregation  schemes  based on ParMETIS as also available. Please refer to  the  help of the ML 
configure for more details. 
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7.4 Concluding Remarks 

More documentation about ML can be found in [2 1, 19, 191. 
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8 Interfacing  Direct  Solvers  with Amesos 

The  Amesos  package provides an object-oriented  interface to several direct sparse solvers. 
Amesos will solve (using a direct factorization method) the linear systems of equations 

A X = B  (4) 

where A is stored as an EpetralXowMatrix object, and X and B are EpetraMultiVector 
objects. 

The  Amesos package has  been designed to face  some of the challenges of direct solution 
of linear  systems. In fact, many solvers have been proposed in the last years, and often 
each  of  them requires different input formats  for  the linear system matrix. Moreover,  it is 
not  uncommon that the interface changes between  revisions.  Amesos aims to solve those 
problems, furnishing a clean, consistent interface  to  many direct solvers. 

Using Amesos, users can interface their codes with a (large)  variety of direct linear 
solvers, sequential or parallel, simply by a code instruction of type 

AmesosProblem. Solver ( )  ; 

Amesos  will take care of redistributing data  among  the processors, if necessary. 

This Chapter starts with few notes on the installation of the third-part packages required 
by  Amesos. Then, the Chapter will  present  the use of Amesos objects, to interface with the 
following  packages: 

0 UMFPACK, version 4.1 (in Section 8.2); 

0 SuperLUdist, version 2.0 (in Section 8.3); 

0 A generic interface to various direct solvers is presented (in Section 8.4). 

8.1 Installation of Trilinos  third-part  Packages 

Amesos is an interface to other packages, mainly  developed outside the Trilinos frame- 
work9. In order to use those packages, the user  should carefully check copyright and li- 
censing of those third party codes. Please refer to  the web page or the documentation of 
each  particular package for details. 

9Currently,  SuperLU is included in the Trilinos  framework. 
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Amesos supports a variety of direct solvers for linear systems of equations, and  you 
are likely to use Amesos with only few of them. We suggest to define the shell variable 
TRILINOS-3PL to define the directory used  to stored third-part packages. For instance, 
under BASH, you may have  a line of type 

export TRILINOS - 3PL=/home/msala/Trilinos3PL 

in your . bashrc file. Then, you  may decide to create a directory to hold include files  and 
libraries. For instance, to compile under  LINUX  with  MPI: 

$ mkdir  ${TRILINOS  3PL}/LINUX_MPI 
$ mkdir $ { TRILINOS-3PL}/LINUX MPI/include 
$ mkdir ${TRILINOS-3PL}/LINUX~MPI/lib - 

(Note that this will reflect the directory structure used  by Trilinos, see Section 1.2.) While 
installing a package, you can now  copy  all  include files and libraries in these directories. 

Using this setting, you can configure Amesos with a command of type 

$ cd  ${TRILINOS - HOME}/packages/amesos 
$ ./configure  --prefix=${TRILINOS - HOME}/LINUX-MPI \ 

--enable-mpi  --with-mpi-compilers \ 
--enable-amesos-umfpack \ 
--enable-amesos-superludist \ 
--with-amesos-superludistlib=\ 
ll${TRILINOS - 3PL}/SuperLU - DIST-2.0/libsuperlu-LINUX.a11 

(This command is followed by make and make install, as usual.) This will  enable 
UMFPACK and SuperLUdist, which are the two packages covered in this Chapter. 

For more details about the configuration options of Amesos, please refer to Amesos 
documentation. 

8.2 UMFPACK 

File${TRILINOSHOME}/doc/tutorial/amesos/exl.cppshowshowtouse~e- 
sbs to solve a linear system with UMFPACK'O. 

'OUMFPACK is a set of routines solving sparse linear systems via LLJ factorization. It 
is copyrighted by Timothy A. Davis. More information can be obtained at the web page 
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Suppose that A, x and b are an EpetraRowMatrix and  two EpetraMultiVector, respec- 
tively, or compatible dimensions. Amesos objects for the solution of linear systems requires 
an EpetraLinearProblern object, plus another object, AMESOS : : Parameter : : List, 
used to specify the parameters. 

