
 

 
SANDIA REPORT 
 

SAND2003-4169 
Unlimited Release 
Printed December 2003 

 
 
Epetra Developers Coding Guidelines 

M.A. Heroux, P.lM. Sexton 
 

 
Prepared by Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 
 
Sandia is a multiprogram laboratory operated by Sandia Corporation, 
a Lockheed Martin Company, for the United States Department of Energy’s 
National Nuclear Security Administration under Contract DE-AC04-94AL85000. 
 
 
 
Approved for public release; further dissemination unlimited. 
 
 
 

 
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UNT Digital Library

https://core.ac.uk/display/71305999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 
 

Issued by Sandia National Laboratories, operated for the United States Department of Energy by 
Sandia Corporation. 

NOTICE:  This report was prepared as an account of work sponsored by an agency of the United 
States Government.  Neither the United States Government, nor any agency thereof, nor any of 
their employees, nor any of their contractors, subcontractors, or their employees, make any 
warranty, express or implied, or assume any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represent that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government, any agency thereof, or any of their contractors or subcontractors.  The 
views and opinions expressed herein do not necessarily state or reflect those of the United States 
Government, any agency thereof, or any of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from the best 
available copy. 
 
Available to DOE and DOE contractors from 

U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN  37831 
 
Telephone: (865)576-8401 
Facsimile: (865)576-5728 
E-Mail: reports@adonis.osti.gov 
Online ordering:  http://www.osti.gov/bridge  
 

 
 
Available to the public from 

U.S. Department of Commerce 
National Technical Information Service 
5285 Port Royal Rd 
Springfield, VA  22161 
 
Telephone: (800)553-6847 
Facsimile: (703)605-6900 
E-Mail: orders@ntis.fedworld.gov 
Online order:  http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online  

 
 

 
 
 
 
 
 
 
 
 
 
 

 
2 



SAND20034 169 
Unlimited Release 

Printed December 2003 

Epetra Developers Coding Guidelines 

Michael A. Heroux 
Computational Mathematics & Algorithms Department 

Sandia National Laboratories 
P.O. Box 5800 

Albuquerque, New Mexico 87 185 

Paul M. Sexton 
Department of Computer Science 

Saint John’s University 
Collegeville, Minnesota 5632 1 

Abstract 

Epetra is a package of classes for the construction and use of serial and distributed parallel linear 
algebra objects [ 11. It is one of the base packages in Trilinos [3]. This document describes 
guidelines for Epetra coding style. The issues discussed here go beyond correct C++ syntax to 
address issues that make code more readable and self-consistent. The guidelines presented here 
are intended to aid current and future development of Epetra specifically. They reflect design 
decisions that were made in the early development stages of Epetra. Some of the guidelines are 
contrary to more commonly used conventions, but we choose to continue these practices for the 
purposes of self-consistency. These guidelines are intended to be complimentary to policies 
established in the Trilinos Developers Guide [2]. 

3 



Acknowledgements: These coding guidelines draw heavily from the NOX Coding Guidelines 
[4], which in turn are adapted largely from Programming in C++, Rules and Recommendations, 
by Mats Henricson and Erik Nyquist [ 5 ] .  Valuable feedback was provided by James Willenbring 
and Alan Williams. 

t 

'6 

4 

9 

4 



Table of Contents 

1 . Introduction ............................................................................................................................... 6 

1.1 Guideline Categories ....................................................................................................... 6 

1.2 Grandfather Clause ........................................................................................................ 7 

2 . Structure of Files ....................................................................................................................... 7 

3 . Naming Conventions ................................................................................................................. 9 

4 . Formatting and Style .............................................................................................................. 10 

5 . Coding Rules ............................................................................................................................ 15 

6 . Explicit Type Conversions ..................................................................................................... 15 

7 . Error Handling ........................................................................................................................ 15 

8 . Output ...................................................................................................................................... 16 

9 . Comments ................................................................................................................................ 16 

References .................................................................................................................................... 18 

