

SANDIA REPORT

SAND2004-0154
Unlimited Release
Printed January 2004

Trilinos 3.1 Tutorial

Marzio Sala and Michael Heroux

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
e
a
a
a
a
a
a
a
a
a
a

a

SAND2004-0154
Unlimited Release

Printed January 2004

Trilinos 3.1 Tutorial

Marzio Sala and Michael Heroux
Computational Mathematics and Algorithms Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87 185- 1 1 10

Abstract

This document introduces the use of Trilinos, version 3.1. Trilinos has been written
to support, in a rigorous manner, the solver needs of the engineering and scientific
applications at Sandia National Laboratories.

Aim of this manuscript is to present the basic features of some of the Trilinos
packages. The presented material includes the definition of distributed matrices and
vectors with Epetra, the iterative solution of linear system with AztecOO, incomplete
factorizations with IFPACK, multilevel methods with ML, direct solution of linear
system with Amesos, and iterative solution of nonlinear systems with NOX. With the
help of several examples, some of the most important classes and methods are detailed
to the unexperienced user. For the most majority, each example is largely commented
throughout the text. Other comments can be found in the source of each example.

This document is a companion to the Trilinos User’s Guide [lo] and Trilinos De-
velopment Guides [l l , 121. Also, the documentation included in each of the Trilinos’
packages is of fundamental importance.

3

Acknowledgments

The authors would like to acknowledge the support of the ASCI and LDRD programs that
funded development of Trilinos.

4

.

.

.

.

.

.

.

.

.

Trilinos 3.1 Tutorial

Contents
1 Introduction ... 7

1.1 Getting Started with Trilinos . 7
1.2 Installing Trilinos . 10
1.3 Compiling and Linking a program using Trilinos 12
1.4 Copyright and Licensing of Trilinos . 13
1.5 Programming Language Used in this Tutorial 13
1.6 Referencing Trilinos . 14
1.7 A Note on Directory Structure 15
1.8 List of Trilinos Developers 16

2 Working with Epetra Vectors ... 17
2.1 Epetra Communicator Objects 17
2.2 Defining a Map . 19
2.3 Creating and Assembling Serial Vectors 21
2.4 Creating and Assembling a Distributed Vector 22
2.5 Epetralmport and Epetra-Export . 24

3 Working with Epetra Matrices .. 29
3.1 Serial Dense Matrices . 29
3.2 Distributed Sparse Matrices . 31
3.3 Creating VBR Matrices ... 38
3.4 Insert non-local Elements Using FE Matrices 40

4 Other Epetra Classes ... 41
4.1 Epetra-Time . 41
4.2 Epetra_Flops . 42
4.3 Epetra-Operator and EpetraJiowMatrix Classes 43

4.5 Concluding Remarks ... 47
4.4 EpetraLinearProblem . 47

5 Iterative Solution of Linear Systems with AztecOO 48
5.1 Theoretical Background ... 48
5.2 Basic Usage of AztecOO .. 50

5.4 Use of AztecOO Problems as a Preconditioner for AztecOO 52
5.3 One-level Domain Decomposition Preconditioners with AztecOO 51

5

6

7

5.5 Concluding Remarks . 54

Incomplete Factorizations with IFPACK . 55
6. I Theoretical Background. , , . . 55
6.2 Incomplete Cholesky Factorizations . , 56
6.3 RILU Factorizations. 57
6.4 Concluding Remarks . 59

Multilevel Methods with ML.. 60
7.1 Theoretical Background. 60
7.2 ML as a Preconditioner for Aztec00 . 6 1
7.3 Two-level Domain Decomposition Preconditioners with ML 66
7.4 Concluding Remarks . , . . . , 67

Interfacing Direct Solvers with Amesos.. 68
8.1 Installation of Trilinos third-part Packages . 68
8.2 UMFPACK ... 69
8.3 SuperLUdist . 70
8.4 A Generic Interface to Various Direct Solvers. , . . . 71

Solving Nonlinear Systems with NOX . 73
9.1 Theoretical Background. 73
9.2 Creating NOX Vectors and Group . 74
9.3 Introducing NOX in an Existing Code . 75
9.4 A Simple Nonlinear Problem, . , . . . , . 77
9.5 A 2D Nonlinear PDE Problem. 79
9.6 Jacobian-free Methods . 80
9.7 Concluding Remarks . 80

10 TriUtils 81
10.1 Reading a HB problem. , . 8 1
10.2 ShellOptions , . 82

6

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

0

0

1 Introduction

The Trilinos Project is an effort to facilitate the design, development, integration and ongo-
ing support of mathematical software libraries. Goal of the Trilinos Project is develop par-
allel solver algorithms and libraries within an object-oriented software framework for the
solution of large-scale, complex multiphysics engineering and scientific applications. The
emphasis is on developing robust, scalable algorithm in a software framework, using ab-
stract interfaces for flexible interoperability of components while providing a full-featured
set of concrete classes that implement all abstract interfaces.

1.1 Getting Started with Trilinos

The Trilinos Project uses a two-level software structure designed around collections of
packages. A Trilinos package is an integral unit, usually developed to solve a specific task,
by a (relatively) small group of expert of the field. Packages exist underneath the Trilinos
top level, which provides a common look-and-feel. Each package has its own structure,
documentation and set of examples. In principle, Trilinos packages can live independently.
However, each package is even more valuable when combined with other Trilinos packages.

Trilinos is a large software project, and currently about twenty packages are included.
Fully understanding all the functionalities of the Trilinos packages requires time. The entire
set of packages covers a wide range of numerical methods for large scale computing. Some
packages are focused on the development of computational schemes, like for instance the
solution of linear and nonlinear systems, to the definition of parallel preconditioners for
Krylov methods, eigenvalue computation. Other packages are more focused on implemen-
tation issues (like definition of matrices and vectors, abstract classes for linear operators).
The first Chapters of this tutorial will be focused on implementation issues, while the last
Chapters will have a more “mathematical” taste.

Each package offers sophisticated features, that cannot be “unleashed” at a very first
usage. For each package, we will outline only the basic features, and we refer to the
documentation of each package for a more involved usage. Our goal is to present enough
material so that the reader can successfully use the described packages. In fact, for new
users, it is neither easy, nor necessary, to manage all the Trilinos hnctionalities. At the
beginning, it is more important for them to understand how to manage the basic classes,
such as vector, matrix and linear system classes. However, it is clear that for a fine-tuning,
the reader will have to look through each package’s documentation and examples.

7

Although all packages have the same importance in the Trilinos structure, a typical user
will probably - at least at the beginning - make use of the following packages:

0 Epetra. This package defines the basic classes for distributed matrices and vectors,
linear operators and linear problems. Epetra classes are the common language spoken
by all the Trilinos packages (even if some of them can "speak" other languages).
Each Trilinos package is able to accept in input Epetra objects. This allows powerful
combinations among the various Trilinos functionalities.

0 AztecOO. This is a linear solve package based on preconditioned Krylov methods. It
supports all the Aztec interfaces and functionality, but also provides significant new
functionality.

0 IFPACK. This is a package to perform various incomplete factorizations, and it is
here used in conjunction with AztecOO.

0 ML. This is an algebraic multilevel preconditioner package, which provided scal-
able preconditioning capabilities for a variety of problem classes. It is here used in
conjunction with AztecOO.

0 Amesos. This package provides a common interface to various direct solvers (gen-
erally available outside the Trilinos framework), both sequential and parallel.

0 NOX. This is a collection of nonlinear solvers, designed to be easily integrated into
an application and used with many different linear solvers.

0 Triutils. This is a collection of various utilities, that can be extremely useful in some
phases of software development.

Table 1 gives a partial overview of what can be accomplished using Trilinos.

This tutorial is divided into 10 chapters:

0 Chapter 2 describes the Epetra-Vector class;

0 Chapter 3 introduces the EpetraMatrix class;

0 Chapter 4 briefly describes some other Epetra classes;

0 Chapter 5 shows how to solve linear systems with AztecOO;

0 Chapter 6 presents the basic usage of IFPACK;

8

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Task

AztecOO, Definition of incomplete factorizations:
tors, like CG, GMRES, Bi-CGSTAB, TFQMR:

AztecOO, Belos* solve a linear system with preconditioned Krylov accelera-
Epetra Definition of distributed sparse matrices:
Epetra Definition of serial dense or sparse matrices:
Epetra, Teuchos* Light-weight interface to BLAS and LAPACK:
Package

Definition of a multilevel preconditioner: ML
Definition of a one-level Schwarz preconditioner (overlap- AztecOO,
ping domain decomposition): IFPACK
Definition a two-level Schwarz preconditioner, with coarse AztecOO+ML
grid based on aggregation:
Solution of systems of nonlinear equations: NOX
interface with various direct solvers, as UMFPACK, Amesos
MUMPS, SuperLU and others :
Computation of eigenvalue of large, sparse matrices: Anasmi*
Solution of complex linear equations (using equivalent real

Stokes equations):
conditioners (for instance, for the incompressible Navier-

Meros* Definition of segregated preconditioners and block pre-
formulation):

Komplex*

TSFExtended* and solvers:
TSF*, TSFCore*, Definition of abstract interfaces to vectors, linear operators,

precision arithmetic, parameter lists:
Teuchos* Templated interface to BLAS and LAPACK, arbitrary-

IFPACK

Table 1. Partial overview of what can be done with Trilinos. *:
not covered in this tutorial.

9

0 Chapter 7 introduces multilevel preconditioners based on ML;

0 Chapter 8 introduces the Amesos package;

0 Chapter 9 outlines the main features of the Trilinos nonlinear solver package, NOX.

0 Chapter 10 presents some tools provided with the Triutils package.

Remark 1. As alreadypointed out, Epetra objects are meant to be the “common language ”
spoken by all the Trilinos packages, and therefore the new user must become familiar with
those objects. Therefore we suggest to read Chapters 2-4 before considering other Trilinos
packages. Also, Chapter 5 should be read before Chapters 6 and 7 (even if both IFPACK
and ML can be compiled and run without AztecOO).

This tutorial assume a basic background in numerical methods for PDEs, and in iterative
linear and nonlinear solvers. Although not strictly necessary, the reader is suppose to have
a certain familiarity with distributed memory computing and, to a minor extent, with MPI.

Note that this tutorial is not a substitute ofr individual packages documentation. Also,
for an overview of all the Trilinos packages, the Trilinos philosophy, and a description
of the packages provided by Trilinos, the reader is referred to [7]. Developers should
also consider the Trilinos Developers’ Guide, which addresses many topics, including the
development tools used by Trilinos’ developers, and how to include a new package’.

1.2 Installing Trilinos

To obtain Trilinos, please refers to the instructions reported at the following web site:

http://software.sandia.gov/Trilinos

Trilinos has been compiled on a variety of architectures, including Linux, Sun Solaris,
SGI Irix, DEC, and many others. Trilinos has been designed to support parallel applica-
tions, However, it can be compiled and run on serial computer. Detailed comments on the
installation, and an exhaustive list of FAQs, can be found at the web pages:

‘Trilinos provides a variety of services to a developer wanting to integrate a package into Trilinos. They
include Autoconf [11, Automake [2] and Libtool [3]. Those tools provide a robust, full-featured set of tools
for building software across a broad set of platforms. Although these tools are not official standards, they are
widely used. All existing Trilinos packages use Autoconf and Automake. Libtool support will be added in
future releases.’

10

http://software.sandia.gov/Trilinos

a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

0

http://software.sandia.gov/Trilinos/installing - manual.htm1
http://software.sandia.gov/Trilinos/faq.html

Before using Trilinos, users might decide to set the environmental variables TRILINOS HOME,
indicating the full path of the Trilinos directory, TRILINOS LIB, indicating the location
of the compiled Trilinos library, and TRILINOS ARCH, containing the architecture and
the communicator currently used. For example, using the BASH shell, command lines of
the form

-

export TRILINOS HOME=/home/msala/Trilinos
export TRILINOS ARCH=LINUX.MPI
export TRILINOS-LIB=${TRILINOS - - HOME}/${TRILINOS-ARCH}

-

can be places in the users’ . bashrc file.

Here, we briefly report the procedure one should follow in order to compile Trilinos as
required by the examples reported in the following chapters 2-lo2. Suppose we want to
compile under LINUX with MPI. The installation procedure can be are reported below. ($
indicates the shell prompt.)

$ cd ${TRILINOS HOME}
$ mkdir ${TRILIiOS ARCH}
$ cd ${TRILINOS ARCH}
$../configure --prefix=~t${TRILINOS~HOME}/${TRILINOS ARCH}” \

-

--enable-mpi --with-mpi-compilers \
--enable-triutils --enable-aztecoo \
--enable-ifpack \
--enable-ml --enable-nox I tee configure ${TRILINOS ARCH}.log

-

$ make I tee make ${TRILINOS ARCH}.log
$ make install I tee make - install - ${TRILINOS - ARCH}. log

Remark 2. All Trilinospackages can be build to run with or without MPI. IfMPI is enabled
(using - - enable -mpi), the users must know the procedure for beginning MPI jobs on
theit- computer system(s). In some cases, options must be set on the configure line to specijj
the Location of MPI includeJiles and libraries.

- -

*Amesos can be more difficult to compile for the unexperienced user, as it required some information
about the packages to interface. Suggestions about the configuration of Amesos are reported in Chapter 8.
More details about the installation of Trilinos can be found in [lo].

11

http://software.sandia.gov/Trilinos/installing
http://software.sandia.gov/Trilinos/faq.html

1.3 Compiling and Linking a program using Trilinos

In order to compile and link (part of) the Trilinos library, the use can decide to use a
Makefile as reported below. This Makefile refers to one of the examples, reported in the
NOX subdirectory of this tutorial.

1: TRILINOS - HOME = /home/msala/Trilinos/
2 : TRILINOS ARCH - LINUX-MPI
3 : TRILINOS-LIB - = $ (TRILINOS-HOME) $ (TRILINOS-ARCH)
4:
5 : include $(TRILINOS~HOME)/build/makefile.$(TRILINOS~AFXH)
6 :
7 : MY - COMPILER FLAGS = -DHAVE CONFIG-H $(CXXFLAGS) -C -g\
8 :
9 :

-
-I$ (TRIZINOS LIB) /include/ -

10: MY-LINKER FLAGS = $(LDFLAGS) $(TEST C OBJ) \
11:

-
-L$(TRILINOS-LIB)/lib/ \

- -

12: -1noxepetra -1nox -1ifpack \
13: -1aztecoo -1epetra -1lapack -1blas $(ARCH-LIBS)
14:
15: exl: exl.cpp
16: $ (CXX) exl.cpp $(MY-COMPILER FLAGS)
17: $ (LINKER) ex1 . o $ (MY-LINKER-FLAGS) -0 ex1 . exe

Line number have been reported for reader's convenience.
i

The lines 1-3 can be omitted, see Section 1.2. Line 5 includes basic definitions of
Trilinos. (Note that, on some architectures, one may need to use gmake instead of make.)
In line 7, the variable HAVE-CONFIG-H is defined. Linker flags of lines 10-13 defines the
library to link (location of BLAS and LAPACK can change on different platforms). The
variable ARCH - LIBS is defined in line 5 .

To run the compiled example in a sequential environment, simply type

$./exl.exe

In a MPI environment, the user might have to use an instruction of type

$ mpirun -np 2 ./exl.exe

'1 2

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

Please check the local MPI documentation for more details.

1.4 Copyright and Licensing of Trilinos

Trilinos is released under the Lesser GPL GNU Licence.

Trilinos is copyrighted by Sandia Corporation. Under the terms of Contract DE-AC04-
94AL85000, there is a non-exclusive license for use of this work by or on behalf of the
U.S. Government. Export of this program may require a license from the United States
Government.

NOTICE: The United States Government is granted for itself and others acting on its
behalf a paid-up, nonexclusive, irrevocable worldwide license in ths data to reproduce,
prepare derivative works, and perform publicly and display publicly. Beginning five (5)
years from July 25, 2001, the United States Government is granted for itself and others
acting on its behalf a paid-up, nonexclusive, irrevocable worldwide license in this data to
reproduce, prepare derivative works, distribute copies to the public, perform publicly and
display publicly, and to permit others to do so.

NEITHER THE UNITED STATES GOVERNMENT, NOR THE UNITED STATES
DEPARTMENT OF ENERGY, NOR SANDIA CORPORATION, NOR ANY OF THEIR
EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES

NESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR'
PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE
PRIVATELY OWNED RIGHTS.

ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETE-

Some parts of Trilinos are dependent on a third party code. Each third party code
comes with its own copyright and/or licensing requirements. It is responsibility of the user
to .understand these requirements.

1.5 Programming Language Used in this Tutorial

Trilinos is written in C++ (for most packages), and in C. Some interfaces are provided
to FORTRAN code (mainly BLAS and LAPACK routines). Even if a limited support is
included for C programs (and a more limited for FORTRAN code), to unleashed the full
power of Trilinos we suggest to use C++. All the example programs contained in this
tutorial will be in C++; some packages contains examples in C.

