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DISCLAIMER 
 
This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government nor any 
agency thereof, nor any of their employees, makes any warranty, express or 
implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights.  
Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof.  The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States 
Government or any agency thereof. 

 



 I 

TABLE OF CONTENTS 

1. BACKGROUND ...............................................................................................................................1 

2. HUMAN MACHINE COOPERATIVE TELEROBOTICS...........................................................2 

2.1 THE HMCTR CONCEPT ...............................................................................................................2 

2.2 SYSTEM CONFIGURATION............................................................................................................4 

2.3 TASK PLANNING ...........................................................................................................................6 

2.4 COMPUTER ASSISTANCE FUNCTIONS........................................................................................15 

2.4.1 Position Assist Functions ..................................................................................................15 

2.4.1.1 Planar Constraint........................................................................................................16 

2.4.1.2 Theory of the planar assistance function..................................................................17 

2.4.1.3 Linear Constraint .......................................................................................................22 

2.4.2 Velocity Assist Functions..................................................................................................26 

2.4.3 Force Assist Functions.......................................................................................................27 

2.4.3.1 Description of Force Assist Function Calculations .................................................28 

2.4.3.2 Definition of the constraint frame and the sensor frame.........................................30 

3. EXPERIMENTAL STUDIES ........................................................................................................31 

3.1 AUTONOMOUS OPERATIONS......................................................................................................31 

4. RTSA ENHANCEMENTS.............................................................................................................36 

4.1 SENSOR HEAD.............................................................................................................................36 

4.1.1 Overall System Description...............................................................................................36 

4.1.2 Mechanical Design.............................................................................................................38 

4.1.3 Laser Range Pointer...........................................................................................................40 

4.1.4 Pan/Tilt Drive.....................................................................................................................41 

4.1.5 Camera System...................................................................................................................42 

4.2 SOFTWARE ..................................................................................................................................44 

4.2.1 OpenGL Approach.............................................................................................................45 

4.2.2 Revised Software Architecture .........................................................................................45 

4.2.3 Revised Stereo Autoscan ...................................................................................................51 

4.2.4 Coordinate Transformations..............................................................................................51 

4.3 PERFORMANCE ...........................................................................................................................55 

4.3.1 Error Analysis and Calibration..........................................................................................55 

4.3.2 Tests ....................................................................................................................................59 



 II 

5. FUTURE CONSIDERATIONS .....................................................................................................60 

5.1 INTEGRATION WITH DD ROBOTICS...........................................................................................60 

5.2 TECHNICAL ISSUES.....................................................................................................................60 

5.2.1. Automatic Error Calibration.............................................................................................60 

5.2.2 Parts Libraries ....................................................................................................................61 

REFERENCES.....................................................................................................................................72 

APPENDICES .....................................................................................................................................74 

APPENDIX A, HARDWARE DESCRIPTION ........................................................................................75 

APPENDIX B, HMCTR CONTROLSHELL™ IMPLEMENTATION ......................................................81 

APPENDIX C, SIMULATION RESULTS AND CODE ASSIST FUNCTIONS ..........................................97 

APPENDIX D, RTSA OPENGL SOFTWARE LISTING.....................................................................134 

 



 III 

 

LIST OF FIGURES 

Figure 1 Configuration of the HMCTR................................................................................................4 
Figure 2  Human machine cooperative telerobotics control scheme. .................................................5 
Figure 3  Sample task plan. ...................................................................................................................6 
Figure 4  Task Planner Scheme ............................................................................................................7 
Figure 5 Main RTSA Window..............................................................................................................8 
Figure 6 New/Open Window ................................................................................................................8 
Figure 7 Select Tool Window ...............................................................................................................9 
Figure 8 Tool Setting Window..............................................................................................................9 
Figure 9 Mode Selection Window......................................................................................................10 
Figure 10 Cut Point Selection Windows ............................................................................................11 
Figure 11 Via Points Window.............................................................................................................12 
Figure 12 Insert Via Point Window....................................................................................................12 
Figure 13 More Cuts Window.............................................................................................................13 
Figure 14 Check and Download Plan Window..................................................................................14 
Figure 15 Save As ... Window ............................................................................................................14 
Figure 16  Constraint frame and sensor frame. ..................................................................................27 
Figure 17  Building of task plan file in RTSA. ..................................................................................32 
Figure 18  Manipulator trapped after cutting. ....................................................................................33 
Figure 19 Successful D&D operation on the mock-up in autonomous mode..................................35 
Figure 20. Coordinate Frames of the Sensor......................................................................................38 
Figure 21. Sensor Head Mounted on Pan/Tilt Unit ...........................................................................39 
Figure 22. Laser Range Pointer...........................................................................................................41 
Figure 23. Pan?Tilt Unit Critical Features .........................................................................................42 
Figure 24. BumblebeeTM Stereo Camera ............................................................................................43 
Figure 25. Robot Task Scene Analyzer Software Data Flow Diagram............................................44 
Figure 26. Order of Operations ...........................................................................................................45 
Figure 27. RTSA Windows Tree ........................................................................................................47 
Figure 28 An example of 3-D surface mesh constructed from stereo range data............................52 
Figure 29 A textured and integrated 3-D surface mesh constructed from 32 individual stereo data 

sets...........................................................................................................................................53 
Figure 30 Spin-image recognition of standard U.S. industrial components. (a) Flange (b) tee. ....54 
Figure 31. Sensor Head and Calibration Test Equipment .................................................................60 



 IV 

Figure 32. Error Calibration Test Result ............................................................................................61 
Figure 33 Gain Adjustment Test Result .............................................................................................62 
Figure 34 Wallpaper after the LRF tilt offset error is compensated.................................................63 
Figure 35 Model view window with wallpaper after OpenGL parameter adjustment....................64 
Figure 36 System accuracy test procedure (when the wall paper is closed to the sensor head). ....65 
Figure 37 System accuracy test procedure (when wallpaper captures the work space)..................66 
Figure 38 Accuracy test with the grid panel as wallpaper . ..............................................................67 
Figure 39 Accuracy test with the workspace as wall paper . ............................................................67 
Figure 40 Increased focus of laser range finder.................................................................................69 
 

 

 

 

 

 

 

 

 

 

 



 1 

1. BACKGROUND 

The remediation and deactivation and decommissioning (D&D) of nuclear waste storage tanks 

using telerobotics is one of the most challenging tasks faced in environmental cleanup. Since a 

number of tanks have reached the end of their design life and some of them have leaks, the 

unstructured, uncertain and radioactive environment makes the work inefficient and expensive.  

However, the execution time of teleoperation consumes ten to hundred times that of direct contact 

with an associated loss in quality.  Thus, a considerable effort has been expended to improve the 

quality and efficiency of telerobotics by incorporating into teleoperation and robotic control 

functions such as planning, trajectory generation, vision, and 3-D modeling.  One example is the 

Robot Task Space Analyzer (RTSA), which has been developed at the Robotics and 

Electromechanical Systems Laboratory (REMSL) at the University of Tennessee in support of the 

D&D robotic work at the Oak Ridge National Laboratory and the National Energy Technology 

Laboratory. This system builds 3-D models of the area of interest in task space through automatic 

image processing and/or human interactive manual modeling.  The RTSA generates a task plan file, 

which describes the execution of a task including manipulator and tooling motions. The high level 

controller of the manipulator interprets the task plan file and executes the task automatically.  Thus, 

if the environment is not highly unstructured, a tooling task, which interacts with environment, will 

be executed in the autonomous mode. Therefore, the RTSA not only increases the system 

efficiency, but also improves the system reliability because the operator will act as backstop for safe 

operation after the 3-D models and task plan files are generated. However, unstructured conditions 

of environment and tasks necessitate that the telerobot operates in the teleoperation mode for 

successful execution of task.  The inefficiency in the teleoperation mode led to the research 

described as Human Machine Cooperative Telerobotics (HMCTR). The HMCTR combines the 

telerobot with robotic control techniques to improve the system efficiency and reliability in 

teleoperation mode.  

In this topical report, the control strategy, configuration and experimental results of Human 

Machines Cooperative Telerobotics (HMCTR), which modifies and limits the commands of human 

operator to follow the predefined constraints in the teleoperation mode, is described. The current 

implementation is a laboratory-scale system that will be incorporated into an engineering-scale 

system at the Oak Ridge National Laboratory in the future. 
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2. HUMAN MACHINE COOPERATIVE TELEROBOTICS 

2.1 The HMCTR Concept 

When the task environment of telerobotics is not highly complex, the task can be performed in 

the autonomous mode and there is no need for human intervention. If the environment is highly 

unstructured and the task requires interaction between the tool and the environment, the task cannot 

be executed in the autonomous mode due to the increased complexities of tasks and errors in the 

model of the environment. In the latter situation, the task must be executed in the teleoperation 

mode, and the human abilities of cognition, creativity, and innovation can counteract the certain 

occurrence of unexpected events. However, in the teleoperation mode tasks contacting with the 

environment using tools, such as bandsaws and drills, make the maneuvering of the manipulator 

difficult. This difficulty makes the human operator fatigue easily. Fatigue then decreases the 

efficiency and performance of the human operator, and task execution time consequently increases. 

There is therefore a need to improve the system maneuverability and efficiency in teleoperation by 

exploiting the robotic control techniques. These robotic motion techniques, which are called assist 

functions in the HMCTR, enhance the human command and improve the system efficiency by 

modifying the human command. 

In the HMCTR, three assist functions – position assist, velocity assist, and force assist – have 

been developed based on the requirements of a nuclear tank clean-up. Each of these functions can 

be selected and used on demand by the operator. In the position assist function, the constraints are 

either linear (linear assist function) or planar (planar assist function). The position assist functions 

constrain the end-effector to a line or plane during the execution of the task by changing the scaling 

factor of the velocity components.  For example, the linear assist function is used during drilling to 

make the tool move along the constrained line (the axis of the tool bit). The planar assist function is 

used during pipe cutting to ensure that the bandsaw moves only in the cutting plane. These assist 

functions reduce the level of operator effort required by decreasing the degrees of freedom that must 

be controlled by the human operator. The velocity assist function is used to decrease the movement 

time of the end-effector by increasing its velocity when it is moving in free space or is far away 

from the task location and by decreasing its velocity when it approaches the task location or an 

obstacle. This function allows the operator to control a faster moving manipulator without fear of 

impacting it or of overshooting the task location. The force assist function keeps the individual 

contact forces and moments within pre-defined bounds when the task requires the manipulator to 
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make contact with the environment.  For example, in a drilling task, the force assist function 

maintains a constant force component in the drilling direction and zeroes the other force and 

moment components. Therefore, the force assist function prevents damage to the environment and 

the tool, improves the operator efficiency, and improves work quality. The HMCTR is designed to 

work with the Robot Task Space Analyzer (RTSA), which has also been developed at the Robotics 

and Electromechanical Systems Laboratory at the University of Tennessee. The RTSA first builds a 

3-D model of the task space. Using the RTSA, the human operator can then define the tasks and 

select the proper assist, or autonomous, function for each task. Finally, the RTSA creates the task 

plan file. The high level controller in the HMCTR interprets the task plan file and activates the 

proper assist functions during the teleoperation, or executes the task plan autonomously. 
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2.2 System Configuration 

The developed telerobotic system, shown in Fig. 1, consists of two main components; the Robot 

Task Space Analyzer (RTSA) and the Human Machine Cooperative Telerobot (HMCTR). In the 

RTSA, the human operator selects a region of interest (ROI) in the task space of the robot and 

captures the image using the stereo camera pair (not shown in the Figure 1). The captured image 

can be sent to the automated image reasoning process to build a 3-D model of the ROI if the 

operator believes that route is feasible. Otherwise, the 3-D model of the environment can be 

generated by a human operator using the interactive manual modeling Graphical User Interface 

(GUI) of the RTSA. Then, the operator builds the task plan file, which describes the execution of 

task, including the manipulator and tooling motions, using the task planner. The task planner is an 

interactive GUI system, and the operator is only required to select the part and tooling position on 

the 3-D model of the ROI.  Detailed data, such as the required position and rotation of the end-

effector or the manipulating procedure, are automatically generated by the task planner of RTSA. 

These autonomous functions of RTSA increase the efficiency of the task execution and improve the 

system reliability by allowing the operator to check for safe operation by examining the 3-D models 

and the task plan file generated. 

 
IDLEMANUAL_TELEOPAUTOEXECESTOPFinite State MachineSchilling Titan 2ManipulatorddtJuΣΣ∫ΣKmBs-1∫ΣBs-1KsΣΣ++++++++---Ju-1∫Cartesion ControllerTeleoperation  ModeAutonomous ModeTask PlanHuman operatorHuman Machine Cooperative Telerobotics (HMCT)Stereo Camera Sensor HeadAssist FunctionWorkspace  mappingRobot  Task Space Analyzer (RTSA)Low Level Controller

 
 

Figure 1 Configuration of the HMCTR. 
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The control scheme of HMCTR, which introduces the assist functions into the teleoperation 

mode, is shown in Figure 2. The HMCTR consists of a finite state machine (FSM), interpreter, and 

assist functions. The FSM selects the operating mode, and the interpreter activates the functional 

blocks that correspond to the operating mode. In the autonomous mode, HMCTR transforms the 

commands, which are listed in the task plan file, from Cartesian space to manipulator joint space 

and sends them to the low-level controller. In the teleoperation with assist function mode, the 

human operator generates the commands, which are increments of joint angles, using the mini-

master. The assist functions modify the commands to limit the action of the end-effector and 

thereby satisfy the predefined constraints on the end-effector. The assist functions consist of a linear 

assist function, which keeps the end-effector in the line, a planar assist function, which keeps the 

end-effector on the plane, and a force assist function, which limits the contact forces to prescribed 

values.  

 

 
FSM- Operating Mode   selection- Emergency StopInterpreter- Execution of   program- Select ing of   control blockK-1T.G.PIC30Assist Function++(x-x-1)  dt  Assist FunctionT-1QKR,P,Y*SeparatorK-1θθ   DirectKinematicsX,Y,Z,R,P,Y*X,Y,Z,R,P,Y*X,Y,Z*xyz,,,*Mini MasterTask Plan FileTrajectoryGenerator  CommandCompensator  InverseKinematicsLow Level Controller++Autonomous modeTeleoperation withoutAssist FunctionTeleoperation withAssist functionθθθθ*θ*θ*θ*Time DelayIntegratorQuaternionCalculation  InverseKinematicsDifferentiation   SelectedAssist Function

 
Figure 2  Human machine cooperative telerobotics control scheme. 
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2.3 Task Planning 

Graphical user interface 

The graphical user interface of the task planner allows the operator to plan a set of tasks for the 

system to execute.  The interface seeks to maximize user efficiency by minimizing input time and 

knowledge needed to run the system accurately.  Based on these requirements, a basic task planner 

design was constructed, which prompts the operator through the required inputs with a minimum 

number of windows. The output of the task planner is a list of actions, which are downloaded as a 

text file to the real-time control computer.    A sample file is shown in Figure 3.  Each action in the 

task plan file gives Boolean information about the gripper state, time duration, and position.  The 

format of the file is such that it can be parsed by a state transition component in ControlShell called 

‘fetchandparse.’  A trajectory generator there creates a smooth motion along a path from the 

manipulator’s current position to the given final position.  

 
___________________________________________________________________________________ 

1  move    x 1420.8    y 395.5    z 1577.1    roll  9.0    pitch  3.7    yaw -1.0   Gripper 70   TimeDuration 60    
2  move    x 1519.4    y 411.2    z 1570.6    roll  9.0    pitch  3.7    yaw -1.0   Gripper 70   TimeDuration 60    
3  move    x 1617.9    y 426.8    z 1564.2    roll  9.0    pitch  3.7    yaw -1.0   Gripper 70   TimeDuration 60    
4  move    x 1519.4    y 411.2    z 1570.6    roll  9.0    pitch  3.7    yaw -1.0   Gripper 70   TimeDuration 60    
5  move    x 1420.8    y 395.5    z 1577.1    roll  9.0    pitch  3.7    yaw -1.0   Gripper 70   TimeDuration 60    
6  move    x 1420.8    y 395.5    z 1577.1    roll  9.0    pitch  3.7    yaw -1.0   Gripper 70   TimeDuration 60    
7  move    x 1519.4    y 411.2    z 1570.6    roll  9.0    pitch  3.7    yaw -1.0   Gripper 70   TimeDuration 60    
8  move    x 1617.9    y 426.8    z 1564.2    roll  9.0    pitch  3.7    yaw -1.0   Gripper 70   TimeDuration 60    
9  move    x 1519.4    y 411.2    z 1570.6    roll  9.0    pitch  3.7    yaw -1.0   Gripper 70   TimeDuration 60    
10 move   x 1420.8    y 395.5    z 1577.1    roll  9.0    pitch  3.7    yaw -1.0   Gripper 70   TimeDuration 60    
____________________________________________________________________________________ 

 
Figure 3  Sample task plan. 
 

The basic structure of the task planner is shown in Figure 4.  As shown, the task planner allows 

all possible tooling scenarios to be planned from twelve simple self-explanatory windows.  Prior to 

entering the task planner a manual model of the cut area must be constructed.   
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Figure 4  Task Planner Scheme 
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The task planner is entered through the Main RTSA window (Figure 5).  

 

 
 

Figure 5 Main RTSA Window 

New/Open window 

Then the user begins a new task plan file using the New/Open window (Figure 6).  Eventually, 

this window will be expanded to allow the user to edit previously created files.   

 

 

 

Figure 6 New/Open Window 
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Select tool window 

The Select tool window (Figure 7) allows the tool to be used in the tooling operation to be 

selected.   

 

 

Figure 7 Select Tool Window 

Tool settings window 

Then, in the Tool settings window (Figure 8), the tool specific parameters for that operation are 

selected.   

 
 

Figure 8 Tool Setting Window 

Mode selection window 

The Mode selection window (Figure 9) is used to select the mode of operation.  Choices are 

autonomous mode, teleoperation using an assist function, or pure teleoperation.  Linear, planar, and 

velocity assist functions are available.  The assist functions interact with the task planner and allow 
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motion constraints to be implemented during teleoperation.  These functions are useful during 

tooling tasks such as maintaining alignment with bolts during removal.  They are defined in the task 

plan and implemented in the real-time controller.    

 
 

 
Figure 9 Mode Selection Window 

Cut point selection window 

Next, in the Cut point selection window (Figure 10), the cut plane is selected from the model 

previously created. At the top of this window is a drop list used to select the part that is to be cut. 

When a part is selected, it is highlighted in red in the OpenGL window and a cutting plane in the 

shape of a flat arrow appears along the axis of the part. Buttons on the window allow the operator to 

translate the cutting plane along the z-axis of the part, and to rotate the direction of the approach 

around the z-axis.  When the selections have been made, the operator stores this point.  The cut 

point is calculated from the selection of a cutting plane and direction.  Based on the cut point, 

approach points and final points are calculated.  The approach point is an intermediate point at 

which velocity scaling can begin.  The final point is where the cut will end.   
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Figure 10 Cut Point Selection Windows 

 

Via point windows 

Once the cutting point has been selected, any needed via points can be added through the Via 

point windows (Figures. 11 and 12).  A via point is an extra point added by the operator into the 

motion trajectory of the manipulator. Via points may be included to ensure that the manipulator 

moves around expected obstacles between cuts or during tool retrieval and replacement.  After cut 

points have been selected from the previously described window, the drop list in this window will 

contain a list of those cutting operations. The operator may then choose to insert via points after any 

of the operations in this list. They will be included in the final motion trajectory created for 

download to the controller. The via point coordinates are entered manually. 
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Figure 11 Via Points Window 

 

 
 

 

Figure 12 Insert Via Point Window 

More cuts window 

Finally, the operator is asked whether more cuts should be added to the plan in the More cuts 

window (Figure 13).  If more cuts are needed in the task plan file, the operator is prompted to begin 
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the cut plane selection process again with Figure 7.  If not, the plan is completed by checking and 

downloading it. 

 
 

Figure 13 More Cuts Window 

 
Check and download plan window 

The Check and download plan window (Figure 14) allows the basic structure of the file to be 

checked.  It also allows the operator to choose to download the task plan file to the location of her 

choice.  When opened, the check plan window displays a simple alphanumeric list representing the 

results of the high-level task planning operations.  
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Figure 14 Check and Download Plan Window 

 
Save as window 

The task plan file can be saved (for those cases when execution may be implemented at a later 

time) into any file location through the Save as window (Figure 15).   

 
 

Figure 15 Save As ... Window
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2.4 Computer Assistance Functions 

Assist functions were developed to enhance teleoperator control over position, velocity, and 

force during specific tedious and challenging tasks.    The system operator retains control over 

which assist function is used to perform a given task.  The motivation to use assist functions is to 

increase speed and/or reduce fatigue. 

 

2.4.1 Position Assist Functions 

The position assist function has three modes that can be selected based on the manipulator task: 

planar constraint, linear constraint, and velocity assistance. For example, when cutting a pipe, the 

user must keep the manipulator in a certain orientation, typically one that moves the cutter normal 

to the pipe.  This motion is difficult because of the many undesired inputs to the end-effector from 

the operator.  The planar assist function can constrain the motion to the desired cutting plane.  

Similarly, in the drilling task, there are also many undesired inputs from the teleoperator.  The 

linear assist function constrains the motion of the end-effector along the drilling line (axis of the 

drill bit). 

The operator chooses the task for the manipulator to perform. For example, if the task is cutting 

a pipe, “P”, for planar assistance, is chosen. To drill a hole, ”L”, for linear assistance, is chosen. The 

“P”, ”L” and “V” selections represent, respectively, planar constraint, linear constraint and velocity 

scaling. 

 

The following is a list of variables to be used in the assist function. 

• GP, PP1, and PP2 – three points to determine a constraint plane. And GP is the goal point of 

the movement, from which the manipulator begin doing tasking, cutting or drilling etc. 

• LP1, LP2 – two points to determine a constraint line 

• CP – current point of the end-effector. At the beginning, CP is the same as the MIP 

(Manipulator initial point). 

• Projection – the projection of the CP in a plane or on a line. 

• VNS – nonscaled master velocity command 

• Vcut – the transformed velocity of VNS in the new frame during cutting work 

• Vline – the transformed velocity of VNS in the new frame during linear work 

• Vscaled – the scaled velocity in the constraint frame 

• Vmodified – the modified master velocity command 
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2.4.1.1 Planar Constraint 

Use of the planar constraint position assist function will result in: 

• The end-effector moving only in the constraint plane 

• The final end-effector position coinciding with the goal point 

These objectives are accomplished by scaling velocity components on the constraint plane.  First, 

the end-effector is moved to the constraint plane, and then the orientation is fixed to that needed for 

the task.  The end-effector then moves along the constraint plane to the task location.  The velocity 

is adjusted based on the distance between the end-effector and the task location.  Once at the task 

location, the operation can begin.  These steps will be described in more detail in the following 

paragraphs. 

Before doing a certain task in mode “P”, such as cutting, the position and the orientation of the 

end-effector should be adjusted to successfully and efficiently complete the desired task.  First of 

all, the position of the end-effector must coincide with the goal point.  The orientation is adjusted 

according to the following parameters.   To successfully obtain these parameters, assist functions 

are called to aid in the teleoperation of the manipulator.  In the planar assist function, used in the 

cutting operation, the requirements are: 

• The current position of the tip of the end effector must be in the constraint plane. So the 

velocity in Z-axis direction (the normal to the constraint plane) should be scaled down close 

to zero 

• The Roll axis is kept on the constraint plane. So the Yaw velocity will assist the orientation to 

follow the angle of the constraint plane.  Any deviation from the plane will be scaled down 

close to zero.  Since the orientation is set to the desired position initially, the yaw velocity 

gain will be scaled close to zero.  

• During cutting operations, the end effecter does not roll, so the Roll velocity must scaled 

close to zero. 

• Once the teleoperator chooses “P,” the function uses GP1, PP1 and PP2 to build a constraint 

plane. Then it checks if the CP (at the beginning, it is the same as the MIP) is on this 

constraint plane.  If not, it calculates the projection of the CP to the constraint plane. If so, the 

projection is the same as CP. 

• Based on projection, MIP and GP, it builds a constraint frame. 

X axis--- from Projection to GP; 
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Y axis—determined by X and Z; 

Z axis--- the normal of the plane 

 
If the CP is not on the constraint plane and the orientation is not appropriate for the task, the 

linemove( ) function and rotationAdjust() will be called in a while loop. The linemove () function 

helps the teleoperator to move the manipulator along a line from CP to projection. During this 

movement, its absolute velocity is scaled depending on the distance between the projection and the 

CP. The rotationAdjust() function adjusts the rotation of the end effector. Only when the end 

effector has the right position and orientation does the program exit from this while loop. 

After exiting from the while loop, the end effector is on the constraint plane and its orientation is 

appropriate for the task. Then from this position and orientation, the manipulator moves toward to 

the GP. During this movement, the commanded absolute velocity is scaled depending on the 

distance between GP and the CP. Then the teleoperator begins the task. During task operation, the 

function does the following: 

 

VNS Vcut  (Transform master velocity command from master space into constraint frame.) 

