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Abstract 
This report describes the methodology and results of a project to develop a neural 
network for the prediction af the measured hydraulic conductivity or transdssivity in 
a series of boreholes at thc Tono, Japan study site. Geophysical m e a s m e n t 3  were 
used as the input to EL feed-fmard neural network. A simple gemtic algorithm was 
used to evolve the archikctux and parameters of the neural network in cmjunctim 
with an optimal subset of gwphysical measurmmts for the prediction of hydraulic 
conductivity, 

The first attempt was focused m the estimation of the class of the hydraulic 
conductivity, high, medium or low5 fbm the geophysical logs. This estimation wag 
done while using the genetic algorithm to simultaneously detmine which 
geophysical logs were the m03t important and qttrniziins the architecture of the 
nmal  mtwwk hitid results showed that certain geophysical logs provided more 
information than others- most notably the ‘‘shm-hmmal”, micro-resistivity, pmsity 
and sonic logs provided the most information m hydraulic conductivity. The neural 
network produced excellent training ~ 5 u l t s  with accuracy of 90 percent or pa te r ,  
but was unable to produce accurate predictions of the hydraulic conductivity class. 

The second attempt at prediction WBS done using I new mcthdobgy m d  I 
modified data set, The new methdobgy builds on the mauh of the first attempts 
at prediction by limiting the  choices of geophysical logs to only those that provide 
significant information. Additionally, t h i a  sezond attempt uses a modified data 
a& and predicts transmissivity infitsad ofhydraulic conductivity. Reauh of these 
simulations Micate that the mat informative geuphysicd mea;suremnant.g far the 
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prediction of transmissivity are depth and sonic log. The 1q normal resistivity 
and selfpotential borehala logs are moderately informative. In addition, it was 
found that F i ? y  STd c m k  counts (clear, open, m hairline) do not infm 
predictions o f  by& lic transmissivity. 
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Evolution of Neural Network for the Prcdicticm of Hydraulic Gmductivity 

Introductiun 
The goal of this project wzu to develop a shulat im tool capable of predicting hydraulic 
conductivity, M lrammissiviry, from 3 set  of geophysical mcammmts .  Such a tow1 
could help minimize costs associated with site characterization through the identification 
of informative sumgate measures that could replace expensive hydraulic tests. It is 
recognized that there will always be a n d  for down-hole hydraulic kits, but it might be 
pmsible to reducc the n m k  of tests necessary, or to better locate the tests that arc taken 
by using a predictive nmal  network. 

Feed-fornard neural networks are capable of perfrsrming high-fidelity d a 3 3 i f i C B t i ~ m  and 
fundon approximation, atnag otJm things (q., Pri'~gc$e et d., [2000]+>. We attempted 
to dewlap I multi-layer pmeptron (MLP), a form of feed-forward neural network that 
could p d o m  hydraulic conductivity prediction using borehole geophysical Iog 
measuremmts a3 input features for the network 

In the past fifteen yews, 3 number of applications of neural networks to borehole 
geophysical problems have been r e p o d .  Mo3t of these applications have been focused 
on the estimation of facies types ern geophysical logs. For example, Baldwin et d, 
I1989 and 19901 uaed a new1  network to identify eight different lithofacies in L 
sedimentary s q m e  from eight difirent geophysical log m a s m m t s .  Additional 
work on the identification of lithofacies 
Rogers et d. [1992] who used three geqhysical logs: gamma, neutron and densityy, to 
i&ntify the ~ccurrenct of fm different lithofacies. 

3 sedimentary 5cqumc.e was reparted by 

A more difficult problem than that of hcics identificatioa is that of pameability 
estimation, More recently, neural mtwcrks have a h  been applied to the problem of 
estimating permeability h m  geophysical log rneammmts. Makagkegk ef UL [ 19961 
used three log responses as well tu X,Y and depth coordinates and geological 
interpretation to estimate downhole permeability hi a set of wdls within B sandstone gas 
msmoir. The msdts of the parmeabilities estimated with thc neural network a p e d  
favorably with the permeabilities measured m care-plug samples within the weU3. Wong 
and ShiM [ 1.998 J applied rn "interpolation neural network" to estimate pcrmcabiIities 
m a s d  on core-plugs in a petroleum reservoir. They used scvcn geophysical logs a d  
3 facies descriptim 35 input to the n d  network. The results reported by Wxrg umd 

[ 19981 indicate that the m r a l  network W B ~  able to repdwe the measured 
pmcability values and, most importantly, accurately predict the highest of the measured 
permeability values. 

In the current work., the problem o f  cstimting hydraulic conductivity, or transmissivity, 
in a a d  rock is atkmpted. This is 3 different problem frcm~ the preuious work 
mentioned above in that the scale af the hydraulic conductivity or hansrnissirity 
measurement {meters) is v q  different from that of the gqhysical logs (mtirnetws). 
Additimlly, the ascurate measurement and estimation of hydraulic conductivity OT 
transmissivity in fractured rocks wing borehole geophysical logs is very difficult, and to 
the authors' howldge ha3 not yet been reprsrkd. 
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Neural Networks 
Multilayer pcrceptmns (MLPs), a frmn of feed forward n a r d  networks, are useful for 
predicting claasificatim or fa performing functional approximation. Figure 1 depicts a 
two hiddimlayer MLP that has been configured to predict three classes of events (note 
the three outputs) afi 3 f h c t i w  of four measured properties (fatures}. Their calculati~ns 
me datively simple. ValUm~ we fad into h e  input layer and these are multiplied by 
weighty., The resulting values arc fed into the next layer where *~ercept r rn3 ' '  are located 
at ea& node in the network. At each pmqmn, all inputs are summed and put through ti 
rescaling h d o n  (typicdly B logistic function, sigmoid function, or hyperbolic tangent 
function), This conh~ws h u g h  tu the output layer. The pcrceptron at the output with 
the largest valw corresponds to the predicted class of the went. 

. .  

F&um , 

, ' M u r e  3 
. .  

Fedurn. 

K 

Hldden mn Outgut 

' .  . . .  . . . .  . .  . . .  sure 1 : Schbmatic diagram of a multilayer percqtmn n a d  network. This example 

For functional apprmimtiim only a single output perceptrm is used and its functic&l 
fom is simply linear. Thus, the network p & m  a tramform that rmuh in a fimtioml 
qproxhaticm of f(x,, xl ,, A,,) = y . It should be noted thnt MLPs with two hidden 
layers are capable of u n i v m l  functiod approximation making 'them a very powerful 
predictive algorithm. 

Because the number of data points are limited, the new4  n m m k  hd to be Aativdy ' . ' j 
small (i,e+, with fm we@ts). This nk.cesaitated a search for I few Critical meammmtg 
in the mite of geophysical Ioga that best infom the prediction of hydraulic conductivity 
or transmissivity. Determining the bast geophysical logs to me to estimate hydraulic 
conductivity is not 3 simple problem+ E x d n g  the hem, correlation of each 
gersphpical lag measmmcnt against the hydraulic conductivity ia not effective as this 
only examines one log at a time and it is the combination of different pcphysical log 

. . . .  , '$ ' { .  

. . .  . 
has four inputs and t h e  outputs with two hidden layers, 

. .  . 
. . .  . 

. .  . . . .  
. . . .  . . . . .  

. .  

. . . .  . . . .  . . . . . 
. . . .  . 

