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Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United 

States Government. Neither the US Government nor any agency thereof, nor any of their 

employees, makes any warranty, express or implied, or assumes any legal liability or 

responsibility for the accuracy, completeness, or usefulness of any information, 

apparatus, products, or process disclosed, or represents that its use would not infringe 

privately owned rights. Reference herein to any specific commercial product, process,  or 

service by trade name, trademark, manufacturer, or otherwise does not necessarily 

constitute or imply its endorsement, recommendation, or favoring by the United States 

government or any agency thereof. The views and opinions of authors expressed herein 

do not necessarily state or reflect those of the United States Government of any agency 

thereof.  
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Abstract 

The focus in this project was to employ first principles computational methods to study 

the underlying molecular elementary processes that govern hydrogen diffusion through 

Pd membranes as well as the elementary processes that govern the CO- and S-poisoning 

of these membranes.  

Our computational methodology integrated a multiscale hierarchical modeling approach, 

wherein a molecular understanding of the interactions between various species is gained 

from ab-initio quantum chemical Density Functional Theory (DFT) calculations, while a 

mesoscopic statistical mechanical model like Kinetic Monte Carlo is employed to predict 

the key macroscopic membrane properties such as permeability. The key developments 

are: 

1. We have coupled systematically the ab initio calculations with Kinetic Monte 

Carlo (KMC) simulations to model hydrogen diffusion through the Pd based-

membranes. The predicted tracer diffusivity of hydrogen atoms through the bulk 

of Pd lattice from KMC simulations are in excellent agreement with experiments. 

2. The KMC simulations of dissociative adsorption of H2 over Pd(111) surface 

indicates that for thin membranes (less than 10µ thick), the diffusion of hydrogen 

from surface to the first subsurface layer is rate limiting.  

3. Sulfur poisons the Pd surface by altering the electronic structure of the Pd atoms 

in the vicinity of the S atom.  The KMC simulations indicate that increasing sulfur 

coverage drastically reduces the hydrogen coverage on the Pd surface and hence 

the driving force for diffusion through the membrane. 
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Executive Summary 

Computational chemistry and physics have a potential to impact significantly the 

field of hydrogen production from coal. Our long term goal is to employ quantum 

chemical computational concepts to develop molecular level insights into various 

processes that are related to hydrogen economy. The ultimate objective is to use these 

molecular level insights to develop a knowledge-base in support of the bottom-up rational 

formulations (as opposed to traditional Edisonian trial and error approaches) of new 

materials with superior hydrogen storage capacity, with high hydrogen separation rates, 

and the materials that are resistant to syngas impurities during hydrogen conversion 

reactions, and so on.  

An important problem that is at the forefront of our efforts is hydrogen separation. 

In order to separate hydrogen from various impurities, such as carbon monoxide, sulfur, 

and various trace elements that are produced during coal gasification, different methods 

have been proposed. A very appealing concept is to use Pd-based metal membranes 

which have been shown to be selectively permeable for hydrogen molecules. These 

membranes are also being investigating for combined membrane/reactor systems. Even 

thought, the Pd-based membranes represent a promising class of materials the molecular 

level understanding of hydrogen interactions with these membranes is lacking. 

Furthermore, there are functioning problems that need to be addressed before these 

membranes become viable. Some of these problems are associated with damaging effects 

of various contaminants (sulfur and CO), membrane embrittlement, and Pd-material 

oxidation. 

The focus in this project was to employ first principles computational methods to 

study the underlying molecular elementary processes that govern hydrogen diffusion 

through Pd membranes as well as the elementary processes that govern the CO- and S-

poisoning of these membranes. We believe that the fundamental insights regarding the 

underlying chemical processes that govern hydrogen separation will provide a 

knowledge-base that will be instrumental in designing CO- and S-tolerant Pd-based alloy 

membranes.  

Our computational methodology employs a multiscale hierarchical modeling 

approach, wherein a molecular understanding of the interactions between various species 

is gained from ab-initio quantum chemical Density Functional Theory (DFT) 
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calculations, while a mesoscopic statistical mechanical model like Kinetic Monte Carlo is 

employed to predict the key macroscopic membrane properties such as permeability. The 

key developments in this direction are as under: 

1. We have coupled systematically the ab initio calculations with Kinetic Monte 

Carlo (KMC) simulations to model hydrogen diffusion through the Pd based-

membranes. The predicted tracer diffusivity of hydrogen atoms through the bulk 

of Pd lattice from KMC simulations are in excellent agreement with experiments. 