Vcut Vscled (In constraint frame, the Z-axis velocity is scaled. The scale factor is 0.1.  This 

allows minimal movement without completely constraining the end-effector.) 

Vscaled Vmodified (Transform the scaled velocity back to master space. This modified master 

velocity is the new master velocity command that is sent to the low-level controller.) 

 

The above is done continuously until the teleoperator exits the assist function after completing 

the desired task. 

 

2.4.1.2 Theory of the planar assistance function  

The theory of the planar assist function is based upon scaling velocities relevant to a constraint 

frame.  This constraint frame is defined as the coordinate frame in which the task is being 

performed.  The constraint frame is constructed, and then the initialization is performed to ensure 

the end-effector is on the constraint frame with the proper orientation. 

 

The following steps are performed: 

 

1. Calculate the plane equation 
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The equation of a plane through three points is 

 
                                         (1) 

 

where (x0, y0, z0), (x1, y1, z1), (x2, y2, z2) are GP, PP1, PP2 respectively. 

 

The plane equation can be expressed by normal form  

                     aX+bY+cZ+d=0  (2) 

 

where a, b, c, d are coefficients of the plane equation, they have been calculated from Eq.(1). 

 

 

2. Calculate the projection of the MIP on this plane 

The equation of the line from MIP to the unknown projection is: 
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where a, b, and c are coefficients of plane equation. From Eq.(2) and Eq.(3), we can get 
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3. Construct the constraint plane 

 The origin of the constraint frame is the projection of MIP on the constraint plane. 

Z-axis: the normal of the constraint plane (a, b, c) 
X-axis: the direction from projection to GP. 
Y-axis: to complete a right-hand coordinate system.  
 

The transformation is:  
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Where ( 11a , 11b , 11c ), ( 21a , 21b , 21c ), ( 31a , 31b , 31c ) are the direction of X, Y and 

Z-axis of constraint frame. 

 

 

4. Initialization 

Before doing scaling operation, the algorithm checks if the CP (current point of the end effector) 

is on the constraint plane and if the orientation is appropriate for the task.  At the beginning, the CP 

is the same as MIP.  An iterative procedure was previously described for correction if the CP is not 

on the constraint plane and the orientation is not appropriate.  Only when the end effector has right 

position and rotation does the program exit this while loop.  The appropriate roll, pitch, and yaw 

angles are calculated using the transformation matrix from the base frame to the constraint frame.  

These angles  are calculated from the following equations: 
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5. Linear Velocity Scaling 

The following is performed in order to scale the velocity in Z-axis (normal to the constraint 

plane):  

a). Define the input velocity from the master as the velocity command. It is non-scaled velocity, 

represented using Vnoscaled.    

 

b) Now transform this velocity with respect to constraint plane, this new velocity is called Vcut. 

 

                                  tranR=RT      

                                                    VnoscaledtranRVcut !=                                                                            (10) 

c) The next step is designing a scale matrix, represented by scale 
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d). This scale matrix is multiplied by the non-scaled velocity to obtain the scaled velocity, Vscaled 

. 

 

                                cutscaled VscaleV !=                                                                                 (12) 

 

The scaled velocity in Z-axis depends on the value of the ScaleZ.  If ScaleZ is zero, the Z-

velocity will be zero.  In order to get the scaled velocity represented in the base frame to send to the 

controller as the master command, the transformation matrix must be transformed.  The modified 

velocity in the base frame is the new master velocity command, represented by Vmodified.  

 

                              scaledified VRV !=mod                                                                                   (13) 

 

In the control program, this new master velocity command is sent to the low-level controller.  

Thus the Z-axis of the constraint frame is scaled.  

 
6. Angular Velocity Scaling 

In order to scale Roll, Pitch and Yaw velocities, the following is performed: 

• Similar to linear scaling, the input velocity from the master is the velocity command. It is a 

non-scaled angular velocity, represented by ωnoscled.  Using the same transformation matrix of 

the constraint frame with respect to base frame R (and its transpose tranR), this angular 

velocity is transformed into ωcut, the angular velocity with respect to constraint plane. 

 

                             noxcaledcut tranR !! *=                                                                                   (14) 

 

• The next step is to construct a scale matrix, represented by scaleRPY 
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The scale calculation is made using this scale matrix. The scaled velocity is expressed using 

ωscaled. 

                             cutscaled scaleRPY !! "=                                                                                (16) 

 

• The Pitch velocity is free.  The scaled Roll and Yaw velocity depends on the values of the 

scale factors.  All the scale factors in the assist function are 0.1.  

 

• The scaled velocity is transformed from the constraint frame to the base frame, producing the 

modified velocity, which is the new master velocity command, represented by wmodified.  

 

                             scaledified R !! "=mod                                                                                     (17) 

 

In the control program, this new master angular velocity command is sent to the low-level 

controller.  
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2.4.1.3 Linear Constraint 

 

The linear assist function is similar to the planar assist function.  The difference is that additional 

scaling is needed to keep the end-effector in a linear constraint frame.  This assist function performs 

the following objectives: 

• The velocities in the X and Y directions are scaled by 0.1.  

• The Roll axis must be kept on the constraint line. 

• The Pitch and Yaw velocities must be very small, so the scale factor is set to 0.1. 

The linear constraint follows the same steps as the planar constraint.  The calculations however, 

are different to achieve these objectives.  The calculations are described below: 

 

1. Obtain the line equation of the constraint line through two points: LP1, LP2 
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where (X1, Y1, Z1),(X2,Y2,Z2) are two constraint points LP1, LP2 respectively. 

 
2. Calculate the projection of the MIP on this constraint line. The projection is represented using 

P0 

 

From Eq. (14), we can get the following relationship: 
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                                                                     (19) 

 
(Assuming the three coordinates of P0 is (X, Y, Z). 

 

The line perpendicular to L1 is L2. Its direction vector is: 

 

                              { })(),(),( 000 ZZYYXX !!!  
where (X0, Y0, Z0) is the MIP, and the direction vector of L1 is: 

 { })(),(),( 121212 ZZYYXX !!!  

 

Because L1•L2=0, we have 

                0))(())(())(( 120120120 =!!+!!+!! ZZZZYYYYXXXX                                            (20) 
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Substitute Eq.(16) into Eq.(17), we can solve K and then (X,Y,Z) , which is the value of the 

projection of MIP on the constraint line . 

 
3. Construction of the Constraint Frame. 

Z-axis:  the direction of the constraint line  

X-axis: from P0 to MIP 

Y-axis:   to complete a right-hand coordinate system. 

The origin is P0. 

The transformation from base frame to constraint frame can be obtained, which is similar to 

the transformation in planar case.  

 
4. Initialization 

As in the planar case, the algorithm checks if the CP (current point of the end effector) is on 

the constraint line and the orientation of the end effector is appropriate for the task. If not, the 

linemove( ) function and rotationCheck() will be called in a while loop. Only when the end 

effector has right position and rotation, the program exits the while loop.  In order to calculate 

the appropriate roll pitch and yaw angles, the constraint frame rotation matrix is used.  This is 

a 3 x 3 rotation matrix that relates the constraint frame to the appropriate roll, pitch, and yaw 

angles.  These are the equations: 
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5. Linear Velocity Scaling 

The following is performed in order to scale the velocity in X-axis and Y-axis close to zero:  

a) We define the input velocity from the master as master velocity command. It is non-

scaled velocity, represented using Vnoscled.    

b) Now transform this velocity with respect to constraint plane, we named this new velocity 

using Vline. 
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                             tranRl=RlineT 

                             noscaledline VtranRlV !=                                                                          (24) 
 
 

c) The next step is designing a scale matrices, represented by scale 
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scale                                                                    (25) 

 
d) Use this scale matrix to do scale calculation. The scaled velocity is denoted using Vscaled. 

                             linescaled VscaleV !=                                                                              (26) 
 
 

The scaled velocities in X-axis and Y-axis depend on the value of the scale factors. 

 

e) Transform the scaled velocity of constraint frame back to modified velocity with respect 

to base frame, which is new master velocity command, Vmodified.  

 
            scaledified VRV !=mod                                                                              (27) 

 
In the control program, the new master velocity command is sent to the low-level controller.  

 
6. Angular Velocity Scaling 

 
These calculations are similar to the linear velocity scaling and can be calculated in the 

following steps: 

 
a) Define the input master angular velocity as the angular velocity command. It is the non-

scaled velocity, represented by ωnoscled.    

b) Use the same transformation matrix, that of the constraint frame with respect to base 

frame Rline and its transpose tranRl. 

c) Transform this angular velocity into the angular velocity with respect to the constraint 

plane, ωline. 

 
              noscaledline tranRl !! "=                                                                      (28) 
 

d) The next step is designing a scale matrices, represented by scaleRPY 
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                                           (29) 

 
e) Using this scale matrix to do scale calculation. The scaled velocity is expressed using 

ωscaled. 

                    linescaled scaleRPY !! "=                                                            (30) 
 

The scaled Roll, Pitch and Yaw velocities depend on the values of the scale factors.  

 
f) Now transform the scaled angular velocity from constraint frame to base frame, getting 

modified velocity, which is the new master angular velocity command, represented by 

ωmodified.  

 
                   scaledified R !! "=mod                                                                     (31) 
 

In the control program, the modified angular velocity is sent to the low-level controller.  
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2.4.2 Velocity Assist Functions 

The velocity assistance function works to speed up or slow down the absolute velocity of the 

end-effector depending on certain obstacles and goal points.  For example, if the teleoperator wants 

to do a certain task, but the goal point is far away from the current end-effector point, the absolute 

velocity is increased.  In the same way, as the current point of the end-effector approaches the goal 

point, or an obstacle, the absolute velocity will be decreased.  This assist function is necessary to 

allow the teleoperator to perform tasks more quickly by cutting down travel time.  Also, as the end-

effector approaches the goal point or an obstacle, the velocity is decreased to avoid collisions 

resulting from errant master inputs.   The velocity is increased or decreased depending on the 

distance.  This scale calculation is changed gradually depending on the distance.  The following 

equations relate the scaling factor to the safe distance and actual distance.   

If the distance is greater than the Safedistance: 

                                
disActual
safeDisrscalefacto != 2                                                                        (32) 

 

If the distance is less than the Safedistance: 

                               
safeDis

disActualrscalefacto =                                                                              (33) 

 

The commanded velocity is scaled to accomplish this objective.  Since the absolute velocity will 

be scaled, no transformation is required.  The following equation is used. 

 

                              noscaleified VScaleV !=mod                                                                           (34) 

 

This results in increased performance for travel time, as well as assisting in obstacle avoidance. 
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2.4.3 Force Assist Functions 

The force assistance function uses the individual contact force and moment components (3 force 

components and 3 moment components) when the manipulator contacts with the environment to 

assist the teleoperator.  The controlled force and moment components are defined in the constraint 

frame shown in Figure 16. 

 
 
 
 

 
Figure 16  Constraint frame and sensor frame. 

 
The force assistance function (FAF) is similar the position assist function and the velocity assist 

function.  It helps the operator by modifying the velocity commands based on the sensory data.  

Since the FAF operates during the task operation, it must precede the other assist functions to insure 

proper assistance.  The FAF uses the force/torque sensor and the operator’s reference force to 

calculate a scaling matrix to apply to the commanded velocity from the mini-master or task plan 

file.  This scaling matrix is based on the contact forces with the robots surroundings.  During task 

operation, the robot will encounter forces on the end-effector.  To prevent damage to the end-

effector, the robot itself, the tool being used, and the environment, the velocities are scaled down 

upon encountering forces.   

Since the FAF works with the other assist functions during task operation, the constraint frame 

already exists.   The constraint frame is the frame in which the operator sets a reference force.  The 

force/torque data from the sensor frame is also transformed to the constraint frame.  Moreover, the 

FAF modifies the commanded velocity before the other assist functions, so the FAF mainly scales 
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down velocities that are not scaled in the other assist function.  For example, if the task being 

performed is cutting a pipe, the planar assist function will already be turned on.  Once the FAF is 

activated, the constraint frame is obtained from the planar assist function.  When force is measured 

from the sensor, a velocity scaling matrix is calculated.  The scaling matrix will scale the velocity 

down according to the magnitude of the measured force.  The output is the modified velocity.  This 

modified velocity provides the input to the planar assist function.  The planar assist function simply 

scales down the velocities that point away from the constraint frame.  The output of this scaling is 

the modified velocity, which is sent to the low level controller.  The purpose of the FAF is to 

modify the commanded velocities within the allotted movement of the constraint frame.  To 

accomplish this, the FAF should be calculated before the other assist functions.  The FAF 

calculations are explained in the following section. 

 

 

2.4.3.1 Description of Force Assist Function Calculations  

The force assist function calculates a velocity and angular velocity scaling matrix based on the 

force/torque sensor data and the reference force.  First of all, the reference force and the sensor 

force are transformed into the constraint frame.  The reference force should be set by the 

teleoperator to be in the constraint frame.  Once the two forces are in the constraint frame, the 

scaling matrix can be calculated using the following equations.  Since the reference force, referencef , 

is relevant to the task, a scale matrix is created according to the following equation: 
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where S(i,i) denotes the diagonals of the scaling matrix, S. 

The six values correspond to the force in x, y, and z, and the moments in x, y, and z.  Since the 

desire of an assist function is to scale the velocities, this equation decreases the value of the scale 

upon an increase in force/moment from the sensor.  Also, in addition to equation (3), there exists the 

following three conditions: 

                          if 1.0
)(

)()(
<

!

if
ifif

reference

sensorreference   then S(i) =0.1  

                          or 
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                          or 

                          if )(ifreference =0, then S(i) is set to 0.1 

The first condition means that the scaling will never be less than 0.1 of the commanded velocity.  

This is because the manipulator should never be scaled down too far in order to prevent from 

getting stuck in that position.  The second condition means that if the sensor force exceeds the 

reference force, the lowest value for S(i) will remain at 0.1.  Similarly, the third condition states that 

if the reference force is input as zero from the teleoperator, and the velocity is immediately scaled 

down to 0.1 under the assumption there will always be some sensorf  value for that given direction.  

Therefore, if there is any force at all for a zero reference force value, the scale will be 0.1. 

After the scaling matrix is calculated using equation [3] and the three conditions, it is multiplied 

by the input velocity command from the mini-master.  The scaling matrices are given by the 

following equations: 
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SF denotes the force scaling matrix to be multiplied by the velocity matrix.  SM denotes the 

moment scaling matrix to be multiplied by the angular velocity matrix.  Before the SF matrix and 

the SM matrix can be multiplied to the commanded velocity, they must be transformed to the 

constraint frame.  This is shown in the following equation: 

                         basecommanded
base

constraconstracommanded VTV !! = *intint                                                   (37) 

 

Now the commanded velocity is in the constraint frame, and the scaling matrices can be applied: 

                         intmod * constracommandedFified VSV !=                                                                      (38) 

and 

                          intmod * constracommandedMified S !"="                                                                  (39) 

 

These modified V and Ω are transformed back to the base frame as the output to the force assist 

function. 

                            ified
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basebaseified VTV mod
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mod *=!                                                                  (40) 
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and 

                            ified
constra

basebaseified T mod
int

mod *!=! "                                                               (41) 

The modified velocity and the modified angular velocity are in the form of one 6-element vector, 

Vmodified.  Therefore the FAF assists the operator by scaling the velocity relative to the force on the 

environment, resulting in constraining the motion within the constraint frame, in order to further 

assist the teleoperator.   

 

2.4.3.2 Definition of the constraint frame and the sensor frame 

The force sensor frame is different from constraint frame, so contactf  and referencef  must be 

transformed from the sensor frame to the constraint frame. The transformation is obtained from the 

following:   

•  According to a certain task, define a constraint frame that is relative to the base frame. So 

RB
C will be obtained. 

•  Define sensor frame with respect to the base frame and obtain RB
S . 

•  From  
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     the transformation from sensor frame to constraint frame is obtained. 

•  Get the force-moment transformation Tf, then transform the force feedback data from the 

sensor frame into the constraint frame. 
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After the force vector has been transformed into constraint frame, all the calculations necessary 

for the assist function can be made. 
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3. EXPERIMENTAL STUDIES 

Over the course of the project, various types of experimental tests have been performed.  During 

this phase, the experimental focus was on tests involving automated task execution and human 

intervention to overcome unexpected operational faults.  Key results are summarized in the 

following section. 

3.1 Autonomous Operations 

In this test, HMCTR operates in the autonomous mode, and then the commands for manipulating 

are described in the task plan file.  Figure 17 shows the process to build the task plan file in the 

RTSA.  Figure 17 (a) shows the 3-D modeling of task space, and the (b) shows the selection of 

cutting plane on the 3-D model.  Figure 18 shows the preliminary pipe cutting test without the use 

of the blade trailing guide on the band saw. It shows that the manipulator is trapped after the pipe 

cut is completed when the blade extends beyond the outer edge of the pipe.. A very large 

disturbance, generated either during or after pipe cutting, causes the control system to overshoot 

moving the end-effector from the correct position after the pipe is cut through. The results of this 

transient event make it impossible to withdraw the saw blade through the pipe cut opening. As 

shown in Figure 16, the human operator tried to move the end-effector back to the approach point in 

the teleoperation mode, but it proved to be virtually impossible because of the complexity of the 

situation and the control limitations of the teleoperation mode.  Figure 19 shows a successful D&D 

operation of the HMCTR on the mockup built in the Robotics and Electromechanical Systems 

Laboratory. 

                             
(a) modeling                                                     (b) selection of cutting plane 
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              (c) saving of task plan file                                    (d)  review of the task plan file 

Figure 17  Building of task plan file in RTSA. 

  
                             (a)                                                                             (b) 

  
                             (c)                                                                             (d) 
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                             (e)                                                                             (f) 

  
                             (g)                                                                             (h) 

Figure 18  Manipulator trapped after cutting. 
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                         (a)                                                                                  (b) 

     
                         (c)                                                                                 (d) 

   
                         (e)                                                                                 (f) 
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                         (g)                                                                                (h) 
Figure 19 Successful D&D operation on the mock-up 
in autonomous mode. 

 
These test results show clearly that the HMCTR overall system including the RTSA capability 

are capable of automated subtask execution for complex scenarios such as band saw pipe cutting.  

The robustness of automating a particular subtask depends strongly on the nature of the tooling and 

task environment details. 
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4. RTSA ENHANCEMENTS 

The original HMCT contract was modified to incorporate an additional technical objective 

associated with the Robot Task Space Analyzer, an integral part of a total HMCTR.  The original 

RTSA project was performed using a laboratory type sensor head that was obtained through an 

equipment loan agreement with the Oak Ridge National Laboratory.  The contract modification was 

implemented so that a prototype sensor head compatible with actual field deployment requirements 

could be developed.  The modification also funded additional R&D to enhance the sensor head 

performance and to eliminate earlier dependence on an expensive commercial software package 

used as a 3D graphics display engine.  The following discussions described the enhanced sensor 

head and its performance. 

4.1 Sensor Head 

 

4.1.1 Overall System Description 

 

Definition of Sensor Head Coordinate System 

Figure 4.1 shows the coordinates frames fixed on the sensor head system.   The coordinate 

systems are right-handed Cartesian coordinate frames, and the orientations of all coordinate frames 

are defined to be the same as that of the OpenGL coordinate system.  The pan and tilt angles are 

both zero at the orientation and the position shown.  Therefore, the axes of coordinate frames point 

in the same directions: x-axes point rightward, y-axes point upward, and z-axes point backward of 

sensor head.  The direction of the z-axes is opposite to the gaze direction of the camera.  The 

positions of each coordinate frames are shown in Table 4.2 in Section 4.2.4. 

 

Sensor Head Coordinate Frame 

The sensor head coordinate frame is fixed on the underside of the sensor head assembly with its 

y-axis along the pan axis.  The x-axis is attached to point in the rightward of the sensor head 

assembly.  The z-axis is defined by the right-hand rule to point to the rear of the sensor head. 

 

Pan Coordinate Frame 

The pan coordinate frame is fixed on the top of the pan unit, and the y-axis is defined along the 

pan axis.  Its orientation is identical to the sensor head frame when the pan angle is zero. 
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Tilt Coordinate Frame 

The tilt coordinate frame is placed inside the post, which links the pan unit and tilt unit, with its 

x-axis along the tilt axis.  The y- and z-axes are defined to have zero tilt angles when the orientation 

is identical to the sensor head frame.   

 

Camera Coordinate Frame 

The camera coordinate frame is placed on the surface of the right lens of the camera.  The z-axis 

is defined to point in the opposite direction of the camera gazing direction, and the x-axis is not 

only parallel to the x-axis of the sensor head frame, but also passes through the left lens of the 

camera. 

 

 

LRF Coordinate Frame 

The LRF coordinate frame is placed on the surface of the laser range finder.  The z-axis is 

defined to point in the opposite direction of the laser beam, and the y-axis is defined to be parallel 

with not the incline of the LRF, but the y-axis of the sensor head frame. 
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 XYZXYZXYZXYZXYZSensorHeadFrameTiltFramePanFrameCameraFrameLRFFrame

 
 

Figure 20. Coordinate Frames of the Sensor  

 
  

4.1.2   Mechanical Design 

 

 The sensor head is comprised of the three main hardware components, viz. the Pan and Tilt 

unit, the CCD cameras and the Laser Range Pointer (LRP). Performance criteria were specified for 

each of these units, and hence the selection of these individual units was critical to the performance 

of the sensor head. A survey of available hardware that closely meets the specifications was made. 

A brief description of the selected hardware units with their features can be found in the following 

sections.  
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 A picture of the pan and tilt unit is shown below. 

 
Figure 21. Sensor Head Mounted on Pan/Tilt Unit 

The requirement of the pan and tilt unit is to position/orient the cameras and the laser range pointer 

and to move them through the range of motion of the Schilling Titan II manipulator. A frame was 

designed to attach the cameras and the LRP to the pan and tilt unit with four ¼-20 mounting holes.  
This frame is shown with the stereovision cameras mounted above the frame and the LRP below the 

frame.  (AutoDesk Inventor 3D models of the mounting bracket and other mounting hardware are 

shown in the Attachments to provide more information about these mounts. 

 

 A basic calculation on the deflection and natural frequency was made and a ¼ inch aluminum 

plate was found to provide adequate strength and stiffness to minimize effects of dust and 
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contamination. The plate was fabricated in the workshop at University of Tennessee, Knoxville. It 

was black anodized to have better protection against radiation. 

 

 Another support was required to fix the pan and tilt unit relative to the manipulator. As shown 

in Figure AA2 in the Appendix, this structure interfaces with the box beam, which also supports the 

manipulator arms. A square steel channel 5x5 inches and ¼ inch thick was used. This is supported 

on a box beam with 4x4 angle plates ¼ inch thick. A ½ inch steel plate supports the pan and tilt unit 

at the bottom with two ¼ -20 mounting holes. This plate is attached to the steel channel using ¼-20 

holes as shown in the figure. All the cablings are routed through the inside of the channel through a 

notch cut out at the bottom of the tubing to the host computers. 

 

 The original design specification had a requirement for an enclosure for the sensor head, but 

since the different components selected was radiation hardened, the need for the enclosure was 

eliminated.  

 

4.1.3 Laser Range Pointer (AccuRange 4000 LIR)  

The AccuRange 4000LIR is an optical distance measurement sensor with an accuracy of 0.1 

inch and a useful range of zero to 50 feet for most diffuse reflective objects.  It operates by emitting 

a collimated laser beam that is reflected from the target surface and collected by the sensor.  It is a 

Class IIIb laser product, available in power levels of 8 mW (Standard) or up to 20 mW High power 

Laser optionally.  AccuRange 4000 LIR uses near infrared light (780 nm wavelength). It is suitable 

for a wide variety of distance measurement applications that demand high accuracy and fast 

response times. 
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Figure 22. Laser Range Pointer 

The following are some key features of the AccuRange 4000 LIR: 

• Zero to 50 feet operating range for most surfaces.  

• 0.1 inch accuracy, 0.02 inch short-term repeatability.  

• Optional RS-485/422, 4-20mA current loop, and pulse width outputs. RS-232 serial output 

standard.  

• Reflected signal amplitude output for grayscale images.  

• Fast response time: 50KHz maximum sample rate.  

• Lightweight, compact, low power design.  

• Tightly collimated output beam for small spot size  

• Ideally suited to level and position measurement, machine vision, autonomous vehicle 

navigation, and 3D imaging applications 

4.1.4 Pan-Tilt Drive 

 
 The Pan/Tilt unit is one of the most important components of the sensor head, in that carries 

the cameras and the laser range finder through the required range of motion in precise relation to the 

manipulator. It has two axes about which it can rotate to point the cameras and the laser range finder 

to a desired location in the three dimensional space. The commands to the pan tilt unit are issued by 

the operator through the host computer. 

 

 The range of motion required of the Pan/Tilt unit is determined by the workspace of the 

remote manipulator with which it will operated, which in this case is the Schilling Titan II 

manipulator. The range of motion of the Pan/Tilt unit was thus one the specifications required. 