. .  . . 
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Evolution of Keural Network for the P r d c t i m  of Hydraulic Conductivity 

responses that have the greatest c h c c  of predicting the hydraulic conductivity. For this 
work, a simple genetic algorithm was used to evolve a population of such neural 
netwnrks (i.a,, their parameters, architecture, and a subset of geophysical logs to use as 
inputs) in a seuch for m optimal one. 
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Phase i Simulations: Predicting Hydraulic Conductivity 
Classes 

Algofithm #efhoddogy 
Genetic algorithms (See, for example, Goldberg [ 19891) we a subset of evolutionary 
algorithms particularly suited to optimization problems hvdving combinuoric difficulty+ 
They evolve a population of solutions that compete b m d  on their ability to solve the 
problem at hand. A single solution can be considered a3 an individual within a 
population of solutions. Each individual’s problem-solving ability is measured and used 
to assign it a “firnesss” value. Fitness values determine the number of offspring each 
individual solution produces for the next generation, in a s k l e  approximation of 
Darwinian evolution. Each individual in the population can be considered ~s a 
mmbimtim of paratnetera that produce a particular solution. The parmeter values h 
each individual are encoded as a c b r o m o m e  that encodes i t 5  particular solution to the 
problem. “Mathg” betweeen off5pring, combined with mut&ion, is then used to explore 
the search s p w  in the mt generation through 8 recombination of c h m o s m e s .  

In this work, the gemtic algorithm is used for “feature selection”. Feature selection is I 
technique thttt has been developed to attempt to idimtify an optimal subset of features that 
can predict another quantity, far example, with a neural network. In this application, we 
ue trying tu determine an optimal subset of geophysical logs that can predict hydraulic 
conductivity. This method works well if there exists L set of measured features that 
inform the prediction problem. If such features do not exist, then the measured va’lues 
will not be semitiva to any o f  the features used in the gredictim. This method was 
particularly suited for our problem of estimatinj~ hydraulic conductivity from geophysical 
logs, since we were constrained to work with a subset of the gmphysical measurements 
(see “Data and Dam Con5traint3’7, 

We used 3 s h p l a  gmtic a1godm1, POBBLE [Remves, ZOOla] to evolve a fed-forward 
n e m l  network, JUMBLE [Remm, 200.1bI ta solve the hyhuIic conductivity prediction 
problem. The general algorithm &odology consisted of running a simple genetic 
algorithm where each hdividual in the population specified the parameters and 
architecture of a feed-forward neural network P c r f m c e  meum5 such a5 mean- 
squared error, c&sicm-mtrjx v3he3, arid mal-network mhitecture were used to 
assign fitness values to Mach individual. The genetic algorithm then cvdved the 
papulatim of ptmtial  mlutims m d s  an optimal one. Specific isaucs regarding the 
algorithmic methodolosgy are addressed below. 

D&ht and Data Constrahts 
The dBtB consist of twelve distinct geophysical rneawclllents {Depth, Elevation, Natural 
Gamma, Long N o m 1  Resistivity, Short Normd hsistivity, Micro 1 Resistivity, Micro 
2 Resistivity, Porosity determined h m  neutron logging, Self Potentid, Sonic, 
Temperam, and Neutron) along nine borehoks (DH-5, DH-4, DH-7, DH-9, DH-12, 
DH-13, Mm-1, MU-2, and MU-3). The geophysical logs are collected on a 10 cm 
sampling htcrval, which is considerably smaller than the length of the packer intervals 
u a d  to measure hydraulic d u c t h h y .  This discrepancy in scala is addressed here by 
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. .  

defining the pophysical log m c a m m t s  within each hydraulic testing zone by'thc ' 

minimum, maximum, mean, and standard deviation of each log across the hydraulic test 
interval. The focus of th is  project ir tct u5e the geophysical logs collected at a h e  spatid 
resolutiw to predict hydraulic conductivity or ~~mm,issivity mewwed at a mush larger 
scale. Not only is the  vertical dimension of the hydraulic test mm much huger than the 
vertical dimension of the geophysical log m e a s m c n b ,  but the volume o f  the rock that. : 
is investigated by the hydraulic test may bemuch larger thm that investigated by the : 
geqhysical logging t d s .  

In order to gain s a m  npppmiatirsn of the volume of rack investigated by the geophysical 
108gi11g rno~ls, Figure 2 was construcM to provide rn idea of the vertical resolution of the 
logs a functim of the radius of invtstigati~n of the logs. The vmical resolution is the 
length of the rock parallel to the borehole over which the geophysical log rcesponsc Is 
avmged. The radius of inwstigatim is the d i s t m  into the rock mthogosnal tu the 
borehole length to which the geophysical log can m e w w  propmias. The beat possible 
geophysical lag would have B very fine vertical resolution with a deep radius o€ 
investigation. Such a log would plot in the lower right h d  cosmcr:of:Figuc 2. A3 can 
be gem from Figwe 2, very few logging tmls (e,g+, the deep laterlog) bxkt that have 3 
radius of investigation that is mater than the vertical resolution , 

. .  

0.25 2.5 25.0 250' ' 2500 

Figure 2. Radius of 'investigation and vertical resdutiofi of differwt geophysical logs 
Radius of Investigation (cm) 

( A h  Doveton and Olea, 2001) 
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Evolutiw of Neural Network fm the Prediction of Hydraulic Cmductidy 

Figure 2 shows the vertical resolution and radius of investigation for a number of the 
geophysical logs used at the Shobasma 3ik (the deep induction, EM propagaiim and 
deep latarlog are not used at the Shobamma site). Generally these logs have 3 vertical 
resolution of approximately 3-4 cm (mimIog resistivity) to 1 meters and I d i u 5  of 
investigation between 1 cm and 20 m (natrw). It i s  noted thmt the results ahown in 
Figure 2 were developed for carbonate and sandstone ro& (see Doveton d Oh., 2001) 
and may not apply exactly for the fractured granites Bt the Shrsbasama site. 

In addition to the geophysical logs, a borehole televiewer was w d  to count the number 
of“claar”, “open”, and “hairline” c m h  on one-meter intervals down the bwwhda. For 
each hydraulic test interval, the sum of the  different types of cracks d the totd number 
of cracks are recorded and used 33 input to the hydraulic conductivity prediction problem. 

For each hydraulic test hterval, a packer test had been perf& to meaaure hydraulic 
conductivity. The typicd hydraulic tist interval length is 6.5 meters. The hydraulic 
conductivity data set comisted of 137 such m e a s m m t s ,  (“went$’ in mcural network 
terns), with 51 measured geophysical log 3urnrnary statistics f‘fcatures” in neural 
network terms) per evtnt. The 51 pssibh fixtures me the minimum, maximum, mean 
and standud deviation of the individual log response within each hydraulic test zcmc for 
each of the twelve different logs plus the three different crack counts. 

Borehole MIU- 1, which had 20 events, was set aside as a test set  to be used in the 
validation phnse, and the r m w g  1 17 wenta were used as a training set to detemine 
the optimal input well log vdabbs  and to train the neural network. MIU- 1 ,ww chosen 
because it has a bmad range in hydraulic coductivities th3t could be used ta stress the 
n m l  network. Thus, the first god of this study is to develop a neural network t h t  cm 
predict membership of hydraulic conductivity in one of a amdl number of classes a 
new well. 

The cumulative distribution of measured hydraulic conduchity values are shown in 
Figure 3. Based on this plot, three dif’fhmt classcs of hydraulic conductivity were 
defined using the following boundaries (in ds): 

low K 5 2.m-10 
medium 2.OE-lOcK < l.OE-07 
high l.OE-07IK 

The number of events in each ~ 1 3 9 8 ,  h k e n  down by training d ksting (MIU-1) sets ia 
given in TabIa 1, 

Low K 
Medlum K 

Hlgh K 

Tralnlng Tmtlmg 
28 e 
71 11 
20 3 

Tabh 1: Number of each hydraulic crsnductivity class for the training md test sets. 
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'IdeaIly, here should be equal numbers of ever& in each of the c1asa~4'frsi the training set. 
For this training set, we had the option of removing 3ome of the medium conductivity 
measurements, but due to the already limited nmber of data, we ch05e not tc~ decrease 
the size of the trainhg set. 

1 .r 

0.2 

0. I 

Q.0 

.; 

. . .  

rn 

rn 

rn 

rn 

- .  

. .  . . . .  
! / .  

. .  
; :. , .  .!' 

, I , .  . / .  :,!: 
: i  I.;: . 
, ;  I . ;  ..i ... . .  . !  . . .  