13

a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a

e

1.6 Referencing Trilinos

The Trilinos project can be referenced by using the following BiBTeX citation information:

@techreport{Trilinos-Overview,
title = # , { A n Overview of Trilinos}tl,
author = "Michael Heroux and Roscoe Bartlett and Vicki Howle
Robert Hoekstra and Jonathan Hu and Tamara Kolda and
Richard Lehoucq and Kevin Long and Roger Pawlowski and
Eric Phipps and Andrew Salinger and Heidi Thornquist and
Ray Tuminaro and James Willenbring and Alan Williams I t I

institution = "Sandia National Laboratoriesll,
number = 11SAND2003-29271r,
year = 2003)

@techreport{Trilinos-Dev-Guide,
title = "{Trilinos Developers Guide)",
author = "Michael A. Heroux and James M. Willenbring and Robert Heaphy",
institution = "Sandia National Laboratories",
number = 11SAND2003-189811,
year = 2003)

@techreport{Trilinos-Dev-Guide-11, a
title = "{Trilinos Developers Guide Part 11: ASCI Software Quality a
Engineering Practices Version l.O}ll,
author = llMichael A. Heroux and James M. Willenbring and Robert Heaphy",
institution = "Sandia National Laboratories", a
number = "SAND2003-1899", a
year = 2003)

a

a
@techreport{Trilinos-Users-Guide,
title = "{Trilinos Users Guide)",
author = "Michael A. Heroux and James M. Willenbringlt,
institution = "Sandia National Laboratoriesrf,
number = 11SAND2003-2952" ,
year = 2003)

These BiBTeX information can be downloaded from the web page

http://software.sandia.gov/Trilinos/citing.html

14

a
a

a
a
a
a
a
a
a
a
a
a
a

http://software.sandia.gov/Trilinos/citing.html

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a

a

1.7 A Note on Directory Structure

Each Trilinos package in contained in the subdirectory

${TRILINOS-HOME}/packages

The structure of all packages is quite similar (although not exactly equal). As a general
line, source files are in

${TRILINOS - HOME}/packages/cpackage-name>/src

Example files are reported in

${TRILINOS - HOME}/packages/cpackage-name>/examples

and test files in

${TRILINOS - HOME}/packages/cpackage-name>/test

The documentation is reported

${TRILINOS - HOME}/packages/cpackage-name>/doc

Often, Trilinos developers use Doxygen3. For instance, to create the documentation for
Epetra, we use can type

$ cd ${TRILINOS - HOME}/packages/epetra/doc
$ doxygen Doxyfile

and then browse it using an HTML reader, or compiling the ETmfile using

$ cd ${TRILINOS - HOME}/packages/epetra/doc/latex
$ make

3Copyright 01997-2003 by Dimitri van Heesch. More information can by found at the web address
http://www.stack.nl/ dimitri/doxygen/.

15

http://www.stack.nl

1.8 List of Trilinos Developers

A list of the Trilinos’ developers, updated to December 2003, would include the following
names (in alphabetical order):

Roscoe A. Bartlett, Jason A. Cross, David M. Day, Robert Heaphy, Michael A. Her-
oux (project leader), Russell Hooper, Vicki E. Howle, Robert J. Hoekstra, Jonathan J. Hu,
Tamara G. Kolda, Richard B. Lehoucq, Paul Lin, Kevin R. Long, Roger P. Pawlowski,
Michael N. Phenow, Eric T. Phipps, Andrew J. Rothfuss, Marzio Sala, Andrew G. Salinger,
Paul M. Sexton, Kendall S. Stanley, Heidi K. Thornquist, Ray S. Tuminaro, James M. Wil-
lenbring, Alan Williams.

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

2 Working with Epetra Vectors

Probably, the first mathematical entities defined by a numerical method is a vector. Within
the Trilinos framework, vectors are usually constructed starting from Epetra Classes.

Epetra vectors can be used to store double values (like the solution of a PDE problem,
the right-hand side of a linear system, or the nodal coordinates), as well as integer data
values (such as a set of indexes).

Epetra vectors can be serial or distributed. Serial vectors are usually small, so that it
is not convenient to distribute them across the processes. Possibly, serial vectors are repli-
cated across the processes. On the other hand, distributed vectors tend to be significantly
larger, and therefore their elements are distributed across the processors. In this latter case,
users must specify the partition they intend to use. In Epetra, this is done by specifying a
communicator (introduced in Section 2.1) and an Epetra object called map (introduced in
Section 2.2). A map is basically a partitioning of a list of global IDS.

a
a
a
a
a
a
a
a
a
a
a
0
a
a
a
a
a
a
a
a
a
a
a
a
a

This Chapter will show some of the Trilinos capabilities to work with vectors. Vector
classed can be used to perform common vector operations, as dot products, vector scalings
and norms, or fill with constant or random values.

During the Chapter, the user be introduced to:

0 The Epetra-Comm object (in Section 2.1);

0 The Epetramap object (in Section 2.2);

0 Creating and assembling Epetra vectors (in Sections 2.3 and 2.4);

0 Redistributing vectors (in Section 2.5).

2.1 Epetra Communicator Objects

The Epetra-Comm class is an interface that encapsulates the general information and ser-
vices needed for the other Epetra classes to run on a parallel computer. An Epetra-Comm
object is required for building all Epetralvlap objects, which in turn are required for all
other Epetra classes.

EpetraXomm has two basic implementations:

17

0 Epetra-SerialComm (for serial executions);

0 EpetraMpiComm (for MPI distributed memory executions).

For most basic applications, the user can create an Epetra-Comm object using the fol-
lowing code:

#include "Epetra-conf ig . h1I
#ifdef HAVE-MPI
#include Ilmpi. h"
#include "Epetra - MpiComm.h"
#else
#include llEpetra-SerialComm. h"
#endif
/ / . . other include files and others . . .
int main(int argv, char *argv[l) {
/ / . . some declarations here . . .
#ifdef HAVE-MPI
MPI Init (&argc , &argv) ;
Epetra - MpiComm Comm (MPI-COMM-WORLD) ;

Epetra-SerialComm Comm;
#else

#endif
/ / . . . other code follows . . .

Note that the MPI-Init () call and the

#ifdef HAVE-MPI
MPI Finalize 0 ;

#endiT

call, are likely to be the onb MPI calls users have to explicitly introduce in their code.

Most of Epetra-Comm methods are similar to MPI hnctions. The class provides meth-
odsasMyPID(),NumProc(),Barrier(),Broadcast(),SumAll(),GatherAll(),
MaxAll () , Midl 1 () , ScanSum () . For instance, the number of processes in the com-
municator, NumProc, and the ID of the calling process, MyPID, can be obtained as

int NumProc = Comm.NumProc (;
int MyPID = Comm.MyPID0 ;

I 18

File ${TRILINOSHOME}/doc/tutorial/epetra/exl. cpp presents the use
of some of the above introduced functions. For a description of the syntax, please refer to
the Epetra Class Documentation.

2.2 Defining a Map

Very often, various distributed objects such as matrices or vectors, have identical distri-
bution of elements among the processes. This distribution of elements (or points) is here
called a map, and its actual implementation within the Trilinos project is given by the Epe-
tramap class (or, more generally, by an EpetraBlockMap). Basically, the class handles
the definition of:

0 global number of elements (called NumGlobalPoints);

0 the local number of elements (called NumMyPoints);

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

a

0 the global numbering of all local nodes (an integer vector of size NumMyPoints,
called MyGlobalElementsj.

There are essentially three ways to define an map. The easiest way is to specify the
global number of elements:

Epetra-Map Map(NumGlobalPoints,O,Comm);

In this case, the constructor takes the global dimension of the vector (here indicated as
NumGlobalPoints), the base index (0 for C or C++ arrays, 1 for FORTRAN arrays,
but it can be any number), and an Epe t ra Comm object (introduced in Section 2.1). As a
result, each process will be assigned a contrguous list of elements.

Another way to build the Epetra-Comm object is to furnish the local number of ele-
ments:

Epetra - Map Map(-l,NumMyPoints,O,Comm);

This will create a vector of size xi=" NumMyPoints. Each process will get a
contiguous set of elements. These two approached are coded in file
${TRILINOSHOME)/doc/tutorial/epetra/ex2.~pp.

NumProc-l

19

Another, more involved way, to create an EpetraMap, is to specify on each process both
the number of local elements, and the global numbering of each local element. To better
explain this, let us consider the following code, in which a vector, of global dimension 5, is
split among 2 processes p 0 and PI. po owns nodes 0 an 4, while pl nodes 1 , 2, and 3.

MyPID = Comm.MyPID () ;
switch(MyPID) {
case 0:
MyElements = 2;
MyGlobalElements = new int[MyElementsl;
MyGlobalElements [O] = 0;
MyGlobalElements [11 = 4;
break;

MyElements = 3;
MyGlobalElements = new int[MyElementsl;
MyGlobalElements [OI = 1;
MyGlobalElements [11 = 2;
MyGlobalElements [21 = 3 ;
break;

case 1:

1
Epetra - Map Map(-1,MyElements,MyGlobalElements,O,Comm);

Thecompletecodeisreportedin ${TRILINOSHOME}/doc/tutorial/epetra/ex3. cpp.

A Map object can be queried for the global and local number of elements, using

int NumGlobalElements = Map.NumGlobalElements0 ;
int NumMyElements = Map.NumMyElements0;

and for the global ID of local elements, using

int * MyGlobalElements = Map.MyGlobalElements0; e
or, equivalently,

e
e

i n t MyGlobalElements[NumMyElementsl ;
Map.MyGlobalElements(MyGlobalElements);

20

e
e
e
e

e
e

' e
e
e

The class Epetrahlap is derived from EpetraBlockMap. This class keeps information
that describes the distribution of objects that have block elements (for example, one or more
contiguous entries of a vector). This situation is common in applications like multiple-
unknown PDE problems. A variety of constructors are available for this class. An example
ofuseofblockmapsisreportedin ${TRILINOSHOME)/doc/tutorial/epetra/ex23. cpp.

Note that different maps can coexist in the same part of the code. This allows the user
to easily define vectors with different distributions (even for vectors of the same size). Two
classes are provided to transfer data from one map to an other. Those classes (Epetralmport
and EpetraIxport) are discussed in Section 2.5.

Remark 3. Most Epetra objects overload the < < operator. For example, to visualize infor-
mation about the Map, one can simply write

cout < c Map;

This Section has presented the construction of very basic map objects. However, map
objects of very general form can be constructed. First, element numbers are only labels, and
they do not have to be consecutive. This means that we can define a map with elements 1 ,
100 and 10000 on process 0, and elements 2,200 and 20000 on process 1. This map, com-
posed by 6 elements, is perfectly legal. Second, each element can be assigned to more than
one process. Examples ${TRILINOSHOME}/doc/tutorial/epetra/ex20. cpp
and ${TRILINOSHOME}/doc/tutorial/epetra/ex21. cpp can be used to bet-
ter understand the potentiality of EpetraMaps.

Remark 4. The use of ‘<distributed directory” technology facilitates arbitrary global ID
support.

2.3 Creating and Assembling Serial Vectors

Within Epetra, it is possible to define sequential vectors, for serial or for parallel runs.
A sequential vector is a vector which, in the opinion of the programmer, does not need
to be partitioned among the processes. Note that each process defines its own sequential
vectors, and that changing an element of this vector on this process will not directly affect
the vectors stored on other processes (if any have been defined).

’ To create a sequential vector containing Length elements, one can use the following
command:

21

Epetra-SerialDenseVector x(Length1;

Other constructors are available; check the Epetra Class Documentation.

The class Epetra-SerialDenseVector enables the construction and use of real-valued,
double-precision dense vectors. The Epetra-SerialDenseVector class is intended to provide
convenient vector notation but derives all significant functionality fiom EpetraSerialDenseMatrix
class. The vector can be filled using the [I or () operators. Both methods return the spec-
ified element of the vector. However, using () , bounds, checking is enforced. Using using
[] , no bounds checking is done unless Epetra is compiled with EPETRA - ARRAY - BOUNDS-CHECK.

Remark 5. To construct replicated Epetra objects on distributed memory machines, the
user may consider the class Epetra LocalMap. This class allows the constructions of those
replicated local objects and keeps information that describe the distribution.

File ${TRILINOSHOME}/doc/tutorial/epetra/ex4. cpp shows some ba-
sic operations on dense vectors.

2.4 Creating and Assembling a Distributed Vector

To create a distributed vector, the first step is to defhe a map. (Actually, this is true for all
distributed Epetra objects.) After that, an Epetra-Vector object can be constructed with an
instruction of type

Epetra - Vector x(Map) i

This constructor allocates space for the vector and set all the elements to zero. A copy
constructor can be used as well:

I Epetra - Vector y(x) ;

Alternatively, the user can pass a pointer to an array of double precision values:

Epetra - Vector x(Copy,Map,LocalValues);

Note the word Copy is input to the constructor. Epetra allows two data access modes:

22

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1. Copy mode: Allocates memory and makes a copy of the user-provided data. In this
case, the user data is not needed after construction;

2. View mode: Creates a “view” of the user’s data. In this case, the user data is re-
quired to remain untouched for the life of the vector (or modified carefully). It is
worth noting that the View mode is very dangerous from a data hiding perspective.
Therefore, users are strongly encouraged to develop code using Copy mode first and .
only use View mode in a secondary optimization phase. To use the View mode, the
user has to define the vector entries using a double vector (of appropriate size), than
construct an Epetra-Vector with an instruction of type

Epetra - Vector z(View,Map,double - vector);

where double - vector is a pointer to the vector of doubles.

Regardless of how a vector has been created, one can use the C 1 operator to access a
vector element:

x[il = l.O*i;

where i is in the local index space.

Epetra also defines some functions to set vector elements in local or global index space.
ReplaceMyValues or SumIntoMyValues will replace or sum values into a vector
with a given indexed list of values, with indexes in the local index space; ReplaceGlobalValues
or SumIntoGlobalValues will replace or sum values into a vector with a given in-
dexed list of values in the global index space. It is important to note that a process cannot
set a vector entries locally owner by another process. In other words, both global and local
insert and replace functions refers to the part of a vector assigned to the calling process.
Intra-process communications can be performed using Import and Export objects, covered
in Section 2.5.

Another way is to put vector values in a user-provided array. For instance, one may
have:

double *x values;
x values = new double [MyLength] ;
x.ExtractCopy(x - values) ;
f o r (int i=O ; ieMyLength ; ++i) x - values[i] *= 10;
for(int i = O ; icMyLength ; ++i)

-
-

x.ReplaceMyValues(1, 0, x - values+i, &i) ;

23

(File ${TRILINOSHOME}/doc/tutorial/epetra/ex5. cpp reported the com-
plete source.) It is important to note that Extract Copy does not give access to the
vector elements, but only copies them into the user-provided array. The user must commit
those changes to the vector object, using, for instance, ReplaceMyValues.

A further, computationally efficient way, is to extract a “view” of the (multi-)vector
internal data. To that aim, one has to call

double * pointer;
x.ExtractView(&pointer’) ;

e
e
e
e
e
e
e
e
e
e
e
e
e

Now, modifying the values of pointer will affect the internal data of the Epetra-Vector x. e
Anexamp~eoftheuseofExtractViewisreportedinfile${TRILINOSHOME}/doc/tutorial/epetr

Remark 6. The class Epetra-Vector is derivedfrom EpetraMultiVectoz Roughly speaking, e
a multi-vector is a collection of one or more vectors, all having the same length and distri- e
bution. Thereadermaylooktothefile ${TRILINOSHOME}/doc/tutorial/epetra/ex7. cpp
for an example of use of multi-vectors.

%

e
e

The user can also consider the function Resetview, which allows a (very) light-
weight replacement of multi-vector values, created using the EpetraDataMode View.
Note that no checking is performed to see if the values passed in contain valid data.
This method can be extremely useful in situation where a vector is needed for use with
an Epetra operator or matrix, and the user is not passing in a multi-vector. Use this
method with caution as it could be extremely dangerous. A simple example is reported
in${TRILINOSHOME}/doc/tutorial/epetra/ex8.cpp

It is possible to perform a certain number of operations on vector objects. Some of them
arereportedinTable2. Example ${TRILINOSHOME}/doc/tutorial/epetra/exl8
works with some of the functions reported in the table.

CPP

e
e
e
e
e
e
e
0

e
2.5 Epetralmport and Epetra-Export e

e
Epetralmport and Epetraxxport are two classes meant for efficient importing of off-
processors elements. Epetralmport and EpetraXxport are used to construct a commu- e
nication plan that can be called repeatedly by computational classes such the Epetra multi- e
vectors of the Epetra matrices. e

e
e
0
e
e
e
e

24

int NumMyELement ()

int NurnGlobalElementsO

int Norml(doub1e *Result) const

Normweigthed(doub1e *Result) const

returns the local vector length on the calling processor

returns the global length

returns the 1-norm (defined as cy lzil (see also Norm2 and NormInf)

returns the 2-norm, defined as - ‘&(w~x~)~)

computes the dot product of each corresponding pair of vectors

Replace multi-vector values with scaled values of A, this=ScalarA*A

compute minimum value of each vector in multi-vector (see also MaxValue a n c

7
int Dot(const Epetra MultiVector A, double *Result) const

int Scale(doub1e ScalarA, const Epetra MultiVector &A

int MinValue(doub1e *Result) const

Meanvalue
int PutScalar(doub1e Scalar)

int Random ()
Initialize all values in a multi-vector with constant value

set multi-vector values to random numbers

Table 2. Some methods of the class Epetra-Vector

25

Currently, those classes have one constructor, taking two EpetraMap or EpetraBlockMap
objects. The first map specifies the global IDS that are owned by the calling processor. The
second map specifies the global IDS of elements that we want to import later.