Epetra - Linearproblem  Problem(&A,&x,&b); 
AMES0S::Parameter::List params; 

Then,  only  few lines are required: We can  define an Amesos object and solve the problem, 

Amesos Umfpack UmfpackProblem(Problem,params) ; 
UmfpackProblem.  Solve ( )  ; 

or,  alternatively, it is possible to specify when  symbolical factorization, numerical factor- 
ization  and  solution  occur, 

Amesos - Umfpack UmfpackProblem(Problem,params); 
UmfpackProblem.SymbolicFactorization0; 
UmfpackProblem.NumericFactorization0; 
UmfpackProblem.  Solve ( ) ; 

Note that exactly the same code can be run with more than one processor. In this case, 
being UMFPACK a serial solver,  Amesos will take care to gather all required data on  a 
processor,  solve sequentially the linear system, and then broadcast the solution. 

8.3 SuperLUdist 

Solving using SuperLUdist" is not  much  different from what presented in Section 8.2. 
Instead of declaring an Amesos-Umfpack object, one can proceed as follows: 

Amesos - Superludist * SuperludistProblem = 
new Amesos - Superludist(Problem,params); 

http://www.cise.ufl.edu/research/sparse/umfpack. 
"SuperLUDIST  is  a parallel extension to the serial SuperLU library. It is  targeted for 

the  distributed memory parallel machines. Copyright (c )  2003, The  Regents of the Univer- 
sity of California, through  Lawrence Berkeley  National  Laboratory. Please refer to the web site 
h t t p  : / / w w  . nersc . gov/ xiaoye/SuperLU for more information. 
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http://www.cise.ufl.edu/research/sparse/umfpack


followed  by  a call to Solve(), possibly preceded by SymbolicFactorizationO and Numeric- 
Factorization(). 

Remark 16. We have declared a pointer to and AmesosSuperludist object because the 
destructor of this object contains some MPI calls. As in example 
${TRILINOSHOME}/doc/tutorial/amesos/ex2. cppthedestructoriscalledat 
the end of the main function (after a call to MPI-Finalize ( 1, we have to delete this 
object using  the C+ + statement 

delete  SuperludisProblem; 

before the  call to MPI - Finalize ( ) . 

8.4 A Generic  Interface to Various  Direct Solvers 

All Amesos objects are derived from the AmesosBaseClass object. Using the capabilities 
of C++, one may decide to code a  generic interface to a direct solver as follows: 

/ /  parameter  vector  for  Amesos 
AMES0S::Parameter::List ParamList; 

/ /  prepare  the  linear  solver 
Amesos-Basesolver * AmesosProblem; 

switch(  choice 1 { 
case ML - SOLVE - WITH  AMESOS  UMFPACK: - 

AmesosProblem = 

break; 

AmesosProblem = 

break; 
default: 

cerr c c  '\Error" cc endl; 

- 

new  Amesos - Umfpack(  *Linearproblem,  ParamList 1 ;  

case  ML  SOLVE  WITH  AMESOS  SUPERLUDIST: - - - - 

new Amesos-Superludist( *Linearproblem, ParamList 1 ;  

1 

Now, factorization and solution are the same for all the packages: 
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AmesosProblem-sSymbolicFactorization0; 
AmesosProblem->NumericFactorizationO; 
AmesosProblem = (void * )  AmesosProblem ; 

72 



a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
e 
a 
a 
a 
a 
e‘ 
a 
a 
a 

9 Solving Nonlinear  Systems  with  NOX 

NOX is a suite of solution methods for the solution of nonlinear systems of  type 

F ( x )  = 0, ( 5 )  

with 

is a nonlinear vector function. The Jacobian  matrix  of F ,  J ,  is defined  by 

NOX aims to solver (5) using Newton-type  methods.  NOX uses an abstract  vector  and 
“group”  interface.  Current  implementation  are  provided for EpetrdAztecOO objects,  but 
also for LAPACK and PETSc. It provides  various strategies for the solution of  nonlinear 
systems, and it has been  designed to be  easily  integrated into existing applications. 