. .  . .  . .  
' .  . .  . .  . .  
. .  

. . .  
I .  . .  

. . .  . .  

: .  . . .  , .  . 
, . . .  

. :  . .  

. . .  

:m . :  1 a 1~~~ I 5 ---OB I.€# 1.E-12 1.E-13 1.- .0 
K \ i r i r ' ~ j  

Rgurc 3; Measured hydraulic conductivity for the entire data set. The cwlorcd lines. 
indicate the bounds of the three d i h t  classes. 

The limited number of data points aIso creates a coastmint for the mural network 
architecture. A general rule of thumb is that 5 too10 training events are quirndfor  each 
weight in a neural network. For a fully connected neural network having ?NO hidden 
13yer3, the total number of weights is given by: 

Total Weights in.thc Neural Net 
Number of @ut Pwceptrons 
:Number o€ P e x w n s  in Hidden Layer 1 
Number o f  P c r c m n s  in Hidden Layer 2 
Number of PercapBons the Output Layer 
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The .rule o f  thumb indicates we can d y  use about 24 weights if we want tu develop a 
network that is not over trained to h e  point where it can give vary good reaultx on the 
training data but has almost no predictive power+ More weight3 than this can be expected 
to producc I network t h t  performs well cm the training aetbut fails on the teat set. 
Ideally wc would like to have twice this amount of training events since this is the l w e r  
limit of only 5 training event3 per weight. 

This observation hplies  that only a subset osf the measurements can be used afi input to 
the neural network, since each evmt has 5 1 features. Bemuse af this constmint, the Fore 
of this project focused m a search for an apt~ml subwt of measured features that could 
bc used to predict hydraulic conductivity. A s h p b  genetic algorithm wafi used to solve 
this combinatoris problem of determhing the optimal subset of measmd features. 

AigcMihm b e t a h  
A multilayer perceptron, I subset of kd-forward neural networks waa used in this study. 
This is in contrast to the radial basis fomulatim used by Wong and SWi [1998], who 
hied to h e l o p  B fimctional appmximtion fa pmeability fim well-log 
measurmmts. We chose a multi-layer perceptrm because they can be shown to be 
univmd function approximators, d because they 8te ideal for the solution a€ 
classificatim problems. 

Neural network parameters that wcrc held fixad are given in Table 2. The individuals in 
the p a t i c  algorithm population encoded additional parameters used to the n m l  
newark architecture, specific lemming and momentum parameten, the anneahg 
schedule, and the iubfiet of geophysical m s m m m t a  to use as inputs ta the mural 
network (see below). 

Parmete? Formulutiun 
Pcrccptron Function Logistic Function 
Training Methoddogy Standard Back Prqagatim w/ Mornenturn 
Back Propagation Update Rate Afhr Each Epoch 
La* Rate Annealed 
Weight kdtiahaticm Random Initial Weights 

Table 2. Neural network parameters and frmnuhtioa. 
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A single epoch is.a complete iteration of the training process where thi mor in 
estimating each hydraulic conductivity m s m t  is backpropogated ' h u @  the 
neural network and used to update the weights. Therefme 3 single eppoch results in 
assessment of all of the  mi@ events and a s in~ le  updating of the weights in the neural 
lldsvark, 

. . . . .  . . . .  . . .  

. . . .  
. . .  

Yi 

Figure 4. IMmitim of quantities pertaining to weight adjustments during training. 
where: 

q(a) Lcarning Rate at c p c h  PI. Thi3 value is usually adjusted downward aa the 
sirnuhtim progresses according to the annealing rule: 

yo InitidStepSizc 
. .  

rr, Annealing Cmtant . . . . .  . . .  . .  

. . . .  
. . . .  

. . . . . .  . . . . .  . . . .  

a Mmmtum Constant , Typically 0.5 < Q < 0+9... . 

The momentum constant aide3 in ovmming  bcd minima. The primary vducs 

pmxpmns, y, (n) . These valuk3 are defined differently depending on which layer of the 

. . .  

. affecting ?he weight adjustrnmt are the "local mor"+ 6, (m) , and the outputs'of tJ~e local 

. .  . . .  . . . . .  . .  . .  m a l  network they correspond to: . .  
. . . . .  . . .  . . . . .  

Input Layer 

y,(n) = feature, (PI) 
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H€dden Layer 

: . . .  ' :  yi [n) = f,(yt,(n)) 
. .  

. .  . . .  . . . . .  . .  . .  . . . . . . .  . . . . . . .  Output Layer 
. . . . .  

Yi In) = f, (w I")) 

and where 
. . .  . . . .  . .  

. . . . . .  . . . . . .  j ' " .  nel,(n)= Cwy(n)y,(n) : . . . . .  

. . . .  

. .  . . .  . . . . .  . .  
. . . .  . . .  . .  

. . . . . .  

1 used: f ( ~ t  (n)) = 
' .!.. j . . . . . .  . . . .  

. . . . .  . .  . .  . . .  . . . .  . . . .  

. . . . .  . .  . .  . .  . . . .  
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. . . . . .  . . . . . .  . . .  

. . .  . . . . .  

. .  . . .  
A simple genetic alprithm using stmdard muation, s e l d o n ,  and croi 
wa$ used to evolve the fke parametera ofthe neural hFtwork. The gembl; algorithm 
formu1dicm.i~ &own in Table 3 and Figure 5. Thevalues in T&la 3 arc t h  h m  

vcr operwcm ' :  

previous exptriem and values published in other ~3tudies. . . .  

. . . .  . . .  k '  . .  . . . . .  . . .  . . . . .  Creab. Initial 80lutiom 
. . . . .  

. .  
. .  

. .  . .  
. .  . . . . . . .  . .  . . . .  

Generate Ctfhpring 
' . j  

I 
. . .  3 e I a  Best 8dutlons 

Figure 5. S c h t i s  flow chartaf the genetic algorithm pmess,. . . .  . 
. .  . . . . .  . .  
. .  . . . . . . .  . . . . . . .  . . . . .  
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It should be stressed that these simulations are VET cmputatimally expansive due tD the 
cost of cornputq the Dbjective function of 3 single individual: constructing, initializing 
and then training a unique neural network. One significant dvmtage of genetic 
algorithms is that they can cmthue  to make progress using an approximation to a true 
objective function. This capability proved extremely valuable for this research. Far 
exmpla, it is pos,ssiblc to train the neural network for a “amall” number of epochs and jp$ 
a sense of the vdm of the neural network setup thm& the resultuq mean squared error. 
These shortcuts we valid within a genetic algo&htn framework, since we do not seek the 
optiml setup, rather> we wish to maintain a population with potential fw improvement in 
later gcnmtians. 

Pa-r Vmhe 
Population Size 400 
chromosome Length 
Probability of Mutation 
Selection Schema 
Toumament Size 
Crosssover Scheme 
Probability of Crossover 

73 @its) 
0.00 1 
Tcmmmmt Selection w/ Kqhccment 
4 
Uniform 
0.3 

Table 3. Genetic algorithm parameters and formulation. 
A major factor in training the neural network is the number of epochs of back 
propigation applied. Simulations showed that the neural network could continue to 
improve even after 3 few thousand iterations. However, a full genetic algorithm run 
using 2000 iterations per neural network q u i r e s  in excess of 6 horn  per neural network 
architectwe f m d a t i m  on 3 Sun Fire UltraSpm 2 workstation. This led us to apply a 
simple scheduIing to the first round of aimdatims (Table 4). 

4- 8 
9- 12 

400 
800 

Table 4. Scheduling of the rider epochs of back ppagat im used for It 

round of baseline simul~tions. 