Using an Epetralmport object means that the calling process knows what it wants to
receive, while an Epetra-Export object means that it knows what it wants to send. An
Epetra-Import object can be used to do an Export as a reserve operation (and equivalently
an Epetraxxport can be used to do an Import). In the particular case of bijective maps,
either Epetralmport or EpetraExport is appropriate.

To better illustrate the hctionalities of these two classes, we consider the follow-
ing example. Suppose that vector x of global length 4, is distributed over two processes.
Process 0 own nodes 0,1,2, while process 1 owns nodes 1,2,3. This means that nodes
1 and 2 are replicated over the two processes. Suppose that we want to bring all the
components of x to process 0, summing up the contributions of node 1 and 2 from the
2 processes. This is done in the following example (the complete code is reported in
${TRILINOSHOME}/doc/tutorial/epetra/ex9.cpp).

int NumGlobalElements = 4; / / global dimension of the problem

int NumMyElements; / / local nodes
Epetra-IntSerialDenseVector MyGlobalElements;

if (Comm.MyPID0 == 0)
NumMyElements = 3;
MyGlobalElements. Size
MyGlobalElements L O 1 =
MyGlobalElements [11 =
MyGlobalElements [21 =

NumMyElements = 3;
} else {

{

(NumMyElements) ;
0;
1;
2;

MyGlobalElements.Size(NumMyE1ements);
MyGlobalElements E01 = 1;
MyGlobalElements [l] = 2;
MyGlobalElements [21 = 3 ;

1
/ / create. a map
Epetra-Map Map(-l,MyGlobalElements.Length(),

MyGlobalElements .Values () , 0, Comm) ;

26

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a

a

a

a

/ / create a vector based on map
Epetra - Vector x(Map) ;
for(int i=O ; i<NumMyElements ; ++i)

cout << x;

/ / create a target map, in which all the elements are on proc 0
int NumMyElements - target;

if(Comm.MyPID() == 0)

else

x[i] = 10* (Comm.MyPID0 +1) ;

NumMyElements target = NumGlobalElements;

NumMyElements - target = 0;

-

Epetra - Map TargetMap(-1,NumMyElements - target,O,Comm);

Epetra - Export Exporter(Map,TargetMap);

/ / work on vectors
Epetra-Vector y(TargetMap);

y.Export(x,Exporter,Add);
cout << y;

Running this code with 2 processors, the output will be approximatively the following:

[msala:epetral> mpirun -np 2 ./ex3l.exe
Epetra::Vector

MyPID GID Value
0 0 10
0 1 10
0 2 10

Epetra::Vector
1 1 20
1 2 20
1 3 2 0

Epetra::Vector
Epetra::Vector

MyPID GID Value

27

10
30
30
20

28

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
e
a
a
a
a
a
a
a
a
a
a
a
a
e
e
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

3 Working with Epetra Matrices

Epetra contains several matrix classes. Epetra matrices can be defined to be serial orpar-
allel:

0 Examples of serial matrices are, for instance, the matrix corresponding to a given
element in a finite-element discretization, or the Hessemberg matrix in the GMRES
method. Those matrices are of small size, and therefore they are not distributed
among the processors (but they can be replicated).

0 For distributed sparse matrices, the basic class is EpetraXowMatrix. This class is
meant for double-precision matrices with row access (as required in a matrix-vector
product), and it is a pure virtual class. Various classes are derived Epe t ra RowMat rix.
Among them, here we recall:

-

- Epetra - CrsMatrix for point matrices;
- Epetra VbrMatrix for block matrices (that is, for matrices which have a

block st&ture, for example the ones deriving from the discretization of a PDE
problem with multiple unknowns for node);

from FE discretizations.
- Epetra FECrsMatrixand Epetra - FEVbrMatrixformatricesarising

This Chapter will show some of the Trilinos capabilities to work with matrices. During
the Chapter, the user be introduced to:

0 Create (serial) dense matrices (in Section 3.1);

0 Create sparse point matrices (in Section 3.2);

0 Create sparse block matrices (in Section 3.3);

0 Insert non-local elements using finite-element matrices (in Section 3.4).

3.1 Serial Dense Matrices

Epetra provides functionalities for sequential dense matrices with the class EpetraSerialDenseMatrix.
A possible way to create a serial dense matrix D of dimension n by m is

29

Epetra - SerialDenseMatrix D(n,m);

One could also create a zero-size object,

Epetra - SerialDenseMatrix D () ;

and then shape this object:

D. Shape (n, m) ;

(D could be reshaped using Reshape () .)

Epetra-SerialDenseMatrix are stored in a column-major order in the usual FORTRAN
style. This class is built on the top of the BLAS library, and is derived from EpetraBlas.
Epetra-SerialDenseMatrix is intended to provide a very basic support for dense rectangular
matrices.

To access the matrix element at the i-th row and the j-th column, it is possible to use
the parenthesis operator (A (i , j)), or the bracket operator (A [j I [i I , note that i and j
are reversed). The bracket approach is in general faster, as the compiler can inline the
corresponding function. Instead, some compiler have problems to inline the parenthesis
operator.

As an example of the use of this class, in the following code we consider a matrix-
matrix product between two rectangular matrices A and B.

int NumRowsA = 2, NumColsA = 2;
int NumRowsB = 2, NumColsB = 1;
Epetra - SerialDenseMatrix A, B;
A.Shape (NumRowsA, NumColsA) ;
B.Shape(NumRowsB, NumColsB);
/ / . . . here set the elements of A and B
Epetra-SerialDenseMatrix AtimesB;
AtimesB.Shape(NumRowsA,NumColsB);
AtimesB.Multiply(‘N’,’N’,l.O, A, B, 0.0);
cout c c AtimesB;

Thecompletecodeisreportedinfile ${TRILINOSHOME}/doc/tutorial/epetra/exlO. cpp.

30

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

~

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

To solve a linear system with a dense matrix, one has to create an EpetraSerialDenseSolver.
This class uses the most sophisticated techniques available in the LAPACK library. The
class is built on the top of BLAS and LAPACK, and thus has excellent performances and
numerical capabilities.

Given an Epetra-SerialDenseMatrix and two EpetraDSerialDenseVectors x and b, the
general approach is as follows:

Epetra SerialDenseSolver Solver();
SolverTSetMatrix (D) ;
Solver.SetVectors(x,b);

Then, it is possible to invert the matrix with Invert () , solve the linear system with
Solve () , apply iterative refinement with ApplyRef inement () . Other methods are
available; for instance,

double rcond=Solve.RCONDO;

returns the reciprocal of the condition number of matrix D (or -1 if not computed).

File ${TRILINOSHOME}/doc/tutorial/epetra/exll. cpp outlines some
of the capabilities of the Epetra-SerialDenseSolver class.

The EpetraLAPACK class provides access to most of the same functionality as Epe-
tra-SerialDenseSolver. The primary difference is that EpetraLAPACK is a “thin” layer on
the top of LAPACK, while Epetra-SerialDenseSolver attempts to provide easy access to
the more sophisticated aspects of solving dense linear systems.

As a general rule, we can say that EpetraLAPACK should be preferred when the user
is looking for a convenient wrapper around the FORTRAN LAPACK routines, and. the
problem at hand is well-conditioned. Instead, when the user wants (or potentially wants
to) solve ill-conditioned problems or want to work with a more object-oriented interface,
he/she will probably use Epetra-SerialDenseMatrix.

3.2 Distributed Sparse Matrices

Epetra provided an extensive set of methods to create and fill distributed sparse matrices.
These classes allow row-by-row or element-by-element constructions. Support is provided

31

for common matrix operations, as scaling, norm, matrix-vector multiplication and matrix-
multivector multiplication4.

Application do not need to know about the particular storage format, and other imple-
mentation details such as data layout, number and location of ghost nodes. Epetra furnishes
two basic formats, one suited for point matrices, the other for block matrices. The former
is presented in this Section; the latter, generally much more efficient for problems with
multiple degree of freedom per node, is introduced in Section 3.3. If required, other matrix
formats can be supported via the Epetra-Operator, described in Section 4.3.

Remark 7. Some numerical algorithms require the application of the linear operator only.
For this reason, some applicationsfind convenient to not store a given matrix. Epetra can
handle this situation using with the Epetra-Operator class; see Section 4.3.

The process of creating a sparse matrix is more involved with respect to that of dense
matrices. .This is because, in order to obtain excellent numerical performances, one has to
provide an estimation of the nonzero elements on each row of the sparse matrix. (Recall
that dynamic allocation of new memory and copying the old storage into the new one is an
expensive operation.)

As a general rule, the process of constructing a (distributed) sparse matrix is as follows:

0 allocate an integer array Nnz, whose length equals the number of local rows;

0 loop over the local rows, and estimate the number of nonzero elements of that row;

0 create the sparse matrix using Nnz;

0 fill the sparse matrix.

As an example, in this Section we will present how to construct a distributed (sparse)
matrix, arising from a finite-difference solution of a one-dimensional Laplace problem.
This matrix looks like:

A = -1
\ -1 2 J

4At the present stage of development, no functions are provided to perfonn a matrix-matrix product be-
tween to distributed objects. However, the interested user can convert the Epetra matrix into an ML matrix
(called ML-Operator), perform the matrix-matrix multiplication with ML functions, and convert back the
resulting ML-Operator into an Epetra matrix.

I 32

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
0
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

The example illustrates how to construct the matrix, and how to perform matrix-vector op-
erations. The codecanbe foundin ${TRILINOSHOME}/doc/tutorial/epetra/exl2. cpp.

We start by specifying the global dimension (here is 5, but can be any number):

int NumGlobalElements = 5;

We create a map, and define the local number of rows and the global numbering for each
local row:

Epetra Map Map (NumGlobalElements, 0 , Comm) ;
int NumMyElements = Map.NumMyElements0;
int * MyGlobalElements = Map.MyGlobalElements(1 ;

-

In particular, we have that j =MyGlobalElements [i] is the global numbering for local
node i. Then, we have to specify the number of nonzeros per row. In general, this can be
done in two ways:

0 Furnish an integer value, representing the number of nonzero element on each row
(the same value for all the rows);

0 Furnish an integer vector NumNz, of length NumMyElements () , containing the
nonzero elements of each row.

The second approach can be coded as follows:

int * NumNz = new int[NumMyElementsl;
for(int i=O ; icNumMyElements ; i++)
if (MyGlobalElements [il==O I I

MyGlobalElements[i] == NumGlobalElements-1)
NumNz [i] = 2;

NumNz[il = 3 ;
else

We are building a tridiagonal matrix where each row has (-1 2 -1). So we need 2 off-
diagonal terms (except for the first and last equation). Here NumNz [i I is the Number of
nonzero terms in the i-th global equation on this process.

Now, we create an Epetra-CsrMatrix as

33

e
e
e
e
e Epetra - CrsMatrix A(Copy,Map,NumNz);

and we add rows one-at-a-time. A has been created in Copy mode, and relies on the spec-
ified map. To fill its values, we need some additional variables: Indexes and Values.
Those will contain the global column number and the values of the nonzeros for each row.

e
e
e
e

e
double *Values = new double [21 ; e
Values[O] = -1.0; Values[ll = -1.0;
int *Indices = new int [21 ;
double two = 2.0; e
int NumEntries; e
for(int i=O ; icNumMyElements; ++i) { e
if (MyGlobalElements [il = = O) { e

Indices[O] = 1; e
NumEntries = 1; e

e } else if (MyGlobalElements[i] == NumGlobalElements-1) {
Indices[O] = NumGlobalElements-2;
NumEntries = 1; e

} else { e
Indices [O] = MyGlobalElements [il -1;
Indices [l] = MyGlobalElements [il +l;
NumEntries = 2; e

A.InsertGlobalValues(MyGlobalElements[i], NumEntries, Values, Indices);
/ / Put in the diagonal entry
A.InsertGlobalValues(MyGlobalElements[i], 1, &two, MyGlobalElements+i); e

e

1 e

} e
e

Note that column indexes have been inserted using global indexes. As a final operation,
we can transform the matrix into local indexes. This phase in required in order to perform
efficient parallel matrix-vector products and other matrix operations.

A. Fillcomplete () ;

The above presentation refers to a rather common case: In a parallel matrix-vector
product

AX = B,

34

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

a
0
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

e

the map used to define the parallel distribution of the matrix, is the same of the (multi-
)vectors X and B. This means that the rows of A are distributed among the processes in
the same way of the elements of X and B. However, Epetra allows the user to handle the
more general case of a matrix defined using a Map, is different from that of X and that of
B. In fact, each Epetra matrix is defined by four maps:

0 Two maps, called RowMap and ColumnMap, are used to determine the set of rows
and the columns of the elements assigned to a given processor. In general, one pro-
cessor cannot set elements assigned to other processors. (However, some classes,
derived from the EpetraXowMatrix, can perform data exchange; see for instance
Epetra-FECrsMatrix or EpetraTEVbrMatrix.) RowMap and ColumnMap determine
the pattern of the matrix, as it is used during the construction. They can be obtained
using the methods RowMap () and ColMap () of the EpetraAowMatrix class. Usu-
ally, the user dos not specify a ColumnMap, which is automatically created by Epetra.
RowMap and ColumnMap can differ.

0 DomainMap and RangeMap define, instead, the parallel data layout of X and By
respectively. Note that those two maps can completely different from RowMap and
ColumnMap, meaning that a matrix can be constructed using a certain data distribu-
tion, then used on vectors with another data distribution. DomainMap and RangeMap
can differ. Those tow maps can be obtained using the methods DomainMap (and
RangeMap () .

The potentialities of this approach are better explained using an example, reported in the
example file ${TRILINOSHOME}/doc/tutorial/epetra/ex24. cpp. In this ex-
ample, to be run using two processors, we build up two maps: MapA will be used to con-
struct the matrix, while MapB to define the parallel layout of the vectors X and B. For the
sake of simplicity, A is diagonal.

Epetra - CrsMatrix A(Copy,MapA,MapA,l);

As usual in this Tutorial, the integer vector MyGlobalElement sA contains the global
ID of local nodes. To assemble A, we cycle over all the local rows (defined by MapA):

f o r (int i = O ; i<NumElementsA ; ++i) {
double one = 2.0;
int indices = MyGlobalElementsA[i] ;
A.InsertGlobalValues(MyGlobalElementsA[i], 1, &one, &indices) ;

1
35

e
e
e
e
e
e

Now, as both X and B are defined using MapB, instead of calling Fi 11 Complete () , we
do

A.FillComplete(MapB,MapB) ; e
e

Now, we can create X and B as vectors based on MapB, and perform the matrix-vector e
product: e

e
e
e

e

Epetra Vector 'VecB (MapB) ; Epetra - Vector VecB2 (MapB) ;
A.Mult~ply(false,VecB,VecB2) ;

Remark 8. Although pi-esentedfor Epetra-CrsMatrix objects, the distinction between RowMay, e
ColMap, DomainMap, and RangeMap is validfor all classed derived from Epetra RowMatrix.

Example ${TRILINOSHOME}/do,c/tutorial/epetra/exl4. cpp shows the
use of some of the methods of the Epetra-CrsMatrix class. The code prints out several
information about the structure of the matrix, and some of its properties. The output will
be approximatively as here reported:

[msala:epetra]> mpirun -np 2 ./ex14
* * * general Information about the matrix
Number of Global Rows = 5
Number of Global Cols = 5
is the matrix square = yes
I I A l I-\infty = 4
I I A l 1-1 = 4
I I A l I 2 = 5.2915
Number of nonzero diagonal entries = 5 (100 %)
Nonzero per row : min = 2 average = 2.6 max = 3
Maximum number of nonzero elements/row = 3
min(a-{i,j} = -1
max(a-{i,j}) = 2
min(abs(a-{i,j})) = 1
max(abs(a-{i,j})) = 2
Number of diagonal dominant rows = 2 (40 % of total)
Number of weakly diagonal dominant rows = 3 (60 % of total)
*** Information about the Trilinos storage
Base Index = o

36

e
e
e
e
e
e
e
e
e

e
e
e
e
e
e
e
e
e
e
e
e

a

e
e
e
e
e
e

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
e
a
a
a
a
a
a
a
a
a
e
a

i s storage o p t i m i z e d = no
are indices global = no
i s matrix lower t r iangular = no
i s matrix upper t r i angu la r = no
are there diagonal entries = yes
i s matrix sorted = yes

Other examples are reported for Epetra-CrsMatrix:

0 Example ${TRILINOSH0ME}/doc/tutorial/epetra/exl3. cppimplements
a simple distributed finite-element solver. The code solves a 2D Laplace problem
with unstructured triangular grids. In this example, the information about the grid
are hardwired. The interested user can easily modify those lines in order to read the
grid information from a file.

0 Example ${TRILINOSHOME}/doc/tutorial/epetra/exl5 .cppexplains
how to export an Epetra-CrsMatrix to file in a MATLAB format. The output of this
example will be as follows:

[msala:epetral> mpirun -np 2 ./ex15
A = spa l loc (5 ,5 ,13) ;
% On proc 0 : 3 rows and 8 n o n z e r o s
A (1 , l) = 2 ;
A (1 , 2) = -1;
A (2 , l) = -1;
A (2 , 2) = 2 ;
A (2 , 3) = -1;
A (3 , 2) = -1;
A (3 , 3) = 2 ;
A (3 , 4) = -1;
% On proc 1: 2 rows and 5 n o n z e r o s
A (4 , 4) = 2 ;
A (4 , S) = -1;
A (4 , 3) = -1;
A (5 , 4) = -1;

A (5 , 5) = 2 ;

A companion to this example is
${TRILINOSHOME}/doc/tutorial/epetra/exl6. cpp,whichexportsan
Epetra-Vector to MATLAB format.