5 
I . 



1. Introduction 

This document describes guidelines for Epetra coding style. They are not intended to be rigid 
rules that must be mindlessly obeyed, or to enforce draconian notions of the one true way to 
program. Like any tool, their purpose is to help us be more productive. They are here because we 
have found them to be very useful and helpful. They are here because they give all Epetra code a 
cohesiveness and uniformity that makes it easier for us to read, write, and understand it. (One of 
the authors has personally been involved with refactoring some Epetra classes that he was not a 
designer or creator of. Guidelines such as these make an immense difference in the amount of 
time and energy required to understand a piece of code. Conversely, when things are 
inconsistent, it adds an additional obstacle to understanding what may already be a very complex 
program.) 

1.1 Guideline Categories 

Each guideline falls into one of three categories: 

(F] Very Strongly Recommended - Practices necessary for Epetra to build correctly, or 
considered of paramount importance. 

Strongly Recommended - Practices that are definitely a good thing, or that have 
proved to be valuable. [X 
Recommended - Practices that are probably a good idea; also cases where there is no I.1 clear “best” way, and we are merely standardizing on one. 

To determine which category a guideline belonged in, it was weighed along a two-dimensional 
scale. On one axis is the advantage it provides to the developers in terms of clarity, conciseness, 
etc. On the other axis is how badly things break if it is not followed. 

Most of these rules can be broken, if there’s a good reason for it. However, that said, it is rare 
that there is a good enough reason, and extremely rare with the guidelines in the strongly 
recommended and very strongly recommended sections. 

We realize that for many of the issues mentioned here, there is no one “best” way. (For example, 
indentation style.) But when all code follows the same formatting guidelines, that white space 
becomes a schema that conveys information about what that code does, and this information can 
be taken in while merely skimming a source file, without actually having to read through it all. 
The following quote is worth pondering, because we can draw direct parallels between the cows 
and Epetra developers, and between the cowpath and Epetra code. 

“The living language is like a cowpath: it is the creation of the cows themselves, who, having 
created it, follow it or depart from it according to their whims or their needs. From daily use, the 
path undergoes change. A cow is under no obligation to stay in the narrow path she helped make, 

6 



following the contour of the land, but she often profits by staying with it and she would be 
handicapped if she didn’t know where it was and where it led to.”’ 

* 1.2 Grandfather Clause 

When these guidelines were developed, Epetra was already two years old and quite well 
established. As a result, there may be numerous instances in existing Epetra code where these 
guidelines are not followed correctly, only partially followed, or outright ignored. This is an 
unavoidable consequence of the order in which the guidelines and the classes came about. It 
would be a massive undertaking to search through and fix all the inconsistencies that may exist, 
and this was not considered to be a good use of developer time & energy. Thus, all Epetra code 
written prior to December 2003 is “grandfathered in”, and the presence of any inconsistencies 
should not be seen as a weakness of Epetra. Nor should it be viewed as an excuse for new code 
to not follow the guidelines as closely as possible. 

2. Structure of Files 
Naming Conventions 

(F] 
(y) 

0 

0 

2.1 C++ header files end in . h and source files end in . cpp 

2.2 The name of the files should correspond to the name of the class they define, with an 
underscore after the word Epetra. For example, the definition of the class 
Epetra-BlockMap is in the file Epetra-BlockMap. h. 

Include File Structure 

2.3 Every include file must contain a mechanism that prevents multiple inclusions of the 
file2. For example, the following should follow the header information for the 
Epetra-BlockMap. h header file. 

(VSR] 

#ifndef EPETRA-BLOCKMAP-H 
#define EPETRA-BLOCKMAP-H 

. . .  body of i n c l u d e  f i l e  goes here . . .  

#endif / *  EPETRA-BLOCKMAP-H * /  

’ E.B. White. “The Living Language”, Writings From The New Yorker 1927 - 1976, HarperCollins, New York, 
1990. p.143. 
For the rationale of this, see the section titled ‘‘Include Guards” in: Bjame Stroustrup. The C++ Programming 

Language, SDecial Third Edition. Addison-Wesley, Reading, MA, 2000. $9.3.3, p. 2 16. 