Chrnomrnes of the individuals in the genetic alpnthm encoded the fhe parameters of 
the neural network. These conaiatd of 

Initial harnhg Rate (0,O - 4 4 3  Bits) 
1 Rate Decay Pmm (1-84 x Maximum Epochs, 6 Bits) 

I Subset of Geophysical Measurements to Input to the Neural Network (5 1 Bits) 
+ Momentum Parameter (0.4 - 0.9,3 Bits) 
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The chromoames were en~oded as binary [O;I] strings for a total of 73 bita per 
chromrssome. A Gray code, an dtemativc binary m m d h g  that only quires  3 single bit 
h g e  between successive integm, was wed for d l  the integer and real parameters to 
avoid Hamming Cliff3 where changes between one integer and the next q u h  all bits to 
c h g c  (e.g., for 3 four bit string, changing from 7 to 8 requires changing from 01 11 tw 
1000). The subset of m e u m m b  to we 3s inputs to the n m a l  nct was chosen using 
the bits as true/falsc values. 

ObJectlve Function Formulation 
Three objective functions were ultimately used to quantify the difference between the 
predicted and measured hydraulic conductivity classes. The fmt objective function was 
based m the man-squared mor computcd for the entire t h i n g  set after 3 given fmed 
period of training. The m w - s q d  error is defined 3s: 

Note that we have three distinct outputs representing the  three distinct classes. A penalty 
was applied to the MSE to define objective function 1 

? 

~ W F M  w* 
NZ*J 

Number of Weiats in Excess of the Maximum Allowed 
Maximum Number of Allowable Weights (Nzw’ = 24) 

The second term is simply the ratio of the number of excess weightts to the maximum 
number of weights. The m d m m  allowable number of weights was sat at 24 bwed on 
the data constraints discusad abwe. If there are no exce53 wights, the penalty term is 
z m  d the objective function is simple equal ta the MSE. 

A swmd objective function waa b a d  MI the ‘%onfusion matrix”. For classificatim 
problems, the “c0nfu5i~n matrix” shows W c f B d  versus h o w  c~asses, eg., consider 
the hypotheticd c o n h i m  matrix below: 
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Evolutiwt] ofNem1 Network for the Prediction of Hydraulic Conductivity 

In this example we 3ee that 16 low conductivity, 89 medium conductivity evmts, and 34 
high conductivity events were correctly predicted. The v d w  3 w y  k m  the main 
diagosnaI indicate e m n e w  predictions. We 3ge 2 law conductivity went~ were 
mistakenly predicted to be medium conductivity while 7 high conWvi ty  events were 
predicted to be mly medium conductivity. We wed the confusion matrix results to 
define Objective Function 2 ag follows: 

where, 
k q h Q d  Yumber of Confused Events: 

i# j  

The number c o n b e d  is simply the sum of the off-diagonals with the outer values 
counted twice {Le,, low conductivity predicted to be high andvice versa). Again, excess 
weights 3re penalized in the s m e  fashion 3s with MSE. 

The third a b j d v e  function used the MSE and two penalty terms that combine thc 
number of cxcc53 weights and the wnfuaian matrix: 

where, 
P Parameter for Pmdhhg Confused Vdaes (P = 0.01) 

The first penaIty term is the game a5 for Objective Function 1 ,  while the s e d  accounts 
for confused event  chis^. In affect, the second term increases the MSE by 1% for wary 
confused event. The value of P was chosen bwed on exmination of the results of 
several trial shulations. 

Resuh rnd blscusslon 
A h d  range of simulations were perkrmed in a atarch for a ne-t.mil network &hat could 
be trained with the limited data sct available, while still baing cap&k o f  predictmg m 
unseen training 3&, The sirrmlatios were run on 3 Sun Blade Unix workstatirm 
operating at 950 MHz. 
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Baseflns Slmul ims 
A baseline set of simulations was run to explore the impact of neural network architecture 
on performama. These simulations varied the number of h i d h  laym (one or two) md 
the number of pcrceptrw in the hidden layers. Figures 6a and 6b &ow convergence 
behavim for Objective Function 1. Likewise, Figures 7ab and F i v e s  8a,b show 
analog~us m5dt.3 for Objective Functions 2 and 3, respectively. These 3'muhtions took 
approxhtely 3 day3 o f  CPU time. The results are i n s ~ i v e :  

Independent of the objective function wed, we 3ee similar ccmvergmce behavior. 
All of the simulations demonstrate that the algorithm i s  making progress 
thoughout the sirnulation and that none of the configurations appars to stall 
within 12 genmtiosns. 

For 3 netwok with I single hidden layer, the aptiml number of percqmns (PE) 
in the hidden layer q p c m  to be b e .  

Far a nenvwk with two hidden kiyi~5, the optimal numbers of perceptrw in the 
upstream and downstream hidden layers appear to be two a d  three (2-3), 
respectively. The only exception is for Objective Functim 3 in the two hidden 
layer c35c {Figure 8151, that shows improved performance for 2 4  and 3-3 
perccptrons in the  upsmm-downsfieam hidden layers. 
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Figure 6. Objective Function 1 - Baseline SimulEtion. Best Solution vs. Genetic 
Algorithm Generation. MLP with 1 Hidden Layer (A) and 2 hidden layers (3), 

. The diffemt curves c0nespd . to  d i f fmt  numbers of pmqtrons in the . .  
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A closer examination of the ~ 3 d t s  underpbhg Figure #b shows that these low 
. objective function values reflect neural networks that significantly exceed the maximum 

" 

number'ofweights. After about eight gmerations we find that the penalty imposed by 
exceeding the maximum number of weights is smaller relativc to the pen& imposed by 

. .  the number of confused classes. After that point, the population of solutions evolved by 

. the genetic algorithm f a v m  large networks since they h v a  more degrees of freedom . .  . .  . . 

with whiCh'to fit the trainingdata. We see lower and lower MSE values, but I t  the . . 

expense of too many wights in'the aystem. 

. 

. . .  

Figures 9a,b, 1 Oa,b, and 1 1 a,b show the details of the be3t solutim (k, the fittest 
individual) €rm each of the baselhe shulatim, while T&le S gives the comsp~ndhg 
numerical values for a 3ubM of the results. Note that in these f i p s ,  not all solutions 

. . . .  . . . . .  . . .  . .  . .  

. . . .  . . . . .  . . .  . .  . .  

. . .  . . . .  . . .  . .  . .  . . .  . .  

Best Solution ObJ. Funetlm I 
Hldden Layem 

IO0 T I : "  . 1 I U  
5 

1 -  

0.1 -- 
. .  . .  0.01 . .  . 

PEs 

i 1.; 
C 

Best 8olutlon -0bj. Punetbn I .. . . . . .  . 
. . . . .  . . . .  

. . . .  . . .  . .  

loo 1 

. . .  . 7 . . .  " " " '  

. . . .  . . .  . .  
. . . . .  I 

MSE No. E m w  Obj. Vdue 

..:..Pigure . .  9: Objedvc Function 1. - Basdine Sirnuhtion. Best Solution Details. MLP 
with 1; hidden layer (A) mdiwith 2 hidden:layerz (€3). Zero values arc omitted. 
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. . . .  . . . .  
From Figure 10, which summarizes the details ofthe best sdutions.fm Objective 
Function I, we m e  that for Objective Function l d y  the configuration with 2 parcaptrons 
h a s  not need to rely cm a c e w  weights to achieve its be3t 8olutiosn. With two hidden 
laym, oily tht 3-2 md 4-2 configurations achieve their results without aces5 weights. 
We a l 5 0   not^ that two layers do not la ad^^ improved results, which is counterintuitive. 
These results most likely reflect the'fact that the  game number of epochs wa3 used, . 

mgardbsa of the number of hidden layers, and that the weights connecting the input hyyer 
to the upstream hidden layer respond more sbwly to back propagation thm the weights 
connecting the two hiddm layers. Thus, it may be that B nemork with two hidden layem 

. 

is a superior cdiguratim, but . .  .this advantage m y  be masked by the slower training . .  ' 

Besl nj. Functlon 2 
. . .  

- PES 

8 I :  
3 

I -  

. .  . - .  
. -  a 1  - 

' 0.01 ' ' I I '  r 

olurlo M: 
2 Hldden Lay i 

i -=- 
-. .. 

