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Abstract

Collective systems are typically defined as a group of agents (physical and/or cyber) that
work together to produce a collective behavior with a value greater than the sum of the indi-
vidual parts. This amplification or synergy can be harnessed by solving an inverse problem
via an information-flow/communications grid: given a desired macroscopic/collective be-
havior find the required microscopic/individual behavior of each agent and the required
communications grid. The goal of this report is to describe the fundamental nature of the
Hamiltonian function in the design of collective systems (solve the inverse problem) and
the connections between and values of physical and information exergies intrinsic to col-
lective systems. In particular, physical and information exergies are shown to be equivalent
based on thermodynamics and Hamiltonian mechanics.
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Chapter 1

Introduction to Collective Systems

One way to describe collective systems is by way of a mechanics-based analogy. For exam-
ple, the aerodynamic coefficients (lift, drag, etc.) for a re-entry vehicle, such as the Space
Shuttle, moving from the exoatmosphere (which is modeled using rarified gas dynamics) to
sea level (which is modeled using continuum mechanics) are analogous to the parameters
that describe the dynamics of small numbers of robots to millions. Figure 1.1 depicts a
fluid mechanics analogy of a swarm of robotic agents. The basic controlling parameter is

Figure 1.1. Transition from discrete to continuum models (illus-
trative example)

the mean free path between collisions of molecules, which relates to the size of particles
(or robots) and density. To be specific, the mean free path is defined as [3]

λ =
1√

2πd2n̄

9



where

d = diameter of the molecule
n̄ = number of molecules per unit volume.

The mean free path determines the method used to calculate the aerodynamic coefficients
from rarified gas dynamics which models many individual molecules in a Monte Carlo set-
ting, through a transitional phase which mixes individual molecule models with continuum
models, to continuum mechanics. This analogy, robot diameter and robot density, leads
directly to the applications of statistical mechanics, continuum mechanics, calculus of vari-
ations, chemical kinetics, and quantum mechanics, which address the analysis of a single
particle (agent) to millions of particles (agents).

The basic mechanics-based strategy of analyzing and designing collective systems is pre-
sented in Figure 1.2. The fundamental building block is the Hamiltonian function which is

Figure 1.2. Flowchart describing mechanics based approaches
for collective systems

the total energy for conservative systems (i.e., external forces can be modeled as potential
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functions) [4]. In section B.2, the Hamiltonian will be redefined as the stored exergy in a
system based on an irreversible thermodynamics interpretation.

In general, these techniques can be divided into microscopic and macroscopic tools. Cal-
culus of variations and quantum mechanics are typically used for microscopic analysis,
whereas statistical mechanics and chemical kinetics are used for macroscopic analysis,
even though there exists some overlap among these techniques. Microscopic tools are
necessary to complete the inverse problem: transform the desired or designed macro-
scopic/collective behavior into the microscopic/individual behavior of each agent.

To be more specific, at the core of the mechanics-based strategy is Hamilton’s principle.
The Hamiltonian is a scalar function that is used to develop the evolution of dynamical
systems; these dynamical systems can be either deterministic or statistical. Hamilton’s
principle assumes that the systems under consideration are characterized by two energy
(stored exergy) functions: a kinetic energy and a potential energy. This paper utilizes the
extended Hamilton’s principle [5] which accounts for nonconservative forces to connect
Hamiltonian mechanics, irreversible and nonequilibrium thermodynamics, nonlinear con-
trol theory (from Lyapunov functionals), and self-organizing systems to collective systems
by way of information theory. The rest of this report develops the statistical mechanics
and calculus of variations pathways which culminate in equivalences between physical and
information exergies for equilibrium and non-equilibrium collective systems.

This report is divided up into 4 chapters and 4 appendices. In Chapter 1 collective systems
as well as microscopic and macroscopic tools were introduced. Chapter 2 applies these
techniques to equilibrium systems. Chapter 3 applies these techniques to time-dependent
and nonequilibrium systems. Chapter 4 provides a summary and recommendations for
future work. Appendix A presents Fisher Information. Appendix B defines exergy based
on thermodynamics, describes the connections between thermodynamics and Hamiltonian
mechanics, and then derives the necessary and sufficient conditions for stability, control,
and performance of nonlinear systems. Appendix C extends the nonlinear exergy/entropy
control design in Appendix B to collective systems. Appendix D introduces and defines
the concept of limit cycles for both linear and nonlinear systems and gives a new concept
for the investigation of extended eigen analysis for nonlinear systems as: “the power flow
principle of stability for nonlinear systems.”
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Chapter 2

Equilibrium Collective Systems

Statistical and continuum mechanics involve the analysis of the collective behavior of large
groups of objects, usually molecules, by relatively simple macroscopic means. Many math-
ematical and intuitive rules have been developed that allow relatively easy handling of prob-
lems that would become quickly intractable if particles were to be analyzed individually.

One of the simplest examples of these relationships is the ideal gas law, which provides
a simple algebraic relationship between the pressure, volume, and temperature of an ideal
gas. In reality, an ideal gas consists of many individual particles, on the order of 1020 mole-
cules per cubic centimeter, with the particles following much more complex relationships
than the ideal gas law itself. However, the application of statistical mechanics to derive a
continuum approximation, allows this otherwise intractable problem to be handled easily.
This is accomplished by generating a Hamiltonian, forming a partition function, and cal-
culating the mean values. This framework is used to solve an inverse control problem. The
inverse control problem involves envisioning a collective behavior of a swarm of robots that
is desirable, and from this, determining the set of rules that individual robots must follow
to produce the desired swarm behavior in the form of interaction potential fields.

To demonstrate these concepts with an example, it is given that a swarm of robots will be
used to search a volume for a target (see Fig. 2.1). One can analyze the long term (as t →∞)
collective behavior of the robot swarm by analogy with equilibrium thermodynamics. The
application of statistical mechanics begins with generating a Hamiltonian for an ideal gas
of non-interacting (non-communicating) robots within an empty volume (see Fig. 2.2).

H = T +V = E =
N

∑
i=1

p2
i

2m
+V (r) (2.1)

followed by forming a partition function [8]

Z =
Z Z

e−βE d f pd f r
h f =

1
N!

[Z Z
e−β(p2/2m+V ) d3pd3r

h3

]N

(2.2)

13



Figure 2.1. Source/target detection and localization

where V = 0,β = 1
kT ,T = temperature which implies

Z =
1

N!

[(
2πm
h2β

)3/2

V

]N

culminating in the calculation of the ideal gas law from the mean values

p̄ = 1
β

∂ln
∂Z Z = 1

β

∂

∂V

[
ln( 1

N!)+ ln
(

2πm
h2β

)3N/2
+NlnV

]
= 1

β

N
V

p̄ = NkT/V

(2.3)

where p̄ is pressure, N is the number of robots, k is the Boltzmann constant (scaled for our
robot problem), V is the volume, and T is the temperature. For this application, the search
space is equivalent to the volume, and the temperature is equivalent to information flow
(rate) being derived from the sensors on the individual robots. The temperature equivalent
can be derived in at least two ways.

The first way is to recognize that the kinetic energy is proportional to temperature at equi-
librium which can be simplified to one-dimension (1D) as [3]

Tave =
1
2

mẋ2
ave =

1
2

kT

14



Figure 2.2. Collection of non-interacting robots in limited vol-
ume box

which leads to

T =
m
k

ẋ2
ave

and

ẋave =

√
kT
m

.

The obstacle detection sensor systems on each robot must have a sampling rate and channel
capacity (Shannon information/entropy) sufficient to detect the walls of the search volume
and redirect each robot to produce an emulation of an elastic impact. Figure 2.1 presents
the layout of obstacles, walls, and sources/targets that will be used throughout this section.
Figure 2.3 shows a simplified 1D model to support the determination of the bandwidth
(∆ f ), number of bits (n), channel capacity (Cave), and Shannon information/entropy rate
(Ḣave) [6]. This results in

∆ f = 1
τ

= ẋ
range = ẋ

10 meter = 0.1 ẋ Hz

n = range
resolution = 10 meter

1 meter = 10 bits

Cave = 1
τ

log2 n = Ḣave (bits/sec).

(2.4)

The second way is to utilize Fisher information. From (A.7) in Appendix A, it is observed
that

Iave =
8
m

Tave = 4ẋ2
ave (2.5)

15



Figure 2.3. Sensor system requirements

and

Iave =
8
m

[
1
2

kT
]

= 4
kT
m

(2.6)

which gives

T =
m
4k

Iave (2.7)

where Iave is the average Fisher information. Also, Frieden [7] provides another set of
relationships for Fisher “temperature” as

1
Tθ

≡−kθ

∂Iave

∂θ
(2.8)

where θ is any parameter under measurement and Fisher information per molecule for an
ideal gas in a volume is

Iave

N
=

kT
kETE

(2.9)

with θ = E and 1
T ≡ ∂S/∂E.

For a volume, Tave = 3
2kT and Iave = 12

m kT which produces

T =
m

12k
Iave

16



and

Iave

N
=

12
mN

kT ⇒ 1
kETE

=
12
mN

=−∂Iave

∂E
.

Returning to the ideal gas law, it is time to investigate the implications for the robot swarm.
A necessary condition for all of the robots to swarm the target is for the pressure to be
zero ( p̄ = 0). This condition means that no robots hit the “walls” of the search volume.
From (2.3) it is observed that the condition of p̄ = 0 is possible if T = 0, meaning no
information is being derived from the sensors since the robot is not moving. The pressure
will also be zero if V = ∞, meaning an infinite search space exists.

The next step in the equilibrium analysis is to add a limited range attractive source/target
(i.e., chemical plume) in the search volume (see Fig. 2.4). Following the same process

Figure 2.4. Collection of non-interacting robots (non-
communicating) in limited volume box with a limited range at-
tractive source

above, the Hamiltonian is generated for an ideal gas of non-interacting (non-communicating)
robots within a volume containing a target

H = T +V = E =
N

∑
i=1

p2
i

2m
+V (r) (2.10)

followed by forming a partition function

Z =
1

N!

[(
2πm
h2β

)3/2Z
e−βV (r)d3r

]N

V (r) =
{
−Vo + γ r , 0≤ r≤ rs
0 , rs ≤ r≤ R

17



γ =
Vo

rs

(see Fig. 2.5 for plot of V (r) versus r)

Figure 2.5. Limited range attractive source/target

R R
o e−βV (r)d3r =

R rs
o eβ(Vo−γr)4πr2dr+

R R
rs

4πr2dr
= 4πeβVo

R rs
o r2e−βγrdr+V −Vs

where

Z
r2eαrdr = e−βγr

[
− r2

βγ
− 2r

β2γ2 −
2

β3γ3

]

which implies

Z rs

o
r2eβγrdr =−e−βγrs

βγ

[
r2

s +
2rs

βγ
+

2
β2γ2

]
+

2
β3γ3 = ∇.

The resulting partition function is

Z =
1

N!

[(
2πm
h2β

)3/2

(∆+V −Vs)

]N

∆ = 4πeβVo∇

18



culminating in the calculation of the mean values

p̄ = 1
β

∂ln
∂V Z

= 1
β

N
(∆+V−Vs)

= NkT
(∆+V−Vs)

where ∆ is the source strength, and Vs is the volume of the attractive force potential. Once
again, p̄ = 0 may be imposed which implies that the robots do not hit the “walls.” This
means that T = 0, or V = ∞, as before; and that ∆ = ∞ which is equivalent to having an
infinite source strength. For

∆→ ∞:

∆ = 4π

[
− 1

βγ

(
r2

s +
2rs

βγ
+

2
β2γ2

)
+

2eβVo

β3γ3

]

V0 → ∞:

limVo→∞

(
eβVo

V 3
o

)
= limVo→∞

(
β3eβVo

6

)
= ∞ by L’Hôpital’s Rule.

This ideal gas formulation implies that the robots do not cooperate and perform target
location independently as well as being able to take up the same position simultaneously
(Bose-Einstein particles [8]).

The next step is to add cooperation (communication, sensing other robots, and taking up
finite space) which can be accomplished by adding “real gas effects.” Real gas effects can
be modeled using van der Waal’s equation and more generally, by the “virial expansion” of
the equation of state [8]

p̄
kT

= n+B2(T )n2 +B3(T )n3 + . . .

where n = N/V is the number of molecules (robots) per unit volume, B2 = B3 = . . . = 0
is the ideal gas law, and B2 6= 0 provides for the van der Waal’s equation which will be
derived next. The higher order terms enable the designer/analyst to evaluate and optimize
different cooperation strategies.

The interaction potential fields presented in Fig. 2.1 are mathematical constructs of the
microscopic/individual behaviors of each robot to produce the macroscopic/collective be-
haviors described by the virial expansion of the equation of state. This provides one step in
the design/optimization of collective behaviors. A second step in the design/optimization
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process will be described in Chapter 3 where non-equilibrium techniques are employed to
ensure the time evolution of the collective behaviors meet the system constraints. Also,
these potential fields can be treated as probability density functions in order to determine
the likelihood of target detection and localization as well as inter-robot communication and
cooperation by propagating them over time using Fisher information (Appendix A) and the
Fisher Lagrangian.