7 



[ T I  0 2.4 Do not include system files (e.g., iostream) directly in your files. Instead, include 
Epetra-Conf igDef s . h. The goal is to better enable system portability since some 
machines have <iostream> and others have <iostream.h> and so on. Currently, we 
have the following system headers: 

o iostream 
o iomanip 
o stdio 
o stdlib 
o assert 
o string 
o math 

[SR-) 0 2.5 MPI is not handled directly by ConfigDefs, and so an Epetra class that uses MPI must 
still include the MPI system files (typically cmpi. h>). It is handled indirectly, though, so 
all uses of MPI should be done within an EPETRA_MPI conditional. 

#ifdef EPETRA-MPI 
#include cmpi.h> 
# inc lude '' Epe t ra-Mp i Comm . h" 
#endi f 

#ifdef EPETRA-MPI 

/ /  code for MPI version goes here 
Epetra-MpiComm Comm ( ) ; 

#else 

/ /  code for if MPI is not available (i.e. Serial build) 
Epetra-SerialComm CommO; 

#endif 

/ /  rest of code 
int numproc = Comm.NumProc(); 

The #else part is not always necessary, but the class should function either way. 
Remember that the inclusion of MPI-related header files must also be inside of an 
EPETRA-MPI conditional. 

#ifdef EPETRA-MPI 
#include <mpi.hz 
#include "Epe t ra-Mpi Comm . h" 
#endif 

r 

Y 

1 (7) 0 2.6 Definitions of classes that are only accessed via pointers (*) or references (&) should 
be declared using forward declarations, and not by including the header files. 

These are the cases when header files should be included in the header file: 

8 



o 
o 
o 

classes that are used as base classes, 
classes that are used as member variables, 
classes that appear as return types or as argument types in functiodmember 
function prototypes. 

Note the distinction between a class being used as a member variable, and a pointer or 
reference to a class being used as a member variable. In the first case, it should be 
included. In the second, it should be forward-declared. That same distinction also applies 
to return types and argument types. 

3. Naming Conventions 
0 

0 

0 

0 

3.1 Class names should begin with an uppercase letter. 
3.2 Class data members should end with an underscore (e.g., int IndexBase-). No other 
variable names should ever end with an underscore. 
3.3 Do not use identifiers that begin with one or two underscores ('-' or '-'). 
3.4 Accessor methods should have the same name as the attribute they access, sans the 
underscores. 

int someVar-; 
int somevar ( 1  {return (somevar-) ; } ; 

(.) 0 3.5 In names (function, class, variable, etc) that consist of more than one word, the words 
are written together and each word that follows the first is begun with an uppercase letter. 
(e.g., PointToElementList). 
3.6 Names should not include abbreviations that are not generally accepted. 0 

int Original-LDA; / /  Ok. (LDA = Leading dimension across) 
int New-RCD; / /  BAD! (RCD = Received Column Data?? 

Residual Creation Decision??) 

[ R ] 0 3.7 Choose variable names that suggest the usage. For example, consider the object being 
passed into this assignment operator as a right-hand side: 

Epetra-Data& Epetra-Data::operator = (const Epetra-Data& Source) { 

. . .  / /  copy attributes of Source into this 

return (this) ; 
1 

[R) 0 3.8 The name of the parameter for a copy constructor or assignment operator should 
either be the name of the class, or Source. 

9 

Epetra-Data& operator = (const Epetra-Data& Source) ; / /  Yes 
Epetra-Data& operator = (const Epetra-Data& Data); / /  Yes 
Epetra-Data& operator = (const Epetra-Data& In); / /  No! 



[y) 0 3.9 Variables used for loop counters should be named i, j , k, etc. in that order. 

for (int i = 0 ;  i c maxl; i++) { / /  outermost loop uses i 

for (int j = usersize; j > 0; j - - 1  { / /  next outermost uses j 
. . .  