I 

M E  NO. Excess Obj. Value 
. . . .  

. .  Confused Weights 

2-3 
-A- 2-4 

3-2 

,+ 4-2 

. _  

+ .3-3 

. .  . . .  . .  
. . . .  . . . .  
. .  . . . .  . 
. .  . .  . .  

Figure loa Obj&tive Function 2 - Baseline Shulati&~ Best S~lution Details. MLP 
with 1 hidden layer:(A) and 2 hidden layers (E!). Zero values are omhted. 
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The behavior of Objective Function 2 is similar to that of Objective Function 1, with the 
single hidden layer conf~uratiosns wing fmer exces3 weiats h two hiddm layer 
architwttms, Again, a single hidden layer configuration pxfbrma best with 3 PE$ and a 
two hidden layer system does k 3 t  with a 2-3 PE configuration The samg rqsuIts are 
seen with Objective Fundon 3. Overall, these baseline simulation conQuratian5 
produced mural neiworks that h c r s m l y  predicts between 12-21 of the triining went. 
This is a relatively lwge pmmtagt of m r s  (1 0-1 8%) 

. . . . .  

. .  

:.Bert Solution - Obj. Functlon 3 
I : . .  
. . . . .  

I Hlddsn 
. . .  

I 
PEr 

. . . .  . . .  

Excess OL, hlue 
Weighta ' 

I 

1- c.. . . . .  

0.1 ' 4 -  
T- i Y 

I . .  

M$E :Ex~;ess Obj. Value . . . . . .  
. . . .  

. . . .  . . .  . .  

. .  

. . . . .  . . . . .  . . . .  
. . . .  . .  . .  . . .  . . . .  . . .  Figure 11, Objective Function 3 - Baselha Simulation. Beat Solution Details. MLP 

With 1 Hiddm Layer (A) and 2 hidden layers ('€3). Zero vdws are omitted 

. . . . .  . . . .  
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Table 5. Summary of Best Solution Details. Only results for 1 hiddm layer (3 PEs) 
and 2 hidden layer (2-3 PES) configur~tims m presented. 

Facured Slmuiatlons 
The baseline results led u9 to retry the best ccmfigmtions (1  hidden layer with 3 PES and 
2 hidden layers with 2-3 PE3) with more generations (1 3) and more epochs of bwk 
propagation training for the neural networks. The scheduling €or thest longer simulatirms 
i9 given in Table 6. 

Figure3 12,13+ and 14 Bow the results fix the focused sirnulatiom. All objective 
functions show that the genetic algorithm is rnaking very little props3  by 18 
generations. However, we do 5ce lowa objective finction values than the  shorter 
simulations. Like the &cuter, baseline simulations, we see little improvement when two 
hidden layers are used, despite the extended neural net training. S d a s  of these 
results are given in Table 7. Here we 5ee that all of the simulations ultimately sh&d 
toward larger networks and wed more than 24 weights to achicve their minimum 
objective fUnction values. 

4-8 
9-1 8 

400 
2000 

Table 6. Scheduling of the number epochs of back propaption used for the focused 
simulations. 
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Evolution ofNeara1 Natwork for the hdiction of Hydraulic Conductivity 

Best 8 _.__._.l -3J Funetlnn I 
. . . . .  . .  . .  Long Slmulatlons 

. . . . . . .  . . . . . . .  . . . . .  . . . . . .  

. .  . . . . .  . . . .  . . .  . . .  . . .  . . . .  . . . .  

. .  
~ 

. . . . . . .  . . . . . . .  . . . . .  

F€gure 12. Objective F L ~  . .  m 1 - Focused %mu1aticm. Best Solution of the 
: .  . . .  Generation fm Two Canfiptions.  

Beat 8duth1-  Obj Function 2 
. . .  . . . .  j Long Simulations 

. .  

. . .  I 
PEO . 

. . . . .  :-3 I 

. 

. .  
. . . .  
. . .  

Figure 13. Objective Function 2 - Focused Simulation. Bast Solution of the 
Generation fw Two Configurations. 

. .  . . . .  . .  
. . . . . .  . . . . . .  . . . . .  . . . .  . . .  . .  . . .  . . . . .  . .  . .  . . . . .  . . . . .  . . .  

. . .  . . .  
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Ev~iutiotl of Neural Network for the Prediction of Hydrasllic Conductivity 
. .  . .  

I I m 1bj 
Long Slmulatlms 

0 3 8 3 V 15 18 

Table 7. Summary of Best Solution Details for the Focus4 SiXnulatiom. Results we 
. . . . . . .  presented fix 1 hidden layer (3 PEa) and 2 hidden hyer (2-3 PES) . . . . . . .  . . . . .  

. configurations. 
Table 8 shows the features selected BS inputs ta the neura1 networks of the best solutions 
from the longer focused simulatirsns. There is some amount of variation between the 
features selected, but there is also 3 great deal of ccjmmonaliry. All or,rinearly all of thc 
neural networks wkctcd use: the following m a s m n t 3 :  

Short Normal - Standard Deriuim 
Microl-Maxhum 
Micro 1 - Standard Deviation 

I Porosity I- Maximum 
Self Potential - Minimum 

+ Sonic - Standard Deviation : . 

. .  

We can i d e r  thnt these measurements provide h e  best information far the hydraulic 
conductivity classification problem. It is notable thw Depth, Gammb Lang Normal, 
Temperature, and Crack Counts were virtually ignored by all solutions. 

33 

. . . .  
. . . . . .  . . . . .  . . . .  

. . . . . .  . . . .  . . . .  



. . .  . . .  . . . .  . . .  . . . .  
. .  . .  . .  . . . . .  . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . .  . . .  

Evolution of  Neural NeWorlf fm the Prediction of  Hydraulic Conductivity 

A3 rnentibned ~bove, the lbng, %mad shulathns all resulted hi n m l  neworb  with ' :  . 

excess weights (i.e,, water than 24). Thew netwmh run'the rhk that they will be 
o v d d  and not be capable afprcdicting a new dah set (1, e+, a data set that was not 
included in the  aahing). 

. .  

. . .  . . .  . .  . . . .  . . . .  . .  . .  . . . .  . . . . .  

. . .  . . . .  

Predict h e  Capa billties 
Wc have run cxtensivk testing on the  optimal solutions arrived at from the focused tern. 
Unfortunately, none of these sdutions is capable of accurately predicting even 50% of 
the hydraulic conductivity classes fiom the borehole that was withheld fm testing 
purpos~s. We tried training to various n d c r s  of epochs in ca3e the networks had been 
over trained in that s m e .  We tried eliminating weights frm the mtworh via wcight 
decay methds  (c.g., "optimal bnin damage")), We tried training with random noise 
added to the measured features in m attempt tu find a new globdly optimal mhirnm. 
Nmc of these efforts was successful. 

A typical example of this behavior is given below. We extracted a soldon from the 
Objective Function 2, single hiddm layer shulnttion thit used only 24 weights. This 
selcctim minimizes the potential that the network is over pwameterized Table 9 shows.: 
the patameters that w m  evolved fm this,netwmk t.oget.he~ with reaulta for tmhhg with 
4000 epoch of back propagation. Table :lo gives the features xlected BS inputs for this 
neurd network They represent a subset of the d m i m t  features selected by the o p t i d  
30l~tioas shown in Table 8, 30 thig solution i$ consistent with t h ~  optimal srslutions. The 

' : '  

. .  dominmt fmures fir this simulation me:: . .  
. . .  

1 Short Normal - Stmdard Deviation: . 

Micml-Maximum 
Micro 1 - Standard Deviation 

. .  . .  . . .  
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Evolution of Neursl Network for the Predictiou d f y h u l i c  Conductivity 

: Porosity - Maximum 
sollic - St€l.ndard Deviation 

The m5dimt confusion matrix for training is &own in Table 11. A total of 16 wanta we 
mis-classified. This is still a relatively high number (13.7% ). All but m a  a€ the 
predictions is within one class of its known class. Figure 15 shms the training results for 
this 5hUhti~m. The m m  are concentrated in the f i s t  2/3 of the training set. 
. .  . . .  