In this Chapter,  we  will 

0 Outline the basic  issued  of  the solution of nonlinear systems (in Section 9.1); 

0 Introduce the  NOX  package  (in  Section 9.2); 

0 Describe how to introduce a NOX solver  in  an existing code (in Section 9.3); 

0 Present Jacobian-free methods (in Section 9.6). 

9.1 Theoretical Background 

Aim of this Section is to briefly  present  some aspects of the solution of nonlinear  systems, 
to establish a notation. The Section is not supposed to be exhaustive, nor complete on this 
subject. The reader is referred to the  existing  literature for a rigorous presentation. 

To solve system of nonlinear equations, NOX makes  use of Newton-like  methods.  The 
Newton  method  defines a suite {xk} that, under some conditions, converges to x, solution 
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of (5). The algorithm is  as follows:  given xo, for k = 1,. . . until convergence,  solve 

Newton  method introduces a  local full linearizion of the equation. Solving a system of 
linear  equations  at each Newton step can be  very  expensive if the number of unknowns is 
large,  and  may  not be justified if the current iterate is far from the solution. Therefore, a 
departure  from  the Newton framework consists of considering inextrct Newton methods, 
which  solve  system (6) only approximatively. 

In fact, in practical implementation of the Newton method, one or more of the following 
approximations are used: 

1. The Frichet derivative JI, for the Newton  step is not recomputed at every  Newton 
step; 

2. The equation for the Newton step (6) is solved  only inexactly; 

3. Defect-correction methods are employed,  that is, J k  is numerically computed using 
low-order (in space) schemes, while the right-hand side is built up using high-order 
methods. 

For  a  given initial guess, “close enough” to  the  solution of (5) ,  the Newton method with 
exact  linear  solves  converges  quadratically.  In practice, the radius of convergence is often 
extended via various  methods.  NOX  provides,  among others, line search techniques and 
trust  region strategies. 

9.2 Creating NOX Vectors  and  Group 

NOX is not  based  on any particular linear algebra package.  Users are required to supply 
methods  that  derive from the abstract classes NOX : :Abstract : : Vector (which pro- 
vides  support for basic vector operations as dot products), and NOX : :Abstract : : Group 
(which supports the linear algebra hnctionalities, evaluation of the h c t i o n  G and,  option- 
ally,  of  the Jacobian J ) .  

In  order  to link their code with NOX, users have to write their own instantiation of 
those  two abstract classes. In this tutorial, we  will consider the concrete implementations 
provided for Epetra matrices and vectors. As this implementation is separate from the 
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NOX algorithms, the configure option - -enable - nox-  epetra has to be  specified (see 
Section 1 .2)12. 

9.3 Introducing NOX in an Existing Code 

Two basic steps are required to implement  a NOX : : Epetra interface. First, a concrete 
class derived from NOX : : Epetra : : Interface has to be written. This class must - 

define the following methods: 

1. A method to compute y = F ( X )  for a  given z. The syntax is 

computeF(const Epetra-Vector & x,  Epetra - Vector & y, 
FillType  flag) 

with x and y two Epetra-Vectors,  and flag an enumerated type that tells why this 
method was called. In fact, NOX 'has the ability to generate Jacobians based  on 
numerical differencing. In this case, users may  want to compute an inexact (and 
hopefully cheaper) F ,  since it is only  used  in the Jacobian (or preconditioner). 

2. A function to compute the Jacobian, whose syntax is 

computeJacobian(const Epetra-Vector & x, 
Epetra-Operator * Jac) 

This method is optional optional method. It should be implemented when users wish 
to supply their own  evaluation of the Jacobian. If the user does not wish to supply 
their own Jacobian, they should  implement this method so that it throws  an  error 
if it is called. This method should  update the Jac operator so that subsequent Epe- 
tra-0perator::ApplyO calls on that operator correspond to the Jacobian at the current 
solution vector x. 

3. A method which fills a preconditioner matrix, whose syntax is 

computePrecMatrix(const Epetra-Vector & x, 
Epetra - RowMatrix & M) 

I20ther two concrete implementation are provided, for LAPACK and PETSc. The user may wish to 
configure NOX with --enable-nox-lapack or --enable-nox-petsc. Examples can be  corn- 
piled with the options --enable-nox-lapack-examples, - -enable-nox-petsc-examples, 
and-enable-nox-epetra-exemples. 
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It should only contain an estimate of the Jacobian. If users do not wish to supply their 
own Preconditioning matrix, they  should  implement this method such that if called, 
it will  throw an error. 