Other requirements were the accuracy of the sensor head, which included the precision of the 

Pan/Tilt unit, the resolution of the cameras and the accuracy of measurements of the laser range 

finder. Weight of the unit and cost were also significant considerations.  The Directed Perception, 

Inc, model PTU 46-70 N, was selected based on these specifications. 

 Some of the features of this unit are listed below. As can be seen from this table, all the 

requirements of the unit are met. Although the tilt range of motion is 78 degrees, it can be altered to 

meet the requirements by using a controller command, as long as the payload does not strike the pan 

tilt unit itself. The tilt motion of the manipulator has a 160-degree range, but this is not a direct 

requirement for the Pan/Tilt unit. Comparing the reachable workspace of the Schilling with the 
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specifications of this unit showed that with a tilt of 31 degrees up and 70 degrees down, would work 

fine.  

 

Precise position control. 

Pan range of 320 degrees and Tilt range of 78degrees. 

Position changes can be made on the fly. 

Self-calibration upon reset of the unit. 

Can be controlled by the host computer through the RS 232 

interface.  

Load can be placed at the nodal point, which is the point of 

intersection of the pan and tilt axis. This gives the advantage 

of reduced calculations for the transformation for that 

component. 

Radiation hardened and weatherized, which eliminates the 

need for an enclosure for this unit.  

Compactness of the unit. 

Low cost. 

 

Figure 23. Pan/Tilt Unit Critical Features 

  

4.1.5 BumbleBeeTM Stereo Camera System 

BumblebeeTM is Point Grey’s new two-lens stereo vision camera. It provides a balance between 

3D data quality, processing speed, and size. The camera is ideal for applications such as people 

tracking, gesture recognition, mobile robotics and other computer vision applications. Bumblebee 

camera is pre-calibrated for lens distortion and camera misalignments. It does not require in-field 

calibration and is guaranteed to stay calibrated. The left and right images are aligned within 0.05 

pixel RMS error. The calibration information is preloaded on the camera, allowing the software to 

retrieve the image correction information. This allows seamless swapping of the cameras, or 

retrieving the correct information when multiple cameras are on the bus. Bumblebee is supplied as a 

full development kit, including the camera head, interface card, 4.5m cable, device driver, image 

acquisition software, and Triclops library. 
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Figure 24. BumblebeeTM Stereo Camera 

The Camera Specifications are as followings: 

Imaging Device 1/3 " progressive scan CCDs 
Color or B&W 
640x480 Option: two Sony® ICX084 Color or BW CCDs 
1024x768 Option: two Sony® ICX204 Color or BW CCDs 
HAD image sensor with square pixels  

Supported Frame 
Rates 

640x480 square pixels at 30, 15, 7.5, 3.75 FPS 
1024x768 square pixels at 7.5 FPS (enquire about details)  

Supported formats B&W sensor: 8-bit Mono 
Color sensor: 8-bit Bayer tiled image (color space conversion 
done on the host computer)  

Signal to noise ratio TBD 
Connector One IEEE-1394 6-pin connector 
Power  Through IEEE-1394, consumption at 2.1W 

Gain Auto/Manual 
(0-34dB, 0.035dB resolution)  

Shutter Auto/Manual (1/16,000 to 1/30 second @ 30 Hz)  
Please enquire about longer shutter speeds.  

Lens focal length  High quality 4mm focal length prefocused micro lenses, 
approximately 70° HFOV 

Baseline  12 cm 
Synchronization Less than 20 µs 
Size 16x4x4cm 
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4.2 Software 

The HMCTR software includes: the Robot Task Scene Analyzer, the Range autoscan server, the 

Stereo autoscan server and the ControlShellTM control system. 

 

Software components 

 

 

Figure 25. Robot Task Scene Analyzer Software 
Data Flow Diagram  
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4.2.1 OpenGL Approach 

 

What is OpenGL? [5][6] 

OpenGL is the premier environment for developing portable, interactive 2D and 3D graphics 

applications.  It is a software interface to graphic hardware.  This interface includes about 250 

commands that can be used to produce interactive 2D/3D applications. Since its introduction in 

1992, OpenGL has become the industry's most widely used and supported 2D and 3D graphics 

application programming interface (API), bringing thousands of applications to a wide variety of 

computer platforms. OpenGL fosters innovation and speeds application development by 

incorporating a broad set of rendering, texture mapping, special effects, and other powerful 

visualization functions. Developers can leverage the power of OpenGL across all popular desktop 

and workstation platforms, ensuring wide application deployment. Most OpenGL implementations 

have a similar order of operations, a series of processing stages called the OpenGL render pipe line 

(Figure 26). It is not a strict rule of how OpenGL is implemented but provides a reliable prediction 

of what OpenGL will do [1]. 

 
Figure 26. Order of Operations  
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4.2.2 Revised Software Architecture 

 

Diagram Description 

 

The following section describes the data flow that takes place within the Robot Task Scene 

Analyzer software. These descriptions refer to the diagram in Figure 6. Small squares in the 

diagram refer to hardware connections such as serial ports. Horizontal parallel lines with 

intervening labels represent data storage. Small cylinders represent socket connections, which may 

take place across an Ethernet network. Labeled blocks represent processes that receive, manipulate, 

and output data. Each of the subsections below describes the process or data storage unit and how it 

relates with the others. 
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RTSA windows tree 

The Robot Task Scene Analyzer (RTSA) software is a windows-based interface that has been 

written in Visual C++ and organized in a tree structure. The tree structure is illustrated in Figure 27.  

 

 Start 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. RTSA Windows Tree 

Software Modules 

Static images 

Static images from the Matrox frame grabber are captured and stored in a separate buffer. These 

static images are necessary for texture mapping to the background block in the OpenGL virtual 

Action Plan 

Stereo 
Head 
Contr

ol 

Panoram
ic view 

OpenG
L 

Engine 

Stereo 
Head 
Contr

ol 

Assistan
ce 

Planning 

Task 
Planning 

Range 
autoscan 

Stereo 
autoscan 

Manual 
modelin

g 

Pipe 
placeme

nt 
Elbow 

placeme
nt 

Tee 
placeme

nt 

Object 
adjustme

nt 

Select Way 
to Plan Cut 

Points 
Selectio

n 

OP Mode 
Selection 

Check Plan 

Download 
Trajectory 

Insert 
Via 

Point 

Tool 
Selection 



 48 

environment and for display to the operator and transmission to the stereo autoscan procedure. This 

is also the scene that is displayed in the main window of RTSA. 

OpenGL engine 

The OpenGL engine is used to construct and display the virtual models. 

Panoramic view selection 

This object corresponds to the window that opens at startup of RTSA. It displays live images 

from the left and right stereo cameras. Since the stereo motion controller (see 0) is operational at 

this point, the operator may reposition the cameras to select a region to model. 

File save/retrieve engine 

This set of functions allows a model being built in RTSA to be saved and retrieved. The model is 

saved by writing the master part list to a file. When the model is retrieved, the current model is 

erased and the saved information is used to regenerate the original master part list and the previous 

OpenGL model. 

RTSA model files 

These files are the model files saved by the file save/retrieve engine functions. They consist of a 

text file readable by RTSA containing information from the master part list. They appear in the 

Microsoft file list as RTSA-type files. Double clicking on one of these file icons will open RTSA 

with that saved model. 

Manual object selection 

This process corresponds to the manual modeling window. It receives information from the 

operator about types and attributes of the part to be created. It then relays this information to the 

manual object modeling process. 

Manual object modeler 

This process corresponds to several windows that allow the operator to define locations for the 

part to be created. There is a pipe placement, tee placement, and elbow placement window, each of 

which has a set of icons for choosing points on the physical mockup. This process receives camera 

pointing information for calculation of laser spot coordinates and object type information from the 

manual object selection process. It then uses the information to calculate the part coordinates and 

creates the part by sending the appropriate commands to the OpenGL CLI command generator as 

well as making the addition to the master part list. 

Serial drivers 

The serial drivers consist of the codes that establish connections with the Servolens cameras, 

pan-tilt motors, joystick, and laser range finder and communicate with these devices through the 
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serial ports. These drivers run as separate threads of execution so they can continuously monitor the 

ports without affecting the flow of the rest of the software. 

Stereo motion controller 

The stereo motion controller corresponds to the stereo head control window. It takes input from 

the operator to adjust the position of the pan-tilt head in situations such as the initial view selection 

and laser point selection and as such must communicate these commands through the serial drivers. 

Joystick command interpreter  

This process is another independently running task, which enables the operator to control the 

camera head from a joystick by using input commands and converting them into signals to be sent 

to the pan-tilt mechanism. 

Master part list 

The master part list is a “C-list” of part information, including part type, size, schedule, location, 

orientation, etc., as specified by an ‘objectInfo’ structure in the header file. 

Stereo autoscan object selection 

This process corresponds to the stereo autoscan window. It displays the static images chosen 

initially in the panoramic view screen and receives from the operator the part type and attributes to 

be located by the image processing. When the part information and an image fragment are selected, 

they are sent to an autoscan client. 

Stereo autoscan client 

The autoscan client is a separately running thread of execution that gathers the operator defined 

information and sends it to the autoscan server. The client waits until the server finishes its image 

processing on the image fragments and sends back the part location information. Then the client 

places the part information into a temporary C-list and notifies the operator that a list of part 

locations is ready for insertion into the OpenGL model. 

Stereo autoscan server 

The stereo autoscan server is an independent executable that runs on a separate computer from 

RTSA. Once the autoscan server starts, it waits for contact from the stereo autoscan client. When 

the client sends part information and an image, the server also calculates the part position and 

orientation in the camera coordinate frame to send back to the client.  Data communication is 

handled over a socket. 

Range autoscan object selection 

This process corresponds to the range autoscan window. It displays the range images gathered 

by a range camera and sent to RTSA and receives from the operator the part type and attributes to 
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be located by the image processing. When the part information and an image fragment are selected, 

the autoscan window is used to call the range autoscan client. 

Range autoscan client 

The range autoscan client is a separately running thread of execution that gathers the operator 

defined information and calls the range autoscan DLL. The client waits until the DLL finishes its 

image processing on the image fragments and sends back the part location information. Then the 

client places the part information into a temporary C-list and notifies the operator that a list of part 

locations is ready for insertion into the OpenGL model. 

Range autoscan DLL 

The range autoscan DLL is a library of image processing functions that may be called by the 

range autoscan client. It processes range images and returns part location and orientation 

information. Since it is a dynamic link library, it may exist on a separate computer to avoid 

monopolizing CPU time. 

Temporary part list 

The temporary part lists are C-list of parts returned by the autoscan functions. They exist as 

member variables and are erased when the operator chooses to insert them into the OpenGL model. 

This temporary location for autoscan information was created since automatic insertion of parts can 

interfere with manual insertion of parts at certain stages of manual modeling. In this way, the 

operator can finish with manual modeling before automatically modeled parts are added to the 

OpenGL environment. 

Task planner 

The task planner is a large set of functions responsible for creating a task plan from operator and 

model information. It provides the operator with a set of windows to select the object to be cut, 

cutting planes, tools to use, etc. It uses graphical displays of selections of parts and cutting planes in 

OpenGL and part information from the master part list. The final result is a linked list of actions, 

which are downloaded as a text file through the Ethernet to the control computer. More information 

on this module may be found in Section 4.2. 

Assistance planner 

The assistance planner is a large set of functions that interact with the task planner. It provides 

the operator several teleoperation assistance methods to be included at various stages of a task plan. 

This planner uses graphical displays of selections of parts and motion constraints in OpenGL and 

part information from the master part list. The final result is a set of velocity maps to be included in 
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the task plan and enabled by the operator during teleoperation episodes of a remote operation. More 

information on this module may be found in Section 2.4. 

Task plan 

The task plan is a text file consisting of the set of actions compiled by the task planner. It is 

downloaded by file transfer protocol (FTP) from the task planner to the control computer and 

written in a format that the controller can parse.  

ControlShell controller 

The ControlShell controller is the executable created in the Real-Time Innovations (RTI) 

product ControlShell. It incorporates a finite state machine and continuous controller, which receive 

task plans and commands from the master controller and command motion of the Schilling 

manipulator. 

 
 
4.2.3 Revised Stereo Autoscan 
 

The original RTSA system was designed to allow task modeling to be done manually and 

automatically concurrently with intent to minimize the overall model development time.  One of the 

most promising automated scene modeling approaches is based on range images with object 

recognition occurring between 3D object representations.  The earlier work verified the complexity 

and cost associated with high-resolution laser range cameras.  Laser range cameras in the current 

state of the art are not compatible with remote D&D applications.  The contract modification also 

included an objective of modifying the original range autoscan mode to be based on range images 

calculated through stereo scene images rather than range maps for laser range cameras.  The 

following sections describe the enhanced stereo autoscan functionality developed around range 

maps obtained from the BumbleBee camera head and range map software module. 

 

Enhanced Stereo Autoscan Architecture 
Stereo Autoscan was constructed to perform automated “As-built” analysis, or inverse CAD 

using stereo range data. An example of a sub-sampled surface mesh [7] constructed from a stereo 

data set is displayed in Figure 1. Stereo Autoscan’s design centers on two features that were deemed 

critical for the application class: (1) the accurate and timely reconstruction of range data sets and (2) 

the identification and localization of key objects of interest within these datasets.  
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Figure 28 An example of 3-D surface mesh 
constructed from stereo range data. 

The ability to reconstruction model data sets synthesized from individual stereo range images 

acquired from arbitrary locations within a facility can be decomposed into two key requirements: 

(1) “matching” and (2) “merging” of co-registered surface meshes into an integrated representation. 

Together, matching and merging allow a robotic system to co-register overlapping 3-D data sets and 

to synthesize from that co-registered set a single, integrated uniformly sampled data set suitable for 

object recognition. 

 
Matching is defined as the process of estimating the relative transformation between overlapping 

sensor acquisitions. In stereo autoscan, matching is based on Hebert and Johnson’s notion of 

constructing a  “spin-image” for a subset of the oriented points that comprise a surface mesh [8]. 

Once a characteristic set of spin images are defined for each mesh from the partially overlapping 

range images, local shape similarity measures, obtained by pair wise cross correlation between 

individual spin-images, are used to provide a set of candidate points matches. Points with similar 

spin images are considered to have similar local shape. Once correspondences are found between 

the data sets, the transformation aligning the datasets may be estimated. Global matching, or 

registration, can be accomplished through successive pair-wise registration of datasets until a 

common coordinate frame is realized.  
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Mesh merging is the construction of seamless, textured surfaces from an arbitrary number of co-

registered surfaces meshes. It requires both a robust and efficient mechanism for accumulating 

support evidence in an incremental fashion, and robust operators that extract uniformly sampled 

surfaces from them. Stereo Autoscan uses a modified implementation of Johnson and Kang’s 

surface synthesis technology, based on 3-D occupancy grids [9]. Their method represents surfaces 

using a probabilistic model that encapsulates a sensor error model (stereo or laser) and an artificial 

point spread function. Each point from a surface mesh, along with the surface normal for that point, 

is distributed into the occupancy grid using the appropriate models. This evidence, both the surface 

likelihood estimate as well as the surface normal estimate is accumulated for each point from each 

input surface mesh. Surface extraction is performed using robust ridge detection on the surface 

probabilities in the voxel space that forms an implicit surface using the likelihood gradient and the 

surface normal. Polygonization of the implicit surface is performed using the Marching Cubes 

algorithm [10]. Figure 2 displays an integrated stereo-based surface mesh from a test area at 

Carnegie Mellon. 

 
Figure 29 A textured and integrated 3-D surface 
mesh constructed from 32 individual stereo data sets. 

 

The final requirement for stereo autoscan, recognition and localization of key objects, is a very 

similar problem to that of mesh matching. As such, a more general form of the spin image-matching 

algorithm is used [11]. This algorithm can efficiently find multiple known objects within a given 

scene mesh, storing their position and orientation for future use. The spin image is designed to be 

resistant to clutter and occlusion--if part of an object in a scene is hidden, recognition is still 

possible. Using Principal Components Analysis (PCA), the spin images may be compressed, 

allowing recognition of objects from large libraries in a space- and time-efficient manner [12]. 

Figure 3 contains a pair of sample object recognitions. 



 54 

 

 
Figure 30 Spin-image recognition of standard U.S. 
industrial components. (a) Flange (b) tee. 

Stereo autoscan is capable of object recognition and the construction of 3-D photo-realistic 

models from laser or stereo range data. Taken together, these capabilities serve important roles in 

the arena of semiautomatic teleoperation within structured nuclear facilities. The production of 

abstract, fully 3-D models via object recognition is essential to the rapid, accurate, and forceful 

interaction with a nuclear environment that minimizes exposure and automates object recognition 

tasks.   

Integration with RTSA 
Historical versions of range Autoscan were artificially grafted onto RTSA using an ad-hoc  

client/server architecture that required heterogeneous machines to execute the integrated capability 

– one for RTSA proper and one for range autoscan. This ad-hoc integration was further complicated 

in that the RTSA software architecture was designed within MS Windows, while Range Autoscan 

was implemented in Unix. The overall system was inefficient and inelegant. In this effort, the core 

software modules from Range autoscan were ported to Windows XP using VC++ 6.0 to provide a 

version of range autoscan that is native to RSTA platforms. 

 

With Native windows software modules, integration with RTSA is implemented using hooks to 

core range autoscan functions through automated scripts that allow RTSA to provide range autoscan 

with a bumble range data file and associated parameters, e.g. region of interest or filter coefficients. 

Once provided, range autoscan converts the 3-D range file into a triangular surface mesh that is 

matched against autoscan model object libraries for standard industrial components, e.g. three inch 

schedule 40 tee. Once localized, the instance (multiple recognitions are possible) and pose of the 
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object are returned such that RTSA modules can update common graphics overlays and databases. 
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4.2.4  Coordinate Transformation 

 

The transformation matrix from the sensor head frame to the laser range finder frame is 

calculated by multiplying the transformations from the sensor head frame to pan frame, from pan 

frame to tilt frame, from tilt frame to camera frame, and from camera frame to laser range finder 

frame as shown in (1).   

 

 

shshPanTiltCameraLRFpanTiltCameraLRF=AAAAA
 (1) 

 

The position of the LRF spot in the sensor head frame is calculated using this transformation 
shLRFA

 matrix, and the transformation matrices for each coordinate frame are provided by the 

following relationships. 

 

 

Transformation from the sensor head frame to pan frame: 

 
11shpan1001000001CSxyASCz!!!!"#$%$%=$%&$%'(

 

 

 

Transformation from the pan frame to tilt frame: 

 
22PanTilt2100000001xCSyASCz!!!!"#$%&$%=$%$%'(

 

 

 where ϕ is the pan angle (Clockwise looking up along positive y axis is positive) 
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Transformation from the tilt to camera 

 
33TiltCamera31000100010001xyAz!"#$#$=#$#$%&

 

 

 where θ is the tilt angle (Clockwise looking outward along positive x axis is positive) 

 

Transformation from camera to LRF 

 
44camLrf41000100010001xyAz!"#$#$=#$#$%&

, and 

 

Position of the LRF spot in the LRF frame 

 
LrfDistanceLrf001AD!"#$#$=#$%#$&'

,  

 

 

The constants shown in the various coordinate frames were either supplied by the relevant 

vendor or measured.  Table 4.2 provides these values. 

x1 = 0.0 mm, y1 = 62.738 mm z1 = 0.0 mm 

x2 = 75.184 mm y2 = 87.63 mm z2 = 0.0 mm 

x3 = -15.184 mm y3 = 103.566 mm z3 = -1.590 mm 



 58 

x4 = -60.0 mm y4 = -110.551 mm z4 = -39.436 mm 

 

Table 4.2  Values of Transformation Constants 

 

The transformation from the sensor head frame to the LRF frame is shown in (2), and the 

position of LRF spot in the sensor head frame is given by 
444333221443321444333221shptLrfpptptpptptppshtLrfttttshptLrfpptptpptptppXSCDCXSSYSCZCXSSYSCZCXSZXYSDCYSZCYSZYYZCCDSXCSYCCZSXCSYCCZ-SXCZZ=!+++++++++=+!+!++=!!++!++++

 

 
123412341234444301001001000010001001000000100100010001000100011LrfptLrfpptptppptptCSxxxxyCSyyySCzSCzzzDSCDCXSSYSCZCXCSSSC!!""!!""#$#$#$#$#$%&%&%&%&%&'%&%&%&%&%&=%&%&%&%&%&''%&%&%&%&%&()()()()()'+++++=()3322144332144433322100001ptptpptttLrfttttptLrfpptptpptptpptptppSSYSCZCXSZXCSSDCYSZCYSZYYCCDSXCSYCCZSCSCCSXCSYCCZ-SXCZZ#$*+%&,-,-++++%&./%&'+'+'++%&%&''++'*+%&',-%&,-++++./%&%&()

 (2) 

4.3  Performance 

A key objective of the contract modification was to improve the RTSA modeling process 

accuracy through improvements in the hardware precision and software algorithms.  This section 

describes the analysis and testing performed to assess the accuracy of the enhanced sensor head. 

 

4.3.1 Error Analysis and Calibration 
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In testing the HMCTR, it was found that the actual position of end-effector was not the same 

as the position used in the task plan file. This difference was due to the coordinate frames of the 

sensor head and manipulator not being aligned as designed. Of course, the errors inside the sensor 

head frame can also lead to errors in the actual position of end effector.  Such errors are 

unavoidable and can be minimized by adjusting parameters using the least-squares method. 

However, this approach does not reduce errors intrinsic to each physical component. 

Each error component in the system propagates through the coordinate transformations, and 

produces a different contribution and pattern to the total position and rotation errors of the end 

effector. Error analysis determines the effect of each error source on the final position error and 

will be used to identify the most significant error source. Thus, the automatic calibration 

algorithm compensates for the particular error sources instead of minimizing the final error by 

adjusting parameters using the least-squares method. 

 

After the sensor head system was assembled and the early version of the RTSA software using 

OpenGL was developed, the system underwent preliminary testing to find errors in the hardware 

and software.  These tests were also used to adjust the gains in the software to properly display 

the modeled parts in the virtual world.  The preliminary tests had two objectives: (1) identify 

errors in calibration; and (2) determine gain adjustments. The preliminary tests used the Test Grid 

Panel (cell size 5cm width and 4cm height) shown in Figure 4.3.1.  Figure 4.3.2 is the result of 

the error calibration test.  Point 1 is the center point (320×240) of the captured picture, which has 

640×480 pixels.  Point 1 is located along the z-axis of the camera frame since the picture is 

captured in the camera frame.  Thus, the point is represented by (0,0,A) in the camera frame and 

(60,253.933,A+1.59) in the sensor head frame. Point 2 is the spot where the laser range finder 

points the location of (60,253.933,A+1.59) in the sensor head frame.  The difference between the 

Point 1 and Point 2 represents the offset errors in the pan and tilt angles of the laser range finder.  

The error in the vertical position is caused by the tilt angle offset error, and the error in the 

horizontal position is caused by the pan angle offset error.  The magnitude of the mismatched 

distance is proportional to the magnitude of the offset angle error. 
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TestGridPanelSensorHeadTotalStationRTSAComputer

 
 
. 

Figure 31. Sensor Head and Calibration Test 
Equipment 

Point1:ActualCenterofCameraViewPoint2:AssumedCenterofCameraViewLaserRangePointer
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Figure 32. Error Calibration Test Result  

Conceptually, the measured lengths and positions of the parts using the LRF can be 

transformed into the virtual world of OpenGL with the same units (mm or cm).  But, the modeled 

parts in the virtual world must be displayed in the 2-D window on the computer monitor, which 

has a limited number of pixels.  Therefore, the gains, which properly transform the length in mm 

in the virtual or real world to pixels in the 2-D window, must be determined.  In the developed 

system, the models are viewed using the perspective view, and the gains are determined by the 

test.  Figure 4.3.3 is the test result for the gain adjustment test.  It shows that the gains for the part 

length and the location of the parts are small.  The shift of the overall position of the parts may be 

caused by the offset error.  Based on these adjustment tests, the best gains for the display of the 

parts will be selected. 
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ModeledPipeTargetPipeforModeling

  
(a) Result of horizontal pipe modeling. 

 

 
(b) Results of vertical and horizontal pipe modeling. 

Figure 33 Gain Adjustment Test Result  
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4.3.2 Tests 
Based on the test results described in section 4.3.1, the offset error and the OpenGL gains are 

compensated and adjusted through calibration tests.  First, the dominant offset angle error (tilt 

offset angle of the laser range finder) is calculated and measured using Pythagoras theory and 

tests.  Compensation tests show that the tilt-offset angle of the laser range finder is -2.0° (it means 

that the error makes the LRF looks down when the system reads tilt angle as zero).  Figure 34 

shows the test grid panel after the tilt offset angle is compensated. It shows that the center of the 

wall paper (test grid panel) nearly matches the center of the view window (“+” in the picture). 