. .  PrrraM&F ,, Vt7hr 
Random Seed 0.004939 
Initial Learning Rntc 
Half Life 
Momentum P a r m e  
Maximum E n d s  
Final MS 
Input PEs 
Hidden L ~ y m  
Hidden Layer PEs 
Output PES 
Total Number of Weights 

2,635280 
60000 epoch 
0.334375 
4000 
0,O 2 7 4 2 44 X 
5 
1 
3 
3 
24 

: Tabb 10 Featurea selected ag inputs to the neural network for o m  of the $elutions 
taken from Objective Function 2, single hidden layer (3 PE), long 3imulaticm. 
Cdurnns for depth, elevation, d other geophysical mewwements are 
minimum, maximum, mean, and 3 t a n M  dwiatirm for the zone, reapectively. 
Crack coumnS are “clee~~’’, ‘Lopen’’, and ‘?I&’’, respectively. . . .  

medlum 4 85 2 .  
hlgh I 3 16 ’ 

. .  

Table 11. 0 l e  Function 2 - Confusion M m h  for the Training Set, 

. .  . . .  . . . .  . . .  
. .  . . . .  . .  
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Evolution of N d  Network for 'the Fredidon of Hydraulic Conductivity 
. . .  

. . . .  
. . . . . .  . . .  . . .  Tralnlng Rerub  

. .  ..__ 
. . .  . . . .  - 5 -  

U 
. -30 . I. I 

. . .  
1 21 41 #I . 81 ::Iu:l: ' ' 

. . . .  . .  
. . . .  . .  . .  Borehok Interval Number . . . . . .  . . . . .  

intire mining sit. . . .  

Figure 15, Typical T&hg R~~sults. Predicted values are shown in'ixdm. C m  
, values are in blwk, over predictions are in yellow and under predictions are 

. . .  :.blue, "Borehole Interval" refm to the hydraulic; test interval number in the: . . .  . . .  : 

. . .  . . .  

The last l/3rd of the training set conespcmds to the MU-2 d MIU-3 bareholm The 
poor tmmg results m y  indicate that MU-2 and MU-3 hould not be lumped together , 

with the DH bor&des, though this cmclusiw is cmly qualitative. 
. . . .  . .  

Table 12 and Figure 16 give the predictive results for this neural nctwork. Ebixdl thBt  
borehole MILL 1 is the, te3t 3et. The performme is vuy poor with 1 1 even13 
mificlassified and only 3 classified cm$Ctly. No predictions in the high permeability 
class were made whidhis no better than random chertlce. To mphs izc ,  these m d t s  m e  
typical of all the neural mtwoh we investigated. Training 3ucces3 w13 only mmginal 
a d  no network could be develrspd that was more than 90% accurate in training. None 
of the networks were capable of adequately predicting hydraulic conductivity classes o f  
the test borehole (MIU-1). 

' 

. .  mDWfl c/8&3 

PfUdiCkd 
as83 medium 

hlah 
. .  

Table 12, O b j d v t  Function 2 - Cmhsian Matrix far the Test Set. (Bmholk MIU- 
. . .  . .  . .  . . . .  . . .  . . . . .  . .  . .  

. .  
1)' 

. . . . . . .  . . . . . . .  

. . .  . . . . .  . .  . .  . . .  . . . .  
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Evolution of h’ieural Netwtmk for the Prediction of Hydraulic Crndwtivity 

-5 F 
Testing Rerub  (MIUt Bc-- hole) 

. .  
. .  . .  

. . . .  

I ”  I I I I .  

5 7 9 11 13 15 77 I 9  
Borehole Interval Number 

Rgurc 16. Typicd Testhg RewlB. Note: The test set is Bar&& MTU-1. Correct 
vdms m in black, over predictions are in yellow and under predictions are 
blue, ‘‘Barehole htmd” re- to the interval numberJ frm tap kt bottom, of 
the hydraulic tests done in granite for Borehole MIU-1 

. . . .  . 

. . . .  . . . .  . . .  . 
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Phase II Simulations: ' Transmissivity Estlmabn 
The initial part of this report (Phase I) described m algorithm that attempted to evolve m 
optimal set of input data for the  neural network (hwnselected from the set o f  5 1 possible 
measuremmts) while shultaneously atkmpting to optimize a set of parmeters for the 
resulting neural net. Each geophpical bcrrehole log yielded minimum, maximurn, mean, 
md standard deviation values for each hydraulic test interval. The Phase 1 simulations 
w m  designed to predict the class: high, d i u m  or low, of hydraulic conductivity. 

The Phase 1 approach w a s  not successfully completed since we failed to develop a n d  
network that could be used to predict the hydraulic cduc t iv i t y  measwd in a borrhok 
that had not been included in the training set. We hypothesize that th i5  failure m y  stem 
fim two sources of difficulty h ~ l ~ k g :  

Data: 

Algorithm: 

Mhhum and maxhum values of the geophysical 103s m y  be too 
noisy to provide informative measurements. Likewise, hydraulic 
conductivity does not a c c m t  for variations in the length of 
m s m m e n t  intwvals d all of the testing data were taken h m  
the same borehole. 

Raks of c o n m c e  in neural network training are impacted by 
parameter settings, architecture (numbw of hidden layers, number 
of inputs, and numbers ofparceptmns in each layer), and the 
predicthe value of the chosen inputs. It is probable that sdmtion 
of the neural network parameters and architecture we dominating 
the genetic algorithm and causing it tu sclcct neural mtwarks 
based m these factors .~vhile ignoring the value of which 
geophysical m m 3 m m t s  are being used as input to the neural 
networks in the prspuhtirm. 

We addressed h s c  two issues in turn, first by modifying the data get and hen modifying 
the numerical algorithm. With the exception of the  depth and elevation logs where the 
minimum and maximum of the inkma1 are still used, we replaced minimum and 
maximum values of the other geqhysical m e a m a t 3  with 5th and 951h percentiles. 
Additionally, transmissivity values ware computed as EL replacement for hydraulic 
conductivity in order to hcorporatc hydraulic test intend length. 

The new data set was run through the original algorithm with vkhdly  identical results: 
it was not possible to &vclop a neural network that w a s  capable ofpredicting bath 3 
training set and an unknown kst set (borehole MIU- 1). This msult cmfmed that the 
algorithm also needed modification. 
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We koupled  the 3 i d ~ c o s u s  search far apt~mal n e m l  network parameters and 
architecture f h m  the warch far informative geophysical logs. This w13 dme by breaking 
the simulations into two distinct tasks: (task a) identifying informative geophysical 
mmsurmmt5 and then (task b) *timizing n m a l  network pmmetm and architecture 
using the geophysical logs identified in the fist task (task a). This section present3 
results for Phase 11, task a. 

To identify important gmphysica1 logs, we fixed n d  network parmetem @e., hitid 
learning param&, half-life, momentum parameter and epochs of training) and 
constrained mHitecture3 to a limited range of me and two hidden layer networks with 4, 
5 , 6 , 7  or 8 hputi3. Thus, the chromosome used in the genetic algorithm only encoded 
which of the 5 1 geophysical measmmts  to UR 3s inputs for given individual (neural 
network) in the ppdatim. We pe15omd 3 s~ries of 3uch 3hulatiosns using 4,5,6,7: 
and 8 inputs and with either one or two hiddm layer neural networks. 

Resuh and Discussh3n 
Results of the Phase I1 s h d a t i m s  showing the reduction in the training MSE a3 a 
function ofthe number of GA genmtims are shown in Figure 17. Figure 17 shows that 
generally the larger the number of inputs the lower the training MSE b e c m ~ s .  The 
d i k n c a s  in MSE betwarn the one layer and two layer neural network results are less 
significmt than the differences caused by varying the number of inputs. 