4. A method  to apply the user’s  defined  preconditioner. The syntax is 

computePreconditioner(const Epetra-Vector & x, Epetra-Operator & M) 

The  method should compute a  preconditioner  based upon the solution vector x and 
store it in the Epetra-Operator M. Subsequent calls to the Epetra-0perator::Apply 
method  will apply this user  supplied preconditioner to epetra vectors. 

Then, the user can construct a NOX : : Epe  t  ra : : Group, which contains information 
about  the solution technique. All constructors require: 

0 A  parameter list for printing output and for input options, defined as NOX : : Parameter : : List. 

0 An  initial guess for the solution (stored in an  Epetra-Vector object); 

0 an operator for the Jacobian and (optionally) and operator for the preconditioning 
phase.  Users can write their own  operators. In particular, the Jacobian can be defined 
by the  user as an Epetra-Operator, 

Epetra - Operator & J , =  UserProblem.getJacobian(), 

created as a NOX matrix-free operator, 

N0X::Epetra::MatrixFree & J = MatrixFree(userDefinedInterface, 
solutionvec), 

or created  by NOX using a  finite  differencing, 

N0X::Epetra::FiniteDifference & J = FIXME. .. 

At this point, users have to create an instantiation ofthe NOX : : Epetra : : Interface 
derived object, 

UserInterface  interface( . . .  ) , 

and  finally construct the group, 

N0X::Epetra::Group  gourp(printParams,  lsparams,  interface,  FIXME). 
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9.4 A Simple Nonlinear Problem 

As an example. define F : R2 -+ R2 by 

With this choice of F ,  the exact solutions of (5) are the intersections of the unity circle and 
the parabola 2 2  - x;. Simple algebra shows  that one solution lies in the first quadrant, and 
has coordinates 

the other being the reflection of cy among the x2 axis. 

Code ${TRILINOSHOME}/doc/tutorial/nox/exl. cpp applies the Newton 
method to this problem, with zo = (0.5,0.5) as a starting solution. The output is approxi- 
matively as follows: 

[msala:noxl>  mpirun  -np  1  ./exl.exe 

- -  Nonlinear  Solver  Step 0 - -  
f = 5.590e-01  step = 0.000e+00 dx = 0.000e+00 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- -  Nonlinear  Solver  Step 1 - -  
f = 2.102e-01  step = 1.000e+00  dx = 3.953e-01 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- -  Nonlinear Solver  Step 2 - -  
f = 1.009e-02  step = 1.000e+00 dx = 8.461e-02 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- -  Nonlinear  Solver  Step  3 - -  
f = 2.877e-05  step = 1.00oe+00 dx = 4.510e-03 (Converged!) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- -  Final  Status  Test  Results - -  
Converged . . . .  OR  Combination - >  
Converged . . . .  F-Norm = 2.034e-05 e 2.530e-04 

??...........Number of  Iterations = -1 e 20 
(Length-Scaled  Two-Norm,  Relative  Tolerance) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

- -  Parameter  List  From  Solver - -  
Direction - >  
Method = llNewtonlf [default] 
Newton - >  
Linear  Solver - >  
Max  Iterations = 400  [default] 
output - >  
Achieved  Tolerance = 8.6e-17 [unused] 
Number  of  Linear  Iterations = 2  [unused] 
Total  Number  of  Linear  Iterations = 6 [unused] . 

Tolerance = le-10 [default] 
Rescue  Bad  Newton  Solve = true  [default] 

Line  Search - >  
Method = "More'  -Thuente" 
More'-Thuente - >  
Curvature  Condition = 1 [default] 
Default  Step = 1 [default] 
Interval  Width = le-15 [default] 
Max  Iters = 20 [default] 
Maximum  Step = le+06  [default] 
Minimum  Step = le-12 [default] 
Optimize  Slope  Calculation = false  [default] 
Recovery  Step = 1 [default] 
Recovery  Step  Type = I1Constant1'  [default] 
Sufficient  Decrease = 0.0001 [default] 
Sufficient  Decrease  Condition = ffArmijo-Goldsteinll  [default] 