37

3.3 Creating VBR Matrices

The following code shows how to work with VBR matrices. This format has been designed
for PDE problems with more than one unknown per grid node. The resulting matrix has a
sparse block structure, and the size of each dense block equals the number of PDE equations
defined on that block. This format is quite general, and can handle matrices with variable
block size, as it is done is the following example.

First, we create a map, containing the distribution of the blocks:

Epetra-Map Map(NumGlobalElements,O,Comm) ;

Here, a linear decomposition is used for the sake of simplicity, but any map can be used as
well. Now, we obtain some information about the map:

/ / local number of elements
int NumMyElements = Map.NumMyElements0;
/ / global numbering of local element-s
int * MyGlobalElements = new int [NumMyElementsl;
Map.MyGlobalElements(MyGlobalElements) ;

A block matrix can have blocks of different size. Here, we suppose that the dimension of
diagonal block row i is i + 1. The integer vector Element S i zeL i s t will contain the
block size of local element i.

Epetra-IntSerialDenseVector ElementSizeList(NumMyE1ements);
for(int i= O ; icNumMyElements ; ++i)
ElementSizeList [i] = l+MyGlobalElements [i] ;

Here ElementSizeList is declared as Epetra-IntSerialDenseVector, but an int array is
fine as well.

Now we can create a map for the block distribution:

Epetra-BlockMap BlockMap(NumGlobalElements,NumMyElements,
MyGlobalElements,
ElementSizeList.Values(),O,Comm);

38

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

e

and finally we can create the VBR matrix based on BlockMap. In this case, nonzero
elements are located in the diagonal and the sub-diagonal above the diagonal.

Epetra - VbrMatrix A(Copy, BlockMap, 2);

int Indices [2] ;
double Values [MaxBlockSizel ;

for(int i=O ; icNumMyElements ; ++i) {
int GlobalNode = MyGlobalElements[il;
Indices [OI = GlobalNode;
int NumEntries = 1;
if(GlobalNode ! = NumGlobalElements-1 {
Indices [l l = GlobalNode+l;
NumEntries++;

1
A.BeginInsertGlobalValues(GlobalNode, NumEntries, Indices);
/ / insert diagonal
int BlockRows = ElementSizeList[il;
for(int k=O ; kcBlockRows * BlockRows ; ++k)

B.SubmitBlockEntry(Values,BlockRows,BlockRows,BlockRows);
Values[k] = l.O*i;

/ / insert off diagonal if any
if(GlobalNode != NumGlobalElements-1) {
int BlockCols = ElementSizeList[i+ll;
for(int k=O ; kcBlockRows * BlockCols ; ++k)

B.SubmitBlockEntry(Values,BlockRows,BlockRows~B~ockC~~S~;
Values [kl = l.O*i;

1
B. EndSubmitEntries (1 ;

1

Note that, with VBR matrices, we have to insert one block at time. This required two more
instructions, one to start this process (BeginInsertGlobalValues), and another one
to commit the end of submissions (EndSubmitEntries).

Please refer to ${TRILINOSHOME}/doc/tutorial/epetra/exl7. cpp for
the entire source.

39

e
e
e

3.4 Insert non-local Elements Using FE Matrices e
e

The most important additional feature provided by the EpetraIECrsMatrix with respect to e
Epetra-CrsMatrix, is the capability of setting non-local matrix elements. We will illustrate e
thisusingthefollowingexample,reportedin${TRILINOSHOME}/doc/tutorial/epetra/ex23 .cpp.@
In the example, we will set all the entries of a distributed matrix from process 0. For the
sake of simplicity, this matrix is diagonal, but more complex cases can be handled as well. e

a
First, we define the Epetra-FECrsMatrix in Copy mode as

Epetra - FECrsMatrix A(Copy,Map,l);

Now, we will set all the diagonal entries from process 0:

if (C o m r n . ~ y ~ ~ ~ () == o) {
for(int i=O ; i<NumGlobalElements ; ++i) {
int indices [2] ;
indices[O] = i; indicesrl] = i;
double value = l.O*i;
A.SumIntoGlobalValues(l,indices,&value);

1
1

The Function SumIntoGlobalValues adds the coefficients specified in indices (as
pair row-column) to the matrix, adding them to any coefficient that may exist at the spec-
ified location. In a finite element code, the user will probably insert more than one coeffi-
cient at time (typically, all the matrix entries corresponding to an elemental matrix).

At this point, we need to exchange data, to that each matrix element not owned by
process 0 could be send to the owner, as specified by Map. This is accomplished by calling,
on all processes,

A.GlobalAssemble0 ;

A simple

cout < e A;

can be used to verify the data exchange.

40

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

4 Other Epetra Classes

Epetra includes a certain number of classes that can greatly help to develop parallel codes.
In this Chapter we will recall the main usage of some of those classes:

0 Epetra-Time (in Section 4.1);

0 Epetra-Flops (in Section 4.2).

0 Epetra-Operator and EpetraiRowMatrix (in Section 4.3);

0 Epetra-Linearproblem (in Section 4.4).

4.1 Epetra-Time

To retrieve elapsed and wall-clock time can be problematic because of several platform-
dependent and language-dependent issues. To avoid those problems, Epetra furnishes the
Epetra-Time class. Epetra-Time is meant to insulate the user from the specifics of timing
among a variety of platforms.

Using Epetra-Time, it is possible to measure the elapsed time. This is the time elapsed
between two phases of a program.

A Epetra-Time object is defined as

Epetra - Time time (Comm) ;

To compute the elapsed time required by a piece of code, then user should put the instruc-
tion

time .ResetStartTime () ;

before the code to the timed. Then, the methods ElapsedTime () and WallTime ()
will return the elapsed time and wall-clock time, respectively. ElapsedTime () returns
the elapsed time from the creation of this object.

41

4.2 Epetra-Flops

The EpetraIlops class provides basic support and consistent interfaces for counting and re-
porting floating point operations performed in the Epetra computational classes. All classes
based on the Epetra-CornpObject can count flops by the user creating an EpetraIlops ob-
ject and calling the SetFlopCounter() method for an Epetra-CompObject.

As an example, suppose you are interested in counting the flops required by a vector-
vector product (between, say, x and y). The first step is to create an instance of the class:

Epetra-Flops counter();

Then, it is necessary to "hook" the counter object to the desired computational object, in
the following way:

x.SetFlopCounter(counter);
y.SetFlopCounter(counter);

Then, we perform the desired computations on Epetra objects (in this case, the vector-
vector problem):

x. Dot (y, &dotproduct) ;

Finally we can extract the number of performed operations ans stored it in the double
variable total-f lops as

total - flops = counter.Flops0;

which are the toal number of serial flops. This will also reset the flop counter.

Epetra-Time objects can be used in conjunction with EpetraFlops objects to estimate
the number of floating point operations per second of a given code (or a part of it). One can
proceed as here reported:

Epetra-Flops counter;
x.SetFlopCounter (counter) ;
Epetra-Time timer (Comm) ;

42

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
.a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

x.Dot (y, &dotProduct) ;
double elapsed time = timer.ElapsedTime0;
double total fiops =counter. Flops (1 i
cout cc !!Total ops: cc total flops <c endl;
double MFLOP~ = total flops/elapsed time/1000000 .o;
tout cc 1lTotal MFLOPS for mat-vec = I' <c MFLOPS cc endlcc endl;

-

- -

Thiscodeisreportedin${TRILINOSHOME}/doc/tutorial/epetra/ex2O.cpp.
The output will be approximatively as follows:

[msala:epetra]> mpirun -np 2 ./ex20
Total ops: 734
Total MFLOPs for mat-vec = 6.92688

Total ops: 734
Total MFLOPs for mat-vec = 2.48021

Total ops: 246
Total MFLOPs for vec-vec = 0.500985

q dot z = 2
Total ops: 246
Total MFLOPs for vec-vec = 0.592825

q dot z = 2

Remark 9. Operation count are serial count, and therefore keep trace of local operations
only.

Remark 10. Each computational class has a Flops () method, that can queried for the
.flop count of that object.

4.3 Epetra-Operator and Epetra-RowMatrix Classes

Matrix-free methods can be easily introduced in the Epetra framework using one of the
following two classes:

0 Epetra-Operator;

43

a
a
a

0 Epetra-RowMatrix. a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

Technically, both classes are pure virtual classes (that is, they specify interfaces only),
that enable the use of real-valued double-precision sparse matrices. Epetra-RowMatrix,
derived from Epetra-Operator, is meant for matrices where the matrix entries are intended
for row access, and it is currently implemented by Epetra-CrsMatrix, Epetra-VbrMatrix,
Epetra-FECrsMatrix, and EpetraZEVbrMatrix.

In the following, we consider for instance how to apply a matrix to a vector without
explicitly constructing the matrix. The matrix is the classical finite-difference discretization
of a Laplace on a 1D grid with constant grid-size. For the sake of simplicity, we avoid the
issues related to intra-process communication (hence this code can be run with one process
only).

The first step is the definition of a class, here called TriDiagonalOperator, and
derived from the Epetra-Operator class.

class TriDiagonalOperator : public Epetra-Operator {
public:

private :
/ / . . definitions here, constructors and methods

Epetra-Map Map-;
double diag - minus-one-; / / value in the sub-diagonal
double diag-; / / value in the diagonal
double diagglus-one-; / / value in the super-diagonal

I

As the class Epetra-Operator implements several virtual methods, we have to specify all
those methods in our class. Among them, we are interested in the Apply method, which
may be coded as follows:

a
a
a
a
a
a
a

int Apply(const Epetra-MultiVector & X, Epetra-MultiVector & Y) const {
int Length = X.MyLength0; a
/ / need t o handle multi-vectors and not only vectors
for(int vec=0 ; veccX.NumVectors0 ; ++vec {