Figure 13 shows two m m p b s  of the selection of the gmphysicd logs a3 I function of 
the number of GA genmtiwns. The progress of geophysical log adestion for 3 neural 
network with 4 inputs and 1 hidden layer is shown in the uppa  image and the log 
selection process for a neural network with 8 inputs and 2 hidden 1 3 ~ ~ 5  is shown in the 
lower image of Figure 13. The images in Figure 13 clearly show when a certain 
3eophy3icd measurement d i sphm mother 88 better and better neural networks are 
evolved. The results of the 109 selectkm process are surnrn~rizd in Tables 13 and 14, 
which are for the one and two hiddm layer neural networks, respectively. 

For one hidden laycr, the depth and smic log values are always selected u hputs, 
Results of the d h t  calculations show that these measwments are always selected 
w l y  during the simulations, indicating that their infixmation content with respect to 
transmissivity prediction is relatively high. It is notable that the  minimurn depth for ~n 
interval is always s&xted; whereas the 5th percentile, and standard dwiittiosn of sonic log 
values are chmcn, depending m h e  number of neural network inputs. Long n o m 1  and 
self-potentid logs are also chosen four out of five shuIations. However, the spedic 
attribute of the log-nomal and self potential geophysical lags that is selected is more 
variable than in the single-layer neural network results. Generally, the  95* percentile of 
these two logs within a hydraulic teat zone is selacted. Pomsity, temperature, and crack 
c m t s  are never selected. 

Far two hiddm laym, we dgo see that depth and sonic log values are mistcnt ly  
chosen. Self-potential again appears in four out of five simuIatiosns, but selection of the 
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lmg normal log occurs less cdcn than the single hidden. layer. In &-Ixx~, with two": 
hidden layers the range of m a s m m n t s  seladed is broad. Whereas temperature w 
ipored'in the singla hidden layer simUlaticm3, it appears in 3/5 of thhc two hiddpq layer 
ShU13ti~m3. However. simdat ta the singIe-layer case, porosiW md c m k  con 
selected. 

Table 15 presents h selection frequency m i e s  for Phase IIa simulations. F r m  
these mults, we c m  conclude that (a) depth and sonic logs are the  most informative 
measurements, ('b) long n o d  and self potential are makately infarmative, (E) p o m 3 1 ~  
arid crack counts da not infwm the t~ansmissivity prediction, and (d) elevation, gamma 
h r t  n m l ,  micro logs, temperature, and neutron strength do not appear to ,ccgtain 
significant informative value, but.cannot be cmpletely ignbred. 
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Evolution of Newd Netwwrk hithe Miction of Hydmulic Conductivity 
Measurernentn Selected . NN; Qjlnputs, t Layer 

Rgara 18. Example results of geophysical log selection using a GA. The population . . . 
. .  . 

. .  . . . .  . .  . . .  
size 0 f . h  GA ifi 400. . . . . .  . .  . . .  
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Ev~lution of N d  Network fir the pradiction of Hydraulic conduct iv i~  

Depth 

Elevadon 

Gamma 

Long Norm 

Shwt N o m  

Mia0 1 

Micro 2 

PorosiQ 

Self Pot.€!ritial 

Temp 

Neutron Skength 

Crack Cmntc 

4 Inputs 

1 Layer Neural Xetwork 

5 Inputs 6 Inpub 7 Inputs 3 Inputs 

min rnln rnin min min 

min mem 

95th 

5th 

5th 

95th 

95th 

std dev 

std dw 

95th 

5th 

95th 

a t d  dev 

mem 

mean 

95th 

5th 

5th 195th 

5th) std dev 

std dw 

Table 13: Results of the gersphysicd measurement selections far the single-hidden 
'Layer neural networks. 
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Depth 

Elevation 

Gamma 

Long Norm 

Short Norm 

Micro 1 

Micro 2 

PorQlity 

Self Patentid 

Sonic 

Temp 

Yeutroa Stwngth 

Crack Counts 

2 Layer Neural Network 

4 IllnpUtB 5 Inputa 6 Iapab 7 Inputu 8 Inputs 

min min min rniU mean 

rnin 

95th 

mean 

5th 

95th 

95th 

std dev 

95th 

5th 

95th 

95th 

95th 

5th 

3td dw 

95h 

95th 

5th 5th 

9 5 W  std dev 5th / 95th 

mean 95th 

std dev 

Tabla 14. RC3ult.s of the gmphysicd measurement selectiom fix two-hiddtn hyer 
neural nctworbrs. 
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. .  

. .  . . .  . . . .  . .  . .  . . . . .  . . . . . . .  . . . . .  

. .  

. . . . . .  . . .  . . . .  

Depth 

Elevatlon 

Gamma 

Long Norm 

Short Norm 

M h D  1 

M h o  2 

Porosity 

Sdf PoCntjal 

Sank 

Temp 

Neutron Strength 

Ccark Counttl . 

. . . .  . . .  . . . . .  . .  . .  . . . . . . .  . . . . . . .  
S~lectlhaFrequeacy . .  ' ' .  ' 
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2f5 

. . . .  . .  . .  . . .  . . . .  . . .  

515 

1 15 

. . . .  
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x 5  
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1 15 

1 15 

di5 
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1f5 

. . .  

. . .  . . .  

3/10 

. .  
410 , . . . I  . 

7Jfltl 

4/10 

. . . . . .  . . . .  

310 

310 

0110 

. .  
. .  

. .  . .  . . . . .  

Tabk 'i5.' 'Summary of selection €kqwmy o f  geaphygic.gl rne8s-t~ fm Phaw 
. .  . .  . .  

. . .  . .  . . .  . . . .  IIa simulations. . . . .  

Table 16 presents COIT&~CYII coefficienB for the data. These results indicate that'raw . .  

comelation codfi3ents between idhidual geophysical log m a s m m t s  and 
transmissivity are insufficient indicators of predictive value, since 3 sat of rnewuremts 
is med&fca the functiond approximticm problem, A blind = l i m e  on camlatian 
being above Oil0 would have cham both elevation and pomsity logs, which were 

. . . .  j j .  dem0nsmM to have no i n f m t i v e  value in the n d  network. . .  
. .  . .  

. . . .  . . . . .  . . . .  . . . . .  
. . .  . . . .  . . .  . . . . .  . . . . .  . .  . . . . . .  

. .  

. . .  . .  . .  . . . . .  

. .  
. . .  
. .  . .  . .  
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. .  
. .  . .  . . . . .  . .  . . . . .  

. . .  . . .  

. .  
. . . . .  . .  . .  . .  
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. . .  . . .  

. . .  Table 16, Correlation coefficients for the v m i m  geophysical meaa ~~~~~~ s, 
. .  . .  . . .  Cornlation was computed between mean values of geophysicd logs. 
. . .  . . . . .  

. .  

. .  

Phase 111 Simulations: Predictive Neural Networks 
Phase I1 simuIations idmtified optimal subset3 of the geophysical measurements for . 

inputs into neural networks (Tables 13 and 14). The focus of Phase 111 was tu attempt to 
develop an accurate, predictive n ~ m l  network that could use any af the optima1 subsets 
8 5  input. Each of the subsetts was tested. . .  

The data were divided k t a  training and testing sets chosen to  reflect a broad range of 
mewwed T values. The test set is comprised of 20 sm of p p h y s i c d  logs and 
trwiss iv i t ies  taken h m  a variety of wells 3t varying depths. The test data 3et was not 
chsen’by random. Rather, the picks were made to give a wide range of transmissivity 
valuea. Table 17 lists the wells d data intervals chosen fpr: the test data. The “We11 
Int&val” number is the hydraulic test interval for the individual bmhole c m t j n g  from 
the top down and only including the test intervals in the granite. The “Testing Inttrral” 
is the sequm~ial number of the interval in the entire k 5 t  data set and is used fbr graphing 
the results. 

. . . . . .  . . . . .  . . . .  