Total Nuher of  Failed  Line  Searches = 0 [unused] 
Total  Number  of  Line  Search  Calls = 3  [unused] 
Total  Number  of  Line  Search  Inner  Iterations = 0 [unused] 
Total  Number  of  Non-trivial  Line  Searches = 0 [unused] 

output - >  

Nonlinear  Solver = "Line  Search  Based" 
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output - >  
2-Norm of Residual = 2.88e-05  [unused] 
Nonlinear  Iterations = 3 [unused] 

MyPID = 0 [default] 
Output Information = 2 
Output  Precision = 3 [default] 
Output Processor = 0 [default] 

Printing - >  

Computed  solution : 
Epetra::Vector 

MyPID  GID 
0 0 
0 1 

Exact solution : 
Epetra::Vector 

MyPID  GID 
0 0 
0 1 

Value 
0.786 
0.618 

Value 
0.786 
0.618 

9.5 A 2D Nonlinear PDE Problem 

In this Section, we consider the solution  of  the  following nonlinear PDE  problem: 

{ -nu + Ae" = 0 i n n  = (0,1) x (0,1) 
u = 0 o n d a .  (7) 

For the sake of simplicity, we use  a  finite  difference scheme ona Cartesian gri, with  constant 
mesh sizes h, and h,,. Using  standard  procedures,  the discrete equation at node (i, j )  reads 

In example ${TRILINOSHOME}/doc/tutorial/nox/ex2. cpp, we  build  the 
Jacobian matrix as an Epetra-CrsMatrix, and we  use  NOX to solve problem (7) for a  given 
value  of X. The example shows  how to use NOX for more complex cases. The code  defines 
a class, here called PDEProblem,  which  contains two main  methods: One to compute F ( x )  
for a  given x, and the other to update  the entries of  the Jacobian matrix. The class contains 
all  the  problem  definitions (here, the  number  of  nodes along the x-axis and  the  y-axis  and 
the  value  of A). In more complex cases, a  similar class may have enough information to 
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compute,  for instance, the entries of J using  a  finite-element approximation of the PDE 
problem. 

The  interface to NOX, here called SimpleProblemInterface, accepts a  PDEProblem as 
a  constructor, 

SimpleProblemInterface  Interface(&Problem); 

Once  a N0X::Epetra:Interface object has  been  defined, the procedure is almost identical to 
that of the previous Section. 

9.6 Jacobian-free  Methods 

In  Section 9.5, the entries of the Jacobian matrix  have  been explicitly coded. For  more 
complex discretization schemes, it is not always  possible nor convenient to compute  the 
exact entries of J .  For those cases, NOX can automatically build Jacobian matrices based 
on  finite  difference approximation, that is, 

E ( u  + hjej) - Fi(z) 
hj 

J .  . = w > 

where ej  is the j-unity vector. Sophisticated schemes  are  provided by NOX, to reduce the 
number  of function evaluations. 

9.7 Concluding  .Remarks 

The  documentation of NOX  can be found in [ 131. 

A  library of continuation classes, called  LOCA [14, 161, is included in the NOX dis- 
tribution.  LOCA is a generic continuation and  bifurcation analysis package, designed for 
large-scalr applications.The algorithms are designed  with  minimal interface requirements 
over  that  needed for a Newton method to read an equilibrium solution. LOCA is built  upon 
the NOX package.  LOCA  provided hctionalities for single parameter continuation and 
multiple continuation. Also, LOCA provides  a stepper class that repeatedly class the NOX 
nonlinear  solver  to compute points along a continuation curve. We will not cover  LOCAL 
in this  tutorial. The interested reader is referred to the LOCA documentation. 
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10 TriUtils 

Triutils is a collection of various utilities, that can help development and testing. Mainly, 
triutils contains h c t i o n s  or classes to generate matrices in various formats (MSR,  VBR, 
Epetra), to read matrices (in HB or COO format), to convert matrices from one format to 
another, and to process the command line. Programs  using triutils should include the  file 
Trilinos - Uti1.h. 

In this Chapter, we will  present: 

0 How to read a matrix (and possibly  right-hand side and solution vectors) from  an 
HarwelVBoeing  file format (in  Section 10.1); 

0 How to retrive a parameter specified on the command line (in Section 10.2). 

10.1 Reading a  HB  problem 

It is possible to read matrix, solution  and  right-hand side, from a file written in the  Har- 
well/Boeing format. This is done in 
${TRILINOSHOME}/doc/tutorial/triutils/exl .cpp. The key instructions 
are the following. 