The Hamiltonian is generated for a non-ideal gas of communicating/interacting robots
within an empty search volume

H = T +V = E =
N

∑
i=1

p2
i

2m
+V (r) (2.11)

followed by forming a partition function

Z =
1

N!

[(
2πm
h2β

)3/2Z
e−βVB(r)d3r

]N

VB(r) =

{
∞ r≤ Ro

−V1

(
Ro
r

)q
r > Ro

with a diagram of the interaction potential plotted in Fig. 2.6. This interaction potential
which accounts for real gas effects requires an increase in sampling rate and channel ca-
pacity (Shannon entropy) due to the increase in closing speeds between robots. Basically,
one can replace ẋ with 2ẋ in equations (2.4) as a starting point.

Figure 2.6. Simplified Lennard-Jones potential

Assume VB(r) = V̄B except within Vx where VB(r) = ∞ which implies

Z = 1
N!

[(
2πm
h2β

)3/2
(V −Vx)e−βV̄B

]N

20



where

V̄B = 1
2NŪ

Ū = 1
V
R R

Ro
VB(r)4πr2dr

= −4π

3
R3

o
V

(
3

q−3

)
V1

V̄B =−ã
N
V

, ã =
2π

3
R3

o

(
3

q−3

)
V1, q > 3

and

Vx = b̃N, b̃ = 4

[
4π

3

(
Ro

2

)3
]

culminating in the calculation of the mean values

p̄ =
1
β

∂ln
∂V

Z =
1
β

∂

∂V

[
Nln(V −Vx)−NβV̄B

]
or

p̄ =
NkT

(V − b̃N)
− ã
(

N2

V 2

)
(2.12)

where ã and b̃ determine the degree of interaction between the particles (i.e., the amount of
communication and interaction between robots.) Again, p̄ = 0 is imposed which leads to
some new results and the old result of V = ∞.

One new result is that T = 0 does not satisfy p̄ = 0 which implies this equation will have
to be modified near T = 0. A second new result is that p̄ = 0 when

kT
V 2

N2 − ã
V
N

+ ãb̃ = 0 (2.13)

then

V =
N

2kT

[
ã±
√

ã(ã−4b̃kT )
]

which defines a phase transition or “emergent behavior.” The robot swarm “condenses into
a robot molecule.” This result is potentially problematic if the “robot molecule” inhibits
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the collective search process. On the other hand, the alpha-beta approach of reference [9]
utilizes a robot molecule to conserve energy usage.

The final step in this example is to add a limited range attractive source in the search
volume. A Hamiltonian is generated for a non-ideal gas of communicating/interacting
robots within a search volume containing a target

H = T +V = E =
N

∑
i=1

p2
i

2m
+V (r) (2.14)

followed by forming a partition function

Z =
1

N!

[(
2πm
h2β

)3/2

(∆+V −Vs−Vx)e−βV̄B

]N

where

V̄B =−ãN
V , ã = 2π

3 R3
o

(
3

q−3

)
V1, q > 3

Vx = b̃N, b̃ = 2π

3 R3
o

culminating in the calculation of the mean values

p̄ = 1
β

∂lnZ
∂V = 1

β

∂

∂V

[
Nln(∆+V −Vs−Vx)−NβV̄B

]
= NkT/(∆+V −Vs−Vx)− ãN2/V 2

which implies

p̄ =
NkT

(∆+V −Vs− b̃N)
− ã

N2

V 2 .

Once again, p̄ = 0 is imposed which leads to new results and the old result of V = ∞. The
result that T = 0 does not satisfy p̄ = 0 continues to be a problem.

A new result is ∆ = ∞ does not satisfy p̄ = 0 which implies that the robots cannot take up
the same position simultaneously (Fermi-Dirac particles [8]). A second new result is that
p̄ = 0 when

NkTV 2 = ãN2(∆+V −Vs− b̃N)

kTV 2− ãNV + ãN(b̃N +Vs−∆) = 0

22



which implies

V =
ãN±[(ãN)2−4kT ãN(b̃N+Vs−∆)]1/2

2kT
= V1,2.

This is a modified phase transition or emergent behavior that reference [9] exploits in alpha-
beta variants.
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Chapter 3

Nonequilibrium Collective Systems

The main goal of applying nonequilibrium analyses to collective systems is to understand
and design the time-dependent macroscopic and microscopic behaviors as well as the evo-
lution of a system through time. An effective way to meet this goal is to utilize parti-
cle physics models and codes that are presented and applied to robot collectives in refer-
ences [10, 11, 12]. An additional goal is to demonstrate the equivalence between physical
and information exergies based on Hamiltonian mechanics and nonequilibrium thermody-
namics. Exergy is defined and the Hamiltonian is related to exergy in Appendix B. For
completeness, Hamiltonian mechanics for an individual agent will be reviewed next fol-
lowed by the extension to collective systems which directly leads into the discussion of
physical and information exergies with respect to Fisher information.

The derivation of the Hamiltonian [5] begins with the Lagrangian for a system defined as

L = T (q, q̇, t)−V (q, t) (3.1)

where

t = time explicitly
q = N-dimensional generalized coordinate vector
q̇ = N-dimensional generalized velocity vector
T = Kinetic energy
V = Potential energy.

The Hamiltonian is defined in terms of the Lagrangian as

H ≡
n

∑
i=1

∂L
∂q̇i

q̇i−L(q, q̇, t) = H (q, q̇, t). (3.2)

The Hamiltonian in terms of the canonical coordinates (q,p) is

H (q,p, t) =
n

∑
i=1

piq̇i−L(q, q̇, t) (3.3)
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where the canonical momentum is defined as

pi =
∂L
∂q̇i

. (3.4)

Then Hamilton’s canonical equations of motion become

q̇i = ∂H
∂pi

ṗi = −∂H
∂qi

+Qi
(3.5)

where Qi is the generalized force vector. Next taking the time derivative of (3.3) gives

Ḣ =
n

∑
i=1

(
ṗiq̇i + piq̈i−

∂L
∂t
− ∂L

∂qi
q̇i−

∂L
∂q̇i

q̈i

)
. (3.6)

Then substitute (3.5) and simplifying gives

Ḣ =
n

∑
i=1

Qiq̇i−
∂L
∂t

. (3.7)

Hamiltonians for most natural systems are not explicit functions of time (or ∂L/∂t = 0).
Then for

L = L(q, q̇) (3.8)

the power (work/energy) equation becomes

Ḣ (q,p) =
n

∑
i=1

Qiq̇i. (3.9)

The collective Lagrangian is

L =
N

∑
i=1

Li =
N

∑
i=1

Ti−
N

∑
i=1

Vi (3.10)

and the collective Hamiltonian is

H =
N

∑
i=1

Hi =
N

∑
i=1

M

∑
j=1

[
∂Li

∂q̇i j
q̇i j−Li

]
. (3.11)
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The equations of motion can also be generated from the Lagrangian,

d
dt

(
∂Li

∂q̇ ji

)
− ∂Li

∂q ji
= Q ji (3.12)

and related to Fisher information [7] to propagate a mean value and/or a probability distri-
bution function for sensing and communication

I = 8
Z

T̄ dt (3.13)

where T̄ = ∑
N
i=1

1
mi

Ti.

Now, exergy/entropy control [13] (presented in Appendices B and C) may be applied to
help expand the discussion of the equivalence between physical exergy and information
exergy as described in Appendices A and B where the Hamiltonian surface determines the
accessible states of the system. One can explain by expanding on (A.4) through bound
Fisher information [7] as

J = 8
Z [

V̄ + V̄c

]
dt (3.14)

with the collective potential field as

V̄ =
N

∑
i=1

1
mi

Vi

and the collective control potential as

V̄c =
N

∑
i=1

1
mi

Vci.

Specifically, Fisher and bound Fisher informations can be combined to produce a La-
grangian functional from which equations of motion can be generated using calculus of
variations [7]. This approach provides insight into the value of physical and information
exergies since it directly tells one the physical and/or information flow structures necessary
to complete the operation. These abstract concepts can be made more clear by solving
several examples.

Example 3.1. Radar guided missile
The first example is a radar guided missile attacking a ground target while being jammed.
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The Hamiltonian of the missile is simplified to a point mass in one degree of freedom (1
DOF)

H = T +V =
1
2

mẋ2 +V (3.15)

where V is presented in Fig. 3.1 for an unjammed single ground target represented as a
potential function similar to reference [14] and Fig. 3.2 for a jammed double target, then

Vu = 1
2kx2 + 1

4kNLx4

V j = −1
2kx2 + 1

4kNLx4.
(3.16)

The equivalence of physical and information exergies becomes more clear when the jam-
ming is suppressed. In this case, the jamming is suppressed by a proportional feedback
term to deform the Hamiltonian surface

Vc +V =
1
2
[KP− k]x2 +

1
4

kNLx4 (3.17)

that eliminates the false targets. This can be accomplished by modulating the radar (infor-
mation exergy), increasing the radar power (physical exergy), getting closer to the target,
etc. In any case, the cost of each option can be evaluated with respect to the required exergy
rate (power) and exergy to hit the target as well as the risk to the pilot and aircraft.

Figure 3.1. Three dimensional (left) Hamiltonian phase plane
plot where the net positive stiffness produces a positive bowl sur-
face. The two-dimensional cross-section plot (right) is at ẋ = 0.

Example 3.2. Teams of robots locating a chemical plume
A second example is locating the source of a chemical plume. A chemical sensor provides
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Figure 3.2. Three dimensional (left) Hamiltonian phase plane
plot negative stiffness produces a saddle surface. The two-
dimensional cross-section plot (right) is at ẋ = 0.

a measurement of the chemical concentration at a point, x, and at a time, t. How do you
get range and bearing to a target using only chemical sensors? An answer is to create a
“virtual potential field” with a team of robots by flowing information through a distributed
decentralized sensor and feedback control network in order to synthesize range and bearing
to a target.

The team of robots in [14] created a “virtual potential field” by flowing information through
a distributed decentralized sensor and feedback control network. In the present context, the
Hamiltonian of the robot collective is deformed by a virtual potential field

H =
N

∑
i=1

Hi =
N

∑
i=1

[Ti +Vci]

and the Lagrangian becomes

L =
N

∑
i=1

Li =
N

∑
i=1

[Ti−Vci]

where

Ti = 1
2mixT

i xi
Vci = Gi(xi)−Gi(x∗i ) = 1

2Gxi
T Gxxi

−1Gxi +xT
i Gxi +

1
2xT

i Gxxixi
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where Vci is positive definite about the estimated minimum x∗i for all xi in the domain of x.
The equations of motion are derived from the Lagrangian as (3.12) which gives

miẍi = ui (3.18)

Therefore, the time derivative of the collective Hamiltonian becomes

Ḣ = ∑
N
i=1 Ḣi

= ∑
N
i=1

[
miẍi +

∂Vci
∂xi

]T
ẋi

= ∑
N
i=1

[
ui +

∂Vci
∂xi

]T
ẋi

where the individual estimator/guidance algorithm for finding the source/target is

Gi(xi) = Goi +xT
i Gxi +

1
2

xT
i Gxxixi.

The feedback controller is

ui =−
[

∂Vci

∂xi

]
−KIi

Z
xidτ−KDiẋi (3.19)

and the collective stability boundary becomes

N

∑
i=1

[[
−KIi

Z
xidτ

]T

ẋi

]
ave

=
N

∑
i=1

[
[KDiẋi]

T ẋi

]
ave

(3.20)

which determines the limit cycle behavior (see Appendix D for more details on limit cycles)
constrained to the deformed Hamiltonian surface. The collective performance is analyzed
using the following Lyapunov function which is an extension of reference [14]

V =
N

∑
i=1

ρiVi =
1
2

N

∑
i=1

ρimiẋT
i ẋi +

N

∑
i=1

ρiVci

with

V̇ = ∑
N
i=1 ρiV̇i = ∑

N
i=1 ρimiẍT

i ẋi +∑
N
i=1 ρi

∂Vci
∂xi

T
ẋi

= ∑
N
i=1 ρi

[
miẍi +

∂Vci
∂xi

]T
ẋi = ∑

N
i=1 ρi

[
ui +

∂Vci
∂xi

]T
ẋi
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where the collective Hamiltonian can be deformed via the collective control potential or
bound Fisher information in order to enhance your exergy usage or manipulate your com-
petitor’s exergy usage (see Section C.1.3 for exergy usage details).

