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Abstract

This report describes the methodology and results of a project to develop a neural
network for the prediction of the measured hydraulic conductivity or transmissivity in
a series of boreholes at the Tono, Japan study site. Geophysical measurements were
used as the input to a feed-forward neural network. A simple genetic algorithm was
used to evolve the architecture and parameters of the neural network in conjunction
with an optimal subset of geophysical measurements for the prediction of hydraulic
conductivity.

The first attempt was focused on the estimation of the class of the hydraulic
conductivity, high, medium or low, from the geophysical logs. This estimation was
done while using the genetic algorithm to simultaneously determine which
geophysical logs were the most important and optimizing the architecture of the
neural network. Initial results showed that certain geophysical logs provided more
information than others- most notably the “short-normal”, micro-resistivity, porosity
and sonic logs provided the most information on hydraulic conductivity. The neural
network produced excellent training results with accuracy of 90 percent or greater,
but was unable to produce accurate predictions of the hydraulic conductivity class.

The second attempt at prediction was done using a new methodology and a
modified data set. The new methodology builds on the results of the first attempts
at prediction by limiting the choices of geophysical logs to only those that provide
significant information. Additionally, this second attempt uses a modified data
set and predicts transmissivity instead of hydraulic conductivity. Results of these
simulations indicate that the most informative geophysical measurements for the
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prediction of transmissivity are depth and sonic log. The long normal resistivity
and self potential borehole logs are moderately informative. In addition, it was
found that porosity and crack counts (clear, open, or hairline) do not inform
predictions of hydraulic transmissivity.
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Introduction

The goal of this project was to develop a simulation tool capable of predicting hydraulic
conductivity, or transmissivity, from a set of geophysical measurements. Such a tool
could help minimize costs associated with site characterization through the identification
of informative surrogate measures that could replace expensive hydraulic tests. Itis
recognized that there will always be a need for down-hole hydraulic tests, but it might be
possible to reduce the number of tests necessary. or to better locate the tests that are taken
by using a predictive neural network.

Feed-forward neural networks are capable of performing high-fidelity classification and
function approximation, among other things (e.g., Principe et al., [2000].). We attempted
to develop a multi-layer perceptron (MLP), a form of feed-forward neural network that
could perform hydraulic conductivity prediction using borehole geophysical log
measurements as input features for the network.

In the past fifteen years, a number of applications of neural networks to borehole
geophysical problems have been reported. Most of these applications have been focused
on the estimation of facies types from geophysical logs. For example, Baldwin et al.
[1989 and 1990] used a neural network to identify eight different lithofacies in a
sedimentary sequence from eight different geophysical log measurements. Additional
work on the identification of lithofacies in a sedimentary sequence was reported by
Rogers et al. [1992] who used three geophysical logs: gamma, neutron and density, to
identify the occurrence of four different lithofacies.

A more difficult problem than that of facies identification is that of permeability
estimation. More recently, neural networks have also been applied to the problem of
estimating permeability from geophysical log measurements. Mohaghegh ef al. [1996]
used three log responses as well as X,Y and depth coordinates and geological
interpretation to estimate downhole permeability in a set of wells within a sandstone gas
reservoir. The results of the permeabilities estimated with the neural network agreed
favorably with the permeabilities measured on core-plug samples within the wells. Wong
and Shibli [1998] applied an “interpolation neural network™ to estimate permeabilities
measured on core-plugs in a petroleum reservoir. They used seven geophysical logs and
a facies description as input to the neural network. The results reported by Wong and
Shibli [1998] indicate that the neural network was able to reproduce the measured
permeability values and, most importantly, accurately predict the highest of the measured
permeability values.

In the current work, the problem of estimating hydraulic conductivity, or transmissivity,
in a fractured rock is attempted. This is a different problem from the previous work
mentioned above in that the scale of the hydraulic conductivity or transmissivity
measurement {meters) is very different from that of the geophysical logs (centimeters).
Additionally, the accurate measurement and estimation of hydraulic conductivity or
transmissivity in fractured rocks using borehole geophysical logs is very difficult, and to
the authors’ knowledge has not yet been reported.
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Neural Networks

Multilayer perceptrons (MLPs), a form of feed forward neural networks, are useful for
predicting classification or for performing functional approximation. Figure 1 depicts a
two hidden-layer MLP that has been configured to predict three classes of events (note
the three outputs) as a function of four measured properties (features). Their calculations
are relatively simple. Values are fed into the input layer and these are multiplied by
weights. The resulting values are fed into the next layer where “perceptrons™ are located
at each node in the network. At each perceptron, all inputs are summed and put through a
rescaling function (typically a logistic function, sigmoid function, or hyperbolic tangent
function). This continues through to the output layer. The perceptron at the output with
the largest value corresponds to the predicted class of the event.

Input Layer
Feature x, @ i SHpE K
Class 1
Feature x, {
Class 2
Feature x, () Class 3

O Perceptron
Feature x, (0 —— Connection

s Weight

Figure 1: Schematic diagram of a multilayer perceptron neural network. This example
has four inputs and three outputs with two hidden layers.

For functional approximation only a single output perceptron is used and its functional
form is simply linear. Thus, the network performs a transform that results in a functional
approximation of f(x,,x,,...x, )= y. It should be noted that MLPs with two hidden

layers are capable of universal functional approximation making them a very powerful
predictive algorithm.

Because the number of data points are limited, the neural network had to be relatively
small (i.e., with few weights). This necessitated a search for a few critical measurements
in the suite of geophysical logs that best inform the prediction of hydraulic conductivity
or transmissivity, Determining the best geophysical logs to use to estimate hydraulic
conductivity is not a simple problem. Examining the linear correlation of each
geophysical log measurement against the hydraulic conductivity is not effective as this
only examines one log at a time and it is the combination of different geophysical log

12
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responses that have the greatest chance of predicting the hydraulic conductivity. For this
work, a simple genetic algorithm was used to evolve a population of such neural
networks (i.e., their parameters, architecture, and a subset of geophysical logs to use as
inputs) in a search for an optimal one.

13
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Phase | Simulations: Predicting Hydraulic Conductivity
Classes

Algorithm Methodology

Genetic algorithms (See, for example, Goldberg [1989]) are a subset of evolutionary
algorithms particularly suited to optimization problems involving combinatoric difficulty.
They evolve a population of solutions that compete based on their ability to solve the
problem at hand. A single solution can be considered as an individual within a
population of solutions. Each individual’s problem-solving ability is measured and used
to assign it a “fitness” value. Fitness values determine the number of offspring each
individual solution produces for the next generation, in a simple approximation of
Darwinian evolution. Each individual in the population can be considered as a
combination of parameters that produce a particular solution. The parameter values in
each individual are encoded as a chromosome that encodes its particular solution to the
problem. “Mating” between offspring, combined with mutation, is then used to explore
the search space in the next generation through a recombination of chromosomes.