2. The KMC simulations of dissociative adsorption of H2 over Pd(111) surface 

indicates that for thin membranes (less than 10µ thick), the diffusion of hydrogen 

from surface to the first subsurface layer is rate limiting.  

3. Sulsur poisons the Pd surface by altering the electronic structure of the Pd atoms 

in the vicinity of the S atom.  The KMC simulations indicate that increasing sulfur 

coverage drastically reduces the hydrogen coverage on the Pd surface and hence 

the driving force for diffusion through the membrane. 

Experimental Approach  

We have employed quantum chemical density functional theory (DFT) calculations, 

and state-of-the-art thermodynamic and kinetic simulations to investigate molecular level 

mechanisms of hydrogen separations over Pd and Pd-based alloy membranes. DFT is a 

methodology that is employed to efficiently solve quantum Schrodinger equation with 

high accuracy. DFT has become, within the last ten years, the quantum computational 

tool of choice in solid-state physics and surface chemistry. These tools have already had a 

significant impact on the discovery of novel ammonia synthesis and ethylene epoxidation 

catalysts. The DFT calculations are employed to obtain, from first principle and with high 

accuracy, the ground state geometries and energies of relevant reactants, products, and 

transition states involved in important elementary reactions on catalyst surfaces. In this 

project DFT is utilized to investigate on an atomic level the interactions of hydrogen 

atoms and Pd substrate.  

Pd-based membranes operate by dissociative adsorption of molecular hydrogen on 

membrane surfaces. The dissociated atomic hydrogen diffuses through the membranes 

and is recombined into molecular hydrogen which desorbs on the other side of the 

membranes; see Figure 1(b).   
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Rationale for the proposed work stems from the fact that DFT can be used to 

accurately analyze various chemical pathways and transformations of molecules in solids, 

which cannot be easily accomplished by other means [3]. Also, DFT calculations when 

coupled with kinetic and thermodynamic simulations have significant predictive powers 

for formulations of novel and improved solid-state materials, see  [1, 4-6].     

                            
Figure 1: a.) Methodology schematic. b.) Schematics of hydrogen/Pd membrane 

interactions at various pressures of hydrogen.  

In Figure 1(a) we show a schematic of our methodology. Elementary molecular 

processes that govern the behavior of a system take place in the so-called “electronic 

regime”. These processes can be analyzed efficiently with first principles DFT 

calculations [1,3-6]. The complex interplay of these elementary molecular processes 

determines functionalities of the system [3, 4]. This interplay develops at mesoscopic and 

macroscopic length scales which can be analyzed by statistical mechanics and 

thermodynamics. In our approach we will use thermodynamic, and Kinetic Monte Carlo 

(KMC) simulations to connect the molecular level mechanisms, developed in the DFT 

calculations, to observable functionalities of investigated membrane systems [1,4-6]. For 

example, an important macroscopic observable is a relationship between a rate of 

hydrogen transport, external conditions and membrane make-up. We believe that this 

approach will be helpful not only for developing mechanistic insights about membrane 

operations but also in formulating on atomic level novel mechanisms and materials with 

improved performances [1]. 

In following sections we outline the results of our investigations 

 

Results and Discussion 

DFT and KMC studies of H2 diffusion through Pd membrane 

 

a.) b.) 
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DFT studies of elementary steps: adsorption, dissociation, and diffusion of hydrogen 

on Pd(111) 

As mentioned in our previous reports we had 

performed DFT calculations of the elementary 

steps associated with H2 adsorption, dissociation 

and diffusion on Pd(111) surface. The DFT 

calculations were performed using a plane wave 

basis set and Vanderbilt ultrasoft pseudo-

potentials to describe the core-electron 

interactions. We utilized a 2x2x4 unit cell. 

Electron exchange correlation effects were described with the generalized gradient 

approximation (GGA) with Perdew–Wang 91 functional. A plane wave basis set with an 

energy cut-off of 350 eV (26 Rydberg) and Monkhorst–Pack mesh with a 3x3x1 k-point 

grid were utilized for all the calculations. 

The dissociative adsorption of hydrogen is described by: 

½ H2 + * = H*       (1) 

where * indicates a Pd(111) adsorption site. 