/ / one-dimensional problems here a
if (Length == 1 { 'a

44 a
a
a
a
a
a
0
a

~~~~ 



Y [vecl [OI = diag - * X[vecl [OI ; 
break; 

1 
/ /  more  general  case  (Lenght >= 2) 
/ /  first  row 
Y [vec] [O] = diag- * X[vecl  [OI + diag_plus-one- * X[vecl [ll ; 

/ /  intermediate  rows 
for(  int i=1 ; iclength-1 ; ++i ) { 
Y [vecl [il = diag - * X[vecl [il + diag_plus-one- * X[vecl  [i+lI 

1 
+ diag-minus-one - * X[vecl [i-11 ; 

/ /  final  row 
Y [vecl  [Length-11 = diag- * X[vecl  [Length-11 

+ diag  minus  one- * X[vecl  [Length-21 ; 
1 

- - 

return  true; 
1 

Now, in the main function, we can define a TriDiagonalOperatr object using the specified 
constructor: 

TriDiagonalOperator TriDiagOp(-1.0,2.0,-1.OrMap) ; 

and we can apply this operator to a vector  as: 

${TRILINOSHOME)/doc/tutorial/epetra/ex21. cppreportes the  entire  source 
code. 

Remark 11. The  clear disadvantage of deriving Epetra-Operator or  EpetraRowMatrix 
with respect to  use Epetra-CrsMatrix or Epetra-VbrMatrix, is  that  users must spec@ their 
communication patterns for intra-process data exchange. For this purpose, Epetra _Import 
classescan  beused. File ${TRILINOSHOME}/doc/tutorial/epetra/ex22.  cpp 
shows how to extend ex2 1 . cpp to the multi-process case. This example makes use of the 
Epetrahport class to exchange data. 

45 



e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

Another use of Epetra-Operator and EpetraXowMatrix is to allow support for user's 
defined matrix format. For instance, suppose that your code generates matrices in MSR 
format (detailed in the Aztec documentation). You can easily create an Epetra-Operator, 
that applies the MSR format to EpetraMultiVectors. For the sake of simplicity,  we  will 
limit ourselves to the monoprocess case.  Extentions to multi-processes case requires to 
handle ghost-nodes updates. 

As a  first step, we create a class, derived  from the Epetra-Operator class, 

class  MSRMatrix : public  Epetra - Operator 
I 
1 

public: e 
e 
e 
e 

{ I  e 
e 

t ,  e 

/ /  constructor 
MSRMatrix(Epetra  Map  Map,  int * bindx,  double * Val) : 
Map-(Map) , bindx  (bindx) , val-(val) - 

"MSRMatrixO / /  destructor 
i j  

/ /  Apply  the  RowMatrix  to  a  MultiVector 
e 
e 

int  Apply(const  Epetra-MultiVector & X, Epetra  MultiVector & Y ) const 
{ 

- 
e 

int  Nrows = bindx-[O] -1; 

for(  int i=O ; icNrows ; i++ { 
/ /  diagonal  element 
for(  int vec=0 ; veccX.NumVectors0 ; ++vec { 

1 
Y[vec] [i] = val-[il *X [vecl  [il ; 

/ /  off-diagonal  elements 
for(  int  j=bindx - [il ; jcbindx-[i+ll ; j++ 1 { 
for ( int vec=0 ; veccX.NumVectors ( 1  ; ++vec ) { 

Y [vec]  [bindx- [ j I 1 += Val- [ j I *X [vecl  [bindx- [ j 1 1 ; 
1 

1 
I 

e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

return 0; e 
46 e 

e 
e 
e 
e 
e 
e 
e 



e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

1 / *  Apply * /  
. . .  other  functions . . .  

private : 

1 
int * bindx - ; double * val ; - 

As stated by the fragment of code above, the constructor take the two MSR vectors,  and  an 
EpetraMap.  Thecompletecode is reportedin ${TRILINOSHOME)/doc/tutorial/epetra/ex2! 

4.4 EpetraLinearProblem 

A linear problem of type AX = B is defined by  an EpetraLinearProblem class. This class 
required an  EpetraXowMatrix  or an Epetra-Operator object (often an Epetra-CrsMatrix or 
Epetra-VbrMatrix), and  two (multi-)vectors X and B. X must have been defined  using a 
map equivalent to the DomainMap of A, while B using a map equivalent ot the RangeMap 
of A (see Section 3.2). 

Linear problems can be used to solve linear systems with iterative methods (typically, 
using AztecOO, covered in Chapter 3 ,  or with direct solvers (typically, using  Amesos, 
described in Chapter 8. 

Once the linear problem has  been  defined, the user can: 

0 scale the problem, using Lef tScale (D) or Rightscale (D) , D being am Epe- 
tra-Vector of compatible size; 

0 define a preconditioner for the iterative solution; 

0 change X and B, using SetRHS (&B) and SetLHS (&X) ; 

change A, using Setoperator (&A 

4.5 Concluding Remarks 

More details about the Epetra project, and a technical description of classes and  methods, 
can be found in [ 5 , 9 ] .  

47 



5 Iterative Solution of Linear  Systems with AztecOO 

AztecOO is package which extends the  Aztec  library [20]. Aztec is the legacy  iterative 
solver at the Sandia National Laboratories. It has been extracted from the MPSalsa reacting 
flow  code [ 17, 151, and it is currently installed in dozens  of  Sandia's applications. AztecOO 
extends this package, using C++ classes to enable more sophisticated use. 

AztecOO is intended for the iterative  solution of linear systems of the form 

A X = B ,  (1) , 
when A E Etnx" is the linear system matrix, X the solution, and B the right-hand side. 
Both X and B are Epetra-Vector objects. 

In this Chapter, we will: 

0 Outline the basic issued of the iterative  solution of linear systems (in Section 5.1); 

0 Present  the basic usage of AztecOO (in Section  5.2); 

0 Define  one-level  domain  decomposition  preconditioners (in Section 5.3); 

0 Use  of  AztecOO problems as preconditioners to other AztecOO problems (in Sec- 
tion 5.4). 

5.1 Theoretical Background 

Aim  of this Section is  to briefly present some aspects of the iterative solution of linear 
systems, to establish a notation. The Section is not  supposed to be exhaustive, nor complete 
on this  subject.  The reader is referred to the existing literature for a rigorous presentation. 

One can distinguish between two different aspects of the iterative solution of a linear 
system.  The first one in the particular acceleration technique for a sequence of iterations 
vectors,  that is a technique used to construct  a  new approximation for the solution, with 
information  from previous approximations. This leads to specific iteration methods, like 
conjugate  gradient or GMRES. The second aspect is the transformation of the given  system 
to one  that can be more efficiently  solved  by  a  particular iteration method. This is called 
preconditioning. A good preconditioner improves the convergence of the iterative method, 
sufficiently to overcome the extra cost of its construction and application. Indeed, without 
a  preconditioner the iterative method  may  even  fail  to  converge in practice. 

48 



0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
e 
0 
0 
0 
0 
0 
0 
0 
0 

The convergence of iterative methods depends on the spectral properties of the linear 
system matrix. The basic idea is to replace the original system (1) by 

P-lAX = P-lB 

(left-preconditioning), or  by 
AP-IPB = B 

(right-preconditioning), using a linear transformation P-’, called preconditioner, in order 
to improve the spectral properties of the linear system matrix. In general terms,  a  precon- 
ditioner is any kind of transformation applied to the original system which  makes  it easier 
to solve. 

In a modern perspective, the general problem of finding an efficient  preconditioner is 
to identify a linear operator P with the following properties: 

1. P is a good approximation of A is some sense. Although no general theory is avail- 
able, we can say that P should act so that P-lA is near to being the identity matrix 
and its eigenvalues are clustered within a  sufficiently small region of the complex 
plane; 

2. P is efficient, in the sense that the iteration method converges  much  faster, in terms 
of CPU time, for the preconditioned system. In other words, preconditioners must  be 
selected in such a way that the cost of constructing and using them is offset by the 
improved convergence properties they  permit to achieve; 

3. P or P-’ can take advantage of the architecture of modern supercomputers, that is, 
can be constructed and applied  in parallel environments. 

It  should  be stressed that computing the inverse of P is not mandatory; actually,  the role 
of P is to “preconditioning” the residual r,  through the solution of the additional system 
Pz, = r,. This system Pz, = r,  should be much easier to solve than the  original 
system. 

The choice of P varies from “black-box” algebraic techniques which can be applied 
to general matrices to “problem  dependent” preconditioners which exploit special  features 
of a particular class of problems. Although problem dependent preconditioners can be 
very powerful, there is still a practical need  for  efficient preconditioning techniques  for 
large classes of problems. Between these two extrema, there is a class of preconditioners 
which are “general-purpose” for a particular - although large - class of problems. These 
preconditioners are sometimes called “gray-box” preconditioners, since the user  has to 
supply few information about the  matrix and the problem to be solved. 

49 



AztecOO itself implements a  variety of preconditioners, from “classical” methods such 
as Jacobi  and Gauss-Seidel, to polynomial and domain-decomposition based precondition- 
ers.  More preconditioners can be  given  to an AztecOO Krylov accelerator, by using the 
Trilinos packages IFPACK and ML,  covered in Chapter 6 and 7, respectively. 

5.2 Basic Usage of AztecOO 

To solve  a linear system with AztecOO, one must create an Epetra-Linearproblem 
object  with  the  command 

Epetra - Linearproblem  Problem(&A, &x, &b) ; 

where A is an Epetra matrix, and x, b two  Epetra vectors5. Then, the user must create an 
AztecOO object, 

AztecOO  Solver  (Problem) ; 

and  specify  how to solve the linear system.  Ail  AztecOO options are set using two vectors, 
options (integer)  and params (double), as detailed in the Aztec’s User Guide. 

To choose among the different AztecOO  parameters, the user can create two vectors, 
usually called opt ions and params, set them  to the default values, and then override 
with  the desired parameters: Default values can be set by 

int options [AZ-OPTIONS SIZE] ; 
double  params [AZ-PARAMS-STZEI ; 
AZ - defaults(options,  params); 

followed  by, for instance, 

Solver.SetAllAztecOptions( options ) ;  
Solver.SetAllAztecParams( params ) ;  

5At the current stage of development, AztecOO does not handle EpetraMultiVectors.  It accepts 
Multi-Vectors, but it will solve the linear system corresponding to the first multivector only. 

50 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 



e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

a 
Those two functions will copy the values of opt ions and params in internal variables 
of the AztecOO object. 

Alternatively, it is possible to set  specific parameters without creating opt ions and 
params,usingtheAztecOOmethodsSetAztecOptionO andsetAztecparams 0 .  
For instance, 

Solver.SetAztecOption(  AiJrecond,  AZ - Jacobi ) ;  
Solver.SetAztecParams(  AZ - tol,  le-12 ) ;  

to specify a point Jacobi preconditioner, and a tolerance of (We refer to the Aztec 
documentation for more details about the various Aztec settings.) 

To solve the linear system the user  may call 

Solver.Iterate(1000,1E-9) ; 

The complete code is in ${TRILINOSHOME}/doc/tutorial/aztec/exl .cpp. 

Note that the matrix must be in local coordinates (that is, the command A.  Fi 11 Complete ( ) 
has been called before attempting to solve the linear system).  Note also that the procedure 
to solve a linear system with AztecOO is identical for sequential and parallel runs.  How- 
ever (for certain choices of the preconditioners), the convergence rate can change as the 
number of processes used in the computation varies. 

When this function returns, one can retrieve the number of iterations performed  by the 
linear solver using Solver  .NumIters ( ) , while Solver.  TrueResidual ( ) gives 
the (nonscaled) norm the residual. 

5.3 One-level Domain Decomposition Preconditioners with  AztecOO 

In this Section, we will consider preconditioners based on one-level overlapping domain 
decomposition preconditioners, of the form 

i=l 

where P is the preconditioning operator, A4 the number of subdomains. Ri is a rectangular 
matrix, composed by 0’s and 1 ’s, which restricts a  global vector to the subspace defined  by 

51 



5.4 Use of AztecOO Problems as a Preconditioner for AztecOO e 
e 

the interior of each subdomain, and Ai is an  approximation of 

e 
e 
e 
e 
a 

Ai = KART. (3) a 
e 

e 
e 

(Ai can be equal to Ai). Typically,  differs  from Ai when incomplete factorizations are 
used  in (2) to apply AF1, or when a matrix different  from A is used in (3). 

In order  to use a preconditioner of the form (3), the user has to specify 

Solvex.SetAztecOption( AZJrecond, AZ - dom - decomp ) ;  

followed  by the choice of incomplete factorization  (and possibly with that of corresponding 
parameters,  for instance the level-of-fill), 

Solver.SetAztecOption( AZ ilu, AZ subdomain-solve ) ;  
Solver. SetAztecOption ( AZ-graph - - fill, 1 ) ; 

By  default,  AztecOO will consider zero-overlap  among  the  rows of A6. However, this value 
of overlap can be changed by, for instance, 

Solver.SetAztecOption( AZ-overlap, 1 1 ;  

Remark 12. By using AztecOO in conjunction  with ML, one can easily implement a two- 
level  domain decomposition schemes.  The  reader is referred to Section 7.3. 

Remark 13. Another Trilinos package can be used to compute incomplete factorizations, 
IFPACK. It  is covered in Chapter 6. 

e 

One  may  wish to use an AztecOO solver in the  preconditioning phase, as done in $ { TRILINOS HOME} /doc / tb 
The  main steps are here reported. e 

First,  we  have to specify the linear problem to be  solved (set the linear operator, the e 
solution and the  right-hand  side), and create an AztecOO  object: e 

6For  point  matrices arising from  the FE discretization of the PDE problem  with local functions, this is e 

0 
e 
e 
e 
e 
e 
e 
e 

equivalent to one mesh element  of overlap. e 
52 



0 
0 
e 
e 
0 
a 
a 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
a 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

Epetra-Linearproblem A  Problem(&A, &x, &b); 
AztecOO A-Solver (A - Problem) ; 

Now, we have to define the preconditioner.  For the sake of simplicity, we here suppose to 
use the same Epetramatrix A in the preconditioning phase.  However, the two matrices can 
in principle be different (although of the same size). 

Epetra - CrsMatrix  P (A) ; 

(This operation is  in general expensive as involves the copy constructor.) Then, we create 
the linear problem which will be used as preconditioner. This requires several steps. (Note 
that all the P prefix identifies preconditioner’ objects.) 

1. We create the linear system solve at  each prec step, and and we assign the  linear 
operator (in this case, the matrix A itself) 

Epetra  Linearproblem  P  Problem; 
P-Problem. Setoperator (&P) ; 

2. As we wish to use AztecOO to solve the prec step (in a  recursive  way),  we  have  to 
define an AztecOO object: 

AztecOO  P  Solver(P  Problem); - - 

3. Now, we customize certain parameters: 

P-Solver.SetAztecOption(AZ_precond, AZ - Jacobi); 
P - Solver.SetAztecOption(AZ - output, AZ - none); 
P-Solver.SetAztecOption(AZ - solver, AZ-cg); 

4. The last step is to create an  Aztec00-Operator, so that we can set the  Aztec’s pre- 
conditioner with, and we set the user’s  defined preconditioners: 

Aztec00-Operator 
P-Operator(&P Solver, 10); 
A - Solver.  SetPrecOperator (&P - Operator) ; 

(Here 10 is the maximum number of iterations of the AztecOO solver in the precon- 
ditioning phase.) 

53 



5. Finally,  we solve the linear system: 

int Niters=100; 
A - Solver.SetAztecOption(AZ-kspace, Niters); 
A-Solver.SetAztecOption(AZ-solver, AZ-gmres); 
A - Solver.Iterate(Niters, 1.OE-12); 

5.5 Concluding Remarks 

The  following methods are often used: 

0 NumI ters ( ) returns the total  number  of iterations performed on this problem; 

0 TrueRes idal ( ) returns the true unscaled residual; 

0 ScaledResidual ( ) returns the unscaled residual; 

0 SetAztecDef aults ( ) can be  used to restore default values in the options and 
params vectors. 

The  official documentation of  Aztec00 can be  found in [8]. 

54 



6 Incomplete  Factorizations  with IFPACK 

IFPACK provides a suite of object-oriented algebraic preconditioners for the solution of 
preconditioned iterative solvers. IFPACK offers a variety of overlapping (one-level) Schwarz 
preconditioners, The packages uses Epetra for basic matrix-vector calculations, and accepts 
user matrices via abstract matrix interface. A concrete implementation for Epetra matrices 
is provided. The package separates graph construction for factorization, improving perfor- 
mances in a substantial manner with  respect to other factorization packages. 

In this Chapter we present how to use IFPACK objects as a preconditioner for an 
Aztec00 solver. 

In this Chapter, we will 

0 Set the notation (in Section 6.1); 

0 Show  how to compute incomplete Cholesky factorizations (in Section 6.2); 

0 Present IFPACK’s  RILU-type factorizations (in Section 6.3). 

6.1 Theoretical  Background 

Aim of this Section is to briefly present some aspects on incomplete factorization methods, 
to establish a notation. The Section is not  supposed to be exhaustive, nor complete on this 
subject. The reader is referred to the existing literature for a rigorous presentation. 

A broad class of effective preconditioners is  based on incomplete factorization of the 
linear system matrix, and it is usually indicated as ILU. The ILU-type preconditioning tech- 
niques lie between direct and iterative methods and provide a balance between reliability 
and numerical efficiency. 

The preconditioner is given in the  factored  form P = io, with and 0 being  lower 
and upper triangular matrices. Solving with P involves  two triangular solutions. 

The incomplete LU factorization of a  matrix A can be described as follows. Let A0 = 
A. Then, for k = 2,. . . , n, we have 

55 



Thus, we can write the k-step of the Gaussian  elimination in a block form as 

where A k  = c k  - EkBL'Fk. If BI, is a  scalar, then we have the typical point-wise fac- 
torization, otherwise we have  a block factorization.  Pivoting, if it is necessary, can be 