In this work, the genetic algorithm is used for “feature selection™. Feature selection is a
technique that has been developed to attempt to identify an optimal subset of features that
can predict another quantity, for example, with a neural network. In this application, we
are trying to determine an optimal subset of geophysical logs that can predict hydraulic
conductivity. This method works well if there exists a set of measured features that
inform the prediction problem. If such features do not exist, then the measured values
will not be sensitive to any of the features used in the predictions. This method was
particularly suited for our problem of estimating hydraulic conductivity from geophysical
logs, since we were constrained to work with a subset of the geophysical measurements
(see “*Data and Data Constraints”).

We used a simple genetic algorithm, POBBLE [Reeves, 2001a] to evolve a feed-forward
neural network, JUMBLIE [Reeves, 2001b] to solve the hydraulic conductivity prediction
problem. The general algorithm methodology consisted of running a simple genetic
algorithm where each individual in the population specified the parameters and
architecture of a feed-forward neural network. Performance measures such as mean-
squared error, confusion-matrix values, and neural-network architecture were used to
assign fitness values to each individual. The genetic algorithm then evolved the
population of potential solutions towards an optimal one. Specific issues regarding the
algorithmic methodology are addressed below.

Data and Data Constraints

The data consist of twelve distinct geophysical measurements {Depth, Elevation, Natural
Gamma, Long Normal Resistivity, Short Normal Resistivity, Micro 1 Resistivity, Micro
2 Resistivity, Porosity determined from neutron logging. Self Potential, Sonic,
Temperature, and Neutron) along nine boreholes (DH-5, DH-6, DH-7, DH-9, DH-12,
DH-13, MIU-1, MIU-2, and MIU-3). The geophysical logs are collected on a 10 cm
sampling interval, which is considerably smaller than the length of the packer intervals
used to measure hydraulic conductivity. This discrepancy in scale is addressed here by

14
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defining the geophysical log measurements within each hydraulic testing zone by the
minimum, maximum, mean, and standard deviation of each log across the hydraulic test
interval. The focus of this project is to use the geophysical logs collected at a fine spatial
resolution to predict hydraulic conductivity or transmissivity measured at a much larger
scale. Not only is the vertical dimension of the hydraulic test zone much larger than the
vertical dimension of the geophysical log measurements, but the volume of the rock that
is investigated by the hydraulic test may be much larger than that investigated by the
geophysical logging tools,

In order to gain some appreciation of the volume of rock investigated by the geophysical
logging tools, Figure 2 was constructed to provide an idea of the vertical resolution of the
logs as a function of the radius of investigation of the logs. The vertical resolution is the
length of the rock parallel to the borehole over which the geophysical log response 1s
averaged. The radius of investigation is the distance into the rock orthogonal to the
borehole length to which the geophysical log can measure properties. The best possible
geophysical log would have a very fine vertical resolution with a deep radius of
investigation. Such a log would plot in the lower right hand corner of Figure 2. As can
be seen from Figure 2, very few logging tools (e.g., the deep laterlog) exist that have a
radius of investigation that is greater than the vertical resolution

L’
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250 |——Gamma Ray == v
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Figure 2. Radius of investigation and vertical resolution of different geophysical logs
(After Doveton and Olea, 2001)
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Figure 2 shows the vertical resolution and radius of investigation for a number of the
geophysical logs used at the Shobasama site (the deep induction, EM propagation and
deep laterlog are not used at the Shobasama site). Generally these logs have a vertical
resolution of approximately 3-4 cm (microlog resistivity) to 1 meters and a radius of
investigation between 1 cm and 20 cm (neutron). It is noted that the results shown in
Figure 2 were developed for carbonate and sandstone rocks (see Doveton and Olea, 2001)
and may not apply exactly for the fractured granites at the Shobasama site.

In addition to the geophysical logs, a borehole televiewer was used to count the number
of “clear”, “open”, and “hairline™ cracks on one-meter intervals down the borehole. For
each hydraulic test interval, the sum of the different types of cracks and the total number
of cracks are recorded and used as input to the hydraulic conductivity prediction problem.

For each hydraulic test interval, a packer test had been performed to measure hydraulic
conductivity, The typical hydraulic test interval length is 6.5 meters. The hydraulic
conductivity data set consisted of 137 such measurements, (“events” in neural network
terms), with 51 measured geophysical log summary statistics (“features™ in neural
network terms) per event. The 51 possible features are the minimum, maximum, mean
and standard deviation of the individual log response within each hydraulic test zone for
each of the twelve different logs plus the three different crack counts.

Borehole MIU-1, which had 20 events, was set aside as a test set to be used in the
validation phase, and the remaining 117 events were used as a training set to determine
the optimal input well log variables and to train the neural network. MIU-1 was chosen
because it has a broad range in hydraulic conductivities that could be used to stress the
neural network. Thus, the first goal of this study is to develop a neural network that can
predict membership of hydraulic conductivity in one of a small number of classes in a
new well.

The cumulative distribution of measured hydraulic conductivity values are shown in
Figure 3. Based on this plot, three different classes of hydraulic conductivity were
defined using the following boundaries (in m/s):

low K<20E-10
medium 20E-10<K <1.0E-07
high 10E-07<K

The number of events in each class, broken down by training and testing (MIU-1) sets is
given in Table 1.

Training Testing

Low K 26 5
Medium K 71 11
High K 20 3

Table 1: Number of each hydraulic conductivity class for the training and test sets.

16
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Ideally, there should be equal numbers of events in each of the classes for the training set.
For this training set, we had the option of removing some of the medium conductivity
measurements, but due to the already limited number of data, we chose not to decrease
the size of the training set.

MIU Site K values

1.0
0.9
0.8
Q7 i
0.6
0.5
0.4

0.3 1

Cumualtive Frequency

02

0.1 1

a.0 e S = PR SR
1.E12 1.E-11 1.E-10 1.E-09 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04

K (m/s)
Figure 3: Measured hydraulic conductivity for the entire data set. The colored lines
indicate the bounds of the three different classes.

The limited number of data points also creates a constraint for the neural network
architecture. A general rule of thumb is that 5 tol0 training events are required for each
weight in a neural network. For a fully connected neural network having two hidden
layers, the total number of weights is given by:

 Weighis T PR PE T PE PE [ PE PE
:"\" = ('N P J"'J"a_v:-rl )+ (‘\ fayeri g ‘er'a_wy! )+ (3\ laverd ' ﬁrileﬂw)

st

where,
N Total Weights in the Neural Net
N.* Number of [nput Perceptrons
N Number of Perceptrons in Hidden Layer 1
N Number of Perceptrons in Hidden Layer 2

rPE
A
o a

Number of Perceptrons the Output Layer
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The rule of thumb indicates we can only use about 24 weights if we want to develop a
network that is not over trained to the point where it can give very good results on the
training data but has almost no predictive power. More weights than this can be expected
to produce a network that performs well on the training set but fails on the test set.
Ideally we would like to have twice this amount of training events since this is the lower
limit of only 5 training events per weight.