Also, the quality of the wall paper picture was improved by using the BMP graph file format 

instead of the JPG file format. 

 
Figure 34 Wallpaper after the LRF tilt offset error 
is compensated. 

 Secondly, after the angle offset was compensated, the parameters in the OpenGL functions 

were adjusted to match the start and end points of the model (pipe) to the start and end points of 

the wall paper (grid panel) used in the modeling process.  Through the calibration tests, it was 

found that the main error was in the data for the field of view (FOV) and focal length of the 

Bumblebee camera.  According to the specifications, generally the HFOV of the Bumblebee 

camera is 70~75°, and this parameter was used before the tests.  However, camera parameter tests 

show that the model used for this project has 41.292° HFOV, 31.492° VFOV, and 849.27mm 

focal length.  The manufacturer, Point Grey, Inc, stated that the model used here has 6mm lenses 

instead of the 4mm lenses normally usually used in the Bumblebee camera, and the HFOV for 

6mm lenses is in the range of 40~45°.  Figure 35 is the model view window with the wallpaper 
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after the OpenGL compensated and the test grid panel is placed in the actual workspace of 

manipulator. 
 

 
Figure 35 Model view window with wallpaper after 
OpenGL parameter adjustment. 

 For the system accuracy test, a pipe model was used; the modeling and test 
procedures are illustrated in Figures 36-37.  After the start point and the end points of 
pipe are defined using the LRF in the modeling window (Figure 36, 37 (a), (b)), the RTSA 
software generates the pipe model and displays it in the model view window as shown 
in Figure 36-37 (c).  After the model is built, the length of the modeled pipe, which is 
displayed in the model adjustment windows (red circle of Figure 36, 37 (d)), and the 
distance between the start point (Figure 36 (a)) and end point (Figure 36 (b)) in the 
modeling process are compared.   
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             (a) left end of pipe model                               (b)  right end of pipe model 
 

                                
                (c) constructed pipe model                                (d) pipe model parameters 
  

Figure 36 System accuracy test procedure (when the wall 
paper is closed to the sensor head). 
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             (a) left end of pipe modeling                               (b)  right end of pipe modeling 
 

                                 
                (c) built pipe model                                                       (d) parameter of pipe model 
 

Figure 37 System accuracy test procedure (when wallpaper 
captures the work space). 

 In these tests, 8 pipes were built using the test grid panel as the wallpaper (Figure 38), 
and 4 pipes were built with the manipulator workspace as the wallpaper (Figure 39). 
The accuracy test results are shown in Table 4.3. 
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Figure 38 Accuracy test with the grid panel as wallpaper . 

 
 

Figure 39 Accuracy test with the workspace as wall paper . 
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Wallpaper Actual 
length* Modeled length Absolute error % error 

100  104.129 4.129 4.129 
80  73.7995 6.205 7.756 
100  104.973 4.973 4.973 
80  72.6606 7.34 9.175 
400  389.613 10.3871 2.597 
240  227.31 12.69 5.288 
400  389.746 10.254 2.563 

Grid panel 

240  238.889 1.111 0.463 
350  346.381 3.619 1.034 
360  366.037 6.037 1.677 
350  344.962 5.038 1.439 Workspace 
360  357.113 2.887 0.802 

* Length unit :mm 
Table 4.3. Accuracy Test Results 

 
 The accuracy test result shows that the maximum absolute error is 10.3871mm (0.41 
inch), and the maximum % error is 9.175% (7.34mm, 0.289 inch absolute error).  The 
maximum absolute error was generated in the condition when the long pipe is close to 
the sensor head.  When the wallpaper is close, the main error factor is due to the 
propagation of the system errors, such as offset angles.  When the wallpaper is at a 
distance, like the workspace wallpaper, the main error factor is the increased diameter of 
the laser range finder focus as shown in Figure 40 (the diameter increases to almost 1 
inch).  The absolute errors with the workspace wallpaper (the modeling pipe is at a 
distance of 2300mm, 7.55 ft from the sensor head) are smaller than the absolute errors 
with the grid panel wallpaper (the modeling pipe is at a distance; 600mm, 1.97 ft).  
Therefore, if the workspace is at distance in the range of 1000~3000mm (3.3~10ft) from 
the sensor head, the developed sensor head system provides ±0.3 inch accuracy, which is 
smaller than the proposed accuracy of the system.   
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Figure 40 Increased focus of laser range finder. 

 

5. FUTURE CONSIDERATIONS 

 

5.1 Integration with D&D Robotics 
Robotics and remote systems technologies are necessary for the efficient D&D of facilities 

and equipment where the ambient radiation levels complicate, or preclude, contact operations.  A 

focus of the D&D area of the EM-50 Robotics Cross Cutting Program was to pursue R&D that 

would make D&D operations more cost effective.  Subtask automation is one of the best ways to 

approach this objective and considerable efforts at national laboratories, universities and 

companies around the country (and world).  At the time of this project, the Oak Ridge National 

Laboratory (ORNL) Robotics and Process Systems Division was the lead national laboratory 

addressing advanced telerobotic concepts for D&D.  It was originally intended that the enhanced 

sensor head and improved RTSA software would be integrated into the telerobotics test bed at 

ORNL.  The software and hardware features of the system were developed to requirements that 

would make the ultimate integration as smooth as possible. 

Regretfully, at this time the EM-50 Robotics Cross Cutting Program and all of its activities 

have been shutdown by DOE.  A modest amount of continuing funding retains a core individual 

and his research at ORNL.  In addition, UT is partnered with a small business through an SBIR 
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Phase II contract.  These remnants allow the continuation of the telerobotics research albeit at a 

much smaller scale.  Additional hardware components are being loaned to UT such that a 

complete dual arm telerobotics test bed capability will be completed soon.  These modest 

continuing efforts will allow the continued used and evaluation of the enhanced sensor head 

under realistic laboratory conditions. 

 

5.2 Technical Issues 

There remain several technical areas where continued R&D is needed to further enhance 

telerobotic subtask automation.  These areas will be the topic of future research proposals within 

DOE and other federal agencies. 

5.2.1 Automatic Error Calibration 
The overall accuracy of the RTSA modeling process depends upon accurate and current error 

calibration of subsystems.  The frequency and accuracy of calibrations could be increased if they 

could be performed in situ and on demand.  Schemes for pursuing in situ and automated 

calibrations should be pursued. 

5.2.2 Part Libraries 
The RTSA modeling process is predicated on the use of a priori knowledge of the size and 

geometries of objects being modeled.  Presently, the RTSA parts libraries encompass standard 

piping components including straight pipe, elbows and tees.  Preliminary studies have shown that 

it should be possible to modify the RTSA software such that off the shelf CAD libraries could be 

used to create RTSA parts libraries.  In this manner, additional classes of modeling objects such 

as structural steel, electrical components, etc. could be integrated with RTSA.  Additional work is 

needed to explore the details of integrating commercial CAD parts libraries with RTSA  

Task Planning 

In the current RTSA/HMCTR environment, the human operator performs all of the task 

planning process using the 3D model rendering and a collection of “point and click” tools that 

allow him to designate tooling points and sequences.  It is the operator’s responsibility to reason 

as to which tools should be used when.  While this approach is very robust because it is based on 

powerful human reasoning, it places considerable cognitive burden on the operator.  Additional 

research should explore computational reasoning methods to assist the operator in the task 

planning phase of subtask automation. 

5.2.3 State Transition Management 

A telerobotic system is one that can function both as a teleoperator and a robot.  The heart of 

telerobotic control is the state control that must occur as the system mode of operation transitions 
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between these two states.  In the current system, this process is implemented in a finite state 

machine block within the ControlShell overall controls software.  Because the Telerobot is a 

hybrid system in the sense that it involves simultaneous continuous and discrete control, the 

details of state transition and continued operation from one state to the next are very complex.  

The present implementation has addressed the simplest cases.  More research is needed to pursue 

the generalization of an extensible state transition management methodology for this class of 

systems. 

 



 72 

References 

 

[1] William R. Hamel, "Sensor-Based Planning and Control in Telerobotics," in "Control in 

Robotics and Automation: Sensor Based Integration," edited by B. K. Ghosh, Ning Xi, and 

T.J. Tam, chapter 10, pp.285-305, Academic Press, 1999. 

[2] Steven E. Everett, "Human-Machine Cooperative Telerobotics Using Uncertain Sensor and 

Model Data," doctor of Philosophy in Mechanical Engineering University of Tennessee, 

August 1998. 

[3] William R. Hamel, Reid L. Kress, "Elements of Telerobotics Necessary for Waste Clean Up 

Automation," Proceedings of the 2001 IEEE International Conference on Robotics & 

Automation, pp. 393-400, 2001. 

[4] K. A. Manocha, N. Pernalete, and R. V. Dubey, "Variable Position Mapping Based Assistance 

in Teleoperation for Nuclear Cleanup," Proceedings of the 2001 IEEE International 

Conference on Robotics & Automation, pp. 374-379, 2001. 
[5] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner, OpenGL Programming Guide, 

Version 1.2, Addison-Wesley, 1999 

[6] http://www.opengl.org/developers/about/overview.html 

[7] J. R. Shewchuk. “Engineering a 2D Quality Mesh Generator and Delaunay Triangulator”, 

First Workshop on Applied Computational Geometry, Philadelphia, PA. pp. 124-133, ACM, May 

1996. 

 

[8] A. Johnson and M. Hebert. "Surface registration by matching oriented points." Proc. Int'l 

Conf. on 3-D Digital Imaging and Modeling (3DIM '97), Ottawa, Ontario, May 12-15, 1997. 

 

[9] A. E. Johnson and S. B. Kang, “Registration and Integration of Textured 3-D Data", 

International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Ottawa, 

Ontario, May 12-15, 1997. 

 

[10] W. Lorensen and H. Cline. “Marching Cubes: A high-resolution 3-D surface construction 

algorithm.” Computer Graphics (SIGGRAPH ’87), pp. 163-169, 1987. 

 

 



 73 

[11] A. Johnson and M. Hebert. "Recognizing objects by matching oriented points." Carnegie 

Mellon Robotics Institute Technical Report CMU-RI-TR-96-04, 1996. 

 

[12] A. Johnson and M. Hebert, “Efficient Multiple Model Recognition in Cluttered 3-D scenes.” 

Proc. IEEE Conference on Computer Vision and Pattern Recognition. Santa Barbara, June 1998. 
 
 
 



 74 

 

Appendices 

 

 

 



 75 

Appendix A, Hardware Description 

A.1 Overall Hardware Configuration 
 

Figure A-1 RTSA Hardware Schematic  shows the currently existing hardware and 

interconnections. The set of hardware in use may be decomposed into a real-time part, including 

the robot and its peripherals and controller, and a non-real-time part, including the RTSA model 

builder and task planner and sensor head connections. 
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Figure A-1 RTSA Hardware Schematic  
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A.2 Schilling Manipulator 

The Schilling Titan II is a six-degree-of-freedom hydraulic manipulator constructed primarily 

of titanium and weighing 225 pounds, with a reach of approximately 76 inches and a payload at 

full extension of 240 pounds. It incorporates a two-finger gripper with a maximum opening of 5 

inches. The manipulator in the Robotics and Electromechanical Systems Laboratory is on loan 

from Oak Ridge national Laboratory (ORNL) and was a part of the Dual Arm Work Platform 

(DAWP). It is securely mounted on the lab floor and will be used to test the RTSA telerobotic 

system on a mockup in this lab 

 

A.3 Unilateral Slave Controller 

The full name for this controller is the unilateral 8088 backup control. It may be connected 

directly to the master controller and slave manipulator to provide joint-to-joint control between 

the two. Its use requires the proper master control PROM. While this configuration for the system 

controller was used to ensure that the hardware was initially operational, the RTSA system will 

nominally use the alternative host computer configuration 

 

A.4 Master Controller 

The master controller is the input device for manual teleoperation. Its primary component is 

the master arm itself, a six-degree-of-freedom articulated arm with an approximately 11 inch 

reach. The box on which it is mounted has a power switch and 12 function keys, an LCD screen, 

and an RS-232 port with which to communicate with the unilateral slave controller or host 

computer. These two modes are each controlled by one of two PROM integrated circuits that 

must be installed on the computer board inside the master enclosure. The master arm has a freeze 

button on its terminal end, and two textured bands that may be squeezed to open and close the 

gripper. In the unilateral slave control mode, the master screen has a series of menus to determine 

the system behavior in various ways. In the other mode, the host computer is responsible for 

sending and reading commands from the master and displaying information on the screen. 

 

A.5 C30/VME Slave Controller 

The C30/VME slave controller is an element of the host computer control system. It is 

connected directly to the slave manipulator with the same cable used in the unilateral 8088 

control configuration. The C30 controller is also connected to a card which provides the interface 
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to joint, torque, pressure, and other data from the manipulator. This card is meant to be placed in 

a VME card cage for access by the host computer. 

A.6 Milwaukee Band Saw 

The Milwaukee Portable Band Saw, Model 6230, will be the primary tool used in RTSA 

dismantlement demonstrations. It has a ½” wide, 10 tooth per inch blade which can be operated at 

variable speeds from 0-350 SFPM. The saw has a maximum capacity of 4-3/4” x 4-3/4” for 

square stock and 4-3/4” diameter round stock. 

 

 

 

    
 

Figure A-2 Milwaukee Bandsaw with Modified 
Handle (lerft), grasped by Titan II Manipulator 

A.7 Host Computer 

The host computer is the real-time computer on which the Schilling controller runs. It is a Dell 

dual-processor-capable 450 MHz Pentium III PC with 128 M RAM. It is capable of being booted 

with Windows NT, QNX, or LINUX, although the current system will run ControlShell under the 

LINUX operating system only. It is interfaced with the master controller through a serial port, 

with the C30 controller by way of a Bit3 bus-to-bus adapter, and the Ethernet for receiving 

downloads of task plans. 

 

A.8 AUTODESK INVENTOR MODELS OF THE SENSOR HEAD AND ITS 
COMPONENTS 
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Figure A-3 Autodesk InventorTM Model of Pan/Tilt 
Unit 
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Figure A-4 Autodesk InventorTM Model of Sensors 
Mounting Bracket 

 
 

 

4 Holes 
mount 
on the 
PTU 

Laser Range 
Finder  

Camera 
mount 



 80 

 
 

Figure A-5 Autodesk InventorTM Model of Sensor 
Head Mounting Structure 
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APPENDIX B, HMCTR CONTROLSHELL™ IMPLEMENTATION 

B.1 Introduction 

ControlShell is the development tool created by Real-Time Innovations (RTI) used to 

implement the Schilling controller. It is a graphical component-based tool that provides some 

automatic generation of code to build and maintain real-time applications quickly and easily. It 

allows users to create continuous flow diagrams graphically and link them with finite state 

machines to dictate the behavior of the system. Programmers may use previously written 

components that are provided by RTI in a repository or generate special purpose blocks into 

which user-written code is integrated. The control system is then complied for the desired 

machine and executes the control strategy in real-time. 

Below the application level, there are objects of several types that may be found in 

ControlShell. The Composite Object Group (COG) may encapsulate both sample-data system 

elements and event-driven elements. The Finite State Machine (FSM) is also a composite object 

that consists of a state transition diagram that represents an event-driven program. The FSM 

usually appears in its file with associated continuous flow diagrams that are responsible for 

providing stimuli and running state transition components. There are also three types of primitive 

components in ControlShell: the state transition component (STC), the data flow component 

(DFC), and the atomic component (ATC). The state transition component provides actions taken 

by a FSM in response to a stimulus. The data flow component is the building block for the 

sampled-data part of the system that executes routines at every sample period. The atomic 

component provides generic utilities or functions to other components in the same diagram. 

Connections between components in ControlShell take one of three forms. Pin connections are 

inputs and outputs of data from components. Bubble connections provide utility of functions from 

one method to another. Interfaces allow pins and bubbles to be bundled in a unified connection. 

Another important aspect of ControlShell is the ability to define operating modes. A mode is a 

set of active components which may be enabled and disabled as a unit, allowing the event-driven 

part of the system to alter the system behavior automatically in response to given stimuli. 
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B.2 Human-machine Cooperative Telerobotics Controller 

This section describes the Schilling telerobotic control system being developed in 

ControlShell. Most part of the control system has been implemented except the assistance 

function. The information below describes the current concept.  

 

B.2.1 Top Level controller 

At the highest level of the HMCTR controller, there is one Composite Object Group (COG), 

which contains all other components, shown in Figure B-1.  In the main COG, there are two 

primary COGs: the robot discrete controller and the robot continuous controller, as shown in 

Figure B-2.  The discrete controller is responsible for determining the mode of operation of the 

controller, whether initiated by the operator or by the downloaded task plan.  The continuous 

controller receives data and commands from the discrete controller to enable predefined sets of 

components so that the controller behaves in the desired way. 

 

 
Figure B-1 Top Level Controller 
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Figure B-2 Robot Continuous and Discrete 
Control COGs 

 
B.2.2 Robot Controller (Continuous) 

The robot continuous controller shown in Figure B-3, is the data flow diagram which 

encompasses the various capabilities for modes of operation of the manipulator and sends and 

retrieves information from the lower level control loops in the robot closed loop control COG. 

The MasterCommunication and Robot components are always activated during operation of the 

system (The red blocks), but in the other four modes of operation available, a unique set of 

components is enabled. In the PAUSE mode, TELEOP or TELEOPAS (teleoperation with 

assistance function) no additional components are activated. In the TRAJ mode, Component 

Dfc0, Dfc7, Dfc8 and XYZQT_G will be activated.  

There are two main sources for robot control signals in this diagram: one the signals from 

discrete controller, and the other one is the MasterCommunication component. These components 

are mutually exclusive sources for control, and only one at a time will be enabled in a given mode 

of operation. Each of the two also has access to the SendStimulus component “NEXT” in the 

FSM subchain so that when it is finished executing, it can signal for the next action in the plan to 

be initiated. 
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There are several ActivateMode components in this diagram which cause the mode to be 

changed when called from various sources throughout the diagram. The components make it 

possible to activate the PAUSE, TELEOP, TELEOPAS, or TRAJ mode by providing the proper 

function to users elsewhere in the system. 

The MasterComm component is the communication component with the minimaster. It is 

always enabled so that button information from the master may be used to transition from state to 

state regardless of the current state of the system. 

The Robot component in this diagram receives high level position commands from either 

autonomous or manual inputs and outputs its actual position. The methods of closed loop control 

and available modes are described in Section 3. 

Dfc0, Dfc8, Dfc7, and XYZQT_G receive the final point of the trajectory in Cartesian space 

from the task plan and convert it into joint space and send it to trajectory generator in the low 

level continuous controller. 

 

 

 

 
 

Figure B-3 Continuous Control COG Elements 
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B.2.2.1 Mastercommunication  

The MasterCommunication component is the communication component with the minimaster. 

It is always enabled so that button information from the master may be used to transition from 

state to state regardless of the current state of the system. Its ‘use’ bubbles each correspond to a 

different button function, rather than to a physical button, so that the same button may call 

different functions while the master is in different submenus. (The ControlShell text interface and 

minimaster menu screens are described in Section 4). The MasterComm component also has two 

continuous outputs, the GripperPos and JntPos signals. Figure B-4 shows the structure of the 

Mastercommunication component. 

 
 

 
Figure B-4 Communication Structure 

 

 

 

B.2.2.2 RobotCC 
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RobotCC, shown in Figures B-5 through B-9, is the robot low-level closed loop control 

structure. In addition to the direct joint to joint control (pure teleoperation) between the master 

and slave, two different continuous closed loop control schemes are considered: teleoperation 

with assistance function control and autonomous control which get control signal from a joint 

space trajectory generator. At the beginning of the task execution, the operator selects one of 

these three control strategies in which to operate with the master console. That button sends the 

command to activate one of the following modes of the control execution: “Teleop”, 

“Autonomous”, or read “Teleop_assist” from task plan by using a build-in ActivateMode 

component in the robot closed loop control diagram. Each of these modes enables a different set 

of the components. For example, if teleoperation control is selected, the blocks in red are 

activated (Figure B-5, Figure B-6).  

Figure B-7 and Figure B-8 show the mappings for the autonomous control. Analogous to the 

teleoperation control, Figure B-6 and Figure B-9 show the mapping for the teleoperation with 

assistance function control.   

 

 

 
Figure B-5 Closed Loop ControlComponents with 
Teleoperation Mode Activated 



 87 

 

 
 

Figure B-6 Lowest Level Control Components 
With Teleoperation w/o Assistance 
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Figure B-7 Closed Loop Control Components with 
Autonomous Mode Activated 

 
 

Figure B-8 Lowest Level Control Components 
with Autonomous Mode Activated  
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Figure B-9 Closed Loop Control Components with 
Teleoperation with Assistance Mode Activated 

 

B.2.3 DesController (Finite State Machine) 

The components which comprise the DesController COG which decide robot work mode are 

shown in Figure B-10. At this level, there is a main finite state machine that determines whether 

the robot is being controlled automatically or manually in the absence of a plan or if it is idle. The 

system may transition from IDLE to either the autonomous execution state AUTOEXEC or the 

teleoperation state MANUAL_TELEOP given the stimuli “AUTOEXEC” or 

“MANUAL_TELEOP”, respectively. The AUTOEXEC state is actually composed of a finite 

state machine subchain described in Section B-2.3.1. Upon transition to one of these states, the 

state transition component StartTeleop ( ) or SartAuto ( ) runs. When the state is transitioned back 

to idle, the transition component Backside ( ) runs. The purpose of these transition components is 

to verify that the proper hardware is connected and operational, and configure the system to run 

in the desired mode. If there is a problem in the transitions out of the IDLE state, the value 

ERROR is returned, and the system state returns to IDLE. If everything checks out, the return 

value is OK and the system transitions to the desired state. There is also an ESTOP state where 
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the system can transition to from any other state if there has been an emergency stop. From there, 

it can only transition back to the IDLE state.  

Accompanying the main finite state machine in the same file is a set of components which 

contain the transition and other code associated with this FSM. At this level, there are three state 

transition components as described above: StartAuto( ), StartTeleop( ), and BackToIdle( ). Each 

of these is a user of an ActivateMode component found in the robot continuous control diagram 

(see Figure 3) which enables the set of components corresponding to that state. Also found in this 

diagram are the components which provide code to the master console buttons (see Figure B-3) to 

send stimuli such as “ESTOP”, “IDLE”, “AUTOEXEC”, and “TELEOP” which cause the main 

FSM to transition. The primary component in this diagram accompanying the FSM is component 

corresponding to the automatic plan execution subchain. It is user and provider of several 

functions which exist in the robot continuous control diagram, as well as providing some data for 

that controller originating from the execution plan. 

 

 

B.2.3.1 Autonomous execution mode control subchain 

Since this is an FSM subchain, there are two main parts to the file, the subchain itself and the 

associated data flow components. THE FSM subchain is responsible for defining the current 

behavior of the system as determined by operator and automatic stimuli, and the data flow blocks 

are responsible for retrieving planned execution steps and enabling the proper set of components 

for the given action. 

The FSM subchain consists of seven states, including START, PAUSE, EXEC, UNPLAN 

TELEOP, END PLAN, END, and ERROR. The START state is a beginning condition when the 

subchain is entered from the main FSM, and automatically transitions to the PAUSE state, where 

the system waits for the operator to signal for execution of a predefined plan or other desired 

action. From PAUSE, the operator may send stimuli associated with master console buttons 

corresponding to “QUIT”, “EXECUTE”, or “TELEOP”. The “QUIT” stimulus transitions the 

diagram to an END state in which the subchain exits to the main FSM and to the IDLE state. This 

signal is used if a plan is to be abandoned and the associated GotoQuit( ) transition component 

disables the appropriate components. The “TELEOP” stimulus is sent if the operator wishes to 

initiate an episode of teleoperation, which has not been incorporated into the downloaded plan. It 

is used in the case of an unforeseen obstacle or change in approach to a task. The StartTeleop( ) 

transition component runs at this point to activate the teleoperation mode by using an 

ActivateMode component in the robot continuous control diagram (see Figure B-3). Transition 
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back to the PAUSE state from the UNPLAN TELEOP state is accomplished by sending the 

“PAUSE” stimulus and the appropriate ActivateMode component is called by the GotoPause( ) 

transition component. 

The “EXECUTE” stimulus initiates or restarts the execution of the downloaded task plan. The 

FetchandParse( ) state transition component accompanies it and the “NEXT” stimulus in the 

transition out of the EXECUTE state. It is responsible for opening the task file on its first call, 

retrieving the first unexecuted action from this file, calling the appropriate ActivateMode 

components in the robot continuous control diagram, and setting values for the gripper state for a 

toggle gripper action or final coordinate of the manipulator for a move action. Once modes are 

changed and values are set, it returns one of three values: CONT, DONE, or ERROR. The CONT 

return value results in a branch, which takes the diagram back to the EXEC state, where the next 

action can be retrieved upon completion of the previous action. The DONE return value signals 

that the action retrieved was the last in the file and the diagram should transition to an end state to 

wait for this last action to be completed before it transitions out of the subchain. The ERROR 

return value indicates that the file has been corrupted and the system should display an error 

message and transition out of the autonomous execution subchain. The “NEXT” stimulus may be 

sent by the SendStimulus component in this diagram, which is a provider to several other 

components in the continuous control diagram. It may be sent by a component executing an 

automatic action when that action has finished, or by the operator signaling that a planned episode 

of teleoperation has been completed.  