accomplished  by reordering A k  at every step. 

To make the factorization incomplete, entries as dropped in A k ,  i.e. the factorization 
proceeds with 

& = A k  - R h  , 

where R k  is the matrix of dropped entries. 

Dropping can be performed by  position,  for  example, dropping those entries in the up- 
date matrix EkBLIFk that are not in the pattern of ck. This simple ILU factorization is 
known as ILU(0). Although effective,  in some cases the accuracy of the ILU(0) may  be 
insufficient  to  yield an adequate rate of convergence.  More accurate factorizations will dif- 
fer  from  ILU(0)  by allowing somefill-in. The resulting class of methods is called ILU( f ) ,  
where f is the  level-of-fill.  A  level-of-fill is attributed to each element that is processed 
by  Gaussian elimination, and dropping will  be  based  on the level-of-fill. The level-of-fill 
should  be  indicative of the size of the element:  the  higher the level-of-fill, the smaller the 
elements. 

Other strategies consider dropping by  value - for example, dropping entries smaller 
than  a  prescribed threshold. Alternative  dropping  techniques can be based on the numeri- 
cal  size  of  the element to be discarded.  Numerical  dropping strategies generally yield more 
accurate factorizations with the same amount of fill-in than level-of-fill methods. The  gen- 
eral strategy is to compute an entire row of the and 0 matrices, and then keep only the , 

biggest entries in a certain number.  In this way, the amount of fill-in is controlled; how- 
ever, the structure of the resulting matrices is undefined. These factorizations are usually 
referred  to as ILUT, and a  variant which performs  pivoting is called ILUTP. 

6.2 Incomplete Cholesky Factorizations 

Ifpack-CrsIct is a class for constructing and using incomplete  Cholecky factorizations of 
an Epetra-CrsMatrix. The factorization is produced  based on several parameters: 

0 Maximum number of entries per row/column.  The factorization will contain at most 
this number of nonzero elements in each row/column; 

56 

e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
a 
a 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
c 
e 
e 
a 
e 
a 
c 
e 
e 
e 
e 
e 



0 Diagonal perturbation. By  default,  the  factorization  will  be  computed on the input 
matrix.  However, it  is possible to modify  the diagonal entries of the matrix to be fac- 
torized, via functions SetAbsoluteThreshold ( ) and SetRelativeThreshold ( ) . 
Refer to the IFPACK’s  documentation for more  details. 

It is very easy to compute the incomplete  factorization. First, define  an  Ifpack-CrsIct 
object, 

Ifpack-CrsIct * ICT = NULL; 
ICT = Ifpack - CrsIct(A,DropTol,LevelFill); 

where A is an  Epetra-CrsMatrix  (already  FillComplete’d),  and DropTop and Leve 1Fi 11 
are  the drop tolerance and the level-of-fill,  respectively.  Then, we can set the  values  and 
compute  the factors, 

ICT->Initvalues (A)  ; 
ICT->Factor 0 ; 

IFPACK can compute the estimation  of  the  condition  number 

c o n d ( ~ i ~ i )  = ll(LU)-lellm, 

where e = (1,1, . . . , l)T. (More  details can be found in the IFPACK’s documentation.) 
This estimation can be  computed as follows: 

double  Condest; 
ICT->Condest(false,Condest); 

Please refer to file ${TRILINOSHOME}/doc/tutorial/ifpack/exl. cpp for  a 
complete example of incomplete Cholesky  factorization. 

6.3 RILU Factorizations 

IFPACK implements various  incomplete  factorization for non-symmetric  matrices.  In  this 
Section, we will consider the Epetra-CrsRiluk class, that can be  used to produce RILU 
factorization of a Epetra-CrsMatrix. The  ,class required an Ifpack-OverlapGraph in the 
construction phase. This means that the factorization is split into two parts: 

57 



1. Definition  of the level  filled graph; 

2. Computation of the factors. 

This  approach  can significantly improve the performances of code, when an ILU precon- 
ditioner has to be computed for several matrices, with different entries but with the same 
sparsity  pattern. An IfpackJlukGraph object of an Epetra matrix A can be constructed as 

Ifpack IlukGraph  Graph = 
Ifpack - IlukGraph (A. Graph ( ) , LevelFill,  Leveloverlap) ; 

Here, Levelover  lap is the required overlap  among  the  subdomains. 

A call to Cons tructFi 1 ledGraph ( 1 completes the process. 

Remark 14. An  IfpackllukGraph object has two Epetra-CrsGraph objects, containing the 
Li and Ui graphs. Thus, it  is  possible  to manually insert and delete gruph  entries  in Li  and 
Vi via the Epetra-CrsGraphInsertIndices and RemoveIndices3mctions. However, in this 
cas FillComplete must be called before the graph is used for subsequent operations. 

At this point, we can create an Ifpack-CrsRiluk  object, 

ILUT = Ifpack - CrsRiluk(Graph); 

This phase defined the graph for the incomplete factorization, without computing the  actual 
values  of the Li and Ui factors. Instead, this operation is accomplished with 

int initerr = ILUT->InitValues(A); 

a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
0 
a 
a 
a 
a 
a 
a 
a 

The  ILUT object can be  used with Aztec00 simply setting a 
solver.SetPrecOperator(1LUK); 

a 
a 

where solver isanAztecOOpbject. Example ${TRILINOSHOME}/doc/tutorial/ifpack/ex2. cp 
shows the use of Ifpack-CrsRiluk class. t 

a 
The application of the incomplete factors to a global  vector, z = (LiUY1)r, results 

in redundant approximation for any element of z that correspond to rows that are part of 

58 

a 
a 
a 
a 
0 
a 
a 
a 
a 
a 



a 
0 
a 
a 
a 
a 
e 
0 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

more than one local ILU factor.  The  OverlapMode  defines  how those redundant values are 
managed. OverlapMode is  an Epetra-CombinedMode enum, that can assume the following 
values: Add, Zero I Insert I Average I AbxMax. The default is to zero out all 
the values of z for rows that were not part of the original matrix row distribution. 

6.4 Concluding Remarks 

More documentation on the IFPACK  package  can  be  found in [6,4]. 

59 



7 Multilevel  Methods  with  ML 

The ML package  defines  a class of preconditioners based on multilevel methods [ 181. 
While  technically  any linear system can be considered,  ML  should be used on linear sys- 
tems on linear systems, like elliptic PDEs, that are  known to work well with multilevel 
methods. 

ML is a  large package, that can be  used  to  a  variety of purposes. ML provides multi- 
level  solvers, as well as multilevel preconditioners,  and it can handle geometric as well as 
algebraic  methods. 

In this Chapter we present: 

0 Outline the basic issues of multilevel  schemes (in Section 7.1); 

Present the use of ML objects as a  preconditioner for an Aztec00 solver objects (in 
Section 7.2); 

0 Outline the steps required to implement  two-level  domain decomposition methods, 
with  a coarse grid defmed using aggregation procedures (in Section 7.3). 

As other Trilinos packages, ML can be  compiled and run independently from Epe- 
tray that is, it can accept input matrix in formats  different from the Epetra-RowMatrix 
or Epetra-Operator. Should the reader be  interested in running ML without Epetra, or 
using  a C code  (and not a C++ code), then we  refer  to the ML guide, contained in the 
${TRILINOS-HOME}/packages/ml/doc/. 

7.1 Theoretical Background 

Aim of this Section is to briefly present  some aspects on multilevel methods. The  Section 
is not  supposed to be exhaustive, nor  complete on this subject.  The reader is referred to the 
existing literature for a rigorous presentation. 

Multilevel methods require the operator to be  defined  on  a sequence of coarser spaces, 
an  iterative  method that evolves the solution  (called  a smoother) and interpolation opera- 
tors  that transfer information between the  spaces.  The  principle behind the algorithm is 
that the high-frequency errors can be  efficiently  solved on the fine space, while the  low- 
frequency are treated on the coarser one, where there frequencies manifest themselves as 

60 



0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

high-frequencies. A very popular multilevel methods are multigrid methods. Geometric 
multigrid (GMG) methods cannot be applied without the existence of an underlying  grid 
(this is their major limitation). This  led  to  the  development of algebraic multigrid  method 
(AMG), initiated by Ruge and Stiiben. In AMG, both the matrix hierarchy and the  pro- 
longation operators are constructed just from the stiffness matrix. Since the  automatic 
generation of a grid-hierarchy for GMG  and especially the proper assembly of all  com- 
ponents would be a very difficult task for unstructured problems, the automatic algebraic 
construction of a virtual grid is a big advantage. 

A finction to solve (1) using a multilevel  method can be  defined as follows: 

MGM( X, B, k) 
{ 
i f ( k = = O )   X = A k \ B ;  
e l s e  { 

- 

X = S knl (X, B )  ; 
D = R-{k-l,k} - ( B - A k X ) ;  
v = 0; 
MGM( V, D, k-1 1 ;  
X = X + P {k,k-1) V; 
X = S kA2( U, B 1 ;  

- 

- 
- 

1 
1 
In the above method, si and si are two smoothers, R k - l , k  is a restriction operator from 
level 5 to k - 1, and P k , k - l  is a prolongator from IC - 1 to IC. 

In a variational setting, the matrices Ak can be constructed as 

Ak = R k - l , k A k P k , k - l .  

Alternatively, when a grid is available at level k - 1, one can discretize the PDE operator 
on  grid I; - 1. 

Remark 15. In this tutorial, we will  consider multilevel methods based  on  aggregation 
schemes only. 

7.2 ML as a Preconditioner for  AztecOO 

In order to use ML as a preconditioner, we need to define an AztecOO Solver, as outlined 
in Chapter 5. 

61 



ML requires the user to define a structure, to store internal data. This structure is usually 
called ml - handle: 

ML *ml - handle; 

We intend to use ML as a “black-box”  (or  gray-box) multilevel preconditioner, using 
aggregation procedures to define the multilevel  hierarchy. The variable 

int  N - levels = 10; 

defines  the  maximum number of levels,  while 

ML - Set - PrintLevel(3) ; 

toggle  the output level (from 0 to 10, 10 being  verbose  mode and 0 silent mode). 

The ML handle is created using 

ML - Create(&ml - handle,N-levels); 

ML can accept  in  input  very  general  matrices.  Basically, the user has to specify the number 
of local  rows, and provide a function to update  the  ghost nodes (that is, nodes requires in 
the  matrix-vector product, but assigned to another  process).  For Epetra matrices, this is 
done  by  the following function 

EpetraMatrix2MLMatrix(ml-handle, 0 ,  & A ) ;  

Note  that A is not converted to ML format. Instead, proper wrappers are defined. (Here, A 
is the  Epetra matrix for which we aim to construct a multilevel  preconditioner.) 

ML requires another structure, called MLAggregate, to store the information about the 
aggregates  at  various  levels: 

ML-Aggregate  *agg-object; 
ML - Aggregate-Create(&agg-object) ; 

The  multilevel hierarchy is constructed with the instruction 

62 



0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

N-levels = ML - Gen - MGHierarchy-UsingAggregation(m1 - handle, 0, 
ML - INCREASING, 
agg-ob j ec t 1 ; 

Here, 0 is the index of the finest level, and the index of coarser levels will  be  obtained 
by incrementing this value. (We refer to the ML manual for more details about the  input 
parameters.) 

We still need to  define the smoother,  for instance a symmetric Gauss-Seidel: 

ML - Gen - Smoother - SymGaussSeidel(m1  handle,  ML ALL-LEVELS, 
MLBOTH, - 1, ME - DEFAULT) ; 

and to generate the solver as 

ML-Gen-Solver (ml-handle, ML - MGV, 0, N - levels-1); 

Finally, we can create an Epetra-Operator,  based on the previously defined ML hierar- 
chy 

Epetra - -  ML  Operator  MLop(m1 - handle,comm,map,map); 

and set the preconditioning operator of our Aztec00 solver, 

solver.SetPrecOperator(&MLop 

At this point, we can call Iterate ( ) 

) ;  

as usual, 

solver.Iterate(Niters,  le-12); 

Theentirecodeisreportedin${TRILINOSHOME}/doc/tutorial/ml/exl.cpp. 
The output will be approximatively as reported below. 

[msala:mll>  mpirun -np 2 ./exl.exe 

* ML  Aggregation  information * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

63 



.............................................................. ___-_--_____________------_-------_----------------------__--- 
ML - Aggregate : ordering = natural. 
ML  Aggregate : min  nodes/aggr = 2  
ML  Aggregate : max  neigh  selected = 0 
ML  Aggregate : attach  scheme 
ML  Aggregate : coarsen  scheme = UNCOUPLED 
ML  Aggregate : strong  threshold = 0.000000e+00 
ML-Aggregate : P  damping  factor = 1.333333e+00 
ML - Aggregate : number  of  PDEs = 1  
ML  Aggregate : number  of  null  vec = 1 
ML  Aggregate : smoother  drop  to1 = 0.000000e+00 
ML  Aggregate : max  coarse  size = 1  
ML  Aggregate : max  no.  of  levels = 10 

ML  Gen  MGHierarchy : applying  coarsening 
ML  Aggregate-Coarsen  begins 
ML  Aggregate - CoarsenUncoupled : current  level = 0 
ML-Aggregate - - CoarsenUncoupled : current  eps = 0.000000e+00 
Aggregation(WB) : Total  nonzeros = 128  (Nrows=30) 
Aggregation(UC) : Phase 0 - no.  of  bdry  pts = 0 
Aggregation(UC) : Phase 1 - nodes  aggregated = 28  (30) 
Aggregation(UC) : Phase 1 - total  aggregates = 8 
Aggregation(UC-Phase2 3) : Phase 1 - nodes  aggregated = 28 
Aggregation(UC-Phase2-3) : Phase  1 - total  aggregates = 8 
Aggregation(UC-Phase2-3) : Phase 2a- additional  aggregates = 0 
Aggregation(UC-Phase2-3) : Phase 2 - total  aggregates = 8 
Aggregation(UC-Phase2-3) : Phase  2 - boundary  nodes = 0 
Aggregation(UC-Phase2-3) : Phase  3 - leftovers = 0 and  singletons = 0 

Gen-Prolongator : max  eigen = 1.883496e+00 
ML-Gen-MGHierarchy : applying  coarsening 
ML - Gen - MGHierarchy : Gen-RAP 
RAP  time  for  level 0 = 5.319577e-04 
ML-Gen-MGHierarchy : Gen-RAP  done 
ML  Gen-MGHierarchy : applying  coarsening 
ML-Aggregate-Coarsen  begins 
ML-Aggregate-CoarsenUncoupled : current  level = 1 
ML Aggregate-CoarsenUncoupled : current  eps = 0.000000e+00 
Aggregation(WB) : Total  nonzeros = 46  (Nrows=8) 
Aggregation(UC) : Phase 0 - no.  of  bdry  pts = 0 

- 
- 

= MAXLINK - 
- 
- 

- 
- 
- 
- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- - 
- 

- 

Aggregation  time = 1.854551e-03 

- 

- 

64 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
a 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 



Aggregation(UC) : Phase 1 - nodes  aggregated = 6  (8) 
Aggregation(UC) : Phase  1 - total  aggregates = 2 
Aggregation(UC-Phase2-3) : Phase 1 - nodes  aggregated = 6 
Aggregation(UC-Phase2  3) : Phase  1 - total  aggregates = 2 
Aggregation(UC-Phase2  3) : Phase 2a- additional  aggregates = 0 
Aggregation(UC  Phase2 3) : Phase  2 - total  aggregates = 2 
Aggregation(UC-Phase2 - 3) : Phase 2 - boundary  nodes = 0 
Aggregation(UC - Phase2 3) : Phase 3 - leftovers = 0 and  singletons = 0 

Gen  Prolongator : max  eigen = 1.246751e+00 
ML Gen  MGHierarchy : applying  coarsening 
ML Gen MGHierarchy : Gen - RAP 
RAP time  for  level 1 = 4.489557e-04 
ML Gen  MGHierarchy : Gen  RAP  done 
ML Gen  MGHierarchy : applying  coarsening 
ML  Aggregate  Coarsen  begins 
Aggregation  total  setup  time = 8.903003e-02  seconds 
Smoothed  Aggregation : operator  complexity = 1.390625e+00. 

- 
- 

- - 

Aggregation  time = 1.679042e-03 
- 

- 
- - 

- - - 
- - 
- - 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * * * *  Preconditioned  CG  solution 
*****  Epetra  ML - Operator 
* * * * *  No scaling 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

iter: 
iter: 
iter: 
iter: 
iter: 
iter: 
iter: 
iter: 
iter: 

residual 
residual 
residual 
residual 
residual 
residual 
residual 
residual 
residual 

Solution  time:  0.005845  (sec.) 
total  iterations:  8 

Residual = 6.99704e-13 

= 1.000000e+00 
= 1.289136e-01 
= 4.710371e-03 
= 7.119470e-05 
= 1.386302e-06 
= 2.477133e-08 
= 6.141025e-10 
= 6.222216e-12 
= 1.277534e-13 

65 



7.3 Two-level Domain Decomposition Preconditioners with ML 

In order  to  use  the example reported in this Section, one should compile ML with the 
configure  flag - -wit h-ml met i s. In this way,  ML  will use the graph decomposition 
library  METIS to create the coarse-level  matrix7. 

Two-level  domain decomposition methods  have  been  proved to be  very  effective  for the 
iterative  solution of many different kind of linear systems.  For some classes of problems, 
a  very  convenient  way  to  define the coarse grid operator is to use aggregation procedure. 
This is very  close to what presented in Section 7.2.  The  main difference is that only  two 
level  methods are considered, and that the coarse  grid remains of (relatively) small size. 
The  idea is to define  a small number of aggregates on  each process, using a graph decom- 
position  algorithm (as implemented in the library  METIS, for instance)8. This can be done 
as follows. 

First, we need  to  define an Aztec00 problem, an ML structure, and an MLAggregate 
structure. Then, we limit ourself to  2-level  scheme. 

i n t  N - levels = 2; 

Then,  we  specify the aggregation scheme as 

ML - Aggregate - Set-Coarsenscheme - METIS(agg - object); 

and  define  the number of aggregates (here, 4) to  be  defined on each process as 

ML-Aggregate-Set-LocalNumber( ml-handle, agg - object, 0, 4 ) ;  

As smoother,  we can adopt a  subdomain-based  Gauss-Seidel  smoother. 

The  creation of the multilevel hierarchy and the solution of the linear system will  be as 
reported in Section 7.2. 

The entirecodeisreportedin ${TRILINOSHOME}/doc/tutoria~/m~/ex2. Cpp. 

’Note  that ML has to be  aware  of  the  location  of  the METIS include files and  the  METIS library. The 
User can use  the  configure flags --with-incdirs and --with-ldflags. Please  type configure 
- -help for more information. If you  don’t  have METIS, or you  don’t want to re-configure  ML, YOU will be 
able to  run the  example of this Section. However,  you  will be  limited to use  only  one  aggregate  per  process. 