This observation implies that only a subset of the measurements can be used as input to
the neural network, since each event has 51 features. Because of this constraint, the core
of this project focused on a search for an optimal subset of measured features that could
be used to predict hydraulic conductivity. A simple genetic algorithm was used to solve
this combinatoric problem of determining the optimal subset of measured features.

Algorithm Details

A multilayer perceptron, a subset of feed-forward neural networks was used in this study.
This is in contrast to the radial basis formulation used by Wong and Shibli [1998], who
tried to develop a functional approximation for permeability from well-log
measurements. We chose a multi-layer perceptron because they can be shown to be
universal function approximators, and because they are ideal for the solution of
classification problems.

Neural network parameters that were held fixed are given in Table 2. The individuals in
the genetic algorithm population encoded additional parameters used to define the neural
network architecture, specific learning and momentum parameters, the annealing
schedule, and the subset of geophysical measurements to use as inputs to the neural
network (see below).

Parameter Formulation

Perceptron Function Logistic Function

Training Methodology Standard Back Propagation w/ Momentum
Back Propagation Update Rate  After Each Epoch

Learning Rate Annealed

Weight Initialization Random Initial Weights

Table 2. Neural network parameters and formulation.

The backpropagation algorithm is used to adjust weights during the training phase. For
standard backpropagation with momentum learning we adjust weights after each training
event has been processed (aka a single epoch) according to (See Figure 4):

W (n+ 1)= Wy (n) +n(n)s, (n}y ’ (n) +a [wﬁ (n) - Wy (n- l)j
Aw, = r;.r(n}a‘; {n)yj{n)+ a[wg.{n)—— Wy (n - I)J
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A single epoch is a complete iteration of the training process where the error in
estimating each hydraulic conductivity measurement is backpropogated through the
neural network and used to update the weights. Therefore a single epoch results in
assessment of all of the training events and a single updating of the weights in the neural

network.

net; Jilnety)

Jefnety)

j Yk

Figure 4. Definition of quantities pertaining to weight adjustments during training.

where:

n(n) Learning Rate at epoch n. This value is usually adjusted downward as the
simulation progresses according to the annealing rule:

n 17 = constant forn << n,
af=—L {

1+
Hy

n—0 forn >>n,

7, Initial Step Size
n, Annealing Constant

« Momentum Constant , Typically 0.5<a <0.9

The momentum constant aides in overcoming local minima. The primary values
affecting the weight adjustment are the “local error”, & (n), and the outputs of the local

perceptrons, y !(n). These values are defined differently depending on which layer of the

neural network they correspond to:
Input Layer

yl.(n} = feature, (n)
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3,(n)= none

Hidden Layer

vi{n) = £, (net,(n))

8, (n)=flnet,(n)) 36, (nhw, (n)

dossirea A

Output Layer

¥, (n} = f {nef) (n))
8,(n)=—f/(net, |:n]ldr ()=, (")]

and where

net,(n) = Z W, (n} y, (n}

npetream, §
f.(net.(n)) Perceptron Function. A logistic function was

|
used: £ {m?l’, {n )) - cxp{.ﬂl‘.‘-f.—{” ))

A simple genetic algorithm using standard mutation, selection, and crossover operators
was used to evolve the free parameters of the neural network. The genetic algorithm
formulation is shown in Table 3 and Figure 5. The values in Table 3 are taken from
previous experience and values published in other studies.

Create Initial Solutions

'

 E— Generate Offspring

Mutate 1
' Evaluate Solutions
Reproduce 1

L— Select Best Solutions

Figure 5. Schematic flow chart of the genetic algorithm process.
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It should be stressed that these simulations are very computationally expensive due to the
cost of computing the objective function of a single individual: constructing, initializing
and then training a unique neural network. One significant advantage of genetic
algorithms is that they can continue to make progress using an approximation to a true
objective function. This capability proved extremely valuable for this research. For
example, it is possible to train the neural network for a “small” number of epochs and get
a sense of the value of the neural network setup through the resulting mean squared error.
These shortcuts are valid within a genetic algorithm framework, since we do not seek the
optimal setup, rather, we wish to maintain a population with potential for improvement in
later generations.

Parameter Value

Population Size 400

Chromosome Length 73 (bits)

Probability of Mutation 0.001

Selection Scheme Tournament Selection w/ Replacement
Tournament Size 4

Crossover Scheme Uniform

Probability of Crossover 0.8

Table 3. Genetic algorithm parameters and formulation.

A major factor in training the neural network 1s the number of epochs of back
propagation applied. Simulations showed that the neural network could continue to
improve even after a few thousand iterations. However, a full genetic algorithm run
using 2000 iterations per neural network requires in excess of 6 hours per neural network
architecture formulation on a Sun Fire UltraSparc 2 workstation. This led us to apply a
simple scheduling to the first round of simulations (Table 4).

(iencration Number of Epochs of Back Propagation
0-4 200
4-8 400
9-12 800

Table 4. Scheduling of the number epochs of back propagation used for the first
round of baseline simulations.

Chromosomal Encoding
Chromosomes of the individuals in the genetic algorithm encoded the free parameters of
the neural network. These consisted of:

e [nitial Learning Rate (0.0 —4.0, 8 Bits)
e Leamning Rate Decay Parameter (1-64 x Maximum Epochs, 6 Bits)
o Momentum Parameter (0.4 - 0.9, 8 Bits)
e Subset of Geophysical Measurements to Input to the Neural Network (51 Bits)
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The chromosomes were encoded as binary [0:1] strings for a total of 73 bits per
chromosome. A Gray code, an alternative binary encoding that only requires a single bit
change between successive integers, was used for all the integer and real parameters to
avoid Hamming cliffs where changes between one integer and the next require all bits to
change (e.g., for a four bit string, changing from 7 to 8 requires changing from 0111 to
1000). The subset of measurements to use as inputs to the neural net was chosen using
the bils as true/false values.

Objective Function Formulation

Three objective functions were ultimately used to quantify the difference between the
predicted and measured hydraulic conductivity classes. The first objective function was
based on the mean-squared error computed for the entire training set after a given fixed
period of training. The mean-squared error is defined as:

5[z )j

SVENIT | el

MSE =
; SVEHIT
where,
& Desired Class (1 if correct, 0 otherwise)
c, Predicted Class (0 < ¢, < 1) (arbitrary units)
N Total Number of Traming Events

Note that we have three distinct outputs representing the three distinct classes. A penalty
was applied to the MSE to define objective function 1

Objective Function | = MSE + MSE - N "9 | e

ECENS i
where,

N Heighs Number of Weights in Excess of the Maximum Allowed

O eacesy

i Maximum Number of Allowable Weights (."v’,::f‘"’" = 24)

7 M
The second term is simply the ratio of the number of excess weights to the maximum
number of weights. The maximum allowable number of weights was set at 24 based on
the data constraints discussed above. If there are no excess weights, the penalty term is
zero and the objective function is simple equal to the MSE.