The END PLAN state was included so that a final action could be completed before 

transitioning out of the AUTOEXEC subchain. When in this state, the “NEXT” signal sent to 

indicate a previous action is complete will cause the transition to the END state where the 

diagram automatically transitions back to the main FSM. 
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Figure B-10 DESController COG Components 
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Figure B-11 Autonomous Execution Subchain 
Components 
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B.3 Control Interface 

B.3.1 ControlShell text interface 

ControlShell provides access to a run-time menu, which can be used to alter operating modes or 

variable values during execution. Additional custom menu items in the Schilling telerobotic 

system will allow the operator to inspect, edit, exit, and re-enter the task plan which has been 

downloaded when desired. When the operator wants to see or to edit the task plan, this menu 

option may be invoked by typing the command string ‘task plan’. The method of integration of 

this menu option and associated submenus into the standard ControlShell menu has not yet been 

established. 

 

B.3.2 ControlShell Messages 

Other option of the ControlShell text interface with the operator is C++ print messages. If the 

C++ code for the corresponding ControlShell function includes any print message commands this 

message will be printed on the display each time function is executed. For example, if 

ControlShell is unable to open the TaskPlan.txt file during the FetchandParse function execution, 

a message such as “Task plan file cannot be opened. Returning to ‘Idle’ State” will be displayed. 

The message communication between ControlShell and the operator allows the operator to 

always be aware of what is going on during the program execution. 

 

B.3.3 Minimaster Menu Screens 

The easiest way for the operator to communicate with the controller is through the minimaster 

buttons. They are accessed in the software by using the MasterCommunication interface. The 

master has twelve different buttons which can be used to activate the different stimuli in 

ControlShell. By defining different submenu screens on the minimaster, the same buttons can be 

used to call several different functions. The MasterCommunication COG is shown in Figure B-4. 

Each signal in the miniMaster block corresponds to a different button on the Minimaster. 

When a button is pressed, a Boolean signal is sent to the Communication block. Depending on the 

submenu screen number in the Communication block, each signal is used to call the 

corresponding function through a “bubble” provided by code outside this file. In addition, when 

the submenu must be changed, the Communication block sends the “screen” Boolean signal to 

the miniMaster. 

Two different submenu screens have been created. Figure B-12 shows screen number 1 

corresponding to the beginning of the program or each time program has to be restarted.  
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       SCHILLING DEVELOPMENT 
--------------WELCOME--------------- 
<-Teleop  
<-Autoexec 
<-Idle 
                             Estop-> 
---------------------------------------------------------------- 

 

Figure B-12 Welcome Screen in which Control 
Scheme is Selected 

 

 
After the operator makes a selection and pushes the corresponding button on the Minimaster, 

the screen will be changed to the next one using the Boolean “screen” signal from the 

Communication block. The submenu screen shown in Figure B-13 corresponds to the Autoexec 

state of the system. 

 
 

 
       SCHILLING DEVELOPMENT 
--------CURRENT STATE: AUTO-------- 
<-Execute                     Quit-> 
<-Pause 
<-Teleop 
<-Continue                   Estop-> 
---------------------------------------------------------------- 

 

Figure B-13 Minimaster Autonomous Execution 
Menu 

 

 

B.4 Task Plan File 

The task plan file is a text document containing the sequence of atomic actions that are to be 

performed by the telerobotic system. Each action is fully described by a C structure teleoperation 

state, and final position information for move commands. It is downloaded over the Ethernet by 

the task planner to the real-time control computer when the operator is satisfied it is complete. 

The format of the file is such that it can be parsed by a state transition component in ControlShell 
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called ‘fetchandparse’, as described in Section 2.3.1. An example of an actual plan file created by 

the planner and downloaded to the controller is shown as follows: 

 

 
1  move    x -265.0    y 1400.0    z 960.0    roll 90.0    pitch 43.0    yaw  0.0   Gripper 100   TimeDur 15 
2  move    x -265.0    y 1580.0    z 895.0    roll 90.0    pitch 43.0    yaw  0.0   Gripper 100   TimeDur 15 
3  move    x -265.0    y 1572.0    z 895.0    roll 90.0    pitch 43.0    yaw  0.0   Gripper 70   TimeDur 15 
4  move    x -265.0    y 1572.0    z 1100.0    roll 90.0    pitch 45.0    yaw  0.0   Gripper 70   TimeDur 15 
5  move    x 100.0    y 1200.0    z 1300.0    roll 90.0    pitch 45.0    yaw  0.0   Gripper 70   TimeDur 15 
6  move    x 1274.1    y 187.0    z 1181.5    roll 28.5    pitch -0.6    yaw 178.0   Gripper 70   TimeDur 15 
7 teleop_manual 
9  move    x 1296.1    y 198.9    z 1181.7    roll 28.5    pitch -0.6    yaw 178.0   Gripper 70   TimeDur 15 
10  move    x 1318.1    y 210.9    z 1182.0    roll 28.5    pitch -0.6    yaw 178.0   Gripper 70   TimeDur 90 
11  move    x 1296.1    y 198.9    z 1181.7    roll 28.5    pitch -0.6    yaw 178.0   Gripper 70   TimeDur 90 
12  move    x 1274.1    y 187.0    z 1181.5    roll 28.5    pitch -0.6    yaw 178.0   Gripper 70   TimeDur 15 
13  move    x 1238.3    y -31.8    z 1080.7    roll -0.4    pitch -1.9    yaw 179.7   Gripper 70   TimeDur 15 
14  move    x 1263.3    y -32.0    z 1081.5    roll -0.4    pitch -1.9    yaw 179.7   Gripper 70   TimeDur 15 
15  move    x 1288.3    y -32.1    z 1082.3    roll -0.4    pitch -1.9    yaw 179.7   Gripper 70   TimeDur 90 
16  move    x 1263.3    y -32.0    z 1081.5    roll -0.4    pitch -1.9    yaw 179.7   Gripper 70   TimeDur 90 
17  move    x 1238.3    y -31.8    z 1080.7    roll -0.4    pitch -1.9    yaw 179.7   Gripper 70   TimeDur 15 
18  teleoop_assist 
19  move    x 600.0    y 1000.0    z 1400.0    roll  0.0    pitch  0.0    yaw 90.0   Gripper 70   TimeDur 15 
20  move    x -265.0    y 1400.0    z 1100.0    roll 90.0    pitch 43.0    yaw  0.0   Gripper 70   TimeDur 15 
21  move    x -265.0    y 1572.0    z 895.0    roll 90.0    pitch 43.0    yaw  0.0   Gripper 70   TimeDur 15 
22  move    x -265.0    y 1572.0    z 895.0    roll 90.0    pitch 43.0    yaw  0.0   Gripper 100   TimeDur 15 
23  move    x -265.0    y 1400.0    z 1100.0    roll 90.0    pitch 43.0    yaw  0.0   Gripper 100   TimeDur 15 
24  move    x -265.0    y 1000.0    z 1100.0    roll 90.0    pitch 43.0    yaw  0.0   Gripper 100   TimeDur 15 
 

Figure B-14 Example Plan File 
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Appendix C, Simulation Results and Code Assist Functions 

 

C.1  Simulation Results of Planar Assistance function 

C.1.1  Planar Assist Function Simulation Results 

A test of the code was performed to measure the planar assistance function.  The program was 

executed at the USF test bed, and the scaled and non-scaled velocities were recorded.  The 

following graphs represent the results obtained from the planar assistance function showing the 

actual velocity command sent to the robot controller. 

Figure C-1 represents the linear velocity scaling.  The graph contains the Z-axis velocity of the 

constraint plane.  Motion in the Z-axis causes the manipulator to go away from the constraint 

plane.  The graph shows that the motion away from the constraint plane is scaled down by the 

scale value of 0.1. 

Furthermore, Figure C-2 shows the roll velocity command and the scaled roll velocity.  

During the cutting operation the roll axis should not change.  From the graph, the angular velocity 

in the roll direction is scaled down by a value of 0.1.   
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Figure C-1 Scaled and Non-Scaled Z-Axis Velocity 
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 Figure C-2 Scale and Non-Scaled Roll Velocity 

The planar assist function also requires the roll axis to be pointing in the direction of the 

constrain plane.  This means that the yaw direction should line up with the plane initially, and 

then stay in that direction during the task operation.  This means that the yaw velocity is scaled 

down by a value of 0.1.  Figure C-3 shows the yaw angular velocity command and the scaled 

velocity.   
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Figure C-3 Scaled and Non-Scaled Yaw Velocity  
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C.1.2  Planar Assist Function Programming Code 

 

Header File (plane.h) 
 

/**************************************************************************** 

  Plane.h:  This is the header of plane class. 

  Date: August 29,2001  

  Revised on: Oct. 25,2001 

  Author: Wentao Yu (University of South Florida) 

  Contact: wyu@eng.usf.edu 

 

****************************************************************************/ 

 

/***************  Changes made On October 25 2001 by Wentao Yu  ************ 

   

  1. RotationAdjust() function has been added a argument. Now it is 

     RotationAdjust(int k). 

  2. Added a constant toPlaneAccuracy which is used to check if the CP is  

     on the constraint line. 

 

***************************************************************************/ 

 

#define toPlaneAccuracy 0.1 

 

class Planar  

{ 

  private: 

    double  gp[3];   // This is the goal point for linear movement 

        double  mip[3]; 

      double  pp1[3],pp2[3]; 

    double  cp[3],cr[3]; // current position and rotation 

    double  safeDis; 

 

    double  vmaster[3],wmaster[3];   

        double  vscaled[3],wscaled[3]; 

    double  vmodified[3],wmodified[3];// Modified velocity command 

 

    double  scale[3][3],scaleRPY[3][3]; 

      double  Rc[3][3],tranRc[3][3]; 

      double  projection[3]; 

    double  a,b,c,d;  // four coefficients of the plane equation  

    double  RightPosition[3],RightRotation[3];           

  public: 

    Planar();  

    Planar(double GP[],double PP1[],double PP2[],double MIP[], 

         double SafeDis); 
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    void Computetoolplane();     

    void Getprojection(); 

    void Gettransform(); 

    void Transpose(); 

    void Initialization();   

     

    void Designscale(double x, double y, double z); 

    void DesignscaleRPY(double x, double y, double z); 

 

    void LinearMove(); 

    void RotationAdjust(int k); 

    void Scaling(); 

 

    double* GetRightP(); 

    double* GetRightR();  

     

 

    bool IsCPOnplane(); 

    void SetCP(double Vmaster[],double Wmaster[],double CP[],double CR[]); 

 

    double* GetV(); 

    double* GetW();  

     

    void Show(); 

}; 

 

Source File (Plane.cpp) 

 

/**************************************************************************** 

  Plane.cpp:  This file includes all the funstions of plane class. 

  Date: August 29,2001  

  Revised on: Oct. 25,2001 

  Author: Wentao Yu (University of South Florida) 

  Contact: wyu@eng.usf.edu 

 

****************************************************************************/ 

 

 

/***************  Changes made On October 25 2001 by Wentao Yu  ************ 

   

  1. In Gettransform() function, Z axis calculation used a new approach. 
    The old one is :  

 a3=mip[0]-projection[0]; 

 b3=mip[1]-projection[1]; 

 c3=mip[2]-projection[2]; 

    The new one is: 
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 a3=a; 

 b3=b; 

 c3=c; 

 

  This means that the Z-axis of the constraint frame is the normal vector of the 

  constraint plane. 

 

2. In Gettransform() function, y axis calculation has been changed . Now it follows right-hand  

    rule. 

    The old version is: 

   a2=b1*c3-c1*b3; 

   b2=c1*a3-c3*a1; 

   c2=a1*b3-b1*a3;   

    The new version is: 

   a2=b3*c1-c3*b1; 

   b2=c3*a1-c1*a3; 

   c2=a3*b1-b3*a1;   

 

3.RotationAdjust() function has been added a argument which determine which angle 

    needs to be adjusted. Now it is RotationAdjust(int k).   

 
 

***************************************************************************/ 

 

/********************* Some important Comments ************************ 

 

  1. Calculation of the orientation of the Roll, Pitch and Yaw angles. 

     

      beta=Atan2(-r31, sqrt(r11^2+r21^2)) 

      alpha=Atan2(r21/cos(beta), r11/cos(beta)); 

      gamma=Atan2(r32/cos(beta), r33/cos(beta));  

 

 

***********************************************************************/ 

     

 

#include <iostream.h> 

 

#include <math.h> 

#include "Plane.h" 
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// Constructor .Initialize the gp ,pp1,pp2,mip,etc.and do some necessary calculations. 

Planar::Planar(double GP[],double PP1[],double PP2[],double MIP[], 

         double SafeDis) 

{ 

  int i; 

 

  for(i=0;i<3;i++) 

  { 

    gp[i]=GP[i]; 

    pp1[i]=PP1[i]; 

    pp2[i]=PP2[i]; 

    mip[i]=MIP[i]; 

    projection[i]=0; 

    vscaled[i]=0; 

    wscaled[i]=0;     

  } 

  safeDis=SafeDis; 

 

  Computetoolplane();  

      // Calculating the coefficients of the constraint plane 

  Getprojection(); 

         // get the the projection 

  Gettransform();      

       // get the transformation matrix 

  Transpose();         

       // get the transpose of the matrix above 

  Initialization(); 

       // calculate the right position and orientation for the task 

} 

 

// get the coefficients of the constraint plane. 

void Planar::Computetoolplane() 

{ 

  double  temp[2][3];   

 

  temp[0][0]=pp1[0]-gp[0]; 

    temp[0][1]=pp1[1]-gp[1]; 

  temp[0][2]=pp1[2]-gp[2]; 

  temp[1][0]=pp2[0]-gp[0]; 

  temp[1][1]=pp2[1]-gp[1]; 

  temp[1][2]=pp2[2]-gp[2]; 

 

  a=temp[0][1]*temp[1][2]-temp[1][1]*temp[0][2];  // a ,b ,c d are coffecients of  

  b=temp[1][0]*temp[0][2]-temp[0][0]*temp[1][2];  // the plane decided by the three  

  c=temp[0][0]*temp[1][1]-temp[1][0]*temp[0][1];  // points. 

  d=(-1)*gp[0]*a-gp[1]*b-gp[2]*c; 
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} 

 

// get the projection of the mip on the constraint plane. 

void Planar::Getprojection() 

{ 

  double k; 

   

  k=(-1)*(a*mip[0]+b*mip[1]+c*mip[2]+d)/(a*a+b*b+c*c); 

 

  projection[0]=k*a+mip[0];           

  projection[1]=k*b+mip[1]; 

  projection[2]=k*c+mip[2];   

   

} 

 

// get the thansformation matrix between constraint frame and base frame. 

void Planar::Gettransform() 

{ 

  // projection is the original point of the frame 

  double  a1,b1,c1,a2,b2,c2,a3,b3,c3; 

  double  sum1,sum2,sum3; 

  double  a11,b11,c11,a21,b21,c21,a31,b31,c31; 

 

   //The direction of X-axis is :a1,b1,c1 ; 

  // For planar assistance function,it is a line perpendicular to the pipe axis. 

  // For linear assistance function,it is a line perpendicular to the constraint line. 

  a1=gp[0]-projection[0]; 

  b1=gp[1]-projection[1]; 

  c1=gp[2]-projection[2]; 

 

 

  // The direction of Z-axis is a3,b3,c3; 

    // For planar assistance function,it is a the normal vector of the constraint plane. 

   

  a3=a; 

  b3=b; 

  c3=c; 

 

  // The direction of Y-axis is a2,b2,c2; 

  // Y-axis is the cross product of Z and X. That is , Y=Z*X follows the right-hand rule. 

   

  a2=b3*c1-c3*b1; 

  b2=c3*a1-c1*a3; 

  c2=a3*b1-b3*a1;   

 

  sum1=sqrt(a1*a1+b1*b1+c1*c1); 
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  sum2=sqrt(a2*a2+b2*b2+c2*c2); 

    sum3=sqrt(a3*a3+b3*b3+c3*c3); 

 

  a11=a1/sum1;               

  b11=b1/sum1; 

    c11=c1/sum1; 

 

  a21=a2/sum2; 

    b21=b2/sum2; 

  c21=c2/sum2; 

 

  a31=a3/sum3; 

  b31=b3/sum3; 

  c31=c3/sum3;  

 

  Rc[0][0]=a11;   

  Rc[0][1]=b11; 

  Rc[0][2]=c11; 

 

  Rc[1][0]=a21; 

  Rc[1][1]=b21; 

  Rc[1][2]=c21; 

 

  Rc[2][0]=a31; 

  Rc[2][1]=b31; 

  Rc[2][2]=c31;  // This array is the transform matrix 

} 

 

// transpose Rc 

void Planar::Transpose() 

{ 

  int i,j; 

 

  for(i=0;i<3;i++) 

  { 

    for(j=0;j<3;j++) 

      tranRc[i][j]=Rc[j][i]; 

  } 

} 

 

// Because we have the transformation between constraint frame and base frame. Right before  

// doing cutting task, the Roll axis is in the X-axis direction of the constraint frame.Pitch 

// axis is in the Z-axis and Yaw axis is in the Y-axis. 

void Planar::Initialization() 

{ 

  int i; 
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  RightRotation[1]=atan2((-1)*Rc[2][0],sqrt(Rc[0][0]*Rc[0][0]+Rc[1][0]*Rc[1][0])); 

    RightRotation[0]=atan2(Rc[1][0]/cos(RightRotation[1]),Rc[0][0]/cos(RightRotation[1])); 

  RightRotation[2]=atan2(Rc[2][1]/cos(RightRotation[1]),Rc[2][2]/cos(RightRotation[1])); 

     

  for(i=0;i<3;i++) 

    RightPosition[i]=projection[i]; 

} 

 

 

double* Planar::GetRightP() 

{ 

  return RightPosition; 

} 

 

double* Planar::GetRightR() 

{ 

  return RightRotation; 

} 

 

void Planar::Designscale(double x, double y, double z) 

{   

    scale[0][0]=x;   

  scale[0][1]=0; 

  scale[0][2]=0; 

 

  scale[1][0]=0; 

  scale[1][1]=y; 

  scale[1][2]=0; 

 

  scale[2][0]=0; 

  scale[2][1]=0; 

  scale[2][2]=z; 

} 

 

void Planar::DesignscaleRPY(double x,double y, double z) 

{ 

  scaleRPY[0][0]=x; 

  scaleRPY[0][1]=0; 

  scaleRPY[0][2]=0; 

 

  scaleRPY[1][0]=0; 

  scaleRPY[1][1]=y; // Pitch can be free, no scaled. 

  scaleRPY[1][2]=0; 

 

  scaleRPY[2][0]=0; 

  scaleRPY[2][1]=0; 

  scaleRPY[2][2]=z; 
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} 

 

void Planar::Scaling() 

{ 

  int i,j; 

  double vcut[3],wcut[3]; 

 

  for(i=0;i<3;i++)      //Before giving vmodified value, initialize it 

  { 

    vcut[i]=0; 

    wcut[i]=0; 

    vscaled[i]=0; 

    wscaled[i]=0; 

    vmodified[i]=0; 

    wmodified[i]=0; 

 

  } 

   

  Designscale(1,1,0.1); 

  DesignscaleRPY(0.1,1,0.1); 

 

  for(i=0;i<3;i++)            // making the end-effector back  

  {                           // the constraint plane 

    for(j=0;j<3;j++) 

    { 

      vcut[i]+=tranRc[i][j]* vmaster[j]; 

      wcut[i]+=tranRc[i][j]* wmaster[j]; 

    } 

  } 

 

  for(i=0;i<3;i++) 

  { 

    for(j=0;j<3;j++) 

    { 

      vscaled[i] +=scale[i][j]* vcut[j]; 

      wscaled[i] +=scaleRPY[i][j]* wcut[j];   

    } 

  } 

 

  for(i=0;i<3;i++) 

  { 

    for(j=0;j<3;j++) 

    { 

      vmodified[i] +=Rc[i][j]* vscaled[j]; 

      wmodified[i] +=Rc[i][j]* wscaled[j]; 

    } 

  } 
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} 

 

bool Planar::IsCPOnplane() 

{ 

  double disCPtoPlane; 

    disCPtoPlane=fabs(a*cp[0]+b*cp[1]+c*cp[2]+d)/sqrt(a*a+b*b+c*c); 

  if(disCPtoPlane< toPlaneAccuracy) 

    return true; 

  else  

    return false; 

} 

 

void Planar::RotationAdjust(int k) 

{ 

  double wslave[3]; 

  double RotateScale[3][3]; 

  int i,j;     

 

  if(k==0) 

  { 

    RotateScale[0][0]=1;   

    RotateScale[1][1]=0.1;  

    RotateScale[2][2]=0.1;  

  } 

  else if(k==1) 

  { 

    RotateScale[1][1]=1;   

    RotateScale[0][0]=0.1;  

    RotateScale[2][2]=0.1;  

  } 

  else 

  { 

    RotateScale[2][2]=1;   

    RotateScale[1][1]=0.1;  

    RotateScale[0][0]=0.1;  

  } 

   

  RotateScale[0][1]=0; 

  RotateScale[0][2]=0; 

 

  RotateScale[1][0]=0;   

  RotateScale[1][2]=0; 

 

  RotateScale[2][0]=0; 

  RotateScale[2][1]=0; 

 

  for(i=0;i<3;i++)      //Before giving vmodified value, initialize it 
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  { 

    wslave[i]=0; 

    wscaled[i]=0; 

    vmodified[i]=0; 

  } 

   

  for(i=0;i<3;i++)            // making the end-effector back  

                               // the constraint plane 

    for(j=0;j<3;j++) 

      wslave[i]+=tranRc[i][j]* wmaster[j]; 

 

  for(i=0;i<3;i++) 

    for(j=0;j<3;j++) 

      wscaled[i] +=RotateScale[i][j]* wslave[j]; 

 

  for(i=0;i<3;i++) 

    for(j=0;j<3;j++) 

      wmodified[i] +=Rc[i][j]* wscaled[j]; 

   

} 

 

void Planar::SetCP(double Vmaster[],double Wmaster[],double CP[],double CR[]) 

{ 

  int i; 

  for(i=0;i<3;i++) 

  { 

    vmaster[i]=Vmaster[i]; 

    wmaster[i]=Wmaster[i]; 

    cp[i]=CP[i]; 

    cr[i]=CR[i]; 

  } 

} 

 

void Planar::LinearMove() 

{ 

  double LineMovescale[3][3]; 

  double dis,ScaleFactor; 

  double vLineMove[3]; 

  int i,j; 

 

  dis=sqrt((projection[0]-cp[0])*(projection[0]-cp[0])+(projection[1]-cp[1])*(projection[1]-cp[1]) 

          +(projection[2]-cp[2])*(projection[2]-cp[2])); 

  if(dis>safeDis) 

    ScaleFactor=2; 

  else 

    ScaleFactor=0.5; 
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  LineMovescale[0][0]=0.1;   

  LineMovescale[0][1]=0; 

  LineMovescale[0][2]=0; 

 

  LineMovescale[1][0]=0; 

  LineMovescale[1][1]=0.1; 

  LineMovescale[1][2]=0; 

 

  LineMovescale[2][0]=0; 

  LineMovescale[2][1]=0; 

  LineMovescale[2][2]=ScaleFactor; 

 

  for(i=0;i<3;i++)      //Before giving vmodified value, initialize it 

  { 

    vLineMove[i]=0; 

    vscaled[i]=0; 

  } 

   

  for(i=0;i<3;i++)            // making the end-effector back  

                               // the constraint plane 

    for(j=0;j<3;j++) 

      vLineMove[i]+=tranRc[i][j]* vmaster[j]; 

 

  for(i=0;i<3;i++) 

    for(j=0;j<3;j++) 

      vscaled[i] +=LineMovescale[i][j]* vLineMove[j]; 

 

  for(i=0;i<3;i++) 

    for(j=0;j<3;j++) 

      vmodified[i] +=Rc[i][j]* vscaled[j]; 

   

} 

 

double* Planar::GetV() 

{ 

  return vmodified; 

} 

 

double* Planar::GetW() 

{ 

  return wmodified; 

} 

 

void Planar::Show() 

{ 

  int i;   
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  for(i=0;i<3;i++) 

    cout<<vmodified[i]<<"\n"; 

 

  for(i=0;i<3;i++) 

    cout<<wmodified[i]<<"\n";   

 

} 
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C.2  Simulation Results of Linear Assistance function 
C.2.1  Linear Assistance function Simulation Results 

 

A test of the code was performed to measure the performance of the linear assistance function.  

The program was executed at the USF test bed, and the scaled and non-scaled velocities were 

recorded.  The following graphs represent the results obtained from the linear assistance function 

showing the actual velocity command sent to the robot controller.   