I 
I 

4. Formatting and Style 
Classes 

4.1 The public, protected, and private sections of a class are to be declared in that order 
(the public section is declared before the protected section which is declared before the 
private section). 
4.2 Friend class declarations should immediately precede the private section, to 
emphasize that they too can access those members. (It is legal C++ for them to be 
declared anywhere in the class). 
4.3 The order functions are listed in the .cpp file should match the order they are listed in 
the class declaration in the .h file. 

[G-] 

[y] 

I.) 
Functions 

SR 1 0 4.4 Always provide the return type of a function explicitly. The value being returned 
should be enclosed in parenthesis. 

return i; / /  No! 
return (i) ; / /  Yes 

[R) 0 4.5 Functions with a return type of void should not use an “empty” return statement. 

void foo0 { 
. . .  
return; / /  No!! 

I 
void foe() { 

. . .  / /  Yes 

[y] 4.6 Always write the left parenthesis directly after a function name. There should be no 
spaces between the parenthesis and the expression inside of it. 

void foo 0 ; / /  No!! 
void foo ( ) ; / /  Better 

10 



I.] 4.7 When defining functions, the leading parenthesis and the first argument (if any) are to 
be written on the same line as the function name. If space permits, other arguments and 

Otherwise, each additional argument is to be written on a separate line (with the closing 
parenthesis directly after the last argument). 

I the closing parenthesis may also be written on the same line as the function name. 

4 

EpetraClass: :EpetraClass(int SomeReallyLongName, / /  No! 
double AnotherLongName, int YetAnotherLongName) { 
. . .  

I 
EpetraClass::EpetraClass( 

int SomeReallyLongName 
double AnotherLongName 
int YetAnotherLongName 

/ /  No! 

. . .  

EpetraClass : :EpetraClass (int SomeReallyLongName, / /  Yes 
double AnotherLongName 
int YetAnotherLongName) { 

. . .  

EpetraClass::EpetraClass(int ShortName, int ShortName2) { / /  Also ok 
. . .  

I 

[TI 4.8 Member definitions in constructors: Member definitions should be formatted as 
follows, each on their own line, with the colon preceding the first one, a comma 
following all but the last one, and the opening curly brace of the function body following 
the last one. 

EpetraClass::EpetraClass(int fool 
: SomeMemberVar- ( 0 ) , 
SomeOtherVar- (foo + 1) { 

. . .  
I 

I SR 1 4.9 Whenever possible, we prefer member initialization to assignment in the body of the 

I.) 
con~tructor.~ 
4.10 Functions that don’t take any parameters should use an empty parameter list, and not 
say void. This makes it harder to identify, as you have to read it to know if it’s void, or 
the name of a parameter. Leaving it empty makes it easier to spot while scanning. 

void foo(void); / /  No!! 
void foo0 ; / /  Better 

See Item 12 in: Scott Meyers. Effective C++, Second Edition, Addison-Wesley, Reading, MA, 1998. pp. 52 - 57. 

11 



Variable declarations 

0 4.11 Always define a pointer when you declare it. Either set it equal to an address in 
memory, or set it equal to zero. Do not declare a pointer and then leave it undefined, you 
never know if it will be accessed before you assign to it (This is not so much a problem 
now, when you’re first writing the code, but later, when you or someone else is 
modifying it). This goes both for local variables, and for class members in constructors, 
both in the constructor body and in member initializations. 

int* fooPtr = 0; / /  Yes 
int* fooPtr = new int [bar] ; / /  Yes 
int* fooPtr; / /  No!! 

0 4.12 The characters ‘ * ’  and ‘&’ should be written together with the types of variables 
instead of with the names of variables in order to emphasize that they are part of the type 
definition. Instead of saying that *i is an int, say that i is an int*. 

int *i; / /  No!! 
int* i; / /  Yes 

0 4.13 Only one variable per line. 

int i, j; / /  No!! 
int i; / /  Yes 
int j; 

This is mainly to avoid confusion resulting from mixing int and int* declarations. 

int* a, b; / /  a is an int*, but b is an int 

A similar confusion can result from mixing declarations and definitions for multiple 
variables. 

Loops and conditionals: if, for ,  while, etc. 