As a numerical example, a collective team of 8 robots are used to implement the control
law (3.19) to find the source of the chemical plume. The dynamical entities are smart
loitering autonomous robots. Initially, the eight robots are shown surrounding the chemical
plume source (center star) in Fig. 3.3 (upper-left). By making use of one another’s sensing
to improve individual performance then the overall collective performance results. The

Figure 3.3. The collective system of 8 robots (left) and the coop-
erative localized convergence to the chemical plume source located
at (x,y) = (0,0) (right)

Figure 3.4. Transient responses for dissipative case X-positions
(left) and Y-positions (right)
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collective system cooperatively localizes the chemical plume source, located at (x,y) =
(0,0) (see Fig. 3.3 - right). For this case, the collective dissipative term is greater than
the collective generative term as shown by the decaying transient responses (see Fig. 3.4
X-positions - left and Y-positions - right). In addition, the collective system was used
to demonstrate the collective neutral boundary condition (3.20) with the corresponding
transients shown in Fig. 3.5 (X-positions - left and Y-positions - right). Note that the
transient oscillations do not decay. This case also demonstrates a smart loitering robot
individual mode that is part of the overall collective control. Each robot was modeled as a
unity point mass with the governing dynamic equations of motion given by (3.18).

Figure 3.5. Transient responses for neutral boundary case X-
positions (left) and Y-positions (right)

At this point in the chapter, it is important to discuss the deformation of the Hamiltonian
surface which is implemented as a “static process” versus the exergy flow through the
system that defines a “dynamic process.” A simple example is to expand on the radar
jamming problem by analyzing (3.17) with proportional feedback to reverse the bifurcation
of k < 0. For

V = H = T +V +Vc

then

V +Vc = −1
2kx2 + 1

4kNLx4 + 1
2KPx2

= 1
2 [KP− k]x2 + 1

4kNLx4 (3.21)

and KP ≥ k. Where the negative sign on k is explicitly accounted for in the equation.

To determine the effect that the proportional controller gain KP has on the system, Hamil-
tonian surface plots are generated. By investigating a system with negative stiffness and
by adding enough KP to result in an overall positive net stiffness, one changes the shape of
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the Hamiltonian surface from a saddle point surface (see Fig. 3.2) to a positive bowl sur-
face (see Fig. 3.1). A two-dimensional cross-section of the Hamiltonian versus the position
shows the characteristics of the overall storage or potential functions. The operating point
at (H, ẋ,x) = (0,0,0) changes from being unstable to stable, for small values of |x| > 0,
when enough additional KP is added, a net positive stiffness for the system results.

To formally assess the instability of the negative stiffness, let

|k|> KP for k < 0 and KP > 0 and KNL = 0.

The Lyapunov function can be changed from the Hamiltonian to the Lagrangian, again
explicitly accounting for the negative sign on k,

V = L = T − (V +Vc) = 1
2mẋ2 + 1

2(k−KP)x2 > 0
V̇ = [mẍ+(k−KP)x] ẋ = [u+(2k−KP)x] ẋ

= 2(k−KP)xẋ > 0

for u =−KPx. The plots for the Lagrangian and Hamiltonian are shown in Fig. 3.6.

This is called static stability/instability commonly found in re-entry vehicles [15] and
aeroelasticity [16], in contrast to dynamic stability/instability defined by the exergy flows
into a self-organizing system (see Appendix B and Section D.4). For re-entry vehicles,
the static margin determines the static stability. The static margin (SM) is the difference
in length between the center-of-mass and the center-of-pressure relative to the nose (see
Fig. 3.7) of the re-entry vehicle. For

SM = xcp− xcm

then the following definitions apply

xcp = center-of-pressure location
xcm = center-of-mass location
α = angle of attack
Vf s = free stream velocity.

If SM < 0, the re-entry vehicle is statically unstable. If SM > 0, the re-entry vehicle is stat-
ically stable. The aerodynamic moment for a re-entry vehicle is presented in Fig. 3.8 (left)
which upon integration with respect to the angle of attack (α) gives a quadratic potential
function (see Fig. 3.8 - right).

For the aeroelasticity of an airplane wing, similar analysis is done for the divergence speed
of the wing [16]. In this case, the center of pressure has moved forward of the center of
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Figure 3.6. Hamiltonian and Lagrangian 3D and 2D plots for
KP = 290,k =−300, ∆KHamiltonian =−10, and ∆KLagrangian = 10.

twist with respect to the leading edge of the wing, and the aerodynamic moment over-
whelms the torsional stiffness to create a static instability. Once again, the Hamiltonian
surface is no longer positive definite. But, this condition of static stability provides the
designer with additional performance enhancements including limited range repulsive po-
tentials to eliminate collisions between robots and superior longitudinal (pitch) response in
high performance aircraft such as the F-16. At any rate, this insight enables a clearer under-
standing of how stability and performance criteria can be met in nonlinear systems without
requiring the typical zero-sum trade-off process , performance versus stability, inherent in
linear systems.

Returning to the discussion of physical and information exergies with respect to Fisher
information, an interesting way to evaluate the performance of this control design is by
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Figure 3.7. Static margin

Figure 3.8. Aerodynamic moment (left) and integral of aerody-
namic moment with respect to angle of attack (right)

using a modified Fisher information metric [17]

Icycle =
1
∆t

Z ẍ2

ẋ4 dt

where ∆t is the limit cycle period. This metric is another way to find and quantify the limit
cycle which is discussed in more detail in Appendix D.

The Fisher information and Fisher Lagrangian are

I− J = 8
Z [

T̄ −
(

V̄ + V̄c

)]
dt

which tie the information exergy to the physical exergy. Once again, the derivation of
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the equations of motion informs one about the functionality of the physical infrastructure
(robots, sensors, etc.) versus the information-driven collective. The whole is greater than
the sum of the parts since the sum of the parts in the chemical plume tracing problem is
zero [18]. Notice, the Fisher informations are the integrals of physical and information
exergies which leads to the general result of

İ− J̇ = 8
[
T̄ −

(
V̄ + V̄c

)]
. (3.22)

This provides a constraint on information flow and a disordering rate since İ − J̇ ≤ 0
(see [7]) as t → ∞. The Fisher Lagrangian can be rewritten as the Fisher Hamiltonian

I + J = 8
Z [

T̄ +(V̄ + V̄c)
]

dt (3.23)

which leads to

Ï + J̈ = 8
[

˙̄H
]

(3.24)

where

H̄ =
N

∑
i=1

1
mi

Hi.

Equation (3.24) provides a direct connection between stability and information flow since
the physical exergy flow is directly related to the information exergy (virtual potential)
flow and the Fisher information flow. Furthermore, the Fisher information flow into a self-
organizing collective system becomes a single point of failure (refer to Appendix C for
more details) since it is equivalent to the physical and information exergy flows; it keeps
track of the order of the system. Also, (3.23) is an ideal optimization functional for solv-
ing the minimum information problem (see reference [18] for more details). Appendix C
provides a short review of the stability characteristics of self-organizing collective systems.

Example 3.3. Adaptive control as physical and information exergies
As a further example of how physical and information exergies are related, an adaptive
control problem is reviewed. Once again, starting with the mass-spring-damper (with a
PID tracking controller) problem (also see Fig. D.1)

mẍ+ kx =−cẋ+u

with the Hamiltonian given as

H = T +V +VC +VI
= 1

2m(ẋ− ẋr)2 + 1
2k(x− xr)2 + 1

2KP(x− xr)2 + 1
2Φ̃T Γ−1Φ̃
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where the last term is associated with the adaptive parameter estimation terms or the infor-
mation exergy potential (VI). In this case, the difference between the estimated and “true”
parameters makes up the information flow. The goal is to drive the estimated parameters
to the “true” parameters for which specific performance criteria can then be established.
Next, the Hamiltonian rate becomes

Ḣ = [m(ẍ− ẍr)+(k +KP)(x− xr)] (ẋ− ẋr)+ Φ̃T Γ−1 ˙̃
Φ

= [−mẍr− kxr +KP(x− xr)− cẋ+u] (ẋ− ẋr)+ Φ̃T Γ−1 ˙̃
Φ.

(3.25)

The controller is selected as

u = ure f +∆u = ure f +uP +uG +uD (3.26)

where

ure f = m̂ẍr + k̂xr + ĉẋ
∆u = uP +uG +uD
uP = −KP(x− xr)
uG = −KI

R t
0(x− xr)dτ

uD = −KD(ẋ− ẋr).

Note that parameters with a hat ( ˆ ) represent the estimate of the true parameter. Substitut-
ing (3.26) into (3.25) yields

Ḣ =
[
(m̂−m)ẍr +(k̂− k)xr +(ĉ− c)ẋ−KI

R t
0(x− xr)dτ−KD(ẋ− ẋr)

]
(ẋ− ẋr)

+Φ̃T Γ−1 ˙̃
Φ.

(3.27)

Next identify and set

(m̂−m)ẍr +(k̂− k)xr +(ĉ− c)ẋ = Y Φ̃. (3.28)

Then substitute (3.28) into (3.27) and simplifying gives

Ḣ =
[
−KI

Z t

0
(x− xr)dτ−KD(ẋ− ẋr)

]
(ẋ− ẋr)+ Φ̃

T
[
Y T (ẋ− ẋr)+Γ

−1 ˙̃
Φ

]
(3.29)

where

Φ̃T =
[
(m̂−m) (k̂− k) (ĉ− c)

]
˙̃
Φ

T
= ˙̂

Φ
T

=
[

˙̂m ˙̂k ˙̂c
]

Y = [ẍr xr ẋ] .
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To ensure the information exergy potential is a conservative term, the last term in (3.29)
vanishes with

˙̂
Φ =−ΓY T (ẋ− ẋr).

This also results in the following adaptive parameter update equations

˙̂m = −γ1 ẍr(ẋ− ẋr)
˙̂k = −γ2 xr(ẋ− ẋr)
˙̂c = −γ3 ẋ(ẋ− ẋr)

which concludes in the following passively stable condition

I
τ

[
−KI

Z t

0
(x− xr)dτ

′
]
(ẋ− ẋr)dt <

I
τ

[
KD(ẋ− ẋr)2]dt. (3.30)

This derivation demonstrates that when the adaptive parameter estimates or information
exergies are driven to the “true” parameters then the system reduces to the actual physical
exergy or available storage in the system for which the final constraint (3.30) determines
the system performance and passive stability. The inherent trade-off is the additional cost
of the adaptive controller hardware and software versus a robust control design.

To summarize the analysis a numerical simulation was performed. The following numer-
ical values were selected for the model: m = 10 kg, k = 10 N/m, and c = 1 N-s/m. The
control gains were selected as: KP = 550, KI = 20, KD = 31, γ1 = 1000, γ2 = 2500, and
γ3 = 1000. The system was initially at rest (xo = 0, ẋo = 0). The control system gains were
selected to provide a critically damped response and the adaptive gains used to provide
quick convergence to the “true” parameters. As with most standard adaptive control, this
provides guaranteed stability, but not necessarily converging to the exact “true” parame-
ters. A standard bang-coast-bang acceleration profile was used to generate the reference
inputs and provide rich signal content. The position, velocity and acceleration responses
are shown in Fig. 3.9 (left). The corresponding errors for position, velocity, and acceler-
ation, are also shown in Fig. 3.9 (right). The total input force (u), reference force (ure f ),
and control force (∆u) are shown in Fig. 3.10 (left). The adaptive estimated parameter
responses for m̂, k̂, and ĉ are shown in Fig. 3.10 (right).
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Figure 3.9. Adaptive control mass-spring-damper responses: po-
sition, velocity, acceleration (left) and corresponding errors (right)

Figure 3.10. Adaptive control mass-spring-damper responses:
input force, reference force, and control force are shown (left) with
corresponding adaptive parameter estimates (right)
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The exergy-rate and exergy responses for the adaptive control mass-spring-damper system
are shown in Fig. 3.11. For both responses the passivity terms are greater (in magnitude)
than the generative terms which satisfy the inequality in (3.30).

Figure 3.11. Adaptive control mass-spring-damper responses:
exergy-rate (left) and exergy (right)

Example 3.4. Performance of electric power grid system
The last example is to enhance the performance of the electric power grid. The goal of
the power grid is to distribute electricity from the source to the load with a power factor
of 1 (see reference [25]). The power factor1 is defined as the ratio of the real power to
the apparent power and ranges from 0 to 1. Low power factor loads increase losses and
energy costs in a power distribution system. The term VAR (volt-amperes reactive) is the
unit of reactive power (or VAR support) and represents the power consumed by a reactive
load. Power factor correction returns the power factor of an electric AC power transmission
system to very near unity by switching in or out banks of capacitors or inductors which act
to cancel the inductive or capacitive effects of the load. For example, the inductive effect
of motor loads may be offset by locally connected capacitors. An active power factor
corrector is a power electronic system that controls the amount of power drawn by a load
in order to obtain a power factor as close to unity as possible. In the following paragraphs a
simple RLC network that represents several key components in an electric power grid will
be analyzed with respect to power flow.

The Hamiltonian and corresponding Hamiltonian rate are

H = 1
2Lq̇2 + 1

2
1
C q2

Ḣ = [Lq̈+ 1
C q]q̇ = [vq̇−Rq̇2].

(3.31)

1Power factor, VAR, power factor correction, and active power factor corrector terms have been defined
from the Wikipedia encyclopedia.
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which arise from the Thevinen equivalent circuit (which is an intrinsic collective electrical
network) as shown in Fig. 3.12.