We evaluated the binding energies of H atoms on all 4 different adsorption sites: top, 

bridge, fcc and hcp. These adsorption sites are shown in Figure 2.   

The adsorption energy of hydrogen is calculated by: 

 E(H) = E(H+slab) - ½ E(H2) – E(slab)     (2) 

where E(H2) is the energy of molecular hydrogen while E(H+slab) and E(slab) are the 

respective energies of H atom absorb on slab and the Pd(111) slab(substrate). The three 

terms appearing the right hand side were evaluated using DFT calculations. 

The adsorption energies of various species are tabulated in Table 1.  

Species On-top Bridge FCC HCP 

H -0.05 -0.52 -0.70 -0.64 

S -5.23 -5.25 -5.25 -5.25 

CO* -1.58 -2.05 -2.24 -2.23 

Table 1: Adsorption energies (eV)of various species on four different sites on Pd(111) at 

0.25 ML coverage.  

* CO is adsorbed with C atom bound to the metal. 

Figure 2. Surface adsorption 

sites on Pd(111)
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Figure 3: (a) octahedral and (b) tetrahedral 
sites for H adsorption in Pd lattice. Pd 
diffuses via these sites through Pd

 

Table 1 shows that H atoms preferentially adsorbs on the three-fold hollow sites (hcp and 

fcc) of Pd(111). We  also calculated the activation energy for H2 dissociation on Pd(111) 

and we found that the dissociation 

occurs with a very small activation 

barrier of 0.06 eV (6 kJ/mol).  This 

activation barrier is consistent with the 

experimental sticking coefficient 

measurements . 

 Furthermore, we had examined 

the adsorption energy of H atoms 

adsorbed between the top and the 

second layer of Pd atoms. Here, H 

atom can adsorb in octahedral and 

tetrahedral sites as shown in Figure 3. 

We find that H atom adsorption energy 

is -0.35 eV (~ 35 kJ/mol) for 

octahedral and -0.22 eV for tetrahedral 

sites with respect to gas-phase H2. We 

have also calculated that the activation 

barrier for the diffusion from on 

surface fcc or hcp sites to the sites 

between the top and the second layer of Pd atoms are ~0.35 eV. We have also studied H 

atom adsorption in the interstitial bulk sites of Pd and calculated that H adsorption energy 

is -0.14 eV (~ -14 kJ/mol) for octahedral and -0.08 eV for tetrahedral bulk sites. The 

activation barrier for H atom diffusion from octahedral to tetrahedral bulk site is 0.11 eV 

and it is 0.17 eV for the diffusion from tetrahedral to octahedral sites.   

 DFT was further utilized to calculate the pre-exponential factors for the 

elementary reactions discussed above, i.e., for H2 adsorption and dissociation and for H 

atom diffusion between different sites of a Pd membrane. The pre-exponential factors 

were calculated according to the transition state theory from the partition functions of the 

 
Figure 4: We depict the relevant elementary steps. 
The kinetic parameters for these elementary steps 
are tabulated in Table 2.  



 10

relevant reactant and transition state. The partition functions were obtained in DFT 

calculations from the vibrational spectra of the reactants and transition states.   

 The thermodynamic and kinetic information for the above outlined elementary 

steps is summarized in Table 2. Figure 4 shows the relevant elementary steps. 

 

Elementary step 
Eactivation 

eV/atom 

∆H 

eV/atom 

A 

/site/sec 

1/2H2+∗→H∗ 0.06 -0.70 108 (a) 

H∗→1/2H2+∗ 0.76 0.70 1011 

H∗+∗∗→H∗∗(O)+∗ 0.48 0.48 1011 

H∗+∗∗→H∗∗(O)+∗ 0.35 0.35 1011 

H∗∗(O)→Hbulk(O)+∗∗ 0.21 0.21 1011 

H∗∗(O)→Hbulk(T)+∗∗ 0.27 0.27 1011 

Hbulk(O) → Hbulk(T) 0.17 0.06 1011 

Hbulk(T) → Hbulk(O) 0.11 -0.06 1013 

Table 2: DFT calculated kinetic activation barrier, heat of reaction, and pre-exponential factors 

for the elementary steps associated with hydrogen diffusion through Pd membranes. (a) Units for 

pre-exponential factor for hydrogen adsorption from gas-phase are /site/sec/atm 

 

Kinetic Monte Carlo (KMC) simulations 

KMC utilizes the elementary step kinetic information, obtain via DFT and tabulated in 

Table 2, and relates it to the system macroscopic properties. A crucial macroscopic 

property of a membrane is the diffusivity. Below, we demonstrated that the approach 

combining DFT calculations and KMC yields calculated tracer diffusivities that agree 

very well with the experimentally measured ones. We note that this is not surprising since 

this system can be adequately described with these tools.  