4.14 The opening parenthesis should be separated from the keyword by a space. This 
makes it easier to read, as the keyword and the parameters to it are separate typographic 
entities. 

if (/*Something*/) { / /  No! 
/ *  Stuff * /  

if (/*Something*/) { / /  Yes 
/ *  Stuff * /  

I 

0 4.15 There should be no spaces between the parenthesis and the expression inside of it. 
This goes for function parameters as well. 



if ( i < 5 { / /  No! 
/ *  Stuff * /  

1 
3 

w 

R ) 4.16 Use parenthesis to make code readable. 

Y 

8 

if (a == b && c < d 1 1  e == f) { 
/ *  Stuff * /  

1 

/ /  No! 

if (((a == b) && ( c  < d) 1 1  (e == f)) { / /  Yes 
/ *  Stuff * /  

1 

[y) 0 4.17 The block of any if statement should always follow on a separate line. 

if (/*Something*/) i++; / /  No!! 

if (/*Something*/) / /  Yes! 
i++ ; 

0 4.18 Braces (”{ }”) that enclose a block should be aligned as follows, with the opening 
brace on the same line, separated by a single space. The closing brace should be indented 
to the same level as the surrounding  statement^.^ 

[.1 

if (/*Something*/) { / /  Yes! 
i++; 
j + + ;  

1 
if (/*Something*/) / /  No! 

i++ ; 
j + + ;  

I 

1 
if (/*Something*/) / /  No! 

i++; 
{ 

j + + ;  
1 

This applies to all instances where curly braces occur (functions, scoping blocks, and 
conditionals). The advantage of this is in “smart” text editors that will show you where 

Historical note: The indent style we use is called “K & R style”, after Kernighan and Ritchie, who formatted the 
examples in K&R C this way. The second example is known as “Allman style”, named after Eric Allman, who 
wrote a good portion of the BSD utilities. It is also sometimes known as “BSD style”. The third example is known 
as “GNU style”, since i t  is used in the GNU utilities. 

13 



the opening of a closing brace is. In XEmacs, for example, you can have it highlight the 
opening brace. If that brace is off the screen, it will show that line in a one-line buffer at 
the bottom. If the brace occurs on its own line, this tells us nothing. If the brace occurs at 
the end of the preceding line, we will know which function or conditional we are at the 
end of. 

0 4.19 An else statement following an if should begin on the line following the i f  s closing 
brace. 

if (a c b) { 

} else { / /  No! 
/ *  Stuff * /  

/ *  Other Stuff * /  
1 
if (a c b) { 

/ *  Stuff * /  
1 
else { / /  Yes 

1 
/ *  Other Stuff * /  

4.20 Always include a default case in a switch statement, or in a sequence of if-elses. 
4.21 ‘‘Fall-thru”-behavior is better avoided. If it is used, it should be documented as such. 
4.22 If the body of a conditional is excluded, add a comment saying so. Otherwise fiture 
maintainers may erroneously assume that the following statement was meant to be 
associated with that conditional. 

Operators 

4.23 Operators should have a space on both sides of them. (The exception to this is G,e * 
and ti dereferencing operators). This makes it easier to distinguish which usage is 
intended. 

int* a / /  defining a pointer to int 
a * b / /  multiplying two variables 
*a / /  dereferencing a pointer 

4.24 The greatest source of confusion is the * and & operators, but these guidelines should 
be followed with all operators. 
4.25 When dereferencing a pointer, there should be a space in front of the ‘*’ or ‘&’, and 
no spaces between that and the variable name. A ‘* ’ with a space on both sides should be 
interpreted as the multiplication operator. 

classInst = *classPtr; / /  Yes! 
classInst = * classPtr; / /  No! 

4.26 Do not use spaces around ‘ . ’ or ‘- >’, or between unary operators and operands. 
4.27 Always provide a space on both sides of = signs and all logical operators. 