Figure 3.12. Thevinen equivalent RCL circuit

The general RCL network dynamics are given as

v = Lq̈+Rq̇+
1
C

q

where

q = charge
i = q̇ = current
R = Equivalent resistance
C = Equivalent capacitance
L = Equivalent inductance
v = Applied voltage (generator) .

The power factor of 1 occurs when the sinusoid input frequency matches the natural fre-
quency of the circuit or

Ω
2 =

1
LC

= ω
2

for v = vo cosΩt. A simple strategy to achieve a power factor of 1 is to have capacitor
banks available to provide “VAR support” where needed on the grid, since most loads and
generators are heavily inductive. A potentially more flexible approach is to use power
electronics to provide proportional feedback to do real-time VAR support or

v = vo cosΩt−Kpq
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which leads to

H = 1
2Lq̇2 + 1

2 [ 1
C +KP]q2

Ḣ = [Lq̈+( 1
C +KP)q]q̇ = [(vo cosΩt)q̇−Rq̇2].

(3.32)

Clearly, the cost of KP (power electronics) versus 1
C (capacitor banks) can be evaluated with

respect to exergy, exergy rate, flexibility, reliability, etc.

A more general, and possibly clearer, understanding of the trade-offs between information
and physical exergies can be described by rewriting (3.32) as a tracking controller

H = 1
2L(q̇− q̇R)2 + 1

2
1
C(q−qR)2

Ḣ =
[
L(q̈− q̈R)+ 1

C(q−qR)
]
(q̇− q̇R)

where

Lq̈ =−Rq̇− 1
C

q+ v.

Next, modify H to account for KP as

Ĥ = 1
2L(q̇− q̇R)2 + 1

2 [ 1
C +KP] (q−qR)2

˙̂H =
[
L(q̈− q̈R)+ [ 1

C +KP](q−qR)
]
(q̇− q̇R)

= [∆v+KP(q−qR)−R(q̇− q̇R)] (q̇− q̇R)

where

v = vR +∆v
vR = Lq̈R +Rq̇R + 1

C qR.

If one designs vR for ω2 = Ω2 = 1/LC then vRq̇R = Rq̇2
R which requires feedback control if

ω2 = 1/LC 6= Ω2 to get a power factor of 1 then

∆v =−Kp(q−qR)−KI

Z
(q−qR)dt−KD(q̇− q̇R).

By choosing KI = KD = 0, then the control strategy becomes

˙̂H =
[

L(q̈− q̈R)+ [
1
C

+KP](q−qR)
]
(q̇− q̇R) =−R(q̇− q̇R)2
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where

Rq̇2
R = vo cosΩt q̇R

and

1
C̄

=
[

1
C

+KP

]
.

In this example, the clear tradeoff is between a physical capacitor bank and a power flow
control device. The capacitor is simple, reliable, and fixed capacity. The control device is
flexible, adaptable, and presently more expensive and possibly less reliable. Also, there are
a couple of major issues with this approach that should be addressed in future studies:

1. Does it actually get closer to a power factor of 1 since one is expending exergy to run
power electronics?

2. Does closing the control loop locally destabilize the collective grid especially when
KI and KD are nonzero? In particular, does the controlled system performance result
in a stable linear limit cycle (refer to Appendix D).
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Chapter 4

Summary and Conclusions

This report has demonstrated the fundamental nature of the Hamiltonian function in the
design of collective systems. Specifically, this report has mathematically explained the
concept of “far from thermodynamic equilibrium on the basis of exergy dissipation” for
self-organizing collective systems: the continuous compensation of irreversible entropy
production in an open system with an impedance and capacity-matched persistent exergy
source (refer to Appendix C). This mathematical explanation has tied irreversible ther-
modynamics and Hamiltonian systems together to enhance the analysis of self-organizing
collective systems. In particular, equivalences between physical and information-based ex-
ergies have been developed based on Shannon information, Fisher information, and virtual
fields. These equivalences were and can be used to evaluate the performance trade-offs
and values (i.e., economic, etc.) of physical versus information-driven infrastructures to
enhance one’s economic competitiveness and/or performance on the battlefield. Finally,
equilibrium and non-equilibrium thermodynamics and information theory were used to an-
alyze and design self-organizing collective systems. New emergent behaviors, phase tran-
sitions, from microscopic/individual behaviors were discovered such as “robot molecules”
that can both enhance and degrade the macroscopic/collective behaviors.

The final example of Chapter 3 provides some very interesting open questions and research
issues in self-organizing collective systems. These questions and issues are partially driving
our present research agenda.

Appendix D develops and presents new and innovative insights into the significance of
limit cycles. In particular, limit cycles are shown to be generalized stability boundaries
and the linear limit cycle behavior of the electric power grid is the generalization of a
unity power factor. Also, limit cycles are the result of a balanced power flow which leads
to far from thermodynamic equilibrium on the basis of exergy dissipation. Finally, an
extension of eigen analysis to nonlinear systems, deemed, “power flow principle of stability
for nonlinear systems,” was developed via limit cycle analysis.
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Appendix A

Fisher Information

This Appendix describes the basic concepts of Fisher information necessary for the discus-
sion of physical and information exergies that enable the deformation of the potential field
and enable the kinetic energy state. From a communications point of view, Fisher informa-
tion is a measure of how well the receiver can estimate the message from the sender where
as Shannon information/entropy is a measure of the sender’s transmission efficiency over a
communications channel [7, 19]. Fisher information is defined as [7]

I = 4
Z

q̇2(x)dx (A.1)

where q2(x) = p(x) is a “real amplitude” function of the probability density function p(x).
Equation (A.1) can be interpreted as the “mean kinetic energy” and for the purposes of this
discussion as

I = 4
Z

q̇2dt = 4
Z 2

m
T dt (A.2)

where T = 1
2mq̇2.

I is the scaled integral of the mean kinetic energy portion of both the Lagrangian and
the Hamiltonian and is referred to as the Fisher data information. The second part, the
potential energy, is referred to as the phenomenological or bound Fisher information, J.
The Lagrangian is

L = T −V (A.3)

where

I− J =
8
m

Z
[T −V ]dt (A.4)

and the equations of motion are

d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= Qi (A.5)
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or equivalently from Hamilton’s equations

q̇i = ∂H
∂pi

ṗi = −∂H
∂qi

+Qi.
(A.6)

This formulation of the “Fisher” Lagrangian provides an intimate relationship between
physical and information exergies. It shows the equivalence relationship and how to eval-
uate the effectiveness of physical and information solutions relative to stability and perfor-
mance requirements. Furthermore, it shows that physical exergy is a result of information
exergy in the form of “knowledge” about the system when turning energy flows into work.

One final note, Fisher information is a time-dependent, gradient information metric that
generates a differential equation when operated on by calculus of variations, but (A.2) can
be rewritten for t → ∞ as an average

Iave =
8
m

Tave =
8
m

[
1
2

mq̇2
ave

]
=

8
m

[
1
2

kT
]

(A.7)

where 1
2kT is the equivalent mean kinetic energy of a molecule in a one-dimension equi-

librium condition [3]. This equation is used in Chapter 2 when evaluating the information
flow in an ideal gas of robot agents.
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Appendix B

Exergy/Entropy Control Design

In this appendix which is a modification of reference [13] the first and second laws of
thermodynamics are used to define exergy. Hamiltonian systems as described in Chapter
3 are used to define connections between thermodynamics and Hamiltonian mechanics.
Finally, stability conditions are derived for nonlinear systems with respect to Lyapunov’s
direct method. Further details on this methodology can be found in references [1, 13, 20,
21].

B.1 Thermodynamic Concepts

One interpretation of the first law of thermodynamics states energy is conserved. The sec-
ond law of thermodynamics implies that the entropy of the universe always increases. The
first law is a conservation equation while the second law is an inequality. Mathematically,
a result of the first law can be written in terms of it’s time derivatives or energy rate for a
system [22] as (see Fig. B.1)

Ė = ∑
i

Q̇i +∑
j

Ẇ j +∑
k

ṁk (hk + kek + pek + . . .) . (B.1)

The term on the left is the rate at which energy is changing within the system. The heat
entering or leaving the system is given by Q̇i and the work entering or leaving the system is
given by Ẇ j. Material can enter or leave the system by ṁk that includes enthalpy, h, kinetic
and potential energies, ke, pe, etc. In addition, each term is “summed” over an arbitrary
number of entry and exit locations i, j,k.

The second law or entropy rate equation for a system [22] is given as

Ṡ = ∑
i

Q̇i

Ti
+∑

k
ṁksk + Ṡi = Ṡe + Ṡi. (B.2)

Where the left hand term is the rate entropy changes within the system and the right hand
terms represent, in order, entropy change due to heat interactions to and from the system
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Figure B.1. Energy flow control volume

and the rate material carries it in or out. These two terms can be combined into one term
Ṡe, the entropy exchanged (either positive or negative) with the environment and Ṡi is the
irreversible entropy production rate within the system. Figure B.2 shows the entropy ex-
changes and production within the system [23].

Figure B.2. Entropy with flux exchange system

The irreversible entropy production rate can be written as the sum of the thermodynamic
forces, Fk, and the thermodynamic flows, Ẋk, [23]

Ṡi = ∑
k

FkẊk ≥ 0. (B.3)

Next, for systems with a constant environmental temperature (To), a thermodynamic quan-
tity called the availability function is defined as [22, 23, 24]

Ξ = E −ToS . (B.4)

The availability function is described as the maximum theoretically available energy that
can do work which we call exergy. Exergy is also known as negative-entropy [22, 24]. Tak-
ing the time derivative of the availability function (B.4) and substituting in the expressions
for (B.1) and (B.2) results in the exergy rate equation

Ξ̇ = ∑
i

(
1− To

Ti

)
Q̇i +∑

j

(
Ẇ j− po

dV̄
dt

)
+∑

k
ṁkζ

f low
k −ToṠi. (B.5)
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Where Ξ̇ is the rate at which exergy stored within the system is changing. The terms on the
right, in order, define the rate exergy is carried in/out by; i) heat, ii) work (less any work
the system does on the environment at constant environmental pressure po if the system
volume V̄ changes), and iii) by the material (or quantity known as flow exergy). The final
term, ToṠi, is the rate exergy is destroyed within the system or exergy consumption rate.

B.2 Thermo-Mechanical Relationships

This section discusses the concepts of conservative systems and forces, reversible and ir-
reversible thermodynamic systems, average power and power flow, and the connections
between Hamiltonian mechanics and thermodynamics required to support the concepts of
necessary and sufficient conditions for stability of nonlinear systems. It is worth noting at
this point that, by definition, electrical power is “pure exergy rate” and the Hamiltonian is
stored exergy.

B.2.1 Conservative Mechanical Systems

A system is conservative if

Ḣ = 0 and H = constant.

A force is conservative if

I
F ·dx =

I
F ·vdt =

I
Q jq̇ jdt = 0

for any closed path where F is the force, dx the displacement, and v the velocity. Basically,
all of the forces can be modeled as potential force fields which are exergy storage devices.

B.2.2 Reversible Thermodynamic Systems

A thermodynamic system is reversible if

dS = dQ
TH

dS =
H dQ

T = 0H
dS =

H
[dSi +dSe] =

H [
Ṡi + Ṡe

]
dt = 0

which implies that Ṡe = Q̇ /T since by definition the second law gives Ṡi = 0.
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B.2.3 Irreversible Thermodynamic Systems

For

I
dS =

I [
Ṡi + Ṡe

]
dt = 0

then Ṡe ≤ 0 and Ṡi ≥ 0.

B.2.4 Analogies and Connections

Now the connections between thermodynamics and Hamiltonian mechanics are investi-
gated.

1. The irreversible entropy production rate can be expressed as

Ṡi = ∑
k

FkẊk =
1
To

∑
k

Qkq̇k ≥ 0. (B.6)

2. The time derivative of the Hamiltonian is equivalent to the exergy rate since the
Hamiltonian for a conservative system is stored exergy, then

Ḣ = ∑k Qkq̇k
Ξ̇ = Ẇ −ToṠi = ∑

N
j=1 Q jq̇ j−∑

M+N
l=N+1 Ql q̇l.

(B.7)

Where N is the number of generators, M the number of dissipators, and let Ẇ =
∑ j Ẇ j. The following assumptions apply when utilizing the exergy rate equation (B.5)
for Hamiltonian systems:

(a) No substantial heat flow:

Q̇i ≈ 0.

(b) No substantial exergy flow or assume Ti is only slightly greater than To:

1− To

Ti
≈ 0.

(c) No poV̄ work on the environment:

po
dV̄
dt

= 0.

(d) No mass flow rate:

∑
k

ṁkζ
f low
k = 0.
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(e) Then define:

Ẇ ≥ 0 power input/generated
ToṠi ≥ 0 power dissipated.

3. A conservative system is equivalent to a reversible system when

Ḣ = 0 and Ṡe = 0

then

Ṡi = 0 and Ẇ = 0.