Diffusion of hydrogen through Pd membranes is an activated random-walk process that 

contains a series of migrations of hydrogen atoms from octahedral to near-neighbor 

tetrahedral interstitial sites and vice versa in a Pd fcc crystal. To initialize the KMC 

simulations, hydrogen atoms are randomly placed at interstitial sites in an fcc lattice of 
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Pd and equilibrated by performing a certain number of KMC moves described below. 

Each move consists of the following steps [7].  

1. Identify all possible events from the current configuration.  

 In fcc lattice, there are 8 possible directions along which a H atom can hop from 

an octahedral to a neighboring tetrahedral site. Similarly, for H atom located at a 

tetrahedral site, there are 4 neighboring octahedral sites (See Figure 3). 

2. Obtain the rates for each of these events. 

 The rate of hopping from any site P (tetrahedral or octahedral type) to a 

neighboring site Q (octahedral or tetrahedral) can be written in accordance with classical 

transition state theory in form of Arrheneius law expression as: 

rP →Q = Ae(−Em / kT )
 

where Em is the activation barrier, k is the Boltzmann constant, T is the temperature of the 

system and A is the pre-exponential factor which can be obtained from statistical 

mechanical formulation of rate expressions based on quantum mechanical modification 

of classical harmonic oscillator formalism [8,9]: 

A =
ωP ,i sinh(βhωP ,i /2) /(βhωP ,i /2)

i=1

3

∏

ωTS,i sinh(βhωTS,i /2) /(βhωTS,i /2)
i=1

2

∏

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 

where h is Planck’s constant, ω is vibrational frequency of the characteristic vibrational 

modes (in state P or transition state “TS” as denoted by the subscript), , β is 1/kT. Note 

that there is one less degree of freedom at the transition state resulting in reduction of 

number of vibrational modes by 1.  

To evaluate the rates of hopping, the migration activation barriers (Em) from octahedral to 

tetrahedral site and vise versa as well as the vibrational modes for H atom at different 

binding sites (needed for the computation of A) in an fcc Pd crystal were evaluated using 

DFT calculations (Table 2) 

3. Generate a pseudorandom number g between 0 and 1.  

Choose one of the events depending on the random number, consistent with the relative 

probability of all the events. An event j is chosen if 
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γ <
ri

i= 1

j

∑

ri
i= 1

M events

∑
 

where ri is the rate of each possible hop, Mevents  is the total number of different possible 

hops for the hydrogen atom. Regardless of the outcome, the time is incremented by 

∆t =
−ln(γ)

ri
i=1

M events

∑
 

for each step. 

 

4. Reconfigure the system according to the chosen event.  

 

5. Update and record the new position of the hydrogen atom and time and repeat 1-4 for a 

sufficient number of time steps. 

The tracer diffusivity of hydrogen atom is then evaluated from Einstein expression: 

D = lim
t →∞

1
6nH t

R(t) − R(0) 2

m
m=1

n H

∑
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
 

 

Kinetic Monte Carlo (KMC) simulations: H2 diffusion through clean Pd membrane 

 

In Figure 5 we show the tracer diffusivity for H diffusion through Pd membrane as a 

function of inverse temperature, calculated in our KMC simulations. The calculated 

diffusion coefficients follow an Arrhenius law expression and the best fit is given as: 

 

The calculated values are  

 

compared to the experimentally measured tracer diffusivities [10]. The agreement 

between experimental measurements and theoretical predictions is exceptional, 

corroborating the robustness of the proposed approach.  

 We note that when calculating the diffusivity we examine H atom diffusion 

through Pd bulk, i.e., the complexities due to the presence of Pd surface were not 

D = 6.604 ×10−7e(−0.23eV / kT )m2 /s
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included. To include the surface effects we have performed KMC studies of the complete 

process including H2 adsorption and dissociation on Pd(111) surface, and H atom 

diffusion through Pd membrane (slab). In these studies we utilize the elementary step 

parameters obtained in DFT calculations (Table 2). The aim of these studies was to 

identify the slow elementary steps, i.e., the elementary steps that limit hydrogen flux.   