14 



Miscellaneous 

0 4.28 Each statement should be on a separate line, however small it may appear. 
4.29 Use the c++ mode in GNU Emacs to format code. Adding the following line to your 
.emacs file will help: 

(c-set-offset ‘substatement-open 0 )  
xi 

5. Coding Rules 
[ SR 1 5.1 A public member function should never return a non-const reference or pointer to 

member data. 
5.2 Constants should be defined using const or enum; never using #define. 
5.3 A switch statement should always contain a default branch that handles unexpected 
cases. 
5.4 Before deleting a pointer or pointer array, always check to make sure it’s not zero. 
Always set the pointer to zero after you delete the object it’s pointing to. [y] 

60 Explicit Type Conversions 
[ SR 1 0 6.1 C-style casts should never be used. Use static-cast, reinterpret-cast, and 

cons t-cas t instead. 

“C-style casts should have been deprecated when the new-style casts were introduced. 
Programmers should seriously consider banning C-style casts from their own programs. Where 
explicit type conversion is necessary, static-cast, reinterpret-cast, const-cast, or a combination of 
these can do what a C-style cast can. The new-style casts should be preferred because they are 
more explicit and more v i~ ib le .”~  

6.2 const-cast should be avoided as much as possible. When you need to modify an 
object that is logically const but not bitwise const, use the mutable keyword instead. 
6.3 In general, casting should be avoided, as the results are usually implementation- 
defined, and thus not portable. 

I.1 
IR1 

7. Error Handling 
7.1 Always check return values of hnctions for errors. 
7.2 In general, try to recover from errors, either by catching an integer return value, or by 
enclosing code in a try / catch block. 

c 

Bjame Stroustrup. B e  C++ Programming Language. SDecial Third Edition. Addison-Wesley, Reading, MA, 2000. 
gB.2.3, p. 819. 

15 



0 7.3 Epetra uses integer return values to notify the caller that an error occurred. The 
exception to this is functions that cannot return an int (such as constructors, void 
functions and functions returning an int*). They throw exceptions. 
7.4 If you must throw an exception, use the ReportError method defined in 
Epetra-Object . h. 

documentation. This should include which functions may throw exceptions, what error 
codes they return, and what each of those codes mean. For example: 

i 

[y] 
0 7.5 If your class/function throws exceptions, it must be mentioned in the class’s T Is.] 

Epetra-BlockMap constructors will throw an exception of an error 
occurs. These exceptions will always be negative integer values 
as follows: 

1. -1 NumGlobalElements c -1. Should be >= -1 (Should be >= 0 for 

2. -2 NumMyElements c 0. Should be >= 0. 
3. -3 Elementsize c =  0. Should be > 0. 
4. -4 Invalid NumGlobalElements. Should equal sum of MyGlobalElements, 

5. -5 Minimum global element index is less than index base. 
6. -99 Internal Epetra-BlockMap error. Contact developer. 

first BlockMap constructor). 

or set to -1 to compute automatically. 

I.) 8.1 Many of the Epetra base classes have a Print ( ) function defined. This prints out 
general information about the object and its state and variables. (For example, an 
Epetra - comm would print out information about the number of processors, and the local 
Processor ID.) Each implementation of that abstract base class implements the Print 
function by calling an overloaded iostream cc operator. It is recommended that users 
call the Print function, rather then trying to call the overloaded cc operator directly. 
8.2 Epetra does not have its own output mechanism, other than that described above. All 
output is done using standard iostream calls. 

(.] 

9. Comments 
9.1 We use Doxygen for the comments [6] .  However, a tutorial on how to use Doxygen is 
beyond the scope of this document. 
9.2 Always document every class, and every function in the header file. 

documented just like public functions. Putting a comment in the source code is not 
enough; there should be a Doxygen entry as well. This is invaluable to future maintainers 
(including yourself). 
9.4 If a file doesn’t contain the header or source for a class, like Epetra-DataAccess . h, 
it should still have a file-level Doxygen comment explaining what’s in that file. 
Functions, enums, etc. should also have comments given. 

9.3 Private / protected functions won’t be used by the user, but should still be c 

c 

16 



[y] 9.5 Any functions that throw exceptions should be documented, listing what will cause 
the exception, and what error code and message will be given. 
9.6 The return type of a function, and if it returns any error codes, should be documented. 
9.7 All parameters to functions should be listed in the Doxygen documentation. 