4. A system that “appears to be conservative”, but is not reversible is defined as:

Ḣave = 0 = 1
τ

H
[Ẇ −ToṠi]dt

= (Ẇ )ave− (ToṠi)ave = 1
τ

H
[∑N

j=1 Q jq̇ j−∑
M+N
l=N+1 Ql q̇l]dt

= average power over a cycle

where τ is the period of the cycle. To be more specific about the average power
calculations, the AC power factor [25] provides an excellent example. For the general
case of alternating current supplied to a complex impedance the voltage and current
differ in phase by an angle θ. The time responses for power, voltage, and current are
shown for a general AC circuit in Fig. B.3 with

Ẇ = P = Qq̇ = v i =
√

2v̄cos(ωt +θ) ·
√

2īcosωt
= v̄ī [cosθ+ cos(2ωt +θ)]

where P is power, v is voltage (v̄), i is current (ī), θ is the phase angle, and ω is the
frequency. Integrating over a cycle gives

(Ẇ )ave = v̄īcosθ

where for the second term
I

cos(2ωt +θ)dt = 0.

This is an important set of conditions that will be used in the next section to find the
generalized stability boundary.

5. Finally, the power terms are sorted into three categories:

(a) (Ẇ )ave - power generators; (Q jq̇ j)ave > 0

(b) (ToṠi)ave - power dissipators; (Ql q̇l)ave < 0

(c) (ToṠrev)ave - reversible/conservative exergy storage terms; (Qkq̇k)ave = 0.

These three categories are fundamental terms in the following definitions and design pro-
cedures.
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Figure B.3. Time response for power in a general AC circuit with
ω = 2π, v̄ = 1.5, ī = 2.0, and θ = π/4

B.3 Necessary and Sufficient Conditions for Stability

This section describes the concepts from nonlinear control theory that will be used to assess
the balance of exergy flows into versus the exergy consumption/destruction (irreversible
entropy production) inside an open, self-organizing system. Open, self-organizing systems
are the class of collective systems emphasized in this report and described in more detail
in Appendix C. The balance of these exergy flows determines a fundamental necessary
condition for sustainability of a self-organizing system: a limit cycle (see Appendix D).

The Lyapunov function is defined as the total energy (stored exergy by our definition) which
for most mechanical systems is equivalent to an appropriate Hamiltonian function

V = H (B.8)

which is positive definite. The time derivative is

V̇ = Ḣ = ∑k Qkq̇k = ∑
N
j=1 Q jq̇ j−∑

M+N
l=N+1 Ql q̇l

= Ẇ −ToṠi.
(B.9)
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B.3.1 Stability and Instability Theorems

To describe a nonlinear self-organizing system’s behavior two theorems [26] help to char-
acterize the essential features of their motion. In addition, by bounding the Lyapunov
function between these Theorems, both necessary and sufficient conditions are a result of
the transition of the time derivative of the Lyapunov function from stable to unstable.

1. Lyapunov Theorem for Stability Assume that there exists a scalar function V of the
state x, with continuous first order derivatives such that

V (x) is positive definite
V̇ (x) is negative definite
V (x) → ∞ as ‖x‖→ ∞

Then the equilibrium at the origin is globally asymptotically stable.

2. Chetaev Theorem for Instability Considering the equations of disturbed motion, let
V be zero on the boundary of a region R which has the origin as a boundary point, and
let both V and V̇ be positive-definite in R; then the undisturbed motion is unstable at
the origin.

B.3.2 Stability Lemma for Nonlinear Self-Organizing Systems

Based on the relationships between thermodynamic exergy and Hamiltonian systems a Fun-
damental Stability Lemma can be formulated.

Fundamental Stability Lemma for Hamiltonian Systems The stability of Hamiltonian
systems is bounded between Theorems 1 and 2. Given the Lyapunov derivative as a de-
composition and sum of exergy generation rate and exergy dissipation rate then:

V̇ = Ẇ −ToṠi =
N

∑
j=1

Q jq̇ j−
M+N

∑
l=N+1

Ql q̇l (B.10)

that is subject to the following general necessary and sufficient conditions:

ToṠi ≥ 0 Positive semi-definite, always true
Ẇ ≥ 0 Positive semi-definite; exergy pumped into the system.

The following corollaries encompass both stability and instability for Hamiltonian systems
which utilize AC power concepts [25]:
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Corollary 1: For (ToṠi)ave = 0 and (Ẇ )ave = 0 then V̇ = 0 the Hamiltonian system is
neutrally stable, conservative and reversible.

Corollary 2: For (ToṠi)ave = 0 and (Ẇ )ave > 0 then V̇ > 0 the Hamiltonian system is
unstable.

Corollary 3: For (ToṠi)ave > 0 and (Ẇ )ave = 0 then V̇ < 0 the Hamiltonian system is as-
ymptotically stable and a passive system in the general sense (passivity controllers).

Corollary 4: Given apriori (ToṠi)ave > 0 and (Ẇ )ave > 0 then the Hamiltonian system is
further subdivided into:

4.1: For
(
ToṠi

)
ave >

(
Ẇ
)

ave with V̇ < 0 yields asymptotic stability

4.2: For
(
ToṠi

)
ave =

(
Ẇ
)

ave with V̇ = 0 yields neutral stability

4.3: For
(
ToṠi

)
ave <

(
Ẇ
)

ave with V̇ > 0 yields an unstable system.

The bottom line is that stability is defined in terms of power flow which determines whether
the system is moving toward or away from its minimum energy and maximum entropy
state.

B.3.3 Classic van der Pol Equation Example

Before moving on to collective self-organizing systems, it is instructive to provide a couple
of simple examples. Example 1 is the classic van der Pol’s equation [27] which is analyzed
using the techniques of this section. Originally, the “van der Pol equation” is credited to
van der Pol, and is a model of an electronic circuit for early radio vacuum tubes of a triode
electronic oscillator [27]. The tube acts like a normal resistor when the current is high, but
acts as a negative resistor if the current is low. The main feature is that electrical circuits
that contain these elements pump up small oscillations due to a negative resistance when
currents are small, but drag down large amplitude oscillations due to positive resistance
when the currents are large. This behavior is known as a relaxation oscillation, as each
period of the oscillation consists of a slow buildup of energy ( ’stress phase’) followed by a
phase in which energy is discharged (’relaxation phase’). This particular system has played
a large role in nonlinear dynamics and has been used to study limit cycles (see Appendix
D) and self-sustained oscillatory phenomena in nonlinear systems.

Consider the van der Pol equation which includes a non-linear damping term:

ẍ−µ(1− x2)ẋ+ x = 0.

Next include the actual mass and stiffness values (other than unity) or

mẍ−µ(1− x2)ẋ+ kx = 0.
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The appropriate Hamiltonian/Lyapunov function is defined as:

H = V =
1
2

mẋ2 +
1
2

kx2 > 0.

Then the corresponding time derivative of the Lyapunov function becomes

V̇ = [mẍ+ kx] ẋ
=

[
µẋ(1− x2)

]
ẋ

= µẋ2−µx2ẋ2.

Identifying generator and dissipator terms yields

Ẇ = µẋ2

ToṠi = µx2ẋ2

The stability boundary can be determined as

[
Ẇ
]

ave =
[
ToṠi

]
ave[

µẋ2]
ave =

[
µx2ẋ2]

ave

By investigating several initial conditions both inside, on, and outside the limit cycle then
three separate conditions can be observed. Figure B.4 shows these conditions with the
corresponding numerical values given in Table B.1.

Table B.1. Van der Pol model numerical values

Case description xo ẋo µ m k
(m) (m/s) (kg/s) (kg) (kg/s2)

1 generate 0.1 −0.1 1.5 1.0 1.0
2 neutral 1.0 −1.0 1.5 1.0 1.0
3 dissipate 2.0 −2.0 1.5 1.0 1.0

The responses are plotted on the Hamiltonian 3D surface (left) with the projection onto the
phase plane shown on the 2D plot (right). The system trajectories are constrained to move
along the Hamiltonian surface as a function of exergy flow into the system versus the exergy
dissipation rate. For the case outside the limit cycle (case 3), the dissipator term dominates
and for the case inside the limit cycle (case 1) the generator term dominates. For both cases
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Figure B.4. Van der Pol responses: Hamiltonian 3D surface (left)
and phase plane 2D projection (right)

inside and outside the limit cycle, the system migrates back to the stability boundary. For
the case already on the limit cycle (case 2) then the system is already at neutral stability.
The generative case exergy-rate (left) and exergy (right) plots are shown in Fig. B.5. The
neutral case exergy-rate (left) and exergy (right) plots are shown in Fig. B.6. The dissipative
case exergy-rate (left) and exergy (right) plots are shown in Fig. B.7. The cycle is defined
at approximately τ = 3.5 seconds. For the neutral pair the terms cancel each other out at
the end of the cycle or [Ẇ ]ave = [ToṠi]ave. For the generator case then [Ẇ ]ave > [ToṠi]ave
and for the dissipator case then [Ẇ ]ave < [ToṠi]ave, respectively. Eventually, given enough
cycles both the generator and dissipator cases will converge to the neutral case.

Figure B.5. Van der Pol exergy-rate (left) and exergy (right) re-
sponses - generative case
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Figure B.6. Van der Pol exergy-rate (left) and exergy (right) re-
sponses - neutral case

Figure B.7. Van der Pol exergy-rate (left) and exergy (right) re-
sponses - dissipative case
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As an interesting analogy to a Proportional-Integral-Derivative (PID) control system, re-
place the power generator term with an integral term as

Ẇ = µẋ2 =−KI

[Z t

0
xdτ

]
ẋ.

The equivalence of the integral term as a power generator is analyzed and proved in refer-
ence [13]. Since the negative damping term is nonlinear, the dynamic response to initial
conditions and resulting limit cycle will be slightly different due to the build-up of the
integrator.

The same three test cases used in the previous van der Pol analysis were used with integral
action with the numerical values given in Table B.2. Both the Hamiltonian 3D surface (left)
with the projection onto the phase plane (right) are shown in Fig. B.8. It is interesting to
note for the neutral Case 2, that the integral action has a delayed response which enables
the system trajectory to “dissipate” below the limit cycle boundary before it begins to build
back up and eventually end up on the neutral boundary. Again Cases 1 and 3 are the gener-
ative and dissipative cases. The corresponding exergy and exergy-rate plots for each case
are given in Fig. B.9, for the generative case exergy-rate (left) and exergy (right) responses.
The neutral case exergy-rate (left) and exergy (right) plots are shown in Fig. B.10. The
dissipative case exergy-rate (left) and exergy (right) plots are shown in Fig. B.11.

Table B.2. Van der Pol model with integral action numerical
values

Case description xo ẋo µ m k KI
(m) (m/s) (kg/s) (kg) (kg/s2) (kg/s)

1 generate 0.1 −0.1 1.5 1.0 1.0 1.02
2 neutral 1.0 −1.0 1.5 1.0 1.0 1.02
3 dissipate 2.0 −2.0 1.5 1.0 1.0 1.02
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Figure B.8. Van der Pol with integral action responses: Hamil-
tonian 3D surface (left) and phase plane 2D projection (right)

Figure B.9. Van der Pol exergy-rate (left) and exergy (right) re-
sponses - generative case with integral action
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Figure B.10. Van der Pol exergy-rate (left) and exergy (right)
responses - neutral case with integral action

Figure B.11. Van der Pol exergy-rate (left) and exergy (right)
responses - dissipative case with integral action
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Appendix C

Necessary and Sufficient Conditions for
Stability of Collective Systems

In this Appendix which is a modification of references [1, 21], the concepts of Appendix B
are extended to self-organizing systems. Self-organizing systems, an important class of
collective systems, are reviewed with the assistance of a simplified example to explain
the importance of exergy flows. These concepts are applied to several nonequilibrium
collective system examples in Chapter 3.

C.1 Self-Organization and Adaptability Concepts

In this section self-organizing system concepts are discussed that will be used to analyze the
sustainability of a simplified nonlinear system model which represents a satellite in space.
The basic format from Heylighen [28] will be followed with support from Haken [29] and
Buenstorf [30].

C.1.1 Background

The Achilles heel or single point of failure of self-organizing systems is the requirement
that exergy continuously flow into the system. The self-organizing system is continuously
“shedding” entropy to the environment to keep itself organized and living as it consumes
or dissipates the exergy flow.

Schrödinger (1945) suggested that all organisms need to import “negative entropy” from
their environment and export high entropy (for example, heat) into their environment in
order to survive. This idea was developed into a general thermodynamic concept by
Prigogine and his co-workers who coined the notion of “dissipative structures” (Pri-
gogine, 1976; Prigogine and Stengers, 1984), structures of increasing complexity devel-
oped by open systems on the basis of energy exchanges with the environment. In the
self-organization of dissipative structures, the environment serves both as a source of
low-entropic energy and as a sink for the high-entropic energy which is necessarily pro-
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duced [28].