Figure C-4 represents the linear velocity scaling.  The graph contains the X-axis velocity of 

the constraint plane.  Motion in the X-axis causes the manipulator to go away from the constraint 

line, according to figure 4.  The graph shows that the motion away from the constraint line is 

scaled down by the scale value of 0.1. 

Furthermore, Figure C-5 shows the Y-axis velocity, scaled and non-scaled.  Since motion in 

the Y-axis direction is away from the constraint line, the motion is scaled by a factor of 0.1.   
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Figure C-4 Scaled and Non-Scaled X-Axis Velocity 
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Figure C-5 Scaled and Non-Scaled Y-Axis Velocity 

The linear assist function also requires the roll axis to be pointing in the direction of the 

constrain line.  Therefore, during the drilling operation the roll axis should be kept along the line, 

so the pitch and yaw should not deviate from the initial points, so it is necessary to scale those 

angular velocities.  From the graph in Figure C-6, the pitch velocity command and the scaled 

pitch velocity is shown, and the angular velocity in the pitch direction is scaled down by a value 

of 0.1.   
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Figure C-6 Scaled and Non-Scaled Pitch Velocity 
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Similarly, the yaw direction should be kept the same from the initial direction.  This means 

that the yaw velocity is scaled down by a value of 0.1.  Figure C-7 shows the yaw angular 

velocity command and the scaled velocity.   
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Figure C-7 Scaled and Non-Scaled Yaw Velocity 

 

The simulation results show that the algorithm takes a commanded velocity and scales this 

velocity command per the requirements of the assistance function, helping the teleoperator 

perform tedious and tiresome tasks.   
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C.2.2  Linear Assist Function Programming Code 
 

Header File (Line.h) 

 

/**************************************************************************** 

  Line.h:  This is the header of line class. 

  Date: August 29,2001  

  Revised on: Oct. 25,2001 

  Author: Wentao Yu (University of South Florida) 

  Contact: wyu@eng.usf.edu 

 

****************************************************************************/ 

 

/***************  Changes made On October 25 2001 by Wentao Yu  ************ 

   

  1. RotationCheck() function has been added a argument. Now it is 

     RotationAdjust(int k). 

  2. Added a constant toLineAccuracy which is used to check if the CP is  

     on the constraint line. 

 

***************************************************************************/ 

 

#define toLineAccuracy 0.1 // the distance to judge if the CP is on the line. 

 

class Linear  

{ 

  private: 

        double  safeDis; 

      double  lp1[3],lp2[3],mip[3]; 

          // lp1 is the goal point for linear movement 

    double  cp[3],cr[3];  

 

    double vmaster[3],wmaster[3];// Velocity command 

      double vscaled[3],wscaled[3]; //Velocity after scaled  

    double vmodified[3],wmodified[3];// Modified velocity command 

 

    double scale[3][3],scaleRPY[3][3]; 

      double Rline[3][3],tranRline[3][3]; 

    double projection[3]; // MIP on the constraint line 

    double RightPosition[3],RightRotation[3];  

  public: 

    Linear(); 

    Linear(double LP1[],double LP2[],double mip[], 

         double SafeDis); 

    void Getprojection();  

    void Gettransform(); 
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    void Transpose(); 

    bool IsCPOnLine(); // check if CP is on the constraint line 

    void SetCP(double Vmaster[],double Wmaster[],double CP[],double CR[]); 

    void Initialization(); // calculate the right position and orientation 

    double* GetRightP(); 

    double* GetRightR();  

 

    void Designscale(double x,double y,double z); 

    void DesignscaleRPY(double x,double y,double z); 

 

    void LinearMove(); // Move the end effector from MIP to the projection 

    void RotationCheck(int k); 

    void Scaling(); // do scaling operation  

 

    double* GetV(); 

    double* GetW();  

     

    void show(); 

}; 

 

Source File (Line.cpp) 

 

/**************************************************************************** 

  Line.cpp:  This file includes all the functions of line class. 

  Date: August 29,2001  

  Revised on: Oct. 25,2001 

  Author: Wentao Yu (University of South Florida) 

  Contact: wyu@eng.usf.edu 

 

****************************************************************************/ 

 

 

/***************  Changes made On October 25 2001 by Wentao Yu  ************ 

   

  1.RotationCheck() function has been added a argument which determine which angle 

    needs to be adjusted. Now it is RotationAdjust(int k). 

     

  2. In Gettransform() function, the case of MIP is on the constraint line has  

     been considered. If MIP is the same as projection, use a arbitrary line which  

     is perpendicular with the constraint line as X-axis of the constraint frame. 

  3. In LinearMove() function, the scaleFactor value has been changed from constant 

     to a v value. 

 

***************************************************************************/ 

 

#include <iostream.h> 

#include <math.h> 
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#include "Line.h" 

 

 

Linear::Linear(double LP1[],double LP2[],double MIP[], 

         double SafeDis) 

{ 

  int i; 

  for(i=0;i<3;i++) 

  { 

    lp1[i]=LP1[i]; 

    lp2[i]=LP2[i]; 

    mip[i]=MIP[i];   

    projection[i]=0; 

    vscaled[i]=0; 

    wscaled[i]=0; 

  } 

  safeDis=SafeDis;       

  Gettransform();       

  Transpose();        

  Initialization();       

} 

 

// get the projection of a point on the constraint line 

void Linear::Getprojection() 

{ 

 

  // This function is getting the projection of the MIP on a line    

   

  double  k1,k2,k; 

 

  k1=(mip[0]-lp1[0])*(lp2[0]-lp1[0])+(mip[1]-lp1[1])*(lp2[1]-lp1[1])+ 

    (mip[2]-lp1[2])*(lp2[2]-lp1[2]); 

    k2=(lp2[0]-lp1[0])*(lp2[0]-lp1[0])+(lp2[1]-lp1[1])*(lp2[1]-lp1[1])+ 

    (lp2[2]-lp1[2])*(lp2[2]-lp1[2]); 

  k=k1/k2; 

 

  projection[0]=k*(lp2[0]-lp1[0])+lp1[0]; 

  projection[1]=k*(lp2[1]-lp1[1])+lp1[1]; 

  projection[2]=k*(lp2[2]-lp1[2])+lp1[2]; 

   

 

} 

 

// get the transformation matrix 

void Linear::Gettransform() 

{ 

  // projection is the original point of the frame 
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  double  a1,b1,c1,a2,b2,c2,a3,b3,c3; 

  double  sum1,sum2,sum3; 

  double  a11,b11,c11,a21,b21,c21,a31,b31,c31;    

   

  Getprojection();   

 

  // The direction of Z-axis is a3,b3,c3; 

    // For planar assistance function,it is a line parallel with the pipe axis. 

  // For linear assistance function,it is a line parallel with the constraint line.   

   

  a3=lp1[0]-lp2[0]; 

  b3=lp1[1]-lp2[1]; 

  c3=lp1[2]-lp2[2]; 

 

 

  //The direction of X-axis is :a1,b1,c1 ;   

  if(mip[0] == projection[0] && mip[1] == projection[1] && mip[2] == projection[2]) 

  { 

    a1=1; 

    b1=1; 

    c1=(-1)*(a3+c3)/c3;     

  } 

  else 

  { 

    a1=mip[0]-projection[0]; 

    b1=mip[1]-projection[1]; 

    c1=mip[2]-projection[2]; 

  }   

 

  // The direction of Y-axis is a2,b2,c2; 

  // Y-axis is the cross-product of Z and X.It follows right-hand rule. 

   

  a2=b3*c1-c3*b1; 

  b2=c3*a1-c1*a3; 

  c2=a3*b1-b3*a1;   

 

  sum1=sqrt(a1*a1+b1*b1+c1*c1); 

  sum2=sqrt(a2*a2+b2*b2+c2*c2); 

    sum3=sqrt(a3*a3+b3*b3+c3*c3); 

 

  a11=a1/sum1;               

  b11=b1/sum1; 

    c11=c1/sum1; 

 

  a21=a2/sum2; 

    b21=b2/sum2; 

  c21=c2/sum2; 
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  a31=a3/sum3; 

  b31=b3/sum3; 

  c31=c3/sum3;  

 

  Rline[0][0]=a11;   

  Rline[0][1]=b11; 

  Rline[0][2]=c11; 

 

  Rline[1][0]=a21; 

  Rline[1][1]=b21; 

  Rline[1][2]=c21; 

 

  Rline[2][0]=a31; 

  Rline[2][1]=b31; 

  Rline[2][2]=c31;  // This array is the transform matrix   

} 

 

// get the transpose of the matrix above   

void Linear::Transpose() 

{ 

  int i,j; 

 

  for(i=0;i<3;i++) 

  { 

    for(j=0;j<3;j++) 

      tranRline[i][j]=Rline[j][i]; 

  } 

} 

 

void Linear::Designscale(double x,double y,double z) 

{ 

  scale[0][0]=x; 

  scale[0][1]=0; 

  scale[0][2]=0; 

 

  scale[1][0]=0; 

  scale[1][1]=y;  

  scale[1][2]=0; 

 

  scale[2][0]=0; 

  scale[2][1]=0; //This is the linear scale matrix.We should scale the velocity 

  scale[2][2]=z; // other than the the direction of line movement. 

} 

 

void Linear::DesignscaleRPY(double roll,double pitch,double yaw) 

{ 
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  scaleRPY[0][0]=roll;    //This is the orientation scaleRPY matrix. 

  scaleRPY[0][1]=0; 

  scaleRPY[0][2]=0; 

 

  scaleRPY[1][0]=0; 

  scaleRPY[1][1]=pitch;  

  scaleRPY[1][2]=0; 

 

  scaleRPY[2][0]=0; 

  scaleRPY[2][1]=0;           

  scaleRPY[2][2]=yaw;   

} 

 

bool Linear::IsCPOnLine() 

{ 

  int i,j; 

  double Newcp[3]; 

  double disCPtoLine; 

 

  for(i=0;i<3;i++) 

    for(j=0;j<3;j++) 

      Newcp[i]+=tranRline[i][j]* cp[j];     

 

    disCPtoLine=sqrt(Newcp[0]*Newcp[0]+Newcp[1]*Newcp[1]); 

    // distance from CP to the constraint line 

  if(disCPtoLine< toLineAccuracy) 

    return true; 

  else  

    return false; 

} 

 

// Initializationization for a task doing to get right position  

// and rotation for a task. 

void Linear::Initialization() 

{ 

  int i; 

 

  RightRotation[1]=atan2((-1)*Rline[2][0],sqrt(Rline[0][0]*Rline[0][0]+Rline[1][0]*Rline[1][0])); 

    RightRotation[0]=atan2(Rline[1][0]/cos(RightRotation[1]),Rline[0][0]/cos(RightRotation[1])); 

  RightRotation[2]=atan2(Rline[2][1]/cos(RightRotation[1]),Rline[2][2]/cos(RightRotation[1])); 

     

  for(i=0;i<3;i++) 

    RightPosition[i]=projection[i]; 

} 

 

void Linear::SetCP(double Vmaster[],double Wmaster[],double CP[],double CR[]) 

{ 
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  int i; 

  for(i=0;i<3;i++) 

  { 

    vmaster[i]=Vmaster[i]; 

    wmaster[i]=Wmaster[i]; 

    cp[i]=CP[i]; 

    cr[i]=CR[i]; 

  } 

} 

 

//To adjust the Roll, Pitch and Yaw angles 

void Linear::RotationCheck(int k) 

{ 

  double wslave[3],wscaled[3]; 

  double RotateScale[3][3]; 

  int i,j; 

 

  if(k==0) 

  { 

    RotateScale[0][0]=1;   

    RotateScale[1][1]=0.1;  

    RotateScale[2][2]=0.1;  

  } 

  else if(k==1) 

  { 

    RotateScale[1][1]=1;   

    RotateScale[0][0]=0.1;  

    RotateScale[2][2]=0.1;  

  } 

  else 

  { 

    RotateScale[2][2]=1;   

    RotateScale[1][1]=0.1;  

    RotateScale[0][0]=0.1;  

  } 

     

  RotateScale[0][1]=0; 

  RotateScale[0][2]=0; 

 

  RotateScale[1][0]=0;   

  RotateScale[1][2]=0; 

 

  RotateScale[2][0]=0; 

  RotateScale[2][1]=0; 

 

  for(i=0;i<3;i++)      //Before giving vmodified value, initialize it 

  { 
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    wslave[i]=0; 

    wscaled[i]=0; 

    wmodified[i]=0; 

  } 

   

  for(i=0;i<3;i++)            // making the end-effector back  

                               // the constraint plane 

    for(j=0;j<3;j++) 

      wslave[i]+=tranRline[i][j]* wmaster[j]; 

 

  for(i=0;i<3;i++) 

    for(j=0;j<3;j++) 

      wscaled[i] +=RotateScale[i][j]* wslave[j]; 

 

  for(i=0;i<3;i++) 

    for(j=0;j<3;j++) 

      wmodified[i] +=Rline[i][j]* wscaled[j];     

} 

 

double* Linear::GetRightP() 

{ 

  return RightPosition; 

} 

 

double* Linear::GetRightR() 

{ 

  return RightRotation; 

} 

 

// Move the end effector along the line from MIP to projection . 

void Linear::LinearMove() 

{ 

  double LineMovescale[3][3]; 

  double dis,ScaleFactor; 

  double vLineMove[3],vscaled[3]; 

  int i,j; 

   

 

  dis=sqrt((projection[0]-cp[0])*(projection[0]-cp[0])+(projection[1]-cp[1])*(projection[1]-cp[1]) 

          +(projection[2]-cp[2])*(projection[2]-cp[2])); 

  if(dis>=safeDis) 

    ScaleFactor=2-safeDis/dis; // ScaleFactor changes from 2 to 1 when the distance 

                                 // changes from very large to the safeDis. 

  else 

    ScaleFactor=1-dis/safeDis;  // ScaleFactor changes from 1 to 0 when the distance  

                                    // changes from safeDis to 0. 

 



 122 

  LineMovescale[0][0]=ScaleFactor;   

  LineMovescale[0][1]=0; 

  LineMovescale[0][2]=0; 

 

  LineMovescale[1][0]=0; 

  LineMovescale[1][1]=ScaleFactor; 

  LineMovescale[1][2]=0; 

 

  LineMovescale[2][0]=0; 

  LineMovescale[2][1]=0; 

  LineMovescale[2][2]=0.1;   

 

  for(i=0;i<3;i++)      //Before giving vmodified value, Initialize it 

  { 

    vLineMove[i]=0; 

    vscaled[i]=0; 

    vmodified[i]=0; 

  }   

   

  for(i=0;i<3;i++) // making the end-effector back the constraint plane 

    for(j=0;j<3;j++) 

      vLineMove[i]+=tranRline[i][j]* vmaster[j]; 

 

  for(i=0;i<3;i++) 

    for(j=0;j<3;j++) 

      vscaled[i] +=LineMovescale[i][j]* vLineMove[j]; 

 

  for(i=0;i<3;i++) 

    for(j=0;j<3;j++) 

      vmodified[i] +=Rline[i][j]* vscaled[j]; 

   

} 

 

void Linear::Scaling() 

{ 

  int i,j; 

  double vline[3],wline[3]; 

 

  Designscale(0.1,0.1,1); 

  DesignscaleRPY(1,0.1,0.1); 

      // design a scale matrix for linear and angular velocity scaling 

 

  for(i=0;i<3;i++)      //Before giving vmodified value, Initializationize it 

  { 

    vline[i]=0; 

    wline[i]=0; 

    vscaled[i]=0; 
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    wscaled[i]=0; 

    vmodified[i]=0; 

    wmodified[i]=0; 

  }   

 

  for(i=0;i<3;i++)            // making the end-effector back  

  {                           // the constraint plane 

    for(j=0;j<3;j++) 

    { 

      vline[i]+=tranRline[i][j]* vmaster[j]; 

      wline[i]+=tranRline[i][j]* wmaster[j]; 

    } 

  } 

   

 

  for(i=0;i<3;i++) 

  { 

    for(j=0;j<3;j++) 

    { 

      vscaled[i] +=scale[i][j]* vline[j]; 

      wscaled[i] +=scaleRPY[i][j]* wline[j];   

    } 

  } 

 

  for(i=0;i<3;i++) 

  { 

    for(j=0;j<3;j++) 

    { 

      vmodified[i] +=Rline[i][j]* vscaled[j]; 

      wmodified[i] +=Rline[i][j]* wscaled[j]; 

    } 

  } 

} 

 

double* Linear::GetV() 

{ 

  return vmodified; 

} 

 

double* Linear::GetW() 

{ 

  return wmodified; 

} 

 

void Linear::show() 

{ 

  int i;   
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  for(i=0;i<3;i++) 

    cout<<vmodified[i]<<"\n"; 

 

  for(i=0;i<3;i++) 

    cout<<wmodified[i]<<"\n";   

} 

 

 

 

 

C.2.1   Velocity Assistance Function Programming Code 

 

                       

 

Header File (Velo.h) 

 

/**************************************************************************** 

  Velo.h:  This is the header of velo class. 

  Date: August 29,2001  

  Revised on: Oct. 25,2001 

  Author: Wentao Yu (University of South Florida) 

  Contact: wyu@eng.usf.edu 

 

****************************************************************************/ 

 

/***************  Changes made On October 25 2001 by Wentao Yu  ************ 

   

   

 

***************************************************************************/ 

 

class Velo  

{ 

  private: 

        double  gp[3],cp[3]; 

    double safeDis; 

    double vmaster[3]; 

    double vscaled[3]; 

  public: 

    Velo(); 

    Velo(double GP[],double SafeDis); 

    void SetCP(double Vmaster[],double CP[]); 

    double* Scaling();     

}; 

 

Source File (Velo.cpp) 
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/**************************************************************************** 

  Velo.cpp:  This file includes all functions of Velo class. 

  Date: August 29,2001  

  Revised on: Oct. 25,2001 

  Author: Wentao Yu (University of South Florida) 

  Contact: wyu@eng.usf.edu 

 

****************************************************************************/ 

 

 

/***************  Changes made On October 25 2001 by Wentao Yu  ************ 

   

  1. The scaling factor calculation has been changed to: 

    if(dis>=safeDis) 

      ScaleFactor=2-safeDis/dis;  

    else 

    ScaleFactor=1-dis/safeDis;   

 

    ScaleFactor changes from 2 to 1 when the distance changes from very  

    large to the safeDis. ScaleFactor changes from 1 to 0 when the distance  

        changes from safeDis to 0. 

 

***************************************************************************/ 

 

#include <math.h> 

#include "velo.h" 

 

 

Velo::Velo(double GP[],double SafeDis) 

{ 

  int i; 

 

  for(i=0;i<3;i++) 

  { 

    gp[i]=GP[i]; 

    vscaled[i]=0;     

  } 

  safeDis=SafeDis; 

} 

 

void Velo::SetCP(double Vmaster[],double CP[]) 

{ 

  int i; 

  for(i=0;i<3;i++) 

  { 

    vmaster[i]=Vmaster[i]; 
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    cp[i]=CP[i]; 

  } 

} 

 

 

double* Velo::Scaling() 

{ 

  int i; 

  double dis; 

   

  double ScaleFactor; 

 

  dis=sqrt((gp[0]-cp[0])*(gp[0]-cp[0])+(gp[1]-cp[1])*(gp[1]-cp[1]) 

          +(gp[2]-cp[2])*(gp[2]-cp[2])); 

  if(dis>=safeDis) 

    ScaleFactor=2-safeDis/dis; // ScaleFactor changes from 2 to 1 when the distance 

                                 // changes from very large to the safeDis. 

  else 

    ScaleFactor=1-dis/safeDis;  // ScaleFactor changes from 1 to 0 when the distance  

                                    // changes from safeDis to 0. 

  for(i=0;i<3;i++) 

    vscaled[i]=vmaster[i]*ScaleFactor; 

  return vscaled; 

} 
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C.3  Simulation Results of Force Assistance function 
C.3.1  Force Assist Function Simulation Results 

 

Figure C-8 shows the relationship between the sensor force and the reference force, and the 

scale value that result. 
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Figure C-8 Scale Values for Corresponding 
Increasing Force Sensor Data 

 

The scale value uses the reference force and the sensor force, both in the constraint frame, to 

determine the scale value.  The relationship is obviously linear until the scale value reaches 0.1.  

The scale never descends below 0.1 because these values are not desired since it might cause the 

manipulator to get stuck in that position without being able to move away from the stranded 

position. 

Furthermore, several different sensor values and base frame commanded velocities were used 

to calculate the scale value.  The following six graphs show, for all six velocity components, the 

scale matrices that were calculated, and how these scale matrices affected the commanded 

velocity.  These figures illustrate the effect the Force Assist Function has on the commanded 

velocity for a given force sensor value. 
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Velocity Scaling in Constraint X-axis
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Figure C-9 Comparison of Velocity Scaling for 
Simulated Force Data in X-Axis 

 

 

 

 

Velocity Scaling in Constraint Y-axis
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Figure C-10 Comparison of Velocity Scaling for 
Simulated Force Daa in Y-Axis 
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Velocity Scaling in Constraint Z-axis
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Figure C-11 Comparison of Velocity Scaling for 
Simulated Force Data in Z-Axis 

 

 

Angular Velocity Scaling in Constraint Rot-X
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Figure C-12 Comparison of Angular Velocity 
Scaling for Simulated Force Data in Rot-X 
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Angular Velocity Scaling in Constraint Rot-Y
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Figure C-13 Comparison of Angular Velocity 
Scaling for Simulated Force Data in Rot-Y 
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Figure C-14 Comparison of Angular Velocity 
Scaling for Simulated Force Data in Rot-Z 
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C.3.2   Force Assist Function Programming Code (C++) 
 

#include <iostream.h> 

#include "force.h" 

 

int main() 

{ 

  int i; 

  static double  rbc[3][3]={{0.866,-0.5,0},{0.5,0.866,0},{0,0,1}};  

       // The transformation of constraint frame with respect  to base frmae (world frame). 

  static double  rbs[3][3]={{0.933,0.067,0.354},{0.067,0.933,-0.354},{-0.354,0.354,0.866}}; 

                 // The transformation of sensor frame with respect  

               //           to base frmae (world frame). 

  static double  frc[6]={5,10,0,0,0,0};  

                 //  Force and moment of reference value in constraint frame. 

    static double  fss[6]={1,6,-0.25,3,-0.25,-0.25}; 

                 //  Fss: Sensored force and moment in sensor frame. 

    static double  csorg[3]={1,0,0.2}; 

                 // It is a vector which locates the origin of sensor frame  

               // with respect to constraint frame. 

   

  static double  velMaster[6]={ 8,1,-1,0.75,-1,2}; 

                 // velocity value in base frame. 

   

  double* VelModified; 

                 // the modified velocity after force assistance function in base frame. 

 

  Force ForceAssist(rbc,rbs,fss,frc,velMaster,csorg);  

           // Initializa a object and set all the vriables needed by the function 

 

  VelModified =ForceAssist.VelocityModify();   

           // According to the force difference , use the algorithm introduced in 

           // the flow chart to get the position and rotation change.                

  for(i=0;i<6;i++) 

    cout <<" The modified linear and angular velocity are :"<< *(VelModified+i)<<"\n"; 

  return 0; 

} 

 

 

class Force 

{ 

  private: 

    double CSorg[3]; // It is a vector which locates the origin of sensor frame  

                     // with respect to constraint frame. 

    double Rbc[3][3],Rcb[3][3],Rbs[3][3],Rcs[3][3]; 
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                     // Rbc: The transformation of constraint frame with respect  

                     //           to base frmae (world frame). 

                     // Rbs: between base frame and world frame. 

                     // Rcs: transformation of constraint frame with respect to  

                     //       base (world frame). 

    double Tf[6][6];   // force-moment transformation. 

    double Frc[6],Fss[6],Fsc[6];  

                     // Frc: Force and moment of reference value in constraint frame. 

                     // Fss: Sensored force in sensor frame. 

                     // Fsc: sensored force and moment with respect to constraint frame. 

 

    double velModified[6]; 

    double ScaleL[3][3],ScaleA[3][3];  //scaling matrix 

    double LinearV[3],AngVel[3] ; 

     

  public: 

    Force(double rbc[][3],double rbs[][3],double fss[],double frc[6], 

        double velMaster[],double csorg[]); 

          // Constructor. It initialize all the variables. 

    Force(); 

     

    void transpose(double r1[][3],double r2[][3]); 

          // transpose a matrix. 

    void multiply1(double r1[][3],double r2[][3],double r[][3]); 

          // multiply two matrix and get a new matrix 

    void multiply2(double r[][3],double v1[],double v2[]) ; 

    void getRcs(); 

          // Calculate the transformation of constraint frame relative to sensor frame. 

    void buildTf(); 

          // calculate force-moment transformation and transform force from sensor frame 

          // into constraint frame.        

    double* VelocityModify(); 

          // Adjust position and rotation to compensate for the force and moment errors.     