*Aggregation  schemes  based on ParMETIS as also available. Please refer to  the  help of the ML 
configure for more details. 

66 



e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
0 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

e 
e 
e 
e 
e 
e 
e 
e 
e 
0 

e 

7.4 Concluding Remarks 

More documentation about ML can be found in [2 1, 19, 191. 

67 



8 Interfacing  Direct  Solvers  with Amesos 

The  Amesos  package provides an object-oriented  interface to several direct sparse solvers. 
Amesos will solve (using a direct factorization method) the linear systems of equations 

A X = B  (4) 

where A is stored as an EpetralXowMatrix object, and X and B are EpetraMultiVector 
objects. 

The  Amesos package has  been designed to face  some of the challenges of direct solution 
of linear  systems. In fact, many solvers have been proposed in the last years, and often 
each  of  them requires different input formats  for  the linear system matrix. Moreover,  it is 
not  uncommon that the interface changes between  revisions.  Amesos aims to solve those 
problems, furnishing a clean, consistent interface  to  many direct solvers. 

Using Amesos, users can interface their codes with a (large)  variety of direct linear 
solvers, sequential or parallel, simply by a code instruction of type 

AmesosProblem. Solver ( )  ; 

Amesos  will take care of redistributing data  among  the processors, if necessary. 

This Chapter starts with few notes on the installation of the third-part packages required 
by  Amesos. Then, the Chapter will  present  the use of Amesos objects, to interface with the 
following  packages: 

0 UMFPACK, version 4.1 (in Section 8.2); 

0 SuperLUdist, version 2.0 (in Section 8.3); 

0 A generic interface to various direct solvers is presented (in Section 8.4). 

8.1 Installation of Trilinos  third-part  Packages 

Amesos is an interface to other packages, mainly  developed outside the Trilinos frame- 
work9. In order to use those packages, the user  should carefully check copyright and li- 
censing of those third party codes. Please refer to  the web page or the documentation of 
each  particular package for details. 

9Currently,  SuperLU is included in the Trilinos  framework. 

68 



e 
e 
e 
e 
e 
e 
e 
e 
a 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
0 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

Amesos supports a variety of direct solvers for linear systems of equations, and  you 
are likely to use Amesos with only few of them. We suggest to define the shell variable 
TRILINOS-3PL to define the directory used  to stored third-part packages. For instance, 
under BASH, you may have  a line of type 

export TRILINOS - 3PL=/home/msala/Trilinos3PL 

in your . bashrc file. Then, you  may decide to create a directory to hold include files  and 
libraries. For instance, to compile under  LINUX  with  MPI: 

$ mkdir  ${TRILINOS  3PL}/LINUX_MPI 
$ mkdir $ { TRILINOS-3PL}/LINUX MPI/include 
$ mkdir ${TRILINOS-3PL}/LINUX~MPI/lib - 

(Note that this will reflect the directory structure used  by Trilinos, see Section 1.2.) While 
installing a package, you can now  copy  all  include files and libraries in these directories. 

Using this setting, you can configure Amesos with a command of type 

$ cd  ${TRILINOS - HOME}/packages/amesos 
$ ./configure  --prefix=${TRILINOS - HOME}/LINUX-MPI \ 

--enable-mpi  --with-mpi-compilers \ 
--enable-amesos-umfpack \ 
--enable-amesos-superludist \ 
--with-amesos-superludistlib=\ 
ll${TRILINOS - 3PL}/SuperLU - DIST-2.0/libsuperlu-LINUX.a11 

(This command is followed by make and make install, as usual.) This will  enable 
UMFPACK and SuperLUdist, which are the two packages covered in this Chapter. 

For more details about the configuration options of Amesos, please refer to Amesos 
documentation. 

8.2 UMFPACK 

File${TRILINOSHOME}/doc/tutorial/amesos/exl.cppshowshowtouse~e- 
sbs to solve a linear system with UMFPACK'O. 

'OUMFPACK is a set of routines solving sparse linear systems via LLJ factorization. It 
is copyrighted by Timothy A. Davis. More information can be obtained at the web page 

69 



Suppose that A, x and b are an EpetraRowMatrix and  two EpetraMultiVector, respec- 
tively, or compatible dimensions. Amesos objects for the solution of linear systems requires 
an EpetraLinearProblern object, plus another object, AMESOS : : Parameter : : List, 
used to specify the parameters. 

Epetra - Linearproblem  Problem(&A,&x,&b); 
AMES0S::Parameter::List params; 

Then,  only  few lines are required: We can  define an Amesos object and solve the problem, 

Amesos Umfpack UmfpackProblem(Problem,params) ; 
UmfpackProblem.  Solve ( )  ; 

or,  alternatively, it is possible to specify when  symbolical factorization, numerical factor- 
ization  and  solution  occur, 

Amesos - Umfpack UmfpackProblem(Problem,params); 
UmfpackProblem.SymbolicFactorization0; 
UmfpackProblem.NumericFactorization0; 
UmfpackProblem.  Solve ( ) ; 

Note that exactly the same code can be run with more than one processor. In this case, 
being UMFPACK a serial solver,  Amesos will take care to gather all required data on  a 
processor,  solve sequentially the linear system, and then broadcast the solution. 

8.3 SuperLUdist 

Solving using SuperLUdist" is not  much  different from what presented in Section 8.2. 
Instead of declaring an Amesos-Umfpack object, one can proceed as follows: 

Amesos - Superludist * SuperludistProblem = 
new Amesos - Superludist(Problem,params); 

http://www.cise.ufl.edu/research/sparse/umfpack. 
"SuperLUDIST  is  a parallel extension to the serial SuperLU library. It is  targeted for 

the  distributed memory parallel machines. Copyright (c )  2003, The  Regents of the Univer- 
sity of California, through  Lawrence Berkeley  National  Laboratory. Please refer to the web site 
h t t p  : / / w w  . nersc . gov/ xiaoye/SuperLU for more information. 

70 

e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
0 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

http://www.cise.ufl.edu/research/sparse/umfpack


followed  by  a call to Solve(), possibly preceded by SymbolicFactorizationO and Numeric- 
Factorization(). 

Remark 16. We have declared a pointer to and AmesosSuperludist object because the 
destructor of this object contains some MPI calls. As in example 
${TRILINOSHOME}/doc/tutorial/amesos/ex2. cppthedestructoriscalledat 
the end of the main function (after a call to MPI-Finalize ( 1, we have to delete this 
object using  the C+ + statement 

delete  SuperludisProblem; 

before the  call to MPI - Finalize ( ) . 

8.4 A Generic  Interface to Various  Direct Solvers 

All Amesos objects are derived from the AmesosBaseClass object. Using the capabilities 
of C++, one may decide to code a  generic interface to a direct solver as follows: 

/ /  parameter  vector  for  Amesos 
AMES0S::Parameter::List ParamList; 

/ /  prepare  the  linear  solver 
Amesos-Basesolver * AmesosProblem; 

switch(  choice 1 { 
case ML - SOLVE - WITH  AMESOS  UMFPACK: - 

AmesosProblem = 

break; 

AmesosProblem = 

break; 
default: 

cerr c c  '\Error" cc endl; 

- 

new  Amesos - Umfpack(  *Linearproblem,  ParamList 1 ;  

case  ML  SOLVE  WITH  AMESOS  SUPERLUDIST: - - - - 

new Amesos-Superludist( *Linearproblem, ParamList 1 ;  

1 

Now, factorization and solution are the same for all the packages: 

71 



AmesosProblem-sSymbolicFactorization0; 
AmesosProblem->NumericFactorizationO; 
AmesosProblem = (void * )  AmesosProblem ; 

72 



a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
e 
a 
a 
a 
a 
e‘ 
a 
a 
a 

9 Solving Nonlinear  Systems  with  NOX 

NOX is a suite of solution methods for the solution of nonlinear systems of  type 

F ( x )  = 0, ( 5 )  

with 

is a nonlinear vector function. The Jacobian  matrix  of F ,  J ,  is defined  by 

NOX aims to solver (5) using Newton-type  methods.  NOX uses an abstract  vector  and 
“group”  interface.  Current  implementation  are  provided for EpetrdAztecOO objects,  but 
also for LAPACK and PETSc. It provides  various strategies for the solution of  nonlinear 
systems, and it has been  designed to be  easily  integrated into existing applications. 

In this Chapter,  we  will 

0 Outline the basic  issued  of  the solution of nonlinear systems (in Section 9.1); 

0 Introduce the  NOX  package  (in  Section 9.2); 

0 Describe how to introduce a NOX solver  in  an existing code (in Section 9.3); 

0 Present Jacobian-free methods (in Section 9.6). 

9.1 Theoretical Background 

Aim of this Section is to briefly  present  some aspects of the solution of nonlinear  systems, 
to establish a notation. The Section is not supposed to be exhaustive, nor complete on this 
subject. The reader is referred to the  existing  literature for a rigorous presentation. 

To solve system of nonlinear equations, NOX makes  use of Newton-like  methods.  The 
Newton  method  defines a suite {xk} that, under some conditions, converges to x, solution 

73 



of (5). The algorithm is  as follows:  given xo, for k = 1,. . . until convergence,  solve 

Newton  method introduces a  local full linearizion of the equation. Solving a system of 
linear  equations  at each Newton step can be  very  expensive if the number of unknowns is 
large,  and  may  not be justified if the current iterate is far from the solution. Therefore, a 
departure  from  the Newton framework consists of considering inextrct Newton methods, 
which  solve  system (6) only approximatively. 

In fact, in practical implementation of the Newton method, one or more of the following 
approximations are used: 

1. The Frichet derivative JI, for the Newton  step is not recomputed at every  Newton 
step; 

2. The equation for the Newton step (6) is solved  only inexactly; 

3. Defect-correction methods are employed,  that is, J k  is numerically computed using 
low-order (in space) schemes, while the right-hand side is built up using high-order 
methods. 

For  a  given initial guess, “close enough” to  the  solution of (5) ,  the Newton method with 
exact  linear  solves  converges  quadratically.  In practice, the radius of convergence is often 
extended via various  methods.  NOX  provides,  among others, line search techniques and 
trust  region strategies. 

9.2 Creating NOX Vectors  and  Group 

NOX is not  based  on any particular linear algebra package.  Users are required to supply 
methods  that  derive from the abstract classes NOX : :Abstract : : Vector (which pro- 
vides  support for basic vector operations as dot products), and NOX : :Abstract : : Group 
(which supports the linear algebra hnctionalities, evaluation of the h c t i o n  G and,  option- 
ally,  of  the Jacobian J ) .  

In  order  to link their code with NOX, users have to write their own instantiation of 
those  two abstract classes. In this tutorial, we  will consider the concrete implementations 
provided for Epetra matrices and vectors. As this implementation is separate from the 

74 



NOX algorithms, the configure option - -enable - nox-  epetra has to be  specified (see 
Section 1 .2)12. 

9.3 Introducing NOX in an Existing Code 

Two basic steps are required to implement  a NOX : : Epetra interface. First, a concrete 
class derived from NOX : : Epetra : : Interface has to be written. This class must - 

define the following methods: 

1. A method to compute y = F ( X )  for a  given z. The syntax is 

computeF(const Epetra-Vector & x,  Epetra - Vector & y, 
FillType  flag) 

with x and y two Epetra-Vectors,  and flag an enumerated type that tells why this 
method was called. In fact, NOX 'has the ability to generate Jacobians based  on 
numerical differencing. In this case, users may  want to compute an inexact (and 
hopefully cheaper) F ,  since it is only  used  in the Jacobian (or preconditioner). 

2. A function to compute the Jacobian, whose syntax is 

computeJacobian(const Epetra-Vector & x, 
Epetra-Operator * Jac) 

This method is optional optional method. It should be implemented when users wish 
to supply their own  evaluation of the Jacobian. If the user does not wish to supply 
their own Jacobian, they should  implement this method so that it throws  an  error 
if it is called. This method should  update the Jac operator so that subsequent Epe- 
tra-0perator::ApplyO calls on that operator correspond to the Jacobian at the current 
solution vector x. 

3. A method which fills a preconditioner matrix, whose syntax is 

computePrecMatrix(const Epetra-Vector & x, 
Epetra - RowMatrix & M) 

I20ther two concrete implementation are provided, for LAPACK and PETSc. The user may wish to 
configure NOX with --enable-nox-lapack or --enable-nox-petsc. Examples can be  corn- 
piled with the options --enable-nox-lapack-examples, - -enable-nox-petsc-examples, 
and-enable-nox-epetra-exemples. 

75 



It should only contain an estimate of the Jacobian. If users do not wish to supply their 
own Preconditioning matrix, they  should  implement this method such that if called, 
it will  throw an error. 

4. A method  to apply the user’s  defined  preconditioner. The syntax is 

computePreconditioner(const Epetra-Vector & x, Epetra-Operator & M) 

The  method should compute a  preconditioner  based upon the solution vector x and 
store it in the Epetra-Operator M. Subsequent calls to the Epetra-0perator::Apply 
method  will apply this user  supplied preconditioner to epetra vectors. 

Then, the user can construct a NOX : : Epe  t  ra : : Group, which contains information 
about  the solution technique. All constructors require: 

0 A  parameter list for printing output and for input options, defined as NOX : : Parameter : : List. 

0 An  initial guess for the solution (stored in an  Epetra-Vector object); 

0 an operator for the Jacobian and (optionally) and operator for the preconditioning 
phase.  Users can write their own  operators. In particular, the Jacobian can be defined 
by the  user as an Epetra-Operator, 

Epetra - Operator & J , =  UserProblem.getJacobian(), 

created as a NOX matrix-free operator, 

N0X::Epetra::MatrixFree & J = MatrixFree(userDefinedInterface, 
solutionvec), 

or created  by NOX using a  finite  differencing, 

N0X::Epetra::FiniteDifference & J = FIXME. .. 

At this point, users have to create an instantiation ofthe NOX : : Epetra : : Interface 
derived object, 

UserInterface  interface( . . .  ) , 

and  finally construct the group, 

N0X::Epetra::Group  gourp(printParams,  lsparams,  interface,  FIXME). 

76 



a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

9.4 A Simple Nonlinear Problem 

As an example. define F : R2 -+ R2 by 

With this choice of F ,  the exact solutions of (5) are the intersections of the unity circle and 
the parabola 2 2  - x;. Simple algebra shows  that one solution lies in the first quadrant, and 
has coordinates 

the other being the reflection of cy among the x2 axis. 

Code ${TRILINOSHOME}/doc/tutorial/nox/exl. cpp applies the Newton 
method to this problem, with zo = (0.5,0.5) as a starting solution. The output is approxi- 
matively as follows: 

[msala:noxl>  mpirun  -np  1  ./exl.exe 

- -  Nonlinear  Solver  Step 0 - -  
f = 5.590e-01  step = 0.000e+00 dx = 0.000e+00 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- -  Nonlinear  Solver  Step 1 - -  
f = 2.102e-01  step = 1.000e+00  dx = 3.953e-01 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- -  Nonlinear Solver  Step 2 - -  
f = 1.009e-02  step = 1.000e+00 dx = 8.461e-02 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- -  Nonlinear  Solver  Step  3 - -  
f = 2.877e-05  step = 1.00oe+00 dx = 4.510e-03 (Converged!) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

77 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- -  Final  Status  Test  Results - -  
Converged . . . .  OR  Combination - >  
Converged . . . .  F-Norm = 2.034e-05 e 2.530e-04 

??...........Number of  Iterations = -1 e 20 
(Length-Scaled  Two-Norm,  Relative  Tolerance) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

- -  Parameter  List  From  Solver - -  
Direction - >  
Method = llNewtonlf [default] 
Newton - >  
Linear  Solver - >  
Max  Iterations = 400  [default] 
output - >  
Achieved  Tolerance = 8.6e-17 [unused] 
Number  of  Linear  Iterations = 2  [unused] 
Total  Number  of  Linear  Iterations = 6 [unused] . 

Tolerance = le-10 [default] 
Rescue  Bad  Newton  Solve = true  [default] 

Line  Search - >  
Method = "More'  -Thuente" 
More'-Thuente - >  
Curvature  Condition = 1 [default] 
Default  Step = 1 [default] 
Interval  Width = le-15 [default] 
Max  Iters = 20 [default] 
Maximum  Step = le+06  [default] 
Minimum  Step = le-12 [default] 
Optimize  Slope  Calculation = false  [default] 
Recovery  Step = 1 [default] 
Recovery  Step  Type = I1Constant1'  [default] 
Sufficient  Decrease = 0.0001 [default] 
Sufficient  Decrease  Condition = ffArmijo-Goldsteinll  [default] 

Total Nuher of  Failed  Line  Searches = 0 [unused] 
Total  Number  of  Line  Search  Calls = 3  [unused] 
Total  Number  of  Line  Search  Inner  Iterations = 0 [unused] 
Total  Number  of  Non-trivial  Line  Searches = 0 [unused] 

output - >  

Nonlinear  Solver = "Line  Search  Based" 

78 



0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

e 

output - >  
2-Norm of Residual = 2.88e-05  [unused] 
Nonlinear  Iterations = 3 [unused] 

MyPID = 0 [default] 
Output Information = 2 
Output  Precision = 3 [default] 
Output Processor = 0 [default] 

Printing - >  

Computed  solution : 
Epetra::Vector 

MyPID  GID 
0 0 
0 1 

Exact solution : 
Epetra::Vector 

MyPID  GID 
0 0 
0 1 

Value 
0.786 
0.618 

Value 
0.786 
0.618 

9.5 A 2D Nonlinear PDE Problem 

In this Section, we consider the solution  of  the  following nonlinear PDE  problem: 

{ -nu + Ae" = 0 i n n  = (0,1) x (0,1) 
u = 0 o n d a .  (7) 

For the sake of simplicity, we use  a  finite  difference scheme ona Cartesian gri, with  constant 
mesh sizes h, and h,,. Using  standard  procedures,  the discrete equation at node (i, j )  reads 

In example ${TRILINOSHOME}/doc/tutorial/nox/ex2. cpp, we  build  the 
Jacobian matrix as an Epetra-CrsMatrix, and we  use  NOX to solve problem (7) for a  given 