A second objective function was based on the “confusion matrix”. For classification
problems, the “confusion matrix” shows predicted versus known classes, e.g., consider
the hypothetical confusion matrix below:
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Known Class
low medium___ high
Predicted low 16 1 4
Class medium 2 89 7
high 19 3 34

In this example we see that 16 low conductivity, 89 medium conductivity events, and 34
high conductivity events were correctly predicted. The values away from the main
diagonal indicate erroneous predictions. We see 2 low conductivity events were
mistakenly predicted to be medium conductivity while 7 high conductivity events were
predicted to be only medium conductivity. We used the confusion matrix results to
define Objective Function 2 as follows:

\’ ur'(g.fu , ]\r In:g,’ﬂ"
confised LX0es8 * 7 man

Obfective Function 2= N + N

conficsed

where,

N Number of Confused Events:

k)
N tanﬁf?fd Zzlﬂ'b\ p 1# J
=l J=1

comifused

The number confused is simply the sum of the off-diagonals with the outer values
counted twice (i.e., low conductivity predicted to be high and vice versa). Again, excess
weights are penalized in the same fashion as with MSE.

The third objective function used the MSE and two penalty terms that combine the
number of excess weights and the confusion matrix:

Objective Function 3 = MSE + MSE - N "5 ¢ N weiehs

EANEPAE IRAY
) lr .
+ MSE - N oposesd P

where,
P Parameter for Penalizing Confused Values (P = 0.01)

The first penalty term is the same as for Objective Function 1, while the second accounts
for confused event classes. In effect, the second term increases the MSE by 1% for every
confused event. The value of £ was chosen based on examination of the results of
several trial simulations.

Results and Discussion

A broad range of simulations were performed in a search for a neural network that could
be trained with the limited data set available, while still being capable of predicting an
unseen training set. The simulations were run on a Sun Blade Unix workstation
operating at 950 MHz.
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Baseline Simulations

A baseline set of simulations was run to explore the impact of neural network architecture
on performance. These simulations varied the number of hidden layers (one or two) and
the number of perceptrons in the hidden layers. Figures 6a and 6b show convergence
behavior for Objective Function 1. Likewise, Figures 7a,b and Figures 8a,b show
analogous results for Objective Functions 2 and 3, respectively. These simulations took
approximately 3 days of CPU time. The results are instructive:

1)} Independent of the objective function used, we see similar convergence behavior.
All of the simulations demonstrate that the algorithm is making progress
throughout the simulation and that none of the configurations appears to stall
within 12 generations.

2) For a network with a single hidden layer, the optimal number of perceptrons (PE)
in the hidden layer appears to be three.

3) For a network with two hidden layers, the optimal numbers of perceptrons in the
upstream and downstream hidden layers appear to be two and three (2-3),
respectively. The only exception is for Objective Function 3 in the two hidden
layer case (Figure 8b), that shows improved performance for 2-4 and 3-3
perceptrons in the upstream-downstream hidden layers.
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Best Solution - Obj Function 1

A 1 Hidden Layer
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Figure 6. Objective Function 1 — Baseline Simulation. Best Solution vs. Genetic
Algorithm Generation. MLP with | Hidden Layer (A) and 2 hidden layers (B).
The different curves correspond to different numbers of perceptrons in the
hidden layer.
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Best Solution - Obj Function 2
A 1 Hidden Layer
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Best Solution - Obj Function 2
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Figure 7: Objective Function 2 — Baseline Simulation. Best Solution vs. Genetic
Algorithm Generation. MLP with 1 hidden layer (A) and 2 hidden layers (B).
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Best Solution - Obj Function 3 |
1 Hidden Layer |
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Figure 8. Objective Function 3 — Baseline Simulation. Best Solution vs, Genetic
Algorithm Generation. MLP with 1 hidden layer (A) and 2 hidden layers (B).
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A closer examination of the results underpinning Figure 8b shows that these low
objective function values reflect neural networks that significantly exceed the maximum
number of weights. After about eight generations we find that the penalty imposed by
exceeding the maximum number of weights is smaller relative to the penalty imposed by
the number of confused classes. After that point, the population of solutions evolved by
the genetic algorithm favors large networks since they have more degrees of freedom
with which to fit the training data. We see lower and lower MSE values, but at the
expense of too many weights in the system.

Figures 9a,b, 10a.b, and 11a,b show the details of the best solution (i.e., the fittest
individual) from each of the baseline simulations, while Table 5 gives the corresponding
numerical values for a subset of the results. Note that in these figures, not all solutions
have excess weights.

A Best Solution = Obj. Function 1
2 Hidden Layers
BN s st b i PEs
10 = —— 22
o ' —=— 2.3
3]
© 1 2-4
0.1 i
—k— 3-3
0-01 T il 4_2
MSE Ne. Excess Obj. Value
Confused  Weights
Best Solution - Obj. Function 1
B 1 Hidden Layer
100 ——— T - S SR R —— PES
10 5 [——2
o |
c_;; 1 —— 3
> 4
0.1 5
0.01 .
MSE No. Excess Obj. Value
Confused Weights

Figure 9: Objective Function | — Baseline Simulation. Best Solution Details. MLP
with | hidden layer (A) and with 2 hidden layers (B). Zero values are omitted.
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From Figure 10, which summarizes the details of the best solutions for Objective
Function 1, we see that for Objective Function lonly the configuration with 2 perceptrons
does not need to rely on excess weights to achieve its best solution. With two hidden
layers, only the 3-2 and 4-2 configurations achieve their results without excess weights.
We also note that two layers do not lead to improved results, which is counterintuitive.
These results most likely reflect the fact that the same number of epochs was used,
regardless of the number of hidden layers, and that the weights connecting the input layer
to the upstream hidden layer respond more slowly to back propagation than the weights
connecting the two hidden layers. Thus, it may be that a network with two hidden layers
1s a superior configuration, but this advantage may be masked by the slower training
speed of such configurations.