Basically, self-organizing systems are attempting to balance and perform dialectic synthe-
sis on evolving disordering and ordering pressures [31]. Said another way, life is exergy
dissipation (increasing entropy; disorder) and order production in an open system simulta-
neously. This process which is the evolution of a complex adaptive system is irreversible:
the future is fundamentally different from the past, and it is impossible to reconstruct the
past from the present [28].

Dissipation is the disordering power flow which is better known as consumption in eco-
nomics and irreversible entropy production in thermodynamics. Exergy flow into a system
is the ordering power flow that is better known as production in economics and exergy rate
into an open system in thermodynamics. Balance between these competing power flows is
key because these terms are relative to a goal and path through time which means they can
“flip over” or reverse roles. For example, the exergy flow into a system by a nuclear weapon
is not “matched.” It deposits exergy at a rate that destroys the system, which means it is a
disordering power flow increasing entropy. So, a mechanism must be inserted to “match”
the input to the system if the goal is sustainability instead of destruction. Nuclear power is
an attempt to match the exergy source to the exergy sink to move toward exergy sustain-
ability [1].

The balance between these opposing power flows creates a sort of “equilibrium condition”
for a self-organizing system. Ilya Prigogine described this as “far from thermodynamic
equilibrium on the basis of energy dissipation” and, in cybernetics, it’s often called an at-
tractor [28]. Most nonlinear self-organizing systems have several attractors and the system
moves between these attractors (reordering) due to variations (perturbations; noise; dis-
order) in the exergy flow and the system parameters. These system parameters are often
called “control parameters” because their values determine the “static” stability character-
istics of the system. Static stability and deforming the potential field will be discussed in
more detail in Chapter 3. For example, the potential force field [29, 32] for a nonlinear
spring system can be written in kinematic form (no dynamics) as

q̇ = kq+ kNLq3

where k is the linear stiffness coefficient and kNL is the nonlinear stiffness coefficient. The
potential function is defined as

V (q) =
1
2

kq2 +
1
4

kNLq4. (C.1)

This system changes its fundamental static stability structure (i.e., accessible state space)
by changing k > 0 to k < 0 and kNL > 0. Figure C.1 shows how the stable equilibrium state
at q = 0 bifurcates into two symmetrical stable equilibrium states and becomes an unstable
state.
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Figure C.1. Nonlinear spring potential function characteristics

These attractors are defined relative to a “fitness index.” Some attractors are more likely to
survive, and be “more fit,” than others. In the previous example, one attractor turned into
two attractors which appear to be equally fit if the potential function is interpreted as the
fitness surface. In fact, it is possible for the system to jump back and forth between these
two attractors by varying the exergy flow and the control parameter through perturbations
and noise.

As described earlier, nonlinear systems have several attractors and variations or “fluctua-
tions” that reside between attractors that will push the system to one or the other of the
attractors. Positive feedback is necessary for random fluctuations to be amplified (gener-
ative) [30, 33]. Maintenance of the structured state in the presence of further fluctuations
implies that some negative feedback is also present that dampens (dissipates) these ef-
fects [30, 33]. In Appendix B, these are called a power generator and a power dissipator.
Self-organization results from the interplay of positive and negative feedback [33]. In Sec-
tion B.3, this is defined as the stability boundary and/or limit cycle. Appendix D provides
several numerical examples. In more complex self-organizing systems, there will be sev-
eral interlocking positive and negative feedback loops, so that changes in some directions
are amplified while changes in other directions are suppressed [28, 30]. At the transition
between order and disorder, a large number of bifurcations may be in existence which
are analogous to the bifurcations of the previous potential function. Bifurcations may be
arranged in a “cascade” where each branch of the fork itself bifurcates further and further,
characteristic of the onset of the chaotic regime [28, 23, 30]. The system’s behavior on this
edge is typically governed by a “power law” where large adjustments are possible, but are
much less probable than small adjustments [28]. These concepts enable us to better under-
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stand nonlinear systems, also known as complex adaptive systems, that are on the “edge
of chaos” or those systems that are in a domain between frozen constancy (equilibrium)
and turbulent, chaotic activity [28]. The mechanism by which complex systems tend to
maintain on this critical edge has also been described as self-organized criticality [28, 34].
By appropriately utilizing the preceding concepts, one can design closed-loop nonlinear
systems that can exploit this concept of on the edge of chaos.

C.1.2 Simple Nonlinear Satellite System

With this brief background, it’s time to analyze a simplified nonlinear satellite system (see
Fig. C.2) to mathematically demonstrate the concept of “far from thermodynamic equi-
librium on the basis of energy dissipation” for self-organizing (collective) systems. The
thermodynamic analysis follows [35]. For purposes of clarity, each control volume is sub-
divided into two subregions that contain the physical components. The component mass
is constant. A single constant temperature characterizes each component. The component
subregion is surrounded by an outer zone that characterizes the interaction between the
component (at temperature T ) and the environment (reservoir) characterized by tempera-
ture To. Only control volume 2 will be analyzed in this paper (see reference [1] for more
control volume detail).

Figure C.2. Simplified nonlinear satellite model

Conservation Equations for the Machine (Control Volume 2):

Control Volume 2 consists of a nonlinear mass/spring/damper system (with Duffing oscilla-
tor/Coulomb friction contributing to the nonlinear effects). Work is supplied to the system
which results in the acceleration of the mass. The work is dissipated by the damper. This
increases the temperature of the components of the system, which is characterized by a sin-
gle temperature, T2. The thermal energy is then transferred to the environment, which has
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a temperature of T0. The transfer is realized solely by a heat interaction. No mass enters or
leaves Control Volume 2. Performing the energy, entropy, and exergy analyses [35] yields:

Ė2component = Ẇ − Q̇out2

Ṡ2component = Ṡirr2 −
Q̇out2

T2

Ξ̇2component = Ẇ −ToṠirr2 −
(

1− To
T2

)
Q̇out2

For the surface heat interaction(s) the energy, entropy, and exergy equations are:

Ė2interact Q = 0 = [Q̇out2 − Q̇out2]

Ṡ2interact Q = 0 = Q̇out2

[
1
T2
− 1

To

]
+ Ṡirr2interact Q

Ξ̇2interact Q = 0 =
[(

1− To
T2

)
Q̇out2 −

(
1− To

To

)
Q̇out1

]
−ToṠirr2interact Q

=
(

1− To
T2

)
Q̇out2 −ToṠirr2interact Q

.

Adding the interaction fluxes to the component fluxes produces the complete equations for
Control Volume 2 as:

Ė2total = Ẇ − Q̇out2

Ṡ2total = Ṡirr2 −
Q̇out2

T2
+ Q̇out2

[
1
T2
− 1

To

]
+ Ṡirr2interact Q

Ξ̇2total = Ẇ −ToṠirr2 −
(

1− To
T2

)
Q̇out2 +

(
1− To

T2

)
Q̇out2 −ToṠirr2interact Q

and simplifying yields:

Ė2total = Ẇ − Q̇out2

Ṡ2total = − Q̇out2
To

+
[
Ṡirr2 + Ṡirr2interact Q

]
Ξ̇2total = Ẇ −To

[
Ṡirr2 + Ṡirr2interact Q

]
where

Ṡirr2interact Q
= Q̇out2

[
1
T0
− 1

T2

]
.

By following earlier derivations, this simplified nonlinear model reduces within Control
Volume 2 to

V = H = 1
2mẋ2 + 1

2kx2 + 1
4kNLx4

V̇ = Ḣ =
[
mẍ+ kx+ kNLx3] ẋ

= Ẇ −ToṠi
= uẋ−Cẋ2−CNLsgn(ẋ)ẋ
= ẋ

[
−KPx−KI

R t
0 xdτ−KDẋ−Cẋ−CNLsgn(ẋ)

]
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where

u = PID feedback controller (Implemented force input)
= −KPx−KI

R t
0 xdτ−KDẋ.

Then the following exergy terms are identified as

Ẇ =
[
−KI

R t
0 xdτ

]
ẋ

ToṠi = [−KDẋ−Cẋ−CNLsgn(ẋ)] ẋ
ToṠrev =

[
mẍ+ kx+KPx+ kNLx3] ẋ.

The generalized stability boundary (i.e., far from thermodynamic equilibrium on the ba-
sis of energy dissipation) is given as a balance between “positive and negative feedback”
(exergy generation and exergy dissipation)

[Ẇ ]ave = [ToṠi]ave[
−KI

R t
0 xdτ · ẋ

]
ave =

[
(KD +C)ẋ2 +CNLsgn(ẋ) · ẋ

]
ave .

(C.2)

The “shape” of the resulting limit cycle (see Appendix D) is constrained to the Hamiltonian
surface which determines the accessible bifurcated structure as a function of exergy level
(see Fig. C.3).

C.1.3 Lifestyle Definition

Next the concept of far from thermodynamic equilibrium on the basis of energy dissipation
is interpreted in terms of a “lifestyle” of the mass-spring-damper system within the satellite.
The lifestyle is defined by a cyclic path, attractor, or limit cycle in the phase plane that is
constrained to the Hamiltonian surface H = V , (left) projected onto the phase plane (right)
in Fig. C.3. This path occurs as a result of satisfying (C.2). This interpretation directly
provides a means to ensure a sustainable form of far from thermodynamic equilibrium
on the basis of energy dissipation: the continuous compensation of irreversible entropy
production in an open system with an impedance and capacity-matched persistent exergy
source. In other words, the cyclic lifestyle will persist indefinitely as long as (C.2) is
satisfied and m,k,KP, and kNL are constants. Adaptivity can occur when these parameters
are varied in a controlled fashion.

One final observation on this topic of impedance and capacity matching, the goal of war and
economic competition is to create a production/consumption rate which is sustainable for
you and generates an impedance mismatch that is unsustainable for your enemy/competitor.
The ultimate goal is to cut-off, destroy, and/or dissipate your competitor’s exergy reserves
by changing/deforming your competitor’s Hamiltonian surface (infrastructure - including
population of the work force). This can be accomplished in several ways including: 1)
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Figure C.3. All cases: mass-spring-damper with Duffing oscil-
lator/Coulomb friction model numerical results: Hamiltonian 3D
surface (left) and phase plane 2D projection (right)

pick-up the pace by increasing the limit cycle frequency (i.e., less mass), 2) accelerate the
exergy consumption of your competitor by using more efficient technologies, 3) deform
the potential field with information flow, and 4) enable the energy state through Fisher
information. Topics 3) and 4) are discussed in more detail in Chapter 3.
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Appendix D

What is a Limit Cycle?

D.1 Limit Cycle Analyses

The primary goal of this section is to describe several characteristics of limit cycles which
include being the stability boundary for linear and nonlinear control systems. A secondary
goal is to demonstrate the fundamental nature of the Hamiltonian and power flow con-
trol in control system design. In particular, the combination of Hamiltonian mechanics,
thermodynamics, and nonlinear control theory described in Appendix B is used to define
necessary and sufficient conditions for stability of nonlinear systems: the limit cycle is the
generalized stability boundary.

D.2 Linear Limit Cycles

This section describes the concept of linear limit cycles. A linear limit cycle is a strange
concept to most people since limit cycles are typically associated with nonlinear systems. A
limit cycle is defined by Wikipedia as a closed trajectory in phase space having the property
that at least one other trajectory spirals into it either as time approaches infinity or as time
approaches minus - infinity. By the end of this section, it will be shown how a center [40]
of a second-order system can be interpreted as a linear limit cycle, for example, the goal of
power engineering.

The mass-spring-damper system of Fig. D.1 will be utilized throughout this discussion by
methodically adding more complexity as the discussion progresses.

The Lagrangian and Hamiltonian of this system are

L = T −V =
1
2

mẋ2− 1
2

kx2 (D.1)

and

H = T +V =
1
2

mẋ2 +
1
2

kx2 (D.2)
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Figure D.1. Mass-spring-damper system

where

T = 1
2mẋ2 = kinetic energy

V = 1
2kx2 = potential energy.

The equation of motion is derived from Lagrange’s equation

d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= Qi (D.3)

and is determined as

mẍ+ kx =−cẋ+u (D.4)

where

qi = x = generalized coordinate
q̇i = ẋ = generalized velocity
Qi = −cẋ+u = generalized forces, and
u = control input.

The time derivative of the Hamiltonian gives

Ḣ = [mẍ+ kx] ẋ = [−cẋ+u] ẋ (D.5)

which for a conservative system is

Ḣ = 0 ⇒ H = constant
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and

[−cẋ+u] = 0 (D.6)

which implies point-by-point cancellation of forces and power flows.

Next (D.5) and (D.6) are investigated in more detail. Equation (D.5) can be rewritten as a
line integral

Hcyclic =
I

τ

Ḣ dt =
I

τ

[mẍ+ kx] ẋdt =
I

τ

[−cẋ+u] ẋdt (D.7)

where

τ = period of the limit cycleH
= closed (trajectory) path integral along the Hamiltonian surface .