17 



References 

[ 11 Epetra Home Page: http://software.sandia.gov/trilinos/packages/epetra, 8 December 2003. 

[2] M. Heroux, J. Willenbring and R. Heaphy, The Trilinos Developers Guide, Version 1.0, 
Sandia National Laboratories, SAND2003- 1898, August 2003. 

[3] Trilinos Home Page: http://software.sandia.gov/trilinos, 8 December 2003. 

[4] NOX Developer’s Coding Guidelines: http://software.sandia.gov/nox/coding.html, 8 
December 2003. 

[5] Mats Henricson and Erik Nyquist. “Programming in C++, Rules and Recommendations”. 
http://www.doc.ic.ac.uk/lab/cplus/c++.rules/, 8 December 2003. 

[6] Doxygen Home Page: http://www.doxygen.org, 8 December 2003. 

18 

http://software.sandia.gov/trilinos/packages/epetra
http://software.sandia.gov/trilinos
http://software.sandia.gov/nox/coding.html
http://www.doc.ic.ac.uk/lab/cplus/c++.rules
http://www.doxygen.org


Internal Distribution: 
1 
1 
1 
1 
15 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
2 

MS 1110 
MS 9217 
MS 1110 

MS 9217 
MS 1110 
MS 1110 
MS 1110 
MS 1110 
MS 0316 
MS 0316 
MS 1110 
MS 0316 
MS 9217 
MS 9217 
MS 9217 
MS 0835 
MS 0826 
MS 9915 
MS 1110 
MS 1152 
MS 1166 
MS 1111 
MS 1111 
MS 1111 
MS 0316 
MS 0828 
MS 0316 
MS 0835 
MS 9217 
MS 0835 
MS 1110 

MS 9018 
MS 0899 

External distribution: 

Ken Stanley 
322 W. College St. 
Oberlin OH 44074 

D. E. Womble, 9214 
J. J. Hu, 9214 
J. M. Willenbring, 9214 
K. R. Long, 8962 
M. A. Heroux ,9214 
R. A. Bartlett, 9214 
R. B. Lehoucq, 9214 
R. Heaphy, 9215 
R. Hooper, 9233 
R. J. Hoekstra, 9233 
K. W. Kampshoff, 92 14 
R. P. Pawlowski, 9233 
R. S. Tuminaro, 9214 
T. Kolda, 8962 
V. E. Howle, 8962 
K. H. Pierson, 9142 
A. B. Williams MS, 8961 
A. J. Rothfuss, 8961 
H. K. Thornquist, 9214 
J. D. Kotulski, 1642 
C. R. Drumm, 15345 
K. D. Devine, 921 5 
A. G. Salinger, 9233 
E. T. Phipps, 9233 
G. L Hennigan, 9233 
C. C. Ober, 9233 
W. F. Spotz, 9233 
A. A. Lorber, 9141 
P. T. Boggs, 8962 
S. R. Subia, 9141 
D. M Day, 9214 

Central Technical Files, 8945-1 
Technical Library, 96 16 

Jason Cross 
Box 429 
St. John’s University 
Collegeville, MN 56321 



Paul Sexton 
Box 1560 
St. John’s University 
Collegeville, MN 56321 

Mike Phenow 
PO Box 1392 
St. John’s University 
Collegeville, MN 56321 

Victor Eijkhout 
Department of Computer Science, 
203 Claxton Complex, 1 122 Volunteer Boulevard, 
University of Tennessee at Knoxville, 
Knoxville TN 37996, USA 

20 


	Epetra Developers Coding Guidelines
	Abstract
	Acknowledgements
	Table of Contents
	1 Introduction
	1.1 Guideline Categories
	1.2 Grandfather Clause

	2 Structure of Files
	3 Naming Conventions
	4 Formatting and Style
	5 Coding Rules
	6 Explicit Type Conversions
	7 Error Handling
	8 Output
	9 Comments
	References
	Distribution List