The KMC studies 

demonstrated that H atom 

diffusion from on-surface Pd 

adsorption sites to the layer 

between the top and the 

second layer of Pd atoms, this 

is labeled layer 2 in Figure 4, 

is the rate-limiting step over a 

wide range of conditions and 

for the membrane thickness of 

up to ~ 10 µ m (this is a typical 

thickness of a Pd membrane). 

For thicker membranes the bulk diffusion becomes the rate-limiting step. These insights 

are very important since one can utilize this information to explore various ways to 

enhance the rate of the kinetically slow step and improve the performance. For example, 

if one assumes that the above described step, H atom diffusion from the top to the first 

inner membrane layer, is the rate-limiting, then higher fluxes can be obtained by 

synthesizing a membrane that will have higher rates associated with this step. 
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Figure 5: KMC studies are utilized to obtain diffusivity for 
hydrogen diffusion through Pd membrane as a function of 
inverse temperature. Calculated diffusivities agree very 
well with the measured ones. 
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Effect of Sulfur on H2 adsorption and diffusion 

 

Extensive DFT calculations of H2  dissociation over Pd(111) surface in the presence of 

Sulfur were performed. A 

3x3x4 layer Pd(111) slab was 

used for these calculations.  It 

was seen that the dissociative 

adsorption of  H2  becomes 

highly activated in the presence 

of Sulfur. Dissociation 

activation energies varying 

from 0.8 eV/H atom at sites in 

proximity to S atom (less than 

1.5 Å) on Pd (111) surface, to 

0.1 eV/H atom at sites further 

away from S atom (~ 4.0 Å 

away), were seen. An analysis 

of the local density of states 

projected on the d-orbitals of 

the surface Pd atom in presence 

and absence of S atom is 

shown in Figure 6. It is seen 

that in the presence of S atom, the d-band center of the Pd atom is lowered by about 0.8 

eV as compared to a Pd atom free from the effect of S. This lowering of the d-band center 

adversely affects the reactivity of the Pd surface by inhibiting the interactions d-band 

electrons with electrons in H2 binding states. This indicates that the strong binding S atom 

not only has a geometric site blocking effect (corresponding to large diameter of S atom 

~2 Å ) but also affects the electronic structure of the surface Pd atoms and  induces long 

range energy barriers along the dissociation pathways of H2 over Pd(111). 

 In order to study the effect of S on  hydrogen diffusion through Pd membranes, 

we performed KMC simulations of H adsorption, desorption and diffusion through the Pd 

surface. We assume a S-precovered Pd surface with S-atoms placed randomly over the 

 

Figure 6: LDOS of d-orbitals of Pd atom on 
clean Pd surface and in proximity to S atom on 
a S poisoned surface. The solid line shows the 
d-band center. 
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Pd(111) surface. Please note that such surface non-homogeneities are best modeled with 

KMC simulations and 

cannot be captured 

effectively with 

meanfield rate 

expressions averaged 

over the entire surface. 

As before all the rate 

parameters (activation 

energies and pre-

exponential factors were 

obtained from DFT 

calculations. The 

variation in activation 

energies of H2 dissociation was modeled by a proximity to S-atom dependent activation 

energy. Figure 7 shows the flux of H atom through the surface (first atomic layer)  at 

different sulfur coverages. It is seen that as the flux through the surface decreases 

nonlinearly with increasing sulfur coverages. At low coverages (< 0.004 ML) there is 

almost no change in the flux through the surface. As the coverage of S increases (> 0.04 

ML) a drastic 

reduction 

(almost 2 orders 

of magnitude) in 

H2 flux is 

predicted. 

 Furthermore in 

Figure 8 we 

have plotted the 

coverage of H 

atom on the 

Pd(111) surface 

as a function of 

0.000
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10.000
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Figure 7: Effect of S coverage on H2 flux through the surface 
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Figure 8: Effect of sulfur on the coverage of H-atom on 
Pd(111) surface 
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the S coverage. As seen in the figure, an increase in S coverages significantly reduces the 

coverage of H atom in an almost exponential fashion thus corroborating the fact that S 

poisoning is not only a geometric site blocking effect but also a manifestation of the long 

range energy barriers induced due to changes in electronic structure of the surface Pd 

atoms.  