}; 

 

 

#include "force.h" 

#include <iostream.h> 

#include <stdio.h> 

 

Force::Force(double rbc[][3],double rbs[][3],double fss[],double frc[6], 

        double velMaster[],double csorg[]) 

{ 

  int i,j; 

 

  for(i=0;i<3;i++) 

    for(j=0;j<3;j++) 
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    { 

      Rbc[i][j]=rbc[i][j]; 

      Rbs[i][j]=rbs[i][j]; 

      Rcb[i][j]=0; 

    } 

  for(i=0;i<6;i++) 

  { 

    Fss[i]=fss[i]; 

    Frc[i]=frc[i]; 

    velModified[i]=0; 

  } 

  for(i=0;i<3;i++) 

  { 

    LinearV[i]= velMaster[i]; 

    AngVel[i]= velMaster[i+3]; 

  } 

  for(i=0;i<3;i++) 

    CSorg[i]=csorg[i]; 

   

    transpose(Rbc,Rcb); 

  getRcs(); 

  buildTf();   

} 

 

void Force::transpose(double r1[][3], double r2[][3]) 

{ 

  int i,j; 

 

  for(i=0;i<3;i++) 

    for(j=0;j<3;j++) 

      r2[i][j]=r1[j][i]; 

} 

 

void Force::getRcs() 

{ 

  multiply1(Rcb,Rbs,Rcs);   

} 

 

void Force::multiply1(double r1[][3],double r2[][3],double r[][3])  //The function of matrix multiplying 

{     

  int i,j; 

 

  for(i=0;i<3;i++) 

    for(j=0;j<3;j++) 

      r[i][j]=r1[i][0]*r2[0][j]+r1[i][1]*r2[1][j]+r1[i][2]*r2[2][j];    

} 
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void Force::multiply2(double r[][3],double v1[],double v2[])  

{ 

  int i,j; 

 

  for(i=0;i<3;i++) 

    for(j=0;j<3;j++) 

      v2[i]+=r[i][j]*v1[j]; 

} 

 

void Force::buildTf()  // construct a transformation between constraint frame and  

                       // sensor frame.The constraint frame is built at the center 

      // of end-effector. 

{ 

  int i,j; 

  double P[3][3]; 

  double mid[3][3]; 

 

  for(i=0;i<6;i++) 

    Fsc[i]=0; 

 

  P[0][0]=0; 

  P[0][1]=(-1)*CSorg[2]; 

  P[0][2]=CSorg[1]; 

  P[1][0]=CSorg[2]; 

  P[1][1]=0; 

  P[1][2]=(-1)*CSorg[0]; 

  P[2][0]=(-1)*CSorg[1]; 

  P[2][1]=CSorg[0]; 

  P[2][2]=0; 

 

  for(i=0;i<3;i++) 

    for(j=0;j<3;j++) 

      Tf[i][j]=Rcs[i][j]; 

 

  for(i=0;i<3;i++) 

    for(j=3;j<6;j++) 

      Tf[i][j]=0; 

 

  for(i=3;i<6;i++) 

    for(j=3;j<6;j++) 

      Tf[i][j]=Rcs[i-3][j-3]; 

   

  multiply1(P,Rcs,mid); 

 

  for(i=3;i<6;i++) 

    for(j=0;j<3;j++) 

      Tf[i][j]=mid[i-3][j]; 
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    for(i=0;i<6;i++) 

    for(j=0;j<6;j++) 

      Fsc[i]+=Tf[i][j]*Fss[j]; 

} 

 

double* Force::VelocityModify()  // This function is to change the position and totation 

                              // in order to follow the contact force and moment command 

         // which are defined in the constraint frame. 

{ 

  int i,j;   

  double scale[6]; 

 

  double slaveL[3],slaveA[3]; 

  double newslaveL[3],newslaveA[3]; 

 

  FILE *forcedump; 

   

  for(i=0;i<3;i++) 

  { 

    slaveL[i]=0; 

    slaveA[i]=0; 

    newslaveL[i]=0; 

    newslaveA[i]=0; 

  }   

 

  for(i=0;i<6;i++) 

  { 

    if(Frc[i]==0) 

      scale[i]=0.1; 

    else 

    { 

      if((Frc[i]-Fsc[i])>0) 

      { 

 scale[i]=(Frc[i]-Fsc[i])/Frc[i]; 

 if(scale[i]<0.1) scale[i]=0.1; 

      } 

        else 

          scale[i]=0.1; 

    } 

  }   

   

 

  for(i=0;i<3;i++) 

    for(j=0;j<3;j++) 

    { 

      if(i==j) 
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      { 

 ScaleL[i][j]=scale[i]; 

 ScaleA[i][j]=scale[i+3]; 

      } 

      else 

      { 

 ScaleL[i][j]=0; 

 ScaleA[i][j]=0; 

      } 

 

    } 

 

 

  multiply2(Rcb,LinearV, slaveL); 

  multiply2(Rcb,AngVel, slaveA); 

 

  multiply2(ScaleL,slaveL, newslaveL);   

  multiply2(ScaleA,slaveA, newslaveA); 

 

   

 

  if(!(forcedump = fopen("forcedump.txt", "a+"))) 

  { 

    perror("fopen failed"); 

  //  exit(-1); 

  } 

  

fprintf(forcedump,"%1.2f,%1.2f,%1.2f,%1.2f,%1.2f,%1.2f,%1.2f,%1.2f,%1.2f,%1.2f,%1.2f,%1.2f,%1.2f,%1.2f,%1.2f,%1.2f,%1.2f,

%1.2f\n", 

     slaveL[0],slaveL[1],slaveL[2],slaveA[0],slaveA[1],slaveA[2], 

     newslaveL[0],newslaveL[1],newslaveL[2],newslaveA[0],newslaveA[1],newslaveA[2], 

     Fsc[0],Fsc[1],Fsc[2],Fsc[3],Fsc[4],Fsc[5]); 

 

  

  multiply2(Rbc,newslaveL, newslaveL); 

  multiply2(Rbc,newslaveA, newslaveA); 

 

  for(i=0;i<6;i++) 

  { 

    if(i<3) 

      velModified[i]=newslaveL[i]; 

    else 

      velModified[i]=newslaveA[i-3]; 

  }   

   

  return velModified; 

} 
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C.4  Main Reference Programming Code 

C.4.1  The definition of the three classes 

 

Planar class 
class Planar  

{ 

  private: 

    double  gp[3];   // This is the goal point for linear movement 

                  double  mip[3], pp1[3],pp2[3],cp[3]; 

    double safeDis; 

    double vmaster[3],wmaster[3];   

                  double vmodified[3],wmodified[3]; 

    double scale[3][3],scaleRPY[3][3]; 

             double Rc[3][3],tranRc[3][3]; 

             double projection[3]; 

    double a,b,c,d; 

    double RightPosition[3],RightRotation[3];    

  public: 

    Planar(); 

    Planar(double GP[],double PP1[],double PP2[],double MIP[], 

         double SafeDis); 

    void Computetoolplane();     

    void Getprojection(); 

    void Gettransform(); 

    void Transpose(); 

    void Initial();     

    void Designscale(); 

    void DesignscaleRPY(); 

    void LinearMove(); 

    double* GetRightP(); 

    double* GetRightR();  

    void Scaling(); 

    bool IsCPOnplane(); 

    void SetCP(double Vmaster[],double Wmaster[],double CP[]); 

    double* GetV(); 

    double* GetW();  

    void Show(); 

}; 

 

 

 

 

Linear class 
class Linear  
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{ 

  private: 

                  double  mip[3]; 

    double  safeDis; 

              double  lp1[3],lp2[3],cp[3]; // lp1equals the goal point for linear movement 

    double vmaster[3],wmaster[3]; 

              double vmodified[3],wmodified[3]; 

    double scale[3][3],scaleRPY[3][3]; 

             double Rline[3][3],tranRline[3][3]; 

    double projection[3]; 

    double RightPosition[3],RightRotation[3];  

  public: 

    Linear(); 

    Linear(double LP1[],double LP2[],double mip[], 

         double SafeDis); 

    void Getprojection(); 

    void Gettransform(); 

    void Transpose(); 

    bool IsCPOnLine(); 

    void SetCP(double Vmaster[],double Wmaster[],double CP[]); 

    void Initial(); 

    double* GetRightP(); 

    double* GetRightR();  

    void Designscale(); 

    void DesignscaleRPY(); 

    void LinearMove(); 

    void Scaling(); 

    double* GetV(); 

    double* GetW();      

}; 

Velocity class 

class Velo  

{ 

  private: 

                 double  gp[3],cp[3]; 

    double safeDis; 

    double vmaster[3]; 

    double vmodified[3]; 

  public: 

    Velo(); 

    Velo(double GP[],double SafeDis); 

    void SetCP(double Vmaster[],double CP[]); 

    double* Scaling();       

}; 
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C.4.2  The interpretation of all the variables in the functions 

 

1. assistant.cpp 
 flag : assistance type(P means planar, L means linear , V means velocity) 

double *V,*W:  Using these two pointers to obtain the modified velocities 

double *RightPosi ,*RightRota:  Using a initialization function to get right position 

                                                    and orientation fitting for a cetain task. 

double SafeDis: safe distance between the end effetor and the goal point. 

double  LP1[3] :    Linear constraint point 1. It is considered the goal point for linear movement 

double  LP2[3]:     Linear constraint point 2. 

double  GP[3] :     This is the goal point for planar movement. 

double  PP1[3]:     Planar constraint point 1 

double  PP2[3]:     Planar constraint point 2. 

**** The above three points are used to decide a constraint plane.  

double  MIP[3]:    Initial point of the end effecter. 

double CP[3];        This is the current point of the end effecter. It should be obtained online. 

**** These points except CP should be from task file .The current point (CP) should be obtained online because it will be used to 

judge if the end effecter deviates from constraint plane or line. Now I am not sure if you can get it online. So I commented this part of 

codes in planar and linear functions. 

 

2. Planar.cpp 
scale[3][3]: scale matrix for linear velocity scaling  

scaleRPY[3][3]: scale matrix for angular velocity scaling . 

Rc[3][3]: transformation of constraint frame with respect to the base frame 

tranRc[3][3]: the transpose of the Rc[3][3]. 

vnoscaled[3]:  the velocity input for planar for the planar scaling with respect to base frame..  

vcut[3]: the velocity input for planar for the planar scaling with respect to constraint frame. vscaled[3]: the velocity after scaled  with 

respect to constraint frame.  

vmodified[3]: the velocity after scaled  with respect to base frame.  

wnoscaled[3],wcut[3],wscaled[3],wmodified[3]: these four variable have similar meaning. The only difference is that they are angular 

velocity. 

projection[3]: The projection of MIP on the constraint plane. 

 

3. Linear.cpp 
Rline[3][3]:  transformation of constraint frame with respect to the base frame 

transRl[3][3]: the transpose of the Rline[3][3]. 

scale[3][3]: scale matrix for linear velocity scaling  

scaleRPY[3][3]: scale matrix for angular velocity scaling . 

vnoscaled[3]: similar meaning as in planar  case 

vscaled[3]:    similiar meaning as in planar  case 

vline[3]:      similiar meaning  as vcut in planar  case 

vmodified[3]: similiar meaning  as in planar  case 

wnoscaled[3],wscaled[3],wline[3],wmodified[3]: similiar meaning as in planar  case 
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projection[3]: The projection of MIP on the constraint line. 

C.4.3  Main Function Program(Assistance.cpp) 
 

/**************************************************************************** 

  Assistance.cpp:  This is the main function file.  

  Date: August 29,2001  

  Revised on: Oct. 25,2001 

  Author: Wentao Yu (University of South Florida) 

  Contact: wyu@eng.usf.edu 

 

****************************************************************************/ 

 

/******************  Changes made on Oct 25 2001 by Wentao Yu ************** 

  

   1.  Units 

     The length unit is in. 

       The angle unit is radians. 

     The linear velocity unit is in/s. 

     The angular velocity unit is radians/s. 

 

   2. For planar assistance,Adjusting three rotation angles has been separated  

    into three steps. These three steps are in a for loop. RotationAdjust() 

    function has a argument which determine which angle needs to be adjusted. 

 

****************************************************************************/ 

 

 

#include <iostream.h> 

#include <math.h> 

#include "Plane.h" 

#include "Line.h" 

#include "Velo.h" 

 

#define RotationAccuracy 0.06 // This is used to judge if the rotation angle is right for a certain task. 

#define SafeDis 3             // This is used to judge if the distance from CP to GP is safe. 

 

int main() 

{   

  char modeflag='L'; // The flag is assistance  type     

  int i; 

 

  // Assume we can get all these points and velocities now. 

 

  static double  LP1[3]={1,0,0}; // This is the goal point for linear movement 

  static double  LP2[3]={0,0,0}; 

  static double  GP[3]={0,0,0};   // This is the goal point for planar movement 
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    static double  MIP[3]={1,2,2}; 

  static double  PP1[3]={1,0,0}; 

  static double  PP2[3]={0,1,0}; 

  static double  CP[3]={5,4,1};    //current position and orientation of the end-effector. 

  static double  CR[3]={0.4,0.5,0.2}; //They should be obtained online. 

 

  static double Vmaster[3]={0.2,0.3,0.4}; 

  static double Wmaster[3]={0.6,0.1,0.4}; 

 

 

  double *V,*W; //  Using these two pointers to obtain the scaled velocities 

  double *RightPosi ,*RightRota;  

      // Using a initialization function to get right position 

        // and orientation fitting for a certain task. 

   

 

//  These constraint points will be obtained from task file.But CP 

//  (current point) will be obtained online, because it will be used 

//  to judge if the end-effeector is on the plane or line 

   

  switch(modeflag) 

  { 

      case 'P':           // Planar assistance  

      { 

        // constructor .Initialize all the constraint condition  

 Planar PAssist(GP,PP1,PP2,MIP,SafeDis); 

 RightPosi=PAssist.GetRightP();  

 RightRota=PAssist.GetRightR();  

//Firstly, we check if the current position of the manipulator is  

//on the constraint plane and if the current rotation fits for the task.If not,  

//do linear movement from CP to the projection until the CP is on the plane and 

//adjust the rotation. 

           

 PAssist.SetCP(Vmaster,Wmaster,CP,CR); 

    // update current velocity and position 

 while(!PAssist.IsCPOnplane())    

 { 

// if CP is not in the constraint plane,call LinearMove() function 

// which makes end efector move to the projection. 

 // The roll,yaw and roll direction are adjusted to be in right rotation. 

 

   PAssist.LinearMove();   

   V=PAssist.GetV(); 

   W=Wmaster; 

   PAssist.SetCP(Vmaster,Wmaster,CP,CR); 

            // CP and CR are used  

 // to check if the end-effector is in the constraint 
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 // plane,this is VERY IMPORTANT.Otherwise, the  

 // program can not get out from the loop. 

 } 

 

 for(i=0;i<3;i++) 

 { 

   while(abs(*(RightRota+i)-CR[i])>RotationAccuracy) 

   { 

     PAssist.RotationAdjust(i); 

     V=PAssist.GetV(); 

     W=PAssist.GetW(); 

     PAssist.SetCP(Vmaster,Wmaster,CP,CR); 

   } 

 }       

 

// Now the CP is on the constraint plane and the rotation fits for the certain task.  

// Maybe the actual position is different from the right position.But because  

// it is on the constraint plane,it is ok. 

 

 PAssist.Scaling();  // doing scaling operation. 

 V=PAssist.GetV(); 

 W=PAssist.GetW(); // get the scaled velocities vector       

            

 for(i=0;i<3;i++) 

     cout <<" The modified Linear velocities  is :" 

         << *(V+i)<<"\n"; 

               for(i=0;i<3;i++) 

     cout <<" The modified angular velocities  is :" 

           << *(W+i)<<"\n";   

// PAssist.Show(); 

      } 

        break; 

    case 'L':             // Linear assistance 

      { 

          Linear LAssist(LP1,LP2,MIP,SafeDis); 

 RightPosi=LAssist.GetRightP();  

 RightRota=LAssist.GetRightR();  

 

 LAssist.SetCP(Vmaster,Wmaster,CP,CR); 

 while(LAssist.IsCPOnLine()) 

 { 

   LAssist.LinearMove(); 

   V=LAssist.GetV(); 

   W=LAssist.GetW(); 

   LAssist.SetCP(Vmaster,Wmaster,CP,CR);  

 // update current velocity and position 

 // CP and CR are used  
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 // to check if the end-effector is on the constraint 

 // line.This is VERY IMPORTANT.Otherwise, the  

 // program can not get out from the loop. 

 } 

  

 for(i=0;i<3;i++) 

 { 

   while(abs(*(RightRota+i)-CR[i])>RotationAccuracy)  

   { 

     LAssist.RotationCheck(i); 

     V=LAssist.GetV(); 

     W=LAssist.GetW(); 

     LAssist.SetCP(Vmaster,Wmaster,CP,CR);  

   } 

 } 

 

// Now the CP is on the constraint line and the rotation fits for the task.           

 

 LAssist.SetCP(Vmaster,Wmaster,CP,CR); 

 LAssist.Scaling();    // doing scaling operation.    

                V=LAssist.GetV(); 

          W=LAssist.GetW();     // get the scaled velocities vector 

 for(i=0;i<3;i++) 

     cout <<" The modified Linear velocities  is :" 

         << *(V+i)<<"\n"; 

               for(i=0;i<3;i++) 

     cout <<" The modified angular velocities  is :" 

           << *(W+i)<<"\n";    

    //    LAssist.show(); 

  

      } 

      break; 

      case 'V': 

      { 

 Velo Velocity(GP,SafeDis);    

    // Velocity assistance 

          Velocity.SetCP(Vmaster,CP); 

    // update current velocity and position 

           V=Velocity.Scaling(); 

    // increase or decrease the velocity depending on the  

    // distance.    

 for(i=0;i<3;i++) 

   cout<<*(V+i)<<"\n"; 

      } 

      break; 

//    case 'F': 

//      break; 
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      default: 

      break; 

  }  

  return 0; 

} 
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Appendix D, RTSA OPENGL Software Listing 

D1 OpenGL Viewer Head files 

D1.1 RTSA_VIEW.h 

 
#include <GL/glaux.h>  
#include <GL/glut.h> 
#include <GL/glu.h> 
 
 
extern void animation(void); 
extern unsigned __stdcall test(void *dummy/* int argc, char** argv */); 
extern void addcomp(void); 
 
 
/* Load image as texture */ 
extern void LoadGLTextures(char *texfile); 
 
/* Draw a pipe oriented along the Z axis 
 * The base of the pipe is placed at z = 0, 
 * and the top at z = "height" 
 */ 
extern void pipe(GLdouble r, /* the radius of the pipe */ 
 GLdouble height /* height of the cylinder */); 
 
 
/* pipe menu function */ 
extern void pipe_choice(int value); 
 
/* Draw a Tee oriented along the Z axis 
 * The base of the tee is placed at z = 0, 
 * and the top at z = 2*A. 
 * Another branch oriented along the X axis, 
 * whose length is A 
 */ 
  
/* ??? need to draw the fladge */ 
extern void screwedTee(GLdouble A, /* Dimensions of American 150 Lb */ 
 GLdouble H, /* Standard Malleable-iron Screwed Tee */ 
 GLdouble E); 
    GLdouble E); 
 
/* screwedTee menu function */ 
extern void tee_choice(int value); 
 
/* Draw part of torus,  
 * which centered at the modeling coordinates origin  
 * whose axis is aligned with the Z aixs  
 *  
 * this is a PRIVATE FUNCTION TO DRAW ELBOW 
 */ 
extern void partTorus(GLfloat r, /* inner Radius */ 
 GLfloat R, /* outer Radius */ 
 GLint n, /* 1/nth of torus */ 
 GLint nsides, /* number of sides for each radial section */ 
 GLint rings /* 4x|8x, number of radial divisions for the torus */) ; 
 
/* Draw a 90 degree Elbow oriented along the Z axis 
 * the base of the elbow is placed at z = 0 
 */ 
extern void elbow90(GLdouble r, GLdouble R); 
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/* Draw a 45 degree Elbow oriented along the Z axis 
 * the base of the elbow is placed at z = 0 
 */ 
extern void elbow45(GLdouble r, GLdouble R); 
 
/* elbow90 menu function */ 
extern void elbow90_choice(int value); 
 
/* elbow45 menu function */ 
extern void elbow45_choice(int value); 
 
 
/* main menu function */ 
extern void main_menu_select(int value); 
 
/* create menu */ 
extern void make_menu(void); 
 
 
extern void init(char *texfile); 
 
extern void param(int c,float s); 
 
extern void Loadwallpaper(); 
 
extern void draw(double xPos,double yPos,double zPos,double zAngle,double yAngle,double xAngle, 
     /*double radius,*/double length,int choice); 
 
/* display a pipe or tee */ 
extern void display(void); 
 
 
extern void reshape(int w, int h); 
 
 
/* key 'x'--rotate around x axis 
 * key 'y'--rotate around y axis 
 * key 'z'--rotate around z axis 
 * key 'r'--reset 
 * key 'q', escape--exit 
 */ 
extern void keyboard(unsigned char key, int x, int y); 
extern void CutPlane(void); 

 

D1.2 fixtexture.h 
 
#ifndef FIXTEXTURE_H 
#define FIXTEXTURE_H 
 
enum {SCALE_FIX, PAD_FIX}; 
 
int fixtexture(GLenum format, /* input */ 
    GLint widthin, /* input */ 
    GLint heightin, /* input */ 
    GLenum type, /* input */ 
    GLint *widthout, /* output */ 
    GLint *heightout, /* output */ 
    GLvoid **data, /* input, output */ 
    GLenum ScalePad); /* input */ 
 
#endif 
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D1.3 tiffload.h 

 
/* Program: tiffload.h 
 * Description: header file for loading tiff image for a texture map  
 * 
 */ 
#ifndef TIFFLOAD_H 
#define TIFFLOAD_H 
GLvoid *LoadTIFFtex(char *filename, GLsizei *width, GLsizei *height, GLenum *format, GLenum *type); 
GLvoid UnloadTIFFtex(GLvoid *pixels); 
#endif 
 

D2 OpenGL Viewer Source file (RTSA_View.cpp) 

 
#include "StdAfx.h" 
#include "rtsa2.h" 
#include <GL/glaux.h>  
#include <GL/glut.h> 
#include <GL/glu.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "tiffload.h" 
#include "fixtexture.h" 
#include "RTSA_VIEW.h" 
 
#ifndef M_PI 
#define M_PI 3.14159  
#endif 
#ifndef M_METR 
#define M_METR 20. // Gain to change 1 inch to the unit in the virtual 
#endif 
#ifndef M_CAMERA 
#define M_CAMERA 1.0 
#endif 
 
GLuint ListName; 
GLuint flag =1;// flag to draw  
 
//  static int wallpaper = 1; /* wallpaper--1: load image as wallpaper; 0: unload image */ 
 
static GLenum drawStyle = GLU_FILL; /* GLU_FILL, GLU_LINE */ 
 
 
static float radius = 1.0;/* radius of pipe */ 
 
/* standard data of tee */ 
static GLdouble a = 1.50;  /* standard data of elbow45, also */ 
static GLdouble h = 1.77; 
static GLdouble e = 0.302; 
 
static GLdouble c = 1.12;   /* standard data of elbow45 */ 
 
static float x_offset=1.0; 
static float y_offset=0.0; 
static float z_offset=-400.0; 
 
 
struct objectInfo* pglObjList; 
struct objectInfo  glObjList; 
POSITION SearchPos; 
 
GLuint k_texture[1]; 
GLvoid *pixels1; 
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unsigned int texture; 
GLsizei width, height; 
 
/* Load image as texture */ 
void LoadGLTextures(char *texfile) 
{ 
GLsizei w, h; 
 GLenum format, type; 
 AUX_RGBImageRec *TextureImage[1]; 
 memset(TextureImage,0,sizeof(void *)*1); 
     TextureImage[0]=auxDIBImageLoad(texfile); 
     format=GL_RGB; 
     w=TextureImage[0]->sizeX; 
     h=TextureImage[0]->sizeY; 
     type=GL_UNSIGNED_BYTE; 
     pixels1= TextureImage[0]->data; 
     fixtexture(format, w, h, type, &w, &h, &pixels1,  SCALE_FIX); //1st~4th is input paramter, Change the image to fit power of 2 , 
pixels is output od image data, &w,&h is new saize of image, SCALE_FIX is the parameter to change the size of picture to power of 2 
     width=w; 
     height=h; 
  
     glGenTextures(1, &k_texture[0]); 
     glBindTexture(GL_TEXTURE_2D, k_texture[0]); 
     glTexImage2D(GL_TEXTURE_2D, 0, format, w, h, 0, GL_RGB, GL_UNSIGNED_BYTE, pixels1); 
     glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR); 
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR); 
 
 if (TextureImage[0])      // If Texture Exists 
 { 
  if (TextureImage[0]->data) // If Texture Image Exists 
  { 
   free(TextureImage[0]->data); // Free The Texture Image Memory 
     } 
   free(TextureImage[0]); // Free The Image Structure 
  } 
  free(pixels1);} 
 
 
void Loadwallpaper() 
{ 
float p_gain=1.0,p_dist=.51; //p_dist make 5000*p_dist 
float wpx=0.0,wpy=0.0,wpz=0.0,wor=0.0,wop=0.0,woy=0.0; 
 