value  of X. The example shows  how to use NOX for more complex cases. The code  defines 
a class, here called PDEProblem,  which  contains two main  methods: One to compute F ( x )  
for a  given x, and the other to update  the entries of  the Jacobian matrix. The class contains 
all  the  problem  definitions (here, the  number  of  nodes along the x-axis and  the  y-axis  and 
the  value  of A). In more complex cases, a  similar class may have enough information to 

79 



compute,  for instance, the entries of J using  a  finite-element approximation of the PDE 
problem. 

The  interface to NOX, here called SimpleProblemInterface, accepts a  PDEProblem as 
a  constructor, 

SimpleProblemInterface  Interface(&Problem); 

Once  a N0X::Epetra:Interface object has  been  defined, the procedure is almost identical to 
that of the previous Section. 

9.6 Jacobian-free  Methods 

In  Section 9.5, the entries of the Jacobian matrix  have  been explicitly coded. For  more 
complex discretization schemes, it is not always  possible nor convenient to compute  the 
exact entries of J .  For those cases, NOX can automatically build Jacobian matrices based 
on  finite  difference approximation, that is, 

E ( u  + hjej) - Fi(z) 
hj 

J .  . = w > 

where ej  is the j-unity vector. Sophisticated schemes  are  provided by NOX, to reduce the 
number  of function evaluations. 

9.7 Concluding  .Remarks 

The  documentation of NOX  can be found in [ 131. 

A  library of continuation classes, called  LOCA [14, 161, is included in the NOX dis- 
tribution.  LOCA is a generic continuation and  bifurcation analysis package, designed for 
large-scalr applications.The algorithms are designed  with  minimal interface requirements 
over  that  needed for a Newton method to read an equilibrium solution. LOCA is built  upon 
the NOX package.  LOCA  provided hctionalities for single parameter continuation and 
multiple continuation. Also, LOCA provides  a stepper class that repeatedly class the NOX 
nonlinear  solver  to compute points along a continuation curve. We will not cover  LOCAL 
in this  tutorial. The interested reader is referred to the LOCA documentation. 

80 



0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
e 
0 
0 
0 
0 
0 

10 TriUtils 

Triutils is a collection of various utilities, that can help development and testing. Mainly, 
triutils contains h c t i o n s  or classes to generate matrices in various formats (MSR,  VBR, 
Epetra), to read matrices (in HB or COO format), to convert matrices from one format to 
another, and to process the command line. Programs  using triutils should include the  file 
Trilinos - Uti1.h. 

In this Chapter, we will  present: 

0 How to read a matrix (and possibly  right-hand side and solution vectors) from  an 
HarwelVBoeing  file format (in  Section 10.1); 

0 How to retrive a parameter specified on the command line (in Section 10.2). 

10.1 Reading a  HB  problem 

It is possible to read matrix, solution  and  right-hand side, from a file written in the  Har- 
well/Boeing format. This is done in 
${TRILINOSHOME}/doc/tutorial/triutils/exl .cpp. The key instructions 
are the following. 

First, we define pointers to Epetra-Vector and EpetraNatrix objects: 

/ /  Pointers  because of Trilinos  Util  ReadHb2Epetra 
Epetra  Map * readMap; 
Epetra-CrsMatrix * readA; 
Epetra - Vector * readx; 
Epetra - Vector * readb; 
Epetra - Vector * readxexact; 

- - 
- 

The HB problem is read with the instruction 

Trilinos - Util - ReadHb2Epetra(FileName,  Comm,  readMap,  readA,  readx, 
readb, readxexact); 

Here, Comm is an Epetra-SerialComm or EpetraMpiComm object, and FileName an 
array of character containing the name of the HB  file. 

81 

0 
0 
0 
0 



This  creates  an  Epetra-Matrix  and  two  Epetra-Vectors,  with  all the elements assigned 
to processor  zero. This is because  the HB file  does not contain  any information about the 
distribution  of  the elements to the processors.  Should the user need to solve  the  linear 
problem  in  parallel, thus he  has  to  redistributed rea&. In this case,  the  first step is  to 
specify  a  map.  For instance, we  can  use  a  linear  map: 

int NumGlobalElements = readMap->NumGlobalElements(); 
Epetra-Map map(NumGlobalElements,O,Comm) ; 

and create  and  exporter to distribute  read-in  matrix  and  vectors: 

Epetra-Export exporter(*readMap, map); 
Epetra - CrsMatrix A(Copy, map, 0); 
Epetra Vector x (map) ; 
Epetra-Vector b (map) ; 
Epetra-Vector xexact  (map) ; 
/ /  this is the  data  distribution  phase 
x.Export (*readx,  exporter,  Add) ; 
b.Export (*readb,  exporter, Add) ; 
xexact.Export(*readxexact, exporter, Add); 
A. Export (*ream, exporter,  Add) ; 

Finally,  we can destroy  the objects used to store the non-distributed HB problem: 

delete readA; 
delete readx; 
delete readb; 
delete readxexact; 
delete readMap; 

and  solve  the  distributed linear system  with  the  method  of choice. 

10.2 ShellOptions 

ShellOptions is a class to manage the input  arguments  and shell variables.  With this class, 
it is  easy to handle  input  line  arguments  and  shell  variables.  For instance, the user can write 

82 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2 



e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

$ ./ex2.exe -nx 10 - t o 1  le-6 -solver=cg 

and then easily retrieve the value of nx,  tol, and solver. 

A simple code using this class is as follows: 

int  main(int argc,  char  *argv[l) 
{ 

ShellOptions  Args  (argc,  argv) ; 
int  nx = Args.GetIntOption(“-nx”, 123) ; 
int  ny = Args.GetIntOption(l‘-ny”, 145) ; 
double  to1 = Args.GetDoubleOption(”-tol”, le-12); 
string  solver = Args.GetIntOption(fv-solverlf) ; 

cout cc “nx = I I  cc nx cc endl; 
cout < C  IIny = cc ny cc (default value)” c< endl; 
cout cc “to1 = cc to1 cc endl; 
cout cc ”solver = cc solver cc endl; 

return 0; 
1 

Each line option can have  a  value or not.  For options with a value, the user can specify 
this values  as  follows.  Let -tolerance be  the name of the option and le- 12 its value. 
Both choices are valid: 

0 -tolerance  le- 12 (with  one or more  spaces) 

0 - tolerance=le-12 (with = sign  and no spaces) 

Option  names  must  begin  with  one or more  dashes (‘ - ’). Each option cannot  have  more 
than  one  value. 

To use this class, the user has to  build  the  database using the argc , argv input  argu- 
ments. Then, to retrieve  the option value,  the user has to use one of the following functions: 
GetIntOption,GetDoubleOption,andGetStringOption. 

If option name is not found  in the database,  a  value of 0, 0.0 or an empty string  is 
returned. If needed,  the user can also specify a default  value to return when the option  name 

83 



is not  found  in the database. Method HaveOpt ion can be used to query the database for 
an option. 

File ${TRILINOSHOME}/doc/tutorial/triutils/ex2. cpp,gives an ex- 
ample of the usage of this class. 

84 



References 

[ l ]  Free Software Foundation. Autoconf Home Page. 
http://www.gnu.org/sofiware/autoconf. 

[2] Free Software Foundation. Automake Home  Page. 
http://www.gnu.org/soflware/automake. 

[3] Free Software Foundation. Libtool  Home  Page. http://www.gnu.org/sofiware/libtool. 

[4] M.  A. Heroux. IFPACK User Guide, 1 .O edition, 2001. 

[5]  M.  A.  Heroux. Epetra  Reference Manual, 2.0 edition, 2002. 
http://software.sandia.gov/trilinos/packages/epetraldoxygenllatex/EpetraReferenceManual.pdf. 

[6] M.  A. Heroux. IFPACK Reference Manual, 2.0 edition, 2003. 
http://software.sandia.gov/trilinos/packages/ifpack/doxygen/late~Ifpac~eferenceManual.pdf. 

[7]  Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan  Hu, 
Tamara  Kolda, Richard Lehoucq,  Kevin  Long, Roger Pawlowski, Eric Phipps, An- 
drew Salinger, Heidi Thornquist, Ray  Tuminaro, James Willenbring, and Alan 
Williams. An Overview of Trilinos.  Technical Report SAND2003-2927, Sandia  Na- 
tional Laboratories, 2003. 

[8] Michael A. Heroux. Aztec00 Users  Guide.  Technical Report SAND2003-XXXXY 
Sandia National Laboratories, 2003. 

[9] Michael A. Heroux, Robert J.  Hoekstra,  and Alan Williams. Epetra Users  Guide. 
Technical Report SAND2003-XXXY Sandia National Laboratories, 2003. 

[ 101 Michael  A. Heroux and James M.  Willenbring. Trilinos Users Guide. Technical 
Report SAND2003-2952, Sandia National Laboratories, 2003. 

[ 111 Michael  A.  Heroux, James M. Willenbring, and Robert Heaphy. Trilinos Developers 
Guide. Technical Report SAND2003-1898, Sandia National Laboratories, 2003. 

[ 121 Michael A. Heroux, James M. Willenbring, and Robert Heaphy. Trilinos Developers 
Guide Part 11: ASCI Software Quality Engineering Practices Version  1.0.  Technical 
Report SAND2003-1899, Sandia National Laboratories, 2003. 

[ 131 Tamara G.  Kolda and Roger P. Pawlowski. Nox home  page. 
http://software.sandia.gov/nox. 

85 

http://www.gnu.org/sofiware/autoconf
http://www.gnu.org/soflware/automake
http://www.gnu.org/sofiware/libtool
http://software.sandia.gov/trilinos/packages/epetraldoxygenllatex/EpetraReferenceManual.pdf
http://software.sandia.gov/nox


[14] A.  G. Salinger, N. M.  Bou-Rabee,  R. P. Pawlowski, E. D. Wilkes, E. A. Burroughs, 
R. B. Lehoucq, and L. A.  Romero.  LOCA:  A library of continuation algorithms - 
Theroy and implementation manual.  Technical report, Sandia National Laboratories, 
Albuquerque,  New Mexico 87185,2001. SAND  2002-0396. 

[l5] A. G Salinger, K. D. Devine, G. L.  Hennigan, H. K. Moffat, S. A Hutchinson, and 
J. N. Shadid.  MPSalsa:  A  finite  element computer program for reacting flow problems 
part  2 - user’s guide. Technical Report SAND96-233 1 , Sandia National Laboratories, 
1996. 

[16]  A.  G.  Salinger, R. B. Lehoucq, R. P. Pawlowski,  and J .  N. Shadid. Computational 
bifurcation and stability studies of the 8: 1 thermal cavity problem. Internat. J .  Nunzer. 
Meth. Fluids, 40(8):  1059-1073,2002. 

[ 171 John N. Shadid, Harry K. Moffat,  Scott  A. Hutchinson, Gary L. Hennigan, Karen D. 
Devine, and Andrew G. Salinger.  MPSalsa:  A  finite element computer program  for 
reacting  flow problems part 1 - theoretical development.  Technical Report SAND95- 
2752,  Sandia National Laboratories, 1995. 

[l8] C. Tong and R. Tuminaro.  ML2.0  Smoothed  Aggregation  User’s Guide. Technical 
Report SAND2001-8028, Sandia National Laboratories,  Albq, NM, 2000. 

[19]  R.  Tuminaro and C. Tong. Parallel smoothed aggregation multigrid: Aggregation 
strategies on massively parallel machines. In J. Donnelley, editor, SuperComputing 
2000 Proceedings, 2000. 

[20]  Ray S. Tuminaro, Michael A.  Heroux,  Scott.  A. Hutchinson, and J. N. Shadid. Ojiciaf 
. Aztec User’s Guide, Version  2.1. Sandia  National Laboratories, Albuquerque, NM 

87185,1999. 

[21]  Ray S. Tuminaro and Jonathan Hu. MI home page. http://www.cs.sandia.gov/ tumi- 
naro/MLDescription.htnil. 

86 

http://www.cs.sandia.gov


a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

Distribution list: 

Internal Distribution: 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
10 
10 
1 
1 
1 
1 
1 
1 
1 
1 

MS 0316 G. L Hennigan, 9233 
MS 0316 R. Hooper, 9233 
MS 03  16 R. J. Hoekstra, 9233 
MS 0316 R. P. Pawlowski, 9233 
MS 0316 S. A. Hutchinson, 9233 
MS 03  16 S. J. Plimpton, 92  12 
MS 0316 W. F. Spotz, 9233 
MS 0819 A. C. Robinson, 923 1 
MS 08  19 M. A. Christon, 923 1 
MS 0826 A. B.  Williams, 8961 
MS 0826 J. R. Stewart, 9143 
MS 0827 H. C. Edwards, 9143 
MS 0827 P. A. Sackinger, 91 13 
MS 0828 C.  C. Ober, 9233 
MS 0834 H. K. Moffat, 91 14 
MS 0834 M. M. Hopkins, 91 14 
MS 0834 R. P.  Schunk, 91 14 
MS 0834 R. R. Rao, 91 14 
MS 0835 A.  A. Lorber, 9141 
MS 0835 K. H. Pierson, 9142 
MS 0835 S. R.  Subia, 9141 
MS 0835 S. W.  Bova, 9141 
MS 0847 B. G. van  Bloemen  Waanders, 921  1 
MS 0847 C.  R.  Dohrmann, 9124 
MS 0847 G. M. Reese, 9142 
MS 0847 M. S. Eldred, 921  1 
MS 11 10 D.  E.  Womble, 9214 
MS 11 10 D. M. Day, 9214 
MS 1  1 10 H. K. Thornquist, 9214 
MS 1  1 10 J. M. Willenbring, 92  14 
MS 11 10 M. A. Heroux ,9214 
MS 11 10 M. Sala ,9214 
MS 11 10 R. A. Bartlett, 9214 
MS 11 10 R.  B. Lehoucq, 9214 
MS 1  1 10 R.  Heaphy, 92  15 
MS 11  11 A. G. Salinger, 9233 
MS 1  11  1 C. A. Phillips, 9233 
MS 11  11 E. R. Keiter, 9233 
MS 11  11 E. T. Phipps, 9233 
MS 11  11 J. N. Shadid, 9233 



1 * MS 1111 K. D. Devine,9215 
1 MS 1  152 J. D.  Kotulski,  1642 
1 MS 1166 C.  R. Drumm, 15345 
1 MS 9217 J. J. Hu,  9214 
1 MS 9217 K. R.  Long,  8962 
1 MS 9217 P. T. Boggs, 8962 
1  MS  9217  R. S. Tuminaro, 9214 
1  MS 9217 T. Kolda,  8962 
1 MS 9217 V. E. Howle,  8962 
1  MS 9217 P. D.  Hough,  8962 
1 MS 991  5  A. J. Rothfuss,  8961 
1 MS 991  5 N. M. Nachtigal,  8961 

1  MS  9018 Central  Technical  Files,  8945-1 
2  MS  0899 Technical Library,  9616 

External  distribution: 

Ken  Stanley 
322 W. College St. 
Oberlin  OH 44074 

Matthias Heinkenschloss 
Department  of Computational and  Applied  Mathematics - MS 134 
Rice  University 
6100 S. Main Street 
Houston,  TX 77005 - 1892 

Dan  Sorenson 
Department of Computational and  Applied  Mathematics - MS 134 
Rice  University 
6100 S. Main Street 
Houston,  TX  77005 - 1892 

Yousef  Saad 
Department of  Computer Science and  Engineering 
University of Minnesota, 
4-192  EE/CSci Building, 200  Union  Street  S.E. 
Minneapolis, MN 55455 

Kris Kampshoff 
Department  of Computer Science and  Engineering 
University  of Minnesota, 
EE/CSci  Building, 200 Union Street S.E. 
Minneapolis, MN 55455 



a 
a 
a 
a 
a 
a 
a 
a 
e 
a 
a 
a 
a 
a 
a 
a 
a 
a 
m 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
e 
a 
a 
a 
a 
a 
a 
a 
a 
a 

Eric de Sturler 
23  12  Digital Computer Laboratory, MC-258 
University of Illinois at Urbana-Champaign 
1304 West Springfield Avenue 
Urbana, IL 6  180 1-2987 

Jason Cross 
Box 429 
St. John's University 
Collegeville, MN 56321 

Paul Sexton 
Box 1560 
St.  John's University 
Collegeville, MN 5632 1 

Mike  Phenow 
PO Box 1392 
St. John's University 
Collegeville, MN 56321 

Tim  Davis,  Assoc. Prof. 
Room E338 CSE Building 
P.O. Box 116120 
University of Florida-6 120 
Gainesville, FL 3261 1-6120 

Padma Raghavan 
Department of Computer Science and Engineering 
308  Pond Laboratory 
The Pennsylvania State University 
University  Park, PA 16802-6 106 

Xiaoye  Li 
Lawrence  Berkeley Lab 

1 Cyclotron  Rd 
Berkeley, CA  94720 

50F-  1650 

Richard Barrett 
Los Alamos National Laboratory 
Mail Stop B272 
Los Alamos, NM 87545 



Victor  Eijkhout 
Department of  Computer Science, 
203  Claxton  Complex,  1122  Volunteer  Boulevard, 
University of Tennessee at  Knoxville, 
Knoxville  TN 37996, USA 

Jack  Dongarra 
Computer Science Department 
1122  Volunteer  Blvd 
Knoxville, TN 37996-3450 

David  Keyes 
Appl Phys & Appl Math 
Columbia  University 
200 S. W. Mudd Building 
500  W.  120th Street 
New  York, NY, 10027 

Lois Curfman McInnes 
Mathematics  and  Computer Science Division 
Argonne National Laboratory 
9700  South Cass Avenue 
Argonne, IL 60439 

Barry  Smith 
Mathematics and Computer Science Division 
Argonne  National Laboratory 
9700 South  Cass Avenue 
Argonne,  IL  60439 

Paul  Hovland 
Mathematics and Computer Science Division 
Argonne National Laboratory 
9700  South  Cass Avenue 
Argonne, IL 60439 

Jeffrey J. Derby 
CEMS  Department,  U.  of  MN 
42 1 Washington Ave SE 
Minneaplolis,  MN  55455-0132 

Carol  Woodward 
Center for Applied Scientific Computing 
Lawrence Livermore National Laboratory 

Livermore,  CA 9455 1 
BOX 808, L-561 

a 
0 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 



Craig Douglas 
325 McVey Hall - CCS 
Lexington, KY 40506-0045 

Juan Meza 
Department Head, High Performance Computing Research 
Lawrence Berkeley National Laboratory 
Mail  Stop 50B-2239 
Berkeley,  CA 9472 

C.T.  Kelley 
Department of Mathematics, Box 8205 
Center for Research in Scientific Computation 
North Carolina State University 
Raleigh, NC 27695-8205 

Chuck Romine 
Program Manager, Applied Mathematics 
U.S. Department of Energy 
1000 Independence Ave., SW 
Washington, DC 20585-1290 

Prof.  Luca Formaggia 
Mathematics Department 
"F.  Brioschi" Politecnico di Milano 
Piazza  L. da Vinci 32,20133 MILANO, Italy 

Prof. Alfio Quarteroni 

EPFL 
CH- 10 15 Lausanne (VD) Switzerland 

IACS-CMCS 


	Trilinos 3.1 Tutorial
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Getting Started with Trilinos
	1.2 Installing Trilinos
	1.3 Compiling and Linking a program using Trilinos
	1.4 Copyright and Licensing of Trilinos
	1.5 Programming Language Used in this Tutorial
	1.6 Referencing Trilinos
	1.7 A Note on Directory Structure
	1.8 List of Trilinos Developers

	2 Working with Epetra Vectors
	2.1 Epetra Communicator Objects
	2.2 Defining a Map
	2.3 Creating and Assembling Serial Vectors
	2.4 Creating and Assembling a Distributed Vector
	2.5 Epetralmport and Epetra-Export

	3 Working with Epetra Matrices
	3.1 Serial Dense Matrices
	3.2 Distributed Sparse Matrices
	3.3 Creating VBR Matrices
	3.4 Insert non-local Elements Using FE Matrices

	4 Other Epetra Classes
	4.1 Epetra-Time
	4.2 Epetra_Flops
	4.3 Epetra-Operator and EpetraJiowMatrix Classes
	4.4 EpetraLinearProblem
	4.5 Concluding Remarks

	5 Iterative Solution of Linear Systems with AztecOO
	5.1 Theoretical Background
	5.2 Basic Usage of AztecOO
	5.3 One-level Domain Decomposition Preconditioners with AztecOO
	5.4 Use of AztecOO Problems as a Preconditioner for AztecOO

	6 Incomplete Factorizations with IFPACK
	6 I Theoretical Background
	6.2 Incomplete Cholesky Factorizations
	6.3 RILU Factorizations
	6.4 Concluding Remarks


	7 Multilevel Methods with ML
	7.1 Theoretical Background
	7.3 Two-level Domain Decomposition Preconditioners with ML
	7.4 Concluding Remarks

	8 Interfacing Direct Solvers with Amesos
	8.1 Installation of Trilinos third-part Packages
	8.2 UMFPACK
	8.3 SuperLUdist
	8.4 A Generic Interface to Various Direct Solvers

	9 Solving Nonlinear Systems with NOX
	9.1 Theoretical Background
	9.2 Creating NOX Vectors and Group
	9.3 Introducing NOX in an Existing Code
	9.4 A Simple Nonlinear Problem
	9.5 A 2D Nonlinear PDE Problem
	9.6 Jacobian-free Methods
	9.7 Concluding Remarks

	10 TriUtils
	10.1 Reading a HB problem
	10.2 ShellOptions