. . . . . .  . . . . .  . . . .  
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holuti~n of Neural Network for the Prediction of Hydraulic Conductivity 

we11 Well Interval Trangdsshlty 1 I In3 Interval 

DH- 12 2 -2.2 8 1 
DH- 12 3 -2.9 1 2 
DH- 12 5 -3.43 3 
MIU-2 4 -4.36 4 
MIU-1 17 -4.77 5 
MIU-3 15 -5.32 6 
DH-9 7 -5.70 7 

MIU-3 4 -6.04 3 
MIU-3 7 -6.7 3 9 
BH-5 11 -7.08 10 
MU-3 8 -7.17 11 
DH-7 7 -7.44 12 
DH-3 13 -7.92 13 
DH-3 2 -3 .O 1 14 
DH-6 11 -8.2 7 15 
DH-5 5 -3.29 16 
DH-5 9 -9.42 17 
DH-6 17 -9.5 5 18 
DH-6 19 -9.63 19 
DH-8 13 -10.33 20 

(log~~(rn~/aec)) 

Table i7, Well intervals chosen far the test data set. 

Slmulatlon Parameters and Setup 
The Phase I1 shulatim were run uskg the fixed training parameters listed in Table 18. 
Each optma1 subset of gmphysical logs (Tables 13 and 14) WEB wad as inputs tu a neural 
network, For each measurement 5-3, a suite of n m d  network whiitectures were tried. 
These included a single hidden layer with 2,3,4,5,6,  or 7 pmeptmns, 8 5  well ELS two 
hidden layer networb with a wide variety of p e p t m n s  in the upstream or d c n 4 - n ~ ~  

Thus, for e c k  optirnal geophysical log subset, EL total of 22 neural network architectures 
were mined, After Mach tmhhg atkmpt, t h ~  resulting weights were fixed and then the 
k3t [ w e n )  data ww run through the network to see what predictive value it had. 

~ J W S  (i,e,, 2-2,2-3,24,2-5, 3-2,3-3,3-4, 3-5,4-2,4-3,4-4,65, 5-2,5-3,5-4, 5-5). 

Ideally, we are seeking a network that can train to a low mean s q d - m o r  value, on the 
order of 1 .O (1 order of magnitude) or less and then mhieve a similar value during testing. 

Pa-? Yd#E 
Random S e d  0.0771695 
Initial Lemming Rate 0.005 
Half Life 50000 epwha 

Maximum Epochs 2000 
Momentum Parameter 0.9 

Tabk i8. Fixed p m & r  s e w  fm Phase III shuhtionfi. 
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Evolution of h h r a l  Network for the Pradiction of HydrsuSc Conductivity 

ResuMs and Discussion 
The upper image of Figure 19 presents a typical result for the 3ingk hidden layer scoping 
shulatians. The MSE of the training data can be 5een to decrease with m increasing 
number of weights. This behavior is expected, since a network can better fit the data wi?h 
more p a r m t ~ ~ ~  to adjust, However, the testing behavior displays a concurrent increase 
in MSE with network size. This dmmstrates that the training network is becoming 
o v m i n e d  such that it is tuned to the training data, but c m o t  extrapolate to new data. 
In any cme, the MSE achieved by training remains near 4.0, or a mean emr (not 
squared) of 2 orders of magnitude and doe5 not approach 3 smaller value. This behavior 
was fairly typical of d l  the single layer s~mulatsons. ~imulatims with more input values 
achieved better MSE’s during trainng, but this simply reflected the ever-increasing 
number of weights with which to fit the training data. In all cases the networks were 
overtrainined and unable to accurately predict the testing data. 

The lower image of Figure 19 presents mults for the two hiddtm-hyer simulations using 
4 inputs. The results are similar to the single layer case, but with more variation in the 
MSE trends. There is still a significant MSE after training, as well 83 ~l decrease in MSE 
with the number of weighis in the network. Likewise, the MSE for testing is higher still 
and tends to increase with the number of weights in the network. This behavior is typical 
across all the t w ~  hidden-layer shulations. 

Of note we two simulations where the training and tasting MSE are comparable. These 
correspond to 2 4  and 2-5 pmeptrons in the upstream and downstream hidden layers. 
These neural networks had 20 and 23 weights respectively. These values are at the upper 
limit of allowable weights (see discussion above) corresrsnding to the Iowa limit of 5 
training went5 per weight. Another series of simulatinns w a e  performed to see how the 
2-4 PE network p&ormed a3 the number of epochs of training varied. These results are 
shown in Figure 20. Unfortunately, we cannot achieve significantly lower MSE values 
with M e r  training. The mean emr (not squared) of the training data in Figure 20 is 
approximately 1.4 orders of magnitude. 

F&re 2 1 presents predicted t r k s s i v i t y  values of the test set  as well 3s the known 
values for 1000 and 2000 epochs of training, In both cases we see that thm is 
conditional bias in the predictions with high transmissivity values being underpredicted 
and low values being overpredictcd. Figure 22 present3 the comsponding training set 
values. This figure shows that the network is capturing “mem” behavior and losing 
fidelity at the extremes of the distribution. These re5ults may indicate that the training set 
contains too few extreme values 81s that the central values h m h a t t  training. Also, the 
neural network is an estimation algm-ithm and, a3 such, prwidcs estimates that are a 
smoothed representa~ion of the original input data. 

Despite concerted efforts in varying training pametem, network architecture and input 
data ~ e t 3 ,  we were unable to develop a neural network that could accurately predict all 
values of an m3een data set. 
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FIgare 21. Predicted transmissivity values for the 4-hput, 2-Layq 2-4 PE network 
after 1000 and 2000 epochs of training. 
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Flgure'22. Predicted transmissivity values of the training results for the 4-hput, 2- 
Layer, 2-4 PE network after 1000 and 2000 epoch9 of training. 

. .  . . . . .  . . . .  . . .  Conclusions . . .  

: '  In Phase I we attempted to evolve 3 newid network, imludiIig training parameters and 
optimal input rneBsmem that c d d  accmtdy predict the C m c t  class of a w of 
unseen measuremnt~. Despite a variety of attempts, these calculations were unable to 
a c m t e l y  predict the c o m t  hydraulic conductivity class. 

The mgntive results of Phage 1 Iw3us.h break the problem into two portirms: identifying 
the m05t informative set of h h l a  : m e a ~ m n t ~ ,  and then attempthg to optimize EL 
neural network that can use those identified features to predict hydraulic mamissivity. 
We refer to this work ag Phase 11. These shuhticms are 3 change from P h m  I in thatithe 
length of the hydraulic test interval is hmrprsrated into the procedure by estimating 
transmissivity instead of hydraulic conductivity as done in Phnsa I. Additionally, in the . 

Phase 11 calculations the actual value of the crsfithuaus p r q x m  is predicted rather than . .  . . 

just the class of the mag~rement. Results ofthe Phase I1 calculations show that depth, 
sonic log, long n d ,  and self-potential measuremats seam to  have the highest 
predictive . . .  value. 

After identifying the most Wmmtiva geophysical maasmmts, we attempted to 
develop a predictive n e w  e t w d  (Phase 111 experiments). These results may reflect 3 
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weak physical relationship between the memured values and hydraulic transmissivity (at 
least with respect to the mi% level of the mawemants),  or they m y  reflect an 
insufficient number of data pints  to train EL mural nctwork. An alternative explanation is 
that the borehde8 cannot be groupad together 8% a ai& training sei due to di f fer ing 
characteristics. We suspect the problm lies with insdficient training data since we 33w 
I relatively clear indication that the bast behavior was located iit the maximum number of 
weights relative to the training set aize. Perhaps additional measurementts would give a 
large enough datE set to t r h  a network to a d l e r  MSE without overtraining. 

Results of this work indicak that neural network prediction of hydraulic conductivity, or 
~ ~ ~ 5 i v i t y  using geophysical log measurements and the results of packer testlng is a 
difficult problem and more difficult than that of facies prediction DT prediction of 
permeability that is measured on a similar scale to that of the geophysical measurements. 
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