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Over the past two decades, experimental Although the chemical processes underlying the activity of dissimilatory  Rate laws organized into a POSET can be used to systematically analyze
numerous  studies  have conditions reside in metal reducing bacteria are complex, it is usually possible to describe rate  the results of individual experiments by finding the “smallest” element(s) of
produced high quality the text. data using simple equations. These pseudo rate formulations can be  the set that accurately capture the primary features of the data. Examples
information on the rates at cwmmmamsmnmmananomiie | Organized as a partially ordered set (POSET) under the relationship that  of this type of analysis for iron reduction and mixed iron/manganese
which bacteria can reduce el o sombvir kil edsing cerm Sevarcl prc- greater elements (i.e., rate laws) converge to lesser elements in some reduction are shown below. This procedure will also enable us to

faciens strain CN32 (3). The final water content of the columns was ca. 40%

metal oxides. The prototypiCal by i e in) in dovhow mode vit  PRES (e asymptotic limit. By organizing published DMRB rate data according to this  gutomatically identify holes in our knowledge and machine learning

zine-N, N'-bis(2-¢thanesulfonic acid)-bulfered (10 mM, pH 6.8) artificial ground-

study—such as the one  oermim o) 0ot odm i oo ca ad nrg POSET we hope to generate a single, global, rate formulation that can be algorithms may even allow us (partially) to automate the process of rate

depicted to the right—focuses Rate-data reside in gsed both to predict thg behavior pf DMRBS_, In the field and to make law development.

on only a few of the myriad tables and time series iInferences about underlying enzymatic mechanisms.
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activity. Below is a schematic depicting the architecture of
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(CEKA) and is currently being beta-tested by researchers

working on the kinetics of bacteria mediated reactions at | Compiling and synthesizing DMRB rate data allows us to readily identify Compiled manganese reduction time series data were analyzed with the simplified POSET
scales ranging from the molecular to the field. gaps in our understanding and to develop hypotheses that can form the shown above. Global analysis of the Myers and Nealson data (left) using the coupled
basis for filling the gaps. Shown below is an example of such an analysis. Monod/growth-death model (red box) gives an expression for population dynamics that can
e be exported to the Burdige et al. data (below). Fitting the Burdige et al. data with a simplified
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