Equation (D.7) is the line integral of the power flow to produce the work per cycle [4, 16,
36, 37] or

Wcyclic =
I

τ

F · ẋdt =
I

τ

Qiq̇idt =
I

τ

Ḣ dt (D.8)

where

F = force vector
ẋ = velocity vector.

Equation (D.7) can be further rewritten as

Hcyclic =
H

τ
[p(x,y)dx+q(x,y)dy] =

H
τ
[Hxdx+Hydy]

=
H

τ
[kxdx+mydy] =

H
τ
[kxẋ+myẏ]dt = 0 (D.9)

for [cẋ−u] = 0, y = ẋ, Hx = ∂H /∂x, since H is an exact integral, conservative, and path
independent. This result can be confirmed by Green’s Theorem

Hcyclic =
I

τ

[pdx+qdy] =
Z Z

Ω

[qx− py]dxdy = 0

since

p = Hx = kx ⇒ py = 0
q = Hy = my ⇒ qx = 0.
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Equation (D.9) describes a center which will be referred to as a linear limit cycle shown
in Fig. D.2 (where m = 10 kg, k = 10 N/m, ẋo = 0.0 m/s, and xo = 1.0 m). The Hamil-
tonian surface determines the accessible phase space as a function of energy (exergy) level.
The power flow, Ḣ , determines the system trajectory across the Hamiltonian surface as a
function of time and initial position.

Figure D.2. Linear limit cycle: Hamiltonian 3D surface (left)
and phase plane plot (right)

This linear limit cycle defines a constant energy (exergy) orbit in phase space, H = con-
stant, given some initial condition that defines an initial energy state

H =
1
2

mẋ2
o +

1
2

kx2
o (D.10)

Equation (D.10) defines the orbit that is an orthogonal cut across the Hamiltonian manifold
and projected onto the phase plane.

Now, one can explore (D.6) further by selecting a Proportional-Integral-Derivative (PID)
controller

u =−KPx−KI

Z
xdt−KDẋ (D.11)

and rewriting (D.5) as

Ḣ = [mẍ+(k +KP)x] ẋ =
[
−(c+KD)ẋ−KI

Z
xdt
]

ẋ (D.12)

which leads to a rewritten version of (D.6) as[
−(c+KD)ẋ−KI

Z
xdt
]

= 0 (D.13)
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Equation (D.13) was solved in [13] where the integral feedback was shown to be a genera-
tive (exergy) term that balances the dissipator terms point-for-point which leads to another
linear limit cycle like the one in Fig. D.2. It is as though no forces and power flows are
acting on the system. Notice, that if

KI

Z
xdt ẋ >−(c+KD)ẋ2

then the system rises to a higher energy state and the system is unstable. On the other hand,
if

KI

Z
xdt ẋ <−(c+KD)ẋ2

then the system falls to a lower energy state and the system is asymptotically stable. The
linear limit cycle is a stability boundary. Equation (D.12) defines an eigenvalue problem
that will be discussed in Section D.4.

Next, a particular example of designing linear limit cycles will be explored for a power
engineering application [25]. Returning to (D.4), the control input is a sinusoidal voltage
and the electrical analogy from Fig. 3.12 gives

Lq̈+
1
C

q =−Rq̇+ vo cosΩt (D.14)

where i = q̇ = current and

t = time
q = charge
L = inductance
C = capacitance
R = resistance
vo = voltage
Ω = driving frequency.

The Hamiltonian is

H =
1
2

Lq̇2 +
1
2

1
C

q2. (D.15)

The time derivative of the Hamiltonian is

Ḣ =
[

Lq̈+
1
C

q
]

q̇ = [−Rq̇+ vo cosΩt] q̇ (D.16)
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where the goals are to make Ḣ = 0 and obtain a power factor of 1.

The first goal occurs when

Ḣ = 0 = [vo cosΩt−Rq̇] q̇. (D.17)

which implies

vo cosΩt = Rq̇. (D.18)

The second goal occurs when

Ḣ = 0 =
[

Lq̈+
1
C

q
]

q̇ (D.19)

which implies ω2 = 1/LC = Ω2. To verify this (D.14) is solved for the steady-state solu-
tion [38]

q(t) =
vo

[L2(ω2−Ω2)2 +R2Ω2]
1
2

cos(Ωt−δ) (D.20)

where

cosδ =
L(ω2−Ω2)

[L2(ω2−Ω2)2 +R2Ω2]
1
2
.

By imposing ω2 = 1/LC = Ω2 then

cosδ = 0 ⇒ δ = π/2

which implies

q = vo
RΩ

cos(Ωt− π

2 ) = vo
RΩ

sinΩt
q̇ = −vo

R sin(Ωt− π

2 ) = vo
R cosΩt

which gives (D.18) and for (D.19) then

−L(vo
R Ω)sinΩt + 1

C( vo
RΩ

)sinΩt =
[
−LΩ+ 1

CΩ

] vo
R sinΩt

=
[
−Ω2 + 1

LC

] L
Ω

vo
R sinΩt

= 0.
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Next, the linear limit cycles for this problem, where Ω2 = 1/LC and Ω2 6= 1/LC will be
investigated. Figure D.3 (upper-left 3D Hamiltonian plot and upper-right phase-plane plot)
shows the linear limit cycle for a power factor of 1 or Ω2 = 1/LC where “at least one other
trajectory spirals into it.” It appears like the response of an undamped, unforced linear

Figure D.3. Linear limit cycle Hamiltonian 3D spiral (upper-left)
with corresponding phase plane plot (upper-right). The next 3D
plots show the linear, 10% variation in inductance, L or L′ = 90%
of L, and 20% variation in capacitance, C or C′ = 80% of C (lower-
left) with the corresponding phase plane plots (lower-right)

system. Figure D.3 (linear, 10% variation in L (where L′ = 90% of L), and 20% variation
in C (where C′ = 80% of C) are plotted in lower-left along with the phase plane plots
lower-right) shows the linear limit cycle for a power factor of less than 1 or Ω2 6= 1/LC
(see Table D.1 for numerical values). The energy (exergy) level has dropped and the edges
have drooped which results in the concentric ellipses in the phase plane even though the
Hamiltonian surface has been deformed by Ω2 6= 1/LC. Part of the power flow is being
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Table D.1. RLC numerical parameters and results

Case L C R vo ω Ω δ cos(π

2 −δ)
description (mH) (µF) (Ohms) (Volts) (Hz) (Hz) (deg) Power Factor

linear 70.362 100.0 10.0 1.0 60.0 60.0 90 1.0
10% variation (L) 63.326 100.0 10.0 1.0 63.25 60.0 75 0.9659
20% variation (C) 70.362 125.0 10.0 1.0 53.67 60.0 118 0.8829

used for “VAR support” or reactive power to ensure a concentric linear limit cycle in the
phase plane at a lower energy (exergy) level. Notice that for

I
τ

Ḣ dt = Hcyclic = 0

implies that H (t) is cyclic and not constant, where τ = 2π/Ω and Ω2 6= ω2 = 1/LC. Note,
the goal of power engineering is to generate a power factor of 1 which is equivalent to
generating a linear limit cycle. This “out-of-plane” limit cycle behavior is the first hint at
how to generalize (D.5) and (D.7) to nonlinear limit cycles.

D.3 Nonlinear Limit Cycles

This section extends the concept of linear limit cycles to nonlinear limit cycles. The linear
mass-spring-damper system is extended to a nonlinear system by adding nonlinear stiffness
and damping as shown in Fig. D.4.

The Lagrangian and Hamiltonian for this system are

L =
1
2

mẋ2− 1
2

kx2− 1
4

kNLx4 (D.21)

H =
1
2

mẋ2 +
1
2

kx2 +
1
4

kNLx4 (D.22)

with the following equation of motion

mẍ+ kx+ kNLx3 =− f (ẋ)+u (D.23)
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Figure D.4. Nonlinear mass-spring-damper system

where f (ẋ) is the generalized damping force. The time derivative of the Hamiltonian is

Ḣ =
[
mẍ+ kx+ kNLx3] ẋ = [− f (ẋ)+u] ẋ (D.24)

where the goal is to find the nonlinear limit cycles given by

Hcyclic =
I

τ

Ḣ dt =
I

τ

[
mẍ+ kx+ kNLx3] ẋdt =

I
τ

[− f (ẋ)+u] ẋdt (D.25)

which for a conservative system, Ḣ = 0 and H = constant and

[− f (ẋ)+u] = 0 (for point-by-point). (D.26)

The more general solution that replaces the point-by-point force balance is a cyclic balance
between the power flowing into the system versus the power being dissipated within the
system is

Hcyclic =
I

τ

Ḣ dt = 0 and H (t) is cyclic. (D.27)

A familiar example to begin the discussion involving (D.27) is the van der Pol equation

ẍ−µ(1− x2)ẋ+ x = 0. (D.28)

The Hamiltonian with non-unity mass and stiffness is

H =
1
2

mẋ2 +
1
2

kx2 (D.29)
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with the time derivative of

Ḣ = [mẍ+ kx] ẋ =
[
µ(1− x2)ẋ

]
ẋ (D.30)

and the nonlinear limit cycle becomes

Hcyclic = 0 =
I

τ

[mẍ+ kx] ẋdt =
I

τ

[
µ(1− x2)ẋ

]
ẋdt (D.31)

which implies

I
τ

[
µẋ2]dt =

I
τ

[
µx2ẋ2]dt. (D.32)

Equation (D.32) is satisfied and the numerical results are plotted in Fig. B.4. The exergy
balance over a cycle is shown in Fig. B.6 (neutral case). This is a stable limit cycle. Notice,
the non-elliptical shape of the nonlinear limit cycle is a result of the cyclic rise and fall of
the energy (exergy) level of the system, H (t), due to the nonlinear damping.

As an interesting analogy to a PID control system, the negative dissipator in the van der
Pol system is replaced with an integral term and the nonlinear limit cycle becomes

Hcyclic = 0 =
I

τ

[mẍ+ kx] ẋdt =
I

τ

[
−KI

Z t

0
xdt1−µx2ẋ

]
ẋdt (D.33)

which implies

I
τ

[
−KI

Z t

0
xdt1

]
ẋdt =

I
τ

[
µx2ẋ2]dt. (D.34)

The numerical results are similar to the discussion of the standard van der Pol case with the
numerical results given in Fig. B.8 and the exergy balance over a cycle shown in Fig. B.10
(neutral case).

The second example is a Duffing oscillator equation with Coulomb friction given by

mẍ+ kx+ kNLx3 =−cẋ− cNLsign(ẋ)+u (D.35)

and controlled with a PID controller

u =−KPx−KI

Z
xdt−KDẋ. (D.36)
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The Hamiltonian is

H =
1
2

mẋ2 +
1
2
(k +KP)x2 +

1
4

kNLx4 (D.37)

with a time derivative of

Ḣ =
[
mẍ+(k +KP)x+ kNLx3] ẋ =

[
−(c+KD)ẋ− cNLsign(ẋ)−KI

Z
xdt
]

ẋ. (D.38)

The nonlinear limit cycle occurs when

I
τ

[−(c+KD)ẋ− cNLsign(ẋ)] ẋdt =
I

τ

[
KI

Z
xdt
]

ẋdt. (D.39)

Numerical simulations were performed to demonstrate where the nonlinear stability bound-
ary lies for the Duffing oscillator/Coulomb friction dynamic model subject to PID control.
Twelve separate cases (Cases 1-12) were conducted with the numerical values listed in Ta-
ble D.2. For Case 1, all the generative/dissipative terms are set to zero which results in

Table D.2. Duffing oscillator/Coulomb friction model and PID
control system gains (Note: for all cases ẋo = 0.0)

Case KP KI KD c CNL m k kNL Tf xo xr
No. (kg/s2) (kg/s3) (kg/s) (kg/s) (N) (kg) (N/m) (N/m3) (sec) (m) (m)

1 10 0.0 0.0 0.0 0.0 10 10 100.0 10 1 0
2 10 20.0 2.0 0.1 5.0 10 10 100.0 10 1 0
3 10 40.05 2.0 0.1 5.0 10 10 100.0 10 1 0
4 10 80.0 2.0 0.1 5.0 10 10 100.0 10 1 0
5 −200 20.0 2.0 0.1 5.0 10 10 100.0 36 1 0
6 −200 10.0 2.0 0.1 5.0 10 10 100.0 36 1 0
7 −200 1.0 2.0 0.1 5.0 10 10 100.0 36 1 0
8 −200 1.0 2.0 0.1 5.0 10 10 100.0 100 1 0
9 −200 50.0 2.0 0.1 5.0 10 10 100.0 15 1 0

10 −200 30.0 2.0 0.1 5.0 10 10 100.0 36 −1 0
11 10 20.0 2.0 0.1 5.0 10 −200 100.0 50 0 1
12 10 20.0 2.0 0.1 5.0 10 −200 100.0 50 0 −1

a stable orbit for the nonlinear system (see Fig. D.5 - left). In addition, the sum of the
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exergy/energy over a cycle between kinetic and potential is zero as shown in offsetting
exergy-rate plots in Fig. D.5 (right). For Case 2 the exergy and exergy rate responses (left)
along with the integral of position, position, velocity, and acceleration responses (right) are
plotted in Fig. D.6. For this case, the dissipative term is greater than the generative term.