 

We believe that this work represent a critical platform for systematic and rational, as 

opposed to traditional trial and error approach, development of novel, more robust high-

density membranes for hydrogen separation.. To illustrate how one can utilize the 

information obtained in first principles studies to identify novel membrane materials we 

present two possible strategies. For example, our studies, presented above, showed that 

sulfur adsorbates decrease the hydrogen flux due to the sulfur-induced increase in the 

activation barrier the H2 dissociation. We have also demonstrated that the main problem 

with sulfur is that it negatively influences not only the Pd sites that are directly bonded to 

sulfur but also those Pd sites which are removed from the sulfur adsorption sites. Due to 

this long-range negative effect even a small sulfur surface concentration results in the 

dramatically reduced membrane performance, see Figure 8.  One possible strategy to 

alleviate this problem is to selectively poison a Pd membrane with the elements which 

compete with sulfur for the Pd adsorption sites, but which are less damaging than sulfur, 

i.e., the effect of these elements on Pd should be more localized as compared to sulfur. 

Fist principles calculations will be useful in identifying the promising candidates. We 

have recently utilized similar first principles approaches in the formulations of carbon-

tolerant reforming alloy catalysts.  The results of the first principle studies were 

confirmed in multiple experiments.11 

 

Conclusions 

1. We have performed ab initio and KMC simulations to model hydrogen diffusion 

through the Pd based-membranes. All the rate parameters necessary for the KMC 

simulations have been evaluated from first principles DFT calculations. 

2. The predictions pertaining to tracer diffusivity of hydrogen atoms through the 

bulk of Pd lattice from KMC simulations are in excellent agreement with 

experimental data from literature.  
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3. The KMC simulations of dissociative adsorption of H2 over Pd(111) surface 

indicates that for thin membranes (less than 10µ thick), the diffusion of hydrogen 

from surface to the first subsurface layer is rate limiting. For thicker membranes 

the diffusion through the bulk Pd membrane is the dominant resistance. Hence, 

the key to enhance the hydrogen flux through Pd-based alloy/surface alloy 

membranes is designing thin membranes with lower energy barriers for H 

diffusion from surface to first layer below surface. We are currently investigating 

H2 diffusion through Pd-alloys membranes. 

4. The effect of sulfur on the adsorption of hydrogen was studied by performing 

detailed DFT calculations of co adsorption of hydrogen in presence of sulfur and 

coupling the insights from DFT calculations with KMC simulations of H2 

diffusion over S pre-covered Pd surface. S binds strongly on the Pd surface and 

poisons the Pd surface by altering the electronic structure of the Pd atoms in the 

vicinity of the S atom.  The KMC simulations indicate that increasing sulfur 

coverage drastically reduces the hydrogen coverage on the Pd surface and hence 

the driving force for diffusion through the membrane. 

We believe that this work represent a critical platform for systematic and rational, as 

opposed to traditional trial and error approach, development of novel, more robust high-

density membranes for hydrogen separation. In these studies we have identified critical 

molecular steps that govern H transport through the membranes as well as a few 

underlying mechanisms that contribute to the poisoning of the Pd-based membranes.  

 Natural extension to this work would be to start designing strategies for the 

rational improvement of current state-of-the art membranes. The tools that allow us to 

analyze molecular physics and chemistry, that were utilized in this project, will almost 

certainly play an important role in the formulations of improved membrane materials.  

 

Summary of Significant Accomplishments 

1. We have coupled systematically ab initio calculations with Kinetic Monte Carlo 

simulations to model hydrogen diffusion through the Pd based-membranes. The 

predictions pertaining to tracer diffusivity of hydrogen atoms through the bulk of 

Pd lattice from KMC simulations are in excellent agreement with experimental 

data from literature.  
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2. The KMC simulations of dissociative adsorption of H2 over Pd(111) surface 

indicates that for thin membranes (less than 10µ thick), the diffusion of hydrogen 

from surface to the first subsurface layer is rate limiting.  

 

3. S binds strongly on the Pd surface and poisons the Pd surface by altering the 

electronic structure of the Pd atoms in the vicinity of the S atom.  The KMC 

simulations indicate that increasing sulfur coverage drastically reduces the 

hydrogen coverage on the Pd surface and hence the driving force for diffusion 

through the membrane. 
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