/* load the image as wallpaper */ 
 
wpx=((CRtsa2App*)AfxGetApp())->WallPaperOffset.x+x_offset; 
wpy=((CRtsa2App*)AfxGetApp())->WallPaperOffset.y+y_offset; 
wpz=((CRtsa2App*)AfxGetApp())->WallPaperOffset.z+z_offset; 
wor=((CRtsa2App*)AfxGetApp())->WallPaperOffset.roll; 
wop=((CRtsa2App*)AfxGetApp())->WallPaperOffset.pitch; 
woy=((CRtsa2App*)AfxGetApp())->WallPaperOffset.yaw; 
 
 
 
if (wpz>-70.0) 
{ 
    wpz=-70; 
} 
else if (wpz<-2500) 
{ 
    wpz=-2500; 
} 
 
wpz=-900.0; 
 
 glPushMatrix(); 
  glEnable(GL_TEXTURE_2D); 

            glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,       GL_DECAL); 
   
 glTranslatef(wpx,wpy,wpz); 
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 glRotatef(wor, 0, 0, 1); 
 glRotatef(wop, 0, 1, 0); 
 glRotatef(woy, 1, 0, 0);  
 
 //if(wallpaper)  
 //{ 
  glBegin(GL_QUADS); 
  glTexCoord2f(0.0, 0.0); glVertex2f(-320, -240); 
  glTexCoord2f(1.0, 0.0); glVertex2f(320, -240); 
  glTexCoord2f(1.0, 1.0); glVertex2f(320, 240); 
  glTexCoord2f(0.0, 1.0); glVertex2f(-320, 240); 
  glEnd(); 
 glFlush(); 
 glDisable(GL_TEXTURE_2D); 
 //} 
 glPopMatrix(); 
} 
 
 
/* Draw a pipe oriented along the Z axis 
 * The base of the pipe is placed at z = 0, 
 * and the top at z = "height" 
 */ 
 
void pipe(GLdouble r, /* the radius of the pipe */ 
 GLdouble height /* height of the cylinder */) 
{ 
   GLint slices = 40; /* the number of subdivisions around the z axis */ 
   GLint stacks = 1; /* the number of subdivisions along  the  z axis */ 
   GLUquadricObj *obj; /* quadrics object */ 
  
 obj = gluNewQuadric(); 
   glPushMatrix(); 
 /* cylinder wall */ 
 gluQuadricDrawStyle(obj, drawStyle); 
   gluCylinder(obj, r, r, height, slices, stacks); 
 
 /* bottom */ 
 
 glPushMatrix(); 
 glRotatef(180, 1, 0, 0); 
 gluDisk(obj, 0, r, slices, stacks); 
 glPopMatrix(); 
 
 /* top */ 
  
 glTranslatef(0, 0, height); 
 gluDisk(obj, 0, r, slices, stacks); 
 
   glPopMatrix(); 
 gluDeleteQuadric(obj); 
} 
 
 
 
/* pipe menu function */ 
void pipe_choice(int value) 
{ 
// choice = 1; 
 
 switch(value) { 
 case 1: 
  radius = 1.0*M_METR/2.;//1.315 / 2; 
  break; 
 case 2:  
  radius = 2.0*M_METR/2.;//2.375 / 2; 
  break; 
 case 3:  
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  radius = 2.5*M_METR/2.;//2.875 / 2; 
  break; 
 case 4: 
  radius = 3.0*M_METR/2.;//3.5 / 2; 
  break; 
 case 5: 
  radius = 4.0*M_METR/2.;//4.5 / 2; 
  break; 
 
 } 
 
 glutPostRedisplay(); 
} 
 
 
/* Draw a Tee oriented along the Z axis 
 * The base of the tee is placed at z = 0, 
 * and the top at z = 2*A. 
 * Another branch oriented along the X axis, 
 * whose length is A 
 */ 
  
/* ??? need to draw the fladge */ 
void screwedTee(GLdouble A, /* Dimensions of American 150 Lb */ 
    GLdouble H, /* Standard Malleable-iron Screwed Tee */ 
    GLdouble E) 
{ 
 glPushMatrix(); 
 glTranslatef(0, 0, A); 
 glRotatef(90, 0, 1, 0); 
 pipe(H/2, A); 
 glPopMatrix(); 
  
 pipe(H/2, 2*A); 
} 
 
/* screwedTee menu function */ 
void tee_choice(int value) 
{ 
// choice = 2; 
 
 switch(value) { 
 case 1: 
  a = 1.50; 
  h = 1.771; 
  e = 0.302; 
  break; 
 case 2:  
  a = 2.25; 
  h = 2.963; 
  e = 0.422; 
  break; 
 case 3:  
  a = 2.70; 
  h = 3.589; 
  e = 0.478; 
  break; 
 case 4: 
  a = 3.08; 
  h = 4.285; 
  e = 0.548; 
  break; 
 
 case 5: 
  a = 3.79; 
  h = 5.401; 
  e = 0.661; 
  break; 
 
 } 



 151 

 
 glutPostRedisplay(); 
} 
 
/* Draw part of torus,  
 * which centered at the modeling coordinates origin  
 * whose axis is aligned with the Z aixs  
 *  
 * this is a PRIVATE FUNCTION TO DRAW ELBOW 
 */ 
void partTorus(GLfloat r, /* inner Radius */ 
     GLfloat R, /* outer Radius */ 
     GLint n, /* 1/nth of torus */ 
     GLint nsides, /* number of sides for each radial section */ 
     GLint rings /* 4x|8x, number of radial divisions for the torus */)  
{ 
  int i, j; 
  GLfloat theta, phi, theta1; 
  GLfloat cosTheta, sinTheta; 
  GLfloat cosTheta1, sinTheta1; 
  GLfloat ringDelta, sideDelta; 
 
  ringDelta = 2.0 * M_PI / rings; 
  sideDelta = 2.0 * M_PI / nsides; 
 
  theta = 0.0; 
  cosTheta = 1.0; 
  sinTheta = 0.0; 
 
  for (i = rings / n - 1; i >= 0; i--) { 
    theta1 = theta + ringDelta; 
    cosTheta1 = cos(theta1); 
    sinTheta1 = sin(theta1); 
    glBegin(GL_QUAD_STRIP); 
    phi = 0.0; 
    for (j = nsides; j >= 0; j--) { 
      GLfloat cosPhi, sinPhi, dist; 
 
      phi += sideDelta; 
      cosPhi = cos(phi); 
      sinPhi = sin(phi); 
      dist = R + r * cosPhi; 
 
      glNormal3f(cosTheta1 * cosPhi, -sinTheta1 * cosPhi, sinPhi); 
      glVertex3f(cosTheta1 * dist, -sinTheta1 * dist, r * sinPhi); 
      glNormal3f(cosTheta * cosPhi, -sinTheta * cosPhi, sinPhi); 
      glVertex3f(cosTheta * dist, -sinTheta * dist,  r * sinPhi); 
    } 
    glEnd(); 
    theta = theta1; 
    cosTheta = cosTheta1; 
    sinTheta = sinTheta1; 
  } 
} 
 
 
 
/* Draw a 90 degree Elbow oriented along the Z axis 
 * the base of the elbow is placed at z = 0 
 */ 
void elbow90(GLdouble r, GLdouble R) 
{ 
 
  GLint nsides = 40; /* number of sides for each radial section */ 
  GLint rings = 40; /* 4x, number of radial divisions for the torus */   
  GLUquadricObj *obj; /* quadrics object */ 
  
  obj = gluNewQuadric(); 
  gluQuadricDrawStyle(obj, drawStyle); 
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  glPushMatrix(); 
  if(drawStyle == GLU_FILL) { 
    /* elbow wall */ 
    glPushMatrix();   
 glRotatef(90, 0, 1, 0); 
 glTranslatef(-R, 0, 0); 
 glRotatef(90, 0, 0, 1); 
    partTorus(r, R, 4, nsides, rings); 
 glPopMatrix(); 
  
 /* bottom */ 
 glPushMatrix(); 
 glRotatef(90, 1, 0, 0); 
 gluDisk(obj, 0, r, 20, 1); 
 glPopMatrix(); 
  
 /* top */ 
 glPushMatrix(); 
 glTranslatef(0, R, R); 
 gluDisk(obj, 0, r, 20, 1); 
 glPopMatrix(); 
  
  } else if(drawStyle == GLU_LINE) { 
    glPushAttrib(GL_POLYGON_BIT); 
    glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); 
 /* elbow wall */ 
 glPushMatrix();   
 glRotatef(90, 0, 1, 0); 
 glTranslatef(-R, 0, 0); 
 glRotatef(90, 0, 0, 1); 
    partTorus(r, R, 4, nsides, rings); 
 glPopMatrix();  
  
 /* bottom */ 
 glPushMatrix(); 
 glRotatef(90, 1, 0, 0); 
 gluDisk(obj, 0, r, 20, 1); 
 glPopMatrix(); 
  
 /* top */ 
 glPushMatrix(); 
 glTranslatef(0, R, R); 
 gluDisk(obj, 0, r, 20, 1); 
 glPopMatrix(); 
  
    glPopAttrib(); 
  } 
  glPopMatrix(); 
  gluDeleteQuadric(obj); 
} 
   
/* Draw a 45 degree Elbow oriented along the Z axis 
 * the base of the elbow is placed at z = 0 
 */ 
void elbow45(GLdouble r, GLdouble R) 
{ 
  GLint nsides = 40; /* number of sides for each radial section */ 
  GLint rings = 40; /* 8x, number of radial divisions for the torus */ 
  GLUquadricObj *obj; /* quadrics object */ 
  
  obj = gluNewQuadric(); 
  gluQuadricDrawStyle(obj, drawStyle); 
   
  glPushMatrix(); 
 
  if(drawStyle == GLU_FILL) { 
    glPushMatrix(); 
 /* elbow wall */ 
 glRotatef(90, 0, 1, 0); 
 glTranslatef(-R, 0, 0); 
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 glRotatef(45, 0, 0, 1); 
    partTorus(r, R, 8, nsides, rings); 
 glPopMatrix(); 
 
  
 
 /* bottom */ 
 glPushMatrix(); 
 glRotatef(90, 1, 0, 0); 
 gluDisk(obj, 0, r, 20, 1); 
 glPopMatrix(); 
  
 /* top */ 
 glRotatef(90, 0, 1, 0); 
 glTranslatef(-R, 0, 0); 
 glRotatef(45, 0, 0, 1); 
 glTranslatef(R, 0, 0); 
 glRotatef(-90, 1, 0, 0); 
 gluDisk(obj, 0, r, 20, 1); 
  
  } else if(drawStyle == GLU_LINE) { 
    glPushAttrib(GL_POLYGON_BIT); 
    glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); 
 glPushMatrix(); 
 /* elbow wall */ 
 glRotatef(90, 0, 1, 0); 
 glTranslatef(-R, 0, 0); 
 glRotatef(45, 0, 0, 1); 
    partTorus(r, R, 8, nsides, rings); 
 glPopMatrix(); 
 
 /* bottom */ 
 glPushMatrix(); 
 glRotatef(90, 1, 0, 0); 
 gluDisk(obj, 0, r, 20, 1); 
 glPopMatrix(); 
  
 /* top */ 
 glRotatef(90, 0, 1, 0); 
 glTranslatef(-R, 0, 0); 
 glRotatef(45, 0, 0, 1); 
 glTranslatef(R, 0, 0); 
 glRotatef(-90, 1, 0, 0); 
 gluDisk(obj, 0, r, 20, 1); 
 
    glPopAttrib(); 
  } 
  glPopMatrix(); 
  gluDeleteQuadric(obj); 
} 
 
/* elbow90 menu function */ 
void elbow90_choice(int value) 
{ 
// choice = 3; 
 
 switch(value) { 
 case 1: 
  a = 1.50; 
  radius = 1.315 / 2; 
  break; 
 case 2:  
  a = 2.25; 
  radius = 2.375 / 2; 
  break; 
 case 3:  
  a = 2.70; 
  radius = 2.875 / 2; 
  break; 
 case 4: 
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  a = 3.08; 
  radius = 3.5 / 2; 
  break; 
 case 5: 
  a = 3.79; 
  radius = 4.5 / 2; 
  break; 
 
 } 
 
 glutPostRedisplay(); 
} 
 
/* elbow45 menu function */ 
void elbow45_choice(int value) 
{ 
// choice = 4; 
 
 switch(value) { 
 case 1: 
  c = 1.12; 
  radius = 1.315 / 2; 
  break; 
 case 2:  
  c = 1.68; 
  radius = 2.375 / 2; 
  break; 
 case 3:  
  c = 1.95; 
  radius = 2.875 / 2; 
  break; 
 case 4: 
  c = 2.17; 
  radius = 3.5 / 2; 
  break; 
 case 5: 
  c = 2.61; 
        radius = 4.5 / 2; 
  break; 
 
 } 
 
 glutPostRedisplay(); 
} 
 
 
 
 
 
 
void init(char *texfile) 
{ 
 GLfloat mat_ambient_and_diffuse[] = {1.0, 1.0, 1.0, 1.0}; 
 GLfloat mat_specular[]={1.,1.,1.,1.}; 
 GLfloat mat_shininess[]={0.}; 
 GLfloat light_position0[]={100.,-100.,100.,0.}; 
 GLfloat light_position1[]={1.,1.,1.,0.}; 
 GLfloat white_light[]={1.,1.,1.,1.}; 
 
 glClearColor(0., 0., 0., 0); 
 glShadeModel(GL_SMOOTH); 
    glShadeModel(GL_FLAT); 
 
// glMaterialfv(GL_FRONT_AND_BACK,GL_SPECULAR,mat_specular); 
// glMaterialfv(GL_FRONT_AND_BACK,GL_SHININESS,mat_shininess); 
 glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, mat_ambient_and_diffuse); 
 
 glLightfv(GL_LIGHT0,GL_POSITION,light_position0); 
 glLightfv(GL_LIGHT0,GL_DIFFUSE,white_light); 
// glLightfv(GL_LIGHT0,GL_SPECULAR,white_light); 
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// glLightfv(GL_LIGHT1,GL_POSITION,light_position1); 
// glLightfv(GL_LIGHT1,GL_DIFFUSE,white_light); 
// glLightfv(GL_LIGHT1,GL_SPECULAR,white_light); 
 
 glEnable(GL_LIGHTING); 
 glEnable(GL_LIGHT0); 
// glEnable(GL_LIGHT1); 
// glEnable(GL_DEPTH_TEST); 
 
 
 
  
 glEnable(GL_COLOR_MATERIAL); 
 LoadGLTextures(texfile); 
 
 //Added by Kim,for scale 
//   glScalef(.978,1.0,1.42); 
   glScalef(1.,1.,1.); 
 
 
 //   glShadeModel(GL_FLAT); 
 
// glEnable(GL_TEXTURE_2D); 
 
} 
 
 
 
 
void CutPlane(void) 
{   
 
 
 glEnable(GL_BLEND); 
 glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA); 
 glShadeModel(GL_FLAT); 
 glClearColor(0.,0.,0.,0.); 
 
 
 glColor4f(1,0,0,0.55); 
 glPushMatrix(); 
// glLoadIdentity(); 
// glTranslatef(baseX,baseY,baseZ); 
// glRotatef(baseR,0,0,1); 
// glRotatef(0/*baseP*/,0,1,0); 
/// glRotatef(baseYaw,1,0,0); 
 
 glPushMatrix(); 
 glRotatef(180,0,1,0); 
 
 glBegin(GL_POLYGON); 
 glVertex3f(0,-40,0); 
 glVertex3f(30,-30,0); 
 glVertex3f(20,-30,0); 
 glVertex3f(20,30,0); 
 glVertex3f(-20,30,0); 
 glVertex3f(-20,-30,0); 
 glVertex3f(-30,-30,0); 
 glEnd(); 
 glPopMatrix(); 
 
 glBegin(GL_POLYGON); 
 glVertex3f(0,-40,2); 
 glVertex3f(30,-30,2); 
 glVertex3f(20,-30,2); 
 glVertex3f(20,30,2); 
 glVertex3f(-20,30,2); 
 glVertex3f(-20,-30,2); 
 glVertex3f(-30,-30,2); 
 glEnd(); 
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 glBegin(GL_POLYGON); 
 glVertex3f(20,30,0); 
 glVertex3f(20,30,+2); 
 glVertex3f(-20,30,+2); 
 glVertex3f(-20,30,0); 
 glEnd(); 
 
 glBegin(GL_POLYGON); 
 glVertex3f(20,30,0); 
 glVertex3f(20,30,+2); 
 glVertex3f(20,-30,+2); 
 glVertex3f(20,-30,0); 
 glEnd(); 
 
 glBegin(GL_POLYGON); 
 glVertex3f(-20,30,0); 
 glVertex3f(-20,30,+2); 
 glVertex3f(-20,-30,+2); 
 glVertex3f(-20,-30,0); 
 glEnd(); 
 
 glBegin(GL_POLYGON); 
 glVertex3f(20,-30,0); 
 glVertex3f(20,-30,+2); 
 glVertex3f(30,-30,+2); 
 glVertex3f(30,-30,0); 
 glEnd(); 
  
 glBegin(GL_POLYGON); 
 glVertex3f(-20,-30,0); 
 glVertex3f(-20,-30,+2); 
 glVertex3f(-30,-30,+2); 
 glVertex3f(-30,-30,0); 
 glEnd(); 
  
 glBegin(GL_POLYGON); 
 glVertex3f(30,-30,0); 
 glVertex3f(30,-30,+2); 
 glVertex3f(0,-40,+2); 
 glVertex3f(0,-40,0); 
 glEnd(); 
 glBegin(GL_POLYGON); 
 glVertex3f(-30,-30,0); 
 glVertex3f(-30,-30,+2); 
 glVertex3f(0,-40,+2); 
 glVertex3f(0,-40,0); 
 glEnd(); 
 
 glPopMatrix(); 
 glDisable(GL_BLEND); 
} 
 
void draw(double xPos,double yPos,double zPos,double zAngle,double yAngle,double xAngle, 
    double length,int choice,int color) 
{ 
char *mesg, *title; 
 
 /* draw the origin & coordinate */ 
   
  glPushMatrix(); 
  glColor3f(1, 0, 0); 
  glBegin(GL_LINES); 
  glVertex3f(0, 0, 0); 
  glVertex3f(1, 0, 0); 
  glEnd(); 
  
  glColor3f(0, 1, 0); 
  glBegin(GL_LINES); 
  glVertex3f(0, 0, 0); 
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  glVertex3f(0, 1, 0); 
  glEnd(); 
  
  glColor3f(0, 0, 1); 
  glBegin(GL_LINES); 
  glVertex3f(0, 0, 0); 
  glVertex3f(0, 0, 1); 
  glEnd(); 
  glPopMatrix(); 
 
  glPushMatrix(); 
  glColor3f(1, 1, 0.4); 
//  glLoadIdentity(); 
  glTranslatef(xPos, yPos, zPos); 
  glRotatef(zAngle, 0, 0, 1); 
  glRotatef(yAngle, 0, 1, 0); 
  glRotatef(xAngle, 1, 0, 0);  
//  printf("choice = %d",choice); 
 
   if (pglObjList->cutplane==1) 
   { 
    glPushMatrix(); 
    double zCutInc=((CRtsa2App*)AfxGetApp())->PlaneBase.bz/M_CAMERA-zPos; 
    double rCutInc=((CRtsa2App*)AfxGetApp())->PlaneBase.broll-zAngle; 
        
//    glRotatef(rCutInc, 0, 0, 1); 
    glTranslatef(0,0,zCutInc); 
    glRotatef(rCutInc, 0, 0, 1); 
     
    CutPlane(); 
    glPopMatrix(); 
   } 
 
  switch(choice) { 
  case 1: 
     if (color == 1)  
   { 
    glColor3f(1, 0, 0); 
  //  color = 0; 
   } 
             
   pipe(radius, length); 
   glutPostRedisplay(); 
   break; 
  case 2: 
 
   if (color == 1) glColor3f(1, 0, 0); 
   screwedTee(a*M_METR/M_CAMERA, h*M_METR/M_CAMERA, e*M_METR/M_CAMERA); 
   glutPostRedisplay(); 
   break; 
  case 3:  
      if (color == 1) glColor3f(1, 0, 0); 
 
   elbow90(radius*M_METR/M_CAMERA, a*M_METR/M_CAMERA); 
   glutPostRedisplay(); 
   break; 
  case 4: 
      if (color == 1) glColor3f(1, 0, 0); 
 
   elbow45(radius*M_METR/M_CAMERA, c * tan((90-22.5)/180*M_PI)*M_METR/M_CAMERA); 
   glutPostRedisplay(); 
   break; 
  default:break; 
 } 
  glPopMatrix(); 
 
 
} 
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/* display a pipe or tee */ 
void display(void) 
{ 
 double xPos,yPos,zPos,zAngle,yAngle,xAngle,radius,length; 
 int choice=0; 
 int value; 
 int color = 0; //color =1 for red, 0 for yellow 
 char *mesg, *title; 
 
 xPos = 0.; 
 yPos = 0.; 
 zPos = 0.; 
 zAngle = 0.; 
 yAngle = 0.; 
 xAngle = 0.; 
 //radius = 0.; 
 length = 0.; 
 
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
 
  
 Loadwallpaper(); // 
 
 
 
  pglObjList = &glObjList; 
  SearchPos = ((CRtsa2App*)AfxGetApp()) 
                        ->MasterPartList.GetHeadPosition(); 
 
  while (SearchPos!=NULL) 
  { 
       glObjList = ((CRtsa2App*)AfxGetApp()) 
                             ->MasterPartList.GetNext(SearchPos); 
     
    if (pglObjList->sz == oneInch) 
     value = 1; 
    else if (pglObjList->sz == twoInch) 
     value = 2; 
    else if (pglObjList->sz == twoAndAHalf) 
     value = 3; 
    else if (pglObjList->sz == threeInch) 
     value = 4; 
    else if (pglObjList->sz == fourInch) 
     value = 5; 
 
    if (pglObjList->ftng == pip) 
    { 
     choice = 1; 
     length = pglObjList->len; 
     pipe_choice(value); 
    } 
 
    else if (pglObjList->ftng == tee) 
    { 
     choice = 2; 
     tee_choice(value); 
    } 
    else if (pglObjList->ftng == elb) 
    { 
     choice = 3; 
     elbow90_choice(value); 
    } 
    else  
     choice =0; 
 
    xPos = pglObjList->pos.x; 
    yPos = pglObjList->pos.y; 
    zPos = pglObjList->pos.z; 
   zAngle = pglObjList->ornt.r;//roll 
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   yAngle = pglObjList->ornt.p;//pitch 
   xAngle = pglObjList->ornt.y;//yaw 
   if (pglObjList->partselect==1 || pglObjList->cutplane==1) 
    
    color = 1; 
   else 
    color = 0; 
 
 
            draw(xPos,yPos,zPos,zAngle,yAngle,xAngle,length,choice, color); 
 
 
 
  } 
  
  //flag++; 
  glutSwapBuffers(); 
  
} 
 
 
void reshape(int w, int h) 
{ 
// float theta; 
 double wx,wy,wz,cx,cy,cz; 
     wx = ((CRtsa2App*)AfxGetApp())->WallPaperOffset.x; 
     wy = ((CRtsa2App*)AfxGetApp())->WallPaperOffset.y; 
     wz = ((CRtsa2App*)AfxGetApp())->WallPaperOffset.z; 
 
  cx = ((CRtsa2App*)AfxGetApp())->CamPosOrien.x; 
  cy = ((CRtsa2App*)AfxGetApp())->CamPosOrien.y; 
  cz = ((CRtsa2App*)AfxGetApp())->CamPosOrien.z; 
 
 
  
 //   glViewport(-40, -40, w*1.2, h*1.2); 
    glViewport(0, 0, w, h); 
    glMatrixMode(GL_PROJECTION); 
    glLoadIdentity(); 
 
 
//Kim  fov 
    gluPerspective(31.56,  1.3, 0.1, 10000.0); 
    gluLookAt(cx,cy,cz,wx,wy,wz,0,1,0); 
 
    glMatrixMode(GL_MODELVIEW); 
} 
 
 
/*  Main Loop 
 *  Open window with initial window size, title bar,  
 *  RGBA display mode, and handle input events. 
 */ 
extern unsigned __stdcall test(void *dummy/* int argc, char** argv */) 
{ 
 
   glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH); 
   glutInitWindowSize (640, 480); 
   glutCreateWindow ("RTSA_VIEW"); 
   init("c:\\deneb\\RTSAProj\\TEXTURES\\RightImage.bmp"); 
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape); 
 
   glutMainLoop(); 
   return 0; 
} 
 
 
 