Figure D.5. Case 1 stable phase plane plot (left) and ki-
netic/potential energy rate responses (right)

Figure D.6. Case 2 exergy and exerg-rate responses (left) and
system responses (right)

This is observed from the decaying system responses. In Case 3 the exergy and exergy
rate responses (left) along with the system responses (right) are shown in Fig. D.7. In this
case, the average exergy slopes and integrated power areas for the dissipative and genera-
tive terms are equivalent which demonstrates (D.39): a nonlinear limit cycle. This results
in system responses that do not decay, displaying constant nonlinear oscillatory behavior.
In Case 4, the exergy and exergy rate responses (left) along with the system responses
(right) are shown in Fig. D.8. In this case, the dissipative term is less than the generative
term which results in a system response with increasing nonlinear oscillatory behavior. In
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Figure D.7. Case 3 exergy and exergy-rate responses (left) and
system responses (right)

Figure D.8. Case 4 exergy and exergy-rate responses (left) and
system responses (right)

summary, Fig. D.9 shows the responses with respect to the Hamiltonian surface with tra-
jectories traversing the surface (left) for each case along with the total exergy responses
(right) for the nonlinear system. For Case 3 the nonlinear stability boundary (or neutral sta-
bility) is characteristic of an average zero output for the total exergy response or validation
of (D.39). For the trajectories on the Hamiltonian surface, Case 2 demonstrates an asymp-
totically stable decaying response, Case 3 a neutrally stable orbital response, and Case 4 an
asymptotically unstable increasing orbit response.

In addition, the stability boundary condition can be used to identify different operating
regions for systems that may need to be gain scheduled. For example, the integral gain, in
general may be a function of many different parameters

KI = KI(xo, ẋo,C,CNL,KD).
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Figure D.9. Cases 2-4: mass-spring-damper with Duffing oscil-
lator/Coulomb friction model numerical results: Hamiltonian 3D
surface (left) and total exergy responses (right)

For the purpose of illustration the integral gain was investigated for different initial condi-
tions, xo, while holding all the other possible parameters constant. The results are shown in
Fig. D.10. For several varying initial conditions for xo, at the stability boundary condition
each KI was determined. The corresponding linear system resulted in constant KI values
which is characteristic of a linear system. The gain scheduling is due to the nonlinear
spring. It changes the limit cycle behavior as a function of stored exergy.

Figure D.10. Gain scheduling with the integral gain as a function
of initial conditions

The third example, revisits the previous example of the Duffing oscillator equation with
Coulomb friction, however a negative potential or (KP + k) < 0 is investigated (see cases
5-12 in Table D.2). For Cases 5-10, the system is under regulator control, at (x, ẋ) = (0,0)
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with positive proportional feedback. This causes the point (x, ẋ) = (0,0) to be an unstable
static node and for the following scenarios, with (KP + k) < 0 the system is forced away
from the regulator point.

In Case 5, the system builds up enough energy to transition out of the right well but over-
shoots into the left well where the process starts again (see Figs. D.11 and D.12). Even-
tually, the system achieves a balanced equilibrium between both wells, a nonlinear limit
cycle. A similar response is shown for Case 6 (see Figs. D.13 and D.14). Note that for a

Figure D.11. Case 5 Hamiltonian 3D surface plots (left) and
corresponding 2D phase plane plots (right)

Figure D.12. Case 5 exergy and exergy-rate responses (left) and
system responses (right)

reduction in KI that the responses are slower, in comparison to the previous Case 5.

In Case 7 (see Fig. D.15) the KI again is reduced resulting in the appearance that the system
decays down to a point in the right well. Also note that in Fig. D.16 that the dissipative term
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Figure D.13. Case 6 Hamiltonian 3D surface plots (left) and
corresponding 2D phase plane plots (right)

Figure D.14. Case 6 exergy and exergy-rate responses (left) and
system responses (right)

is greater than the generator term (left) with corresponding decaying responses in Fig. D.16
(right) for both the position and velocity, respectively. Case 7 is building up slower than
previous cases, since KI is reduced. However, in Case 7 and 8, given enough simulation
time, (t f = 100 sec) the generator term eventually builds up enough energy to move out
of the right well, but again overshoots (see Fig. D.17) the (0,0) regulator point and spirals
down into the left well. The exergy and exergy-rate responses are given in Fig. D.18 (left)
along with the corresponding state responses (Fig. D.18 - right).

For Case 9, KI is increased such that the system traverses around both left and right wells
and approaches another higher energy level, nonlinear limit cycle (see Fig. D.19 along with
Fig. D.20). In this case the generator term maintains a balance with the opposing damping
terms subject to the nonlinear spring effect (refer to Fig. D.10).
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Figure D.15. Case 7 Hamiltonian 3D surface plots (left) and
corresponding 2D phase plane plots (right)

Figure D.16. Case 7 exergy and exergy-rate responses (left) and
system responses (right)
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Figure D.17. Case 8 Hamiltonian 3D surface plots (left) and
corresponding 2D phase plane plots (right)

Figure D.18. Case 8 exergy and exergy-rate responses (left) and
system responses (right)
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Figure D.19. Case 9 Hamiltonian 3D surface plots (left) and
corresponding 2D phase plane plots (right)

Figure D.20. Case 9 exergy and exergy-rate responses (left) and
system responses (right)

Case 10 demonstrates a reduction in KI and also starts in the left well, builds up enough
energy to move over to the right well and eventually comes back to another stable energy
state, nonlinear limit cycle, (see Figs. D.21 and D.22).
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Figure D.21. Case 10 Hamiltonian 3D surface plots (left) and
corresponding 2D phase plane plots (right)

Figure D.22. Case 10 exergy and exergy-rate responses (left) and
system responses (right)

For the last two cases (Cases 11 and 12), the PID regulator is converted to a tracking
controller for which

u =−KP(x− xr)−KI

Z
(x− xr)dτ−KD(ẋ− ẋr) (D.40)

where for this discussion, xr is a reference step input and the reference velocity is ẋr = 0.
The corresponding Hamiltonian becomes

H =
1
2

mẋ2 +
1
4

kNLx4 +
1
2

kx2 +
1
2

KP(x− xr)2. (D.41)

In Case 11, the system is given a unity reference step input for which after moving from
(0,0) the system spirals into and converges into the right well at (1,0) (see Figs. D.23
and D.24).
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Figure D.23. Case 11 Hamiltonian 3D surface plots (left) and
corresponding 2D phase plane plots (right)

Figure D.24. Case 11 exergy and exergy-rate responses (left) and
system responses (right)
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In Case 12, the system also starts at (0,0) and is commanded to step into the left well at
(−1,0) for which the results also spiral and converge to the appropriate final condition
(see Figs. D.25 and D.26). In addition, for comparative purposes without simulation plots,
the reference operating point was set to (xr, ẋr) = (0,0) (the unstable node) and for nonzero
initial conditions, the tracking controller still eventually overshoots the set point with very
similar results to the previous cases.

Figure D.25. Case 12 Hamiltonian 3D surface plots (left) and
corresponding 2D phase plane plots (right)

Figure D.26. Case 12 exergy and exergy-rate responses (left) and
system responses (right)

This exergy/entropy control analysis and design has provided insight for the investigation
of forced nonlinear systems. Both stability and performance can be further characterized
and synthesized with a better understanding of limit cycles and their relationship and role
played with respect to the nonlinear system.
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The last example is a generalization of (D.23). Sabatini [39] discusses the uniqueness of
limit cycles for a class of plane differential systems defined by

x′ = β(x) [φ(y)−F(x,y)]
y′ = −α(y)g(x). (D.42)

The system (D.42) contains the particular cases of Lotka-Volterra systems, the Rayleigh
equation, the Liénard equation, the van der Pol equation, and more general second order
equations.

In particular, if one chooses β(x) = α(y) = 1,F(x,y)≡ F(x), and φ(y) = y then the Liénard
equation results

x′′+ f (x)x′+g(x) = 0. (D.43)

where f (x) = ∂F(x)/∂x which leads to the van der Pol equation for g(x) = x and f (x) =
−µ(1− x2)

x′′−µ(1− x2)x′+ x = 0. (D.44)

Additionally, if one chooses β(x) = α(y) = 1,F(x,y) = F(x),g(x) = x then the Rayleigh
equation results in

y′′−F(−y′)+φ(y) = 0. (D.45)

In this example, the Liénard systems,

x′ = y−F(x), y′ =−g(x) (D.46)

will be investigated, where a unique limit cycle exists when

Z T

0
F(x)g(x)dt = 0 (D.47)

for every cycle [39]. The goal is to show that (D.47) is equivalent to (D.27). The first step
is to rewrite (D.46) in second order form

ẋ = y−F(x), ẏ =−g(x)
ẍ = ẏ− d

dt (F(x)) =−g(x)− f (x)ẋ
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and simplifying gives

ẍ+ f (x)ẋ+g(x) = 0. (D.48)

The second step is to formulate the Hamiltonian for (D.48)

H =
1
2

ẋ2 +V (x) (D.49)

where m = 1 and ∂V (x)/∂x = g(x). Next take the time derivative of the Hamiltonian (D.49)
or

Ḣ = [ẍ+g(x)] ẋ =− f (x)ẋ2 =− d
dt

(F(x)) ẋ (D.50)

which leads to a limit cycle

Hcyclic = 0 =
I

τ

[ẍ+g(x)] ẋdt =
I

τ

[
− f (x)ẋ2]dt =

I
τ

[
− d

dt
(F(x)) ẋ

]
dt. (D.51)

The third step is to rewrite (D.47) as

R T
0 F(x)g(x)dt =

H
τ
F(x)g(x)dt =

R T
0 [y− ẋ]g(x)dt =

R T
0

[
−yẏ− ∂V (x)

∂x ẋ
]

dt

= −1
2y2|T0 −V (x)|T0 .

(D.52)

The fourth step is to rewrite (D.51) as

R T
0 f (x)ẋ2dt =

R T
0

d
dt (F(x)) ẋdt =

R T
0 Ḟ [y−F ]dt =−1

2F2|T0 +
R T

0 Ḟydt
= −1

2F2|T0 +Fy|T0 +
R T

0 Fgdt =
[1

2y2− 1
2 ẋ2]T

0 +
R T

0 F(x)g(x)dt
(D.53)

which upon substitution of (D.52) gives

I
τ

f (x)ẋ2dt =
Z T

0
f (x)ẋ2dt =−

[
1
2

ẋ2 +V (x)
]T

0
=−Hcyclic = 0. (D.54)

This example demonstrates the applicability of the Hamiltonian-based approach to a “large
class” of nonlinear systems.

Finally, Appendix B provides the connections between Hamiltonian mechanics, irreversible
thermodynamics, and nonlinear control theory to develop necessary and sufficient condi-
tions for stability of nonlinear systems including the generalized stability boundary: the
limit cycle.

98



D.4 The Power Flow Principle of Stability for Nonlinear
Systems

A familiar eigenvalue problem results from (D.5) with Ḣ = 0 and [−cẋ+u] = 0 as

mẍ+ kx = 0[
s2 + k

m

]
x(s) = 0

s2 + k
m = 0

which is the undamped natural frequency.

A second eigenvalue problem is discussed in Reference [13] with respect to (D.12) as

mẍ+(k +KP)x = 0 −(c+KD)ẋ−KI
R

xdt = 0[
s2 + 1

m(k +KP)
]

x(s) = 0 [(c+KD)s+KI/s]x(s) = 0
s2 +(k +KP)/m = 0

[
s2 +KI/(c+KD)

]
x(s) = 0

s2 +KI/(c+KD) = 0

which leads to a result of

(k +KP)
m

=
KI

(c+KD)
= ω

2

for the existence of a linear limit cycle. This result is verified using the Routh-Hurwitz
analysis in [13].

Now, a nonlinear extension to the previous eigenvalue problems can be discussed with
respect to (D.51)

I
τ

[ẍ+g(x)] ẋdt =
I

τ

[
− f (x)ẋ2]dt = 0.

The first term describes the nonlinear frequency content [40] of the undamped/undriven
system

ẍ+g(x) = 0

which effectively extends the undamped natural frequency to nonlinear systems and defines
the Hamiltonian surface as well as the static stability of the system. The second term
describes the dynamic stability of the nonlinear system and the existence of a limit cycle

I
τ

[
− f (x)ẋ2]dt

>
< 0 and

I
τ

[
− f (x)ẋ2]dt = 0

99



which is an extension of the real part of the eigenvalue (D.13) to nonlinear systems.

For example, equation (D.38) shows a nonlinear frequency content (amplitude dependent)
and a resulting coupling into the effective damping which produces initial condition depen-
dent limit cycle behavior (refer to Figures D.8 and D.10).
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