Best Solution - Obj. Function 2

A 1 Hidden Layer
100 e PEs |
. A ! |
10 f = |2
o ~ | |3
= 1 =i I 4
> / { g
0.1 = o7 — ‘ S
0.01 . - T T 1
MSE No. Excess Obj. Value

Confused Weights

Best Solution - Obj. Function 2

B 2 Hidden Layers

00 e PEs
—— 2-2
- L ~— 23
% 1 | : 2-4
g 0.1 | =0
' | —— 33
0.01 | = T= —a— 4-2

MSE No. Excess  Obj. Value
Confused Weights

Figure 10. Objective Function 2 — Baseline Simulation. Best Solution Details. MLP
with 1 hidden layer (A) and 2 hidden layers (B). Zero values are omitted.
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The behavior of Objective Function 2 is similar to that of Objective Function 1, with the
single hidden layer configurations using fewer excess weights than two hidden layer
architectures. Again, a single hidden layer configuration performs best with 3 PEs and a
two hidden layer system does best with a 2-3 PE configuration. The same results are
seen with Objective Function 3. Overall, these baseline simulation configurations
produced neural networks that incorrectly predicts between 12-21 of the training event.
This is a relatively large percentage of errors (10-18%)

A Best Solution - Obj. Function 3
1 Hidden Layer
100 | . i — PEs
10 ——2
g =3
@ 1] )
= 4
0.1 | e
001 ——= ' — ]
MSE No. Excess  Obj. Value
| i Confused Weights
B Best Solution - Obj. Function 3
2 Hidden Layers PEs
L —.—2-2
g 10 —a— 2.3
= 1 2-4
- —e— 3-2
0 o == 3-3

MSE No. Excess  Obj. Value
Confused  Weights

Figure 11, Objective Function 3 — Baseline Simulation. Best Solution Details. MLP
with | Hidden Layer (A) and 2 hidden layers (B). Zero values are omitted.
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Objective Function 1 Objective Function 2 Objective Function 3
1 Layer 2 Layer 1 Layer 2 Layer 1 Layer 2 Layer
3 2-3 3 2-3 3 2-3
MSE 0.02529 0.02583 0.03001 0.03433 0.022486 0.02628
No. Confused 16 17 19 21 12 16
Excess Weights 3 5 0 5 6 5
Obj. Value 0.02845 0.03122 19 25375 0.03077 0.03596

Table 5. Summary of Best Solution Details. Only results for 1 hidden layer (3 PEs)
and 2 hidden layer (2-3 PEs) configurations are presented.

Focused Simulations

The baseline results led us to retry the best configurations (1 hidden layer with 3 PEs and
2 hidden layers with 2-3 PEs) with more generations (18) and more epochs of back
propagation training for the neural networks. The scheduling for these longer simulations
is given in Table 6.

Figures 12, 13, and 14 show the results for the focused simulations. All objective
functions show that the genetic algorithm is making very little progress by 18
generations. However, we do see lower objective function values than the shorter
simulations. Like the shorter, baseline simulations, we see little improvement when two
hidden layers are used, despite the extended neural net training. Summaries of these
results are given in Table 7. Here we see that all of the simulations ultimately shifted
toward larger networks and used more than 24 weights to achieve their minimum
objective function values.

Generation Number of Epochs of Back Propagation
0-4 200

4-8 400

9-18 2000

Table 6. Scheduling of the number epochs of back propagation used for the focused
simulations.
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Figure 12. Objective Function 1 — Focused Simulation. Best Solution of the
Generation for Two Configurations.
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Figure 13. Objective Function 2 — Focused Simulation. Best Solution of the
Generation for Two Configurations.
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Figure 14. Objective Function 3 — Focused Simulation. Best Solution of the

Generation for Two Configurations.

Objective Function 1 Objective Function 2 Objective Function 3
1 Layer 2 Layer 1 Layer 2 Layer 1 Layer 2 Layer
3 2-3 3 2-3 3 2-3
MSE 0.02343 0.01737 0.02089 0.02558 0.02011 0.01762
No. Confused 13 1" 10 14 12 11
Excess Weights 3 9 9 7 30 o
Oby. Value 0.02636 0.02388 13.750 18.083 0.02755 0.02763

Table 7. Summary of Best Solution Details for the Focused Simulations. Results are
presented for 1 hidden layer (3 PEs) and 2 hidden layer (2-3 PEs)
configurations.

Table 8 shows the features selected as inputs to the neural networks of the best solutions

from the longer focused simulations. There is some amount of variation between the
features selected, but there is also a great deal of commonality. All or nearly all of the

neural networks selected use the following measurements:

Micro 1 - Maximum

Short Normal — Standard Deviation

Micro | — Standard Deviation

Porosity — Maximum

Self Potential — Minimum
Sonic — Standard Deviation

We can infer that these measurements provide the best information for the hydraulic
conductivity classification problem. It is notable that Depth, Gamma, Long Normal,

Temperature, and Crack Counts were virtually ignored by all solutions.
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As mentioned above, the long, focused simulations all resulted in neural networks with
excess weights (7.e., greater than 24). These networks run the risk that they will be
overtrained and not be capable of predicting a new data set (i.e., a data set that was not
included in the training).

Depth Short Normal Self Potential Cracks
Elevation iero 1 Senie
| ?amma r iero 2 | 'lrumperat.ura
Long Normal Porosity Neutron Stremgth

Ckj 1 1 °OCO OCO0 OCOC 0000 Q0001 T1C1 OCCO 0100 1C00 0301 0200 JT0C 200
Obj 1 2 30020 0COD 0501 0000 0001 2121 0C10 0120 1200 0001 0002 J10C C0C
Obj 2 1 0020 1000 0000 000D 0001 2181 0G0 0100 0010 0001 0200 4800 200
Obj 2 2 1020 0400 0500 0000 0100 2010 01C0 0100 1500 14001 0000 9800 $0Q
Cbj 3 1 20C0 0000 0CO0C 0000 2001 2181 0CCO0 Q120 1500 0001 0018 2208 $0Q
Cbj 3 2 T0CO0 0CO1 05O 0000 2001 C1C0 01CO 1120 1201 0001 0200 100 COC

Table 8: Features selected as inputs to the neural network for the best solutions from
the long simulations. Columns for depth, elevation, and other geophysical
measurements are minimum, maximum, mean, and standard deviation for the

17 &%

zone, left to right. Crack columns are “clear”, “open™, and “hair”, respectively.

The column immediately following the objective function refers to whether the
results are for the single hidden layer (1) or two hidden layer (2)
configurations.

Predictive Capabilities

We have run extensive testing on the optimal solutions arrived at from the focused tests.
Unfortunately, none of these solutions is capable of accurately predicting even 50% of
the hydraulic conductivity classes from the borehole that was withheld for testing
purposes. We tried training to various numbers of epochs in case the networks had been
over trained in that sense. We tried eliminating weights from the networks via weight
decay methods (e.g., “optimal brain damage™). We (ried training with random noise
added to the measured features in an attempt to find a new globally optimal minimum.
None of these efforts was successful.