First, we define pointers to Epetra-Vector and EpetraNatrix objects: 

/ /  Pointers  because of Trilinos  Util  ReadHb2Epetra 
Epetra  Map * readMap; 
Epetra-CrsMatrix * readA; 
Epetra - Vector * readx; 
Epetra - Vector * readb; 
Epetra - Vector * readxexact; 

- - 
- 

The HB problem is read with the instruction 

Trilinos - Util - ReadHb2Epetra(FileName,  Comm,  readMap,  readA,  readx, 
readb, readxexact); 

Here, Comm is an Epetra-SerialComm or EpetraMpiComm object, and FileName an 
array of character containing the name of the HB  file. 
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This  creates  an  Epetra-Matrix  and  two  Epetra-Vectors,  with  all the elements assigned 
to processor  zero. This is because  the HB file  does not contain  any information about the 
distribution  of  the elements to the processors.  Should the user need to solve  the  linear 
problem  in  parallel, thus he  has  to  redistributed rea&. In this case,  the  first step is  to 
specify  a  map.  For instance, we  can  use  a  linear  map: 

int NumGlobalElements = readMap->NumGlobalElements(); 
Epetra-Map map(NumGlobalElements,O,Comm) ; 

and create  and  exporter to distribute  read-in  matrix  and  vectors: 

Epetra-Export exporter(*readMap, map); 
Epetra - CrsMatrix A(Copy, map, 0); 
Epetra Vector x (map) ; 
Epetra-Vector b (map) ; 
Epetra-Vector xexact  (map) ; 
/ /  this is the  data  distribution  phase 
x.Export (*readx,  exporter,  Add) ; 
b.Export (*readb,  exporter, Add) ; 
xexact.Export(*readxexact, exporter, Add); 
A. Export (*ream, exporter,  Add) ; 

Finally,  we can destroy  the objects used to store the non-distributed HB problem: 

delete readA; 
delete readx; 
delete readb; 
delete readxexact; 
delete readMap; 

and  solve  the  distributed linear system  with  the  method  of choice. 

10.2 ShellOptions 

ShellOptions is a class to manage the input  arguments  and shell variables.  With this class, 
it is  easy to handle  input  line  arguments  and  shell  variables.  For instance, the user can write 
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$ ./ex2.exe -nx 10 - t o 1  le-6 -solver=cg 

and then easily retrieve the value of nx,  tol, and solver. 

A simple code using this class is as follows: 

int  main(int argc,  char  *argv[l) 
{ 

ShellOptions  Args  (argc,  argv) ; 
int  nx = Args.GetIntOption(“-nx”, 123) ; 
int  ny = Args.GetIntOption(l‘-ny”, 145) ; 
double  to1 = Args.GetDoubleOption(”-tol”, le-12); 
string  solver = Args.GetIntOption(fv-solverlf) ; 

cout cc “nx = I I  cc nx cc endl; 
cout < C  IIny = cc ny cc (default value)” c< endl; 
cout cc “to1 = cc to1 cc endl; 
cout cc ”solver = cc solver cc endl; 

return 0; 
1 

Each line option can have  a  value or not.  For options with a value, the user can specify 
this values  as  follows.  Let -tolerance be  the name of the option and le- 12 its value. 
Both choices are valid: 

0 -tolerance  le- 12 (with  one or more  spaces) 

0 - tolerance=le-12 (with = sign  and no spaces) 

Option  names  must  begin  with  one or more  dashes (‘ - ’). Each option cannot  have  more 
than  one  value. 

To use this class, the user has to  build  the  database using the argc , argv input  argu- 
ments. Then, to retrieve  the option value,  the user has to use one of the following functions: 
GetIntOption,GetDoubleOption,andGetStringOption. 

If option name is not found  in the database,  a  value of 0, 0.0 or an empty string  is 
returned. If needed,  the user can also specify a default  value to return when the option  name 
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is not  found  in the database. Method HaveOpt ion can be used to query the database for 
an option. 

File ${TRILINOSHOME}/doc/tutorial/triutils/ex2. cpp,gives an ex- 
ample of the usage of this class. 
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