A typical example of this behavior is given below. We extracted a solution from the
Objective Function 2, single hidden layer simulation that used only 24 weights. This
selection minimizes the potential that the network is over parameterized. Table 9 shows
the parameters that were evolved for this network together with results for training with
4000 epochs of back propagation. Table 10 gives the features selected as inputs for this
neural network. They represent a subset of the dominant features selected by the optimal
solutions shown in Table 8, so this solution is consistent with the optimal solutions. The
dominant features for this simulation are:

e Short Normal — Standard Deviation
e Micro | - Maximum
o Micro | — Standard Deviation
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e Porosity — Maximum
o Sonic — Standard Deviation

The resultant confusion matrix for training is shown in Table 11. A total of 16 events are
mis-classified. This is still a relatively high number (13.7% ). All but one of the
predictions is within one class of its known class. Figure 15 shows the training results for
this simulation. The errors are concentrated in the first 2/3 of the training set.

Parameter Value
Random Seed 0.004989
Initial Learning Rate 2.635290
Half Life 60000 epochs
Momentum Parameter 0.884375
Maximum Epochs 4000

Final MSE 0.02742448
Input PEs 5

Hidden Layers I

Hidden Layer PEs 3

Output PEs L

Total Number of Weights 24

Table 9. Objective Function 2 — Confusion Matrix for Solution X Individual

Depth Short Normal Self Potential Cracks
Elevation Micro 1 onic
‘ Gamma I Micro 2 T Temperature
| Long Normal Porosity Neutron Strength

Obj 1 1 0020 0200 0LG0 0000 0001 01C1 2000 0100 0203 001 $080 0G0 00O

Table 10 Features selected as inputs to the neural network for one of the solutions
taken from Objective Function 2, single hidden layer (3 PE), long simulation,
Columns for depth, elevation, and other geophysical measurements are
minimum, maximum, mean, and standard deviation for the zone, respectively.

Crack columns are “‘clear”, “open”, and “hair”, respectively,

Known Class

low medium high
Predicted low 20 6 4]
Class medium 4 65 2
high 1 3 16

Table 11. Objective Function 2 - Confusion Matrix for the Training Set,
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Training Results
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Figure 15. Typical Training Results. Predicted values are shown in colors. Correct
values are in black, over predictions are in yellow and under predictions are
blue. “Borehole Interval™ refers to the hydraulic test interval number in the
entire training set.

The last 1/3rd of the training set corresponds to the MIU-2 and MIU-3 boreholes. The
poor training results may indicate that MIU-2 and MIU-3 should not be lumped together
with the DH boreholes. though this conclusion is only qualitative.

Table 12 and Figure 16 give the predictive results for this neural network. Recall that
borehole MIU-1 is the test set. The performance is very poor with 11 events
misclassified and only 8 classified correctly. No predictions in the high permeability
class were made which is no better than random chance. To emphasize, these results are
typical of all the neural networks we investigated. Training success was only marginal
and no network could be developed that was more than 90% accurate in training. None
of the networks were capable of adequately predicting hydraulic conductivity classes of
the test borehole (MIU-1).

Known Class
low medium high

Predicted low ] 6 2
Class medium 2 5 1
high 0 0 0

Table 12. Objective Function 2 — Confusion Matrix for the Test Set. (Borehole MIU-
1)
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Testing Results (MIU1 Borehole)
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16. Typical Testing Results. Note: The test set is Borehole MIU-1. Correct
values are in black, over predictions are in yellow and under predictions are
blue. “Borehole Interval” refers to the interval number, from top to bottom, of
the hydraulic tests done in granite for Borehole MIU-I
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Phase Il Simulations: Transmissivity Estimation

The initial part of this report (Phase I) described an algorithm that attempted to evolve an
optimal set of input data for the neural network (downselected from the set of 51 possible
measurements) while simultaneously attempting to optimize a set of parameters for the
resulting neural net. Each geophysical borehole log yielded minimum, maximum, mean,
and standard deviation values for each hydraulic test interval. The Phase | simulations
were designed to predict the class: high, medium or low, of hydraulic conductivity.

The Phase 1 approach was not successfully completed since we failed to develop a neural
network that could be used to predict the hydraulic conductivity measured in a borehole
that had not been included in the training set. We hypothesize that this failure may stem
from two sources of difficulty involving:

Data: Minimum and maximum values of the geophysical logs may be too
noisy to provide informative measurements. Likewise, hydraulic
conductivity does not account for variations in the length of
measurement intervals and all of the testing data were taken from
the same borehole.

Algorithm:  Rates of convergence in neural network training are impacted by
parameter settings, architecture (number of hidden layers, number
of inputs, and numbers of perceptrons in each layer), and the
predictive value of the chosen inputs. It is probable that selection
of the neural network parameters and architecture are dominating
the genetic algorithm and causing it to select neural networks
based on these factors while ignoring the value of which
geophysical measurements are being used as input to the neural
networks in the population.

We addressed these two issues in turn, first by modifying the data set and then modifying
the numerical algorithm. With the exception of the depth and elevation logs where the
minimum and maximum of the interval are still used, we replaced minimum and
maximum values of the other geophysical measurements with 5th and 95th percentiles.
Additionally, transmissivity values were computed as a replacement for hydraulic
conductivity in order to incorporate hydraulic test interval length.

The new data set was run through the original algorithm with virtually identical results:
it was not possible to develop a neural network that was capable of predicting both a
training set and an unknown test set (borehole MIU-1). This result confirmed that the
algorithm also needed modification.
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Algorithm Modification

We decoupled the simultaneous search for optimal neural network parameters and
architecture from the search for informative geophysical logs. This was done by breaking
the simulations into two distinct tasks: (task a) identifying informative geophysical
measurements and then (task b) optimizing neural network parameters and architecture
using the geophysical logs identified in the first task (task a). This section presents
results for Phase II, task a.

To identify important geophysical logs, we fixed neural network parameters (i.e., initial
learning parameter, half-life, momentum parameter and epochs of training) and
constrained architectures to a limited range of one and two hidden layer networks with 4,
5.6, 7 or 8 inputs. Thus, the chromosome used in the genetic algorithm only encoded
which of the 51 geophysical measurements to use as inputs for a given individual (neural
network) in the population. We performed a series of such simulations using 4, 5, 6, 7.
and 8 inputs and with either one or two hidden layer neural networks.

Results and Discussion

Results of the Phase IT simulations showing the reduction in the training MSE as a
function of the number of GA generations are shown in Figure 17, Figure 17 shows that
generally the larger the number of inputs the lower the training MSE becomes. The
differences in MSE between the one layer and two layer neural network results are less
significant than the differences caused by varying the number of inputs.

Figure 18 shows two examples of the selection of the geophysical logs as a function of
the number of GA generations. The progress of geophysical log selection for a neural
network with 4 inputs and | hidden layer is shown in the upper image and the log
selection process for a neural network with 8 inputs and 2 hidden layers is shown in the
lower image of Figure 18. The images in Figure 18 clearly show when a certain
geophysical measurement displaces another as better and better neural networks are
evolved. The results of the log selection process are summarized in Tables 13 and 14,
which are for the one and two hidden layer neural networks, respectively.

For one hidden layer, the depth and sonic log values are always selected as inputs.
Results of the different calculations show that these measurements are always selected
early during the simulations, indicating that their information content with respect to
transmissivity prediction is relatively high. It is notable that the minimum depth for an
interval is always selected; whereas the Sth percentile, and standard deviation of sonic log
values are chosen, depending on the number of neural network inputs. Long normal and
self-potential logs are also chosen in four out of five simulations. However, the specific
attribute of the long-normal and self potential geophysical logs that is selected is more
variable than in the single-layer neural network results. Generally, the 95" percentile of
these two logs within a hydraulic test zone is selected. Porosity, temperature, and crack
counts are never selected.

For two hidden layers, we also see that depth and sonic log values are consistently
chosen. Self-potential again appears in four out of five simulations, but selection of the
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long normal log occurs less often than the single hidden layer. In general, with two
hidden layers the range of measurements selected is broad. Whereas temperature was
ignored in the single hidden layer simulations, it appears in 3/5 of the two hidden layer
simulations. However, similar to the single-layer case, porosity and crack counts are not
selected.

Table 15 presents the selection frequency summaries for Phase ITa simulations. From
these results, we can conclude that (a) depth and sonic logs are the most informative
measurements, (b) long normal and self potential are moderately informative, (c) porosity
and crack counts do not inform the transmissivity prediction, and (d) elevation, gamma
short normal, micro logs. temperature, and neutron strength do not appear to contain
significant informative value, but cannot be completely ignored.

14
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Figure 17. The training MSE for different neural network architectures as a function
of the number of GA generations.
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Figure 18. Example results of geophysical log selection using a GA. The population
size of the GA is 400.
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1 Layer Neural Network

4 Inputs 5 Inputs 6 Inputs 7 Inputs 8 Inputs
Depth min min min min min
Elevation min mean
Gamma 5th 5th
Long Norm 95th 95th std dev 05th
Short Norm 95th std dev
Micro 1 mean
Micro 2 mean
Porosity
Self Potential 95th 95th 5th / 95th 5th
Sonic Sth std dev 5th 5th/ std dev std dev
Temp
Neutron Strength std dev mean

Crack Counts

Table 13: Results of the geophysical measurement selections for the single-hidden

layer neural networks,
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2 Layer Neural Network

4 Inputs 5 Inputs 6 Inputs 7 Inputs 8 Inputs
Depth min min min min mean
Elevation min
Gamma 5th 5th
Long Norm 95th 95th std dev
Short Norm 95th 95th
Micro 1 Sth
Micro 2 95th
Porosity
Self Patential 95th 95th 5th 5th
Sonic mean std dev 95th 95th/ std dev 5th / 95th
Temp 95th mean 95th
Neutron Strength std dev
Crack Counts

Table 14. Results of the geophysical measurement selections for the two-hidden layer

neural networks.
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Selection Frequency
1 Hidden 2 Hidden Total
Layer Layers

Depth 515 505 10110
Elevation 25 145 310
Gamma 25 2/5 4710
Long Norm 45 3/5 7/10
Short Norm 25 2/5 410
Micro 1 115 1/5 2/10
Micro 2 1/5 1/5 2/10
Porosity 0¢5 0i5 0/10
Self Potential 45 4/5 8/10
Sonic 5(5 545 10/10
Temp 0:5 35 35
Neutron Strength 145 145 2/10
Crack Counts 0i5 0/5 0/10

Table 15. Summary of selection frequency of geophysical measurements for Phase
[Ta simulations.

Table 16 presents correlation coefficients for the data. These results indicate that raw
correlation coefficients between individual geophysical log measurements and
transmissivity are insufficient indicators of predictive value, since a set of measurements
is needed for the functional approximation problem. A blind reliance on correlation
being above 0.10 would have chosen both elevation and porosity logs, which were
demonstrated to have no informative value in the neural network.
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Table 16. Correlation coefficients for the various geophysical measurments.
Correlation was computed between mean values of geophysical logs.

Phase lll Simulations: Predictive Neural Networks

Phase 1 simulations identified optimal subsets of the geophysical measurements for
inputs into neural networks (Tables 13 and 14). The focus of Phase [II was to attempt to
develop an accurate, predictive neural network that could use any of the optimal subsets
as input. Each of the subsets was tested.

The data were divided into training and testing sets chosen to reflect a broad range of
measured T values. The test set is comprised of 20 sets of geophysical logs and
transmissivities taken from a variety of wells at varying depths. The test data set was not
chosen by random. Rather, the picks were made to give a wide range of transmissivity
values. Table 17 lists the wells and data intervals chosen for the test data. The “Well
Interval™ number is the hydraulic test interval for the individual borehole counting from
the top down and only including the test intervals in the granite. The “Testing Interval”
is the sequential number of the interval in the entire test data set and is used for graphing
the results.

Depth Efevation Gamma Long Shon Mieral Migrod Poresity sp Sonic Temp Meutron
Mo Norm
Flevation -01.969
Camima 0114 (.04
Long Normn 0,229 216 0118
Short Norm {217 0,198 0143 (1.933
Micrl 349 0,346 0151 0,500 0542
Micro2 (h363 0354 D180 1511 0571 0988
Parosity 0.356 1214 ZL158 -0.303 4355 L1290 0303
sP 041E 1411 -.137 N.426 (416 0,268 275 0,225
Same IANR 0%a 0139 0363 0383 s d 0.255 -0.556 -0.282
Temp 10,3839 () W8 0.140 0.253 0214 0447 (a4 2R 0304 0.245
Neutran 0294 246 -0.01E 0.565 (IR D428 0.456 -071E N.297 571 0.247
Transmissiviy AL 166 0114 D61 0025 -0.036 [iR)(r) RN I (.20 H192 0.141 (HDEd  H.161
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Well Well Interval  Transmissivity Testing Interval
(log10(m’/sec))
DH-12 2 -2.28 1
DH-12 3 -2.91 2
DH-12 5 -3.43 3
MIU-2 + -4.36 -
MIU-1 17 -4.77 5
MIU-3 15 -5.32 6
DH-9 7 -5.70 7
MIU-3 4 -6.04 8
MIU-3 7 -6.73 9
DH-5 11 -7.08 10
MIU-3 8 -T.17 11
DH-7 7 -7.64 12
DH-8 18 -7.92 13
DH-8 2 -8.01 14
DH-6 11 -8.27 15
DH-5 5 -8.29 16
DH-5 9 9.42 17
DH-6 17 -9.55 18
DH-6 19 -9.68 19
DH-8 13 -10.33 20

Table 17. Well intervals chosen for the test data set.

Simulation Parameters and Setup

The Phase Il simulations were run using the fixed training parameters listed in Table 18.
Each optimal subset of geophysical logs (Tables 13 and 14) was used as inputs to a neural
network. For each measurement set, a suite of neural network architectures were tried.
These included a single hidden layer with 2, 3, 4, 5, 6, or 7 perceptrons, as well as two
hidden layer networks with a wide variety of perceptrons in the upstream or downstream
layers (i.e., 2-2, 2-3, 2-4, 2-5, 3-2, 3-3, 3-4, 3-5, 4-2, 4-3, 4-4, 4-5, 5-2, 5-3, 5-4, 5-5).
Thus, for each optimal geophysical log subset, a total of 22 neural network architectures
were trained. After each training attempt, the resulting weights were fixed and then the
test (unseen) data was run through the network to see what predictive value it had.

Ideally, we are seeking a network that can train to a low mean squared-error value, on the
order of 1.0 (1 order of magnitude) or less and then achicve a similar value during testing.

Parameter Value
Random Seed 0.0771695
Initial Learning Rate 0.005

Half Life 50000 epochs
Momentum Parameter 0.9
Maximum Epochs 2000

Table 18. Fixed parameter settings for Phase Il simulations.
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Results and Discussion

The upper image of Figure 19 presents a typical result for the single hidden layer scoping
simulations. The MSE of the training data can be seen to decrease with an increasing
number of weights. This behavior is expected, since a network can better fit the data with
more parameters (o adjust. However, the testing behavior displays a concurrent increase
in MSE with network size. This demonstrates that the training network is becoming
overtrained such that it is tuned to the training data, but cannot extrapolate to new data.
In any case, the MSE achieved by training remains near 4.0, or a mean error (not
squared) of 2 orders of magnitude and does not approach a smaller value. This behavior
was fairly typical of all the single layer simulations. Simulations with more input values
achieved better MSE’s during trainng, but this simply reflected the ever-increasing
number of weights with which to fit the training data. In all cases the networks were
overtrainined and unable to accurately predict the testing data.

The lower image of Figure 19 presents results for the two hidden-layer simulations using
4 inputs. The results are similar to the single layer case, but with more variation in the
MSE trends. There is still a significant MSE after training, as well as a decrease in MSE
with the number of weights in the network. Likewise, the MSE for testing is higher still
and tends to increase with the number of weights in the network. This behavior is typical
across all the two hidden-layer simulations.

Of note are two simulations where the training and testing MSE are comparable. These
correspond to 2-4 and 2-5 perceptrons in the upstream and downstream hidden layers.
These neural networks had 20 and 23 weights respectively. These values are at the upper
limit of allowable weights (see discussion above) corresonding to the lower limit of 5
training events per weight. Another series of simulations were performed Lo see how the
2-4 PE network performed as the number of epochs of training varied. These results are
shown in Figure 20. Unfortunately, we cannot achieve significantly lower MSE values
with further training. The mean error (not squared) of the training data in Figure 20 is
approximately 1.4 orders of magnitude.

Figure 21 presents predicted transmissivity values of the test set as well as the known
values for 1000 and 2000 epochs of training. In both cases we see that there is
conditional bias in the predictions with high transmissivity values being underpredicted
and low values being overpredicted. Figure 22 presents the corresponding training set
values. This figure shows that the network is capturing “mean’ behavior and losing
fidelity at the extremes of the distribution. These results may indicate that the training set
contains too few extreme values so that the central values dominate training. Also, the
neural network is an estimation algorithm and, as such, provides estimates that are a
smoothed representation of the original input data.

Despite concerted efforts in varying training parameters, network architecture and input
data sets, we were unable to develop a neural network that could accurately predict all
values of an unseen data set.

47



Evolution of Neural Network for the Prediction of Hydraulic Conductivity

Predictive Value
1 Layer - 4 Inputs
5.0
= /,.——‘i—\._‘
3.0 - —#— MSE Training _
7 —a—MSE Testing |
20
1.0 —
0‘0 j T — T T —
0 10 20 a0 40 S0 60
Welghts
Predictive Value
2 Layer - 4 Inputs
_-_I'\-.‘!SE_Trai-ning A
4.0 —| 4 MSE Testing |- - . T
&
A * “ &
w 30 T B
2} a
=
2.0 L ) i s
n LI l. a® g ¥ n
10 ——M8MM—
DD T 1 . | }
0 10 20 30 40 50 60
Weights

Figure 19. Two examples of the change in MSE for the training and testing
calculations as a function of the number of weights in the neural network.
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Figure 20. MSE as a function of the number of epochs of training for the 4-input, 2-
Layer, 2-4 PE network.
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Figure 21, Predicted transmissivity values for the 4-Input, 2-Layer, 2-4 PE network
after 1000 and 2000 epochs of training.
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Transmissivity Training Results
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Figure 22. Predicted transmissivity values of the training results for the 4-Input, 2-
Layer, 2-4 PE network after 1000 and 2000 epochs of training.

Conclusions

In Phase T we attempted to evolve a neural network, including training parameters and
optimal input measurements that could accurately predict the correct class of a set of
unseen measurements. Despite a variety of attempts, these calculations were unable to
accurately predict the correct hydraulic conductivity class,

The negative results of Phase | led us to break the problem into two portions: identifying
the most informative set of borehole measurements, and then attempting to optimize a
neural network that can use those identified features to predict hydraulic transmissivity.
We refer to this work as Phase II. These simulations are a change from Phase I in that the
length of the hydraulic test interval is incorporated into the procedure by estimating
transmissivity instead of hydraulic conductivity as done in Phase I. Additionally, in the
Phase I1 calculations the actual value of the continuous property is predicted rather than
just the class of the measurement. Results of the Phase IT calculations show that depth,
sonic log, long normal, and self-potential measurements seem to have the highest
predictive value.

After identifying the most informative geophysical measurments, we attempted to
develop a predictive neural network (Phase IIT experiments). These results may reflect a
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weak physical relationship between the measured values and hydraulic transmissivity (at
least with respect to the noise level of the measurements), or they may reflect an
insufficient number of data points to train a neural network. An alternative explanation is
that the boreholes cannot be grouped together as a single training set due to differing
characteristics. We suspect the problem lies with insufficient training data since we saw
a relatively clear indication that the best behavior was located at the maximum number of
weights relative to the training set size. Perhaps additional measurements would give a
large enough data set to train a network to a smaller MSE without overtraining.

Results of this work indicate that neural network prediction of hydraulic conductivity, or
transmissivity using geophysical log measurements and the results of packer testing is a
difficult problem and more difficult than that of facies prediction or prediction of
permeability that is measured on a similar scale to that of the geophysical measurements,
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