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Abstract

A core-particle model is derived to analyze transverse orbits of test particles
evolving in the presence of a core ion beam that has uniform density within an el-
liptical cross-section. The model can be applied to both quadrupole and solenoidal
focused beams in periodic or aperiodic lattices. Efficient analytical descriptions of
electrostatic space-charge fields external to the beam core are derived to simplify
model equations. Image charge effects are analyzed for an elliptical beam centered
in a round, conducting pipe to estimate model corrections resulting from image
charge nonlinearities. Transformations are employed to remove coherent flutter mo-
tion associated with oscillations of the ion beam core due to rapidly varying, linear
applied focusing forces. Diagnostics for particle trajectories, Poincaré phase-space
projections, and single-particle emittances based on these transformations better il-
lustrate the effects of nonlinear forces acting on particles evolving outside the core.
A numerical code has been written based on this model. Example applications il-
lustrate model characteristics. The core-particle model described has recently been
applied to identify physical processes leading to space-charge transport limits for an
rms matched beam in a periodic quadrupole focusing channel [Lund and Chawla,
Nuc. Instr. and Meth. A 561, 203 (2006)]. Further characteristics of these processes
are presented here.
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1 Introduction

Core-particle (CP) models constitute a highly reduced description of beam
evolution where single particles are analyzed that evolve both inside and out-
side a continuous core distribution with specified properties. Contributions
of the test particles to the beam self-field are neglected, rendering the model
inconsistent. CP models based on a core Kapchinskij-Vladimirskij (KV) distri-
bution with uniform space-charge have had considerable success in predicting
the maximum amplitude of halo particles evolving outside an envelope mis-
matched beam core with high space-charge intensity[1–4]. Recent work with a
KV distribution based CP model applied to a matched envelope beam core[5]
refines earlier related work[6,7] and suggests that long-observed space-charge
related transport limits of a quadrupole focused beam result from strong res-
onance effects that allow significant populations of near-edge particles to un-
dergo rapid chaotic transport to larger oscillation amplitudes due to overlap-
ping resonances that approach the beam core. The main drawback of KV-
based CP models is that they provide no consistent mechanism for particles
launched within the core distribution to evolve outside the core. Effects out-
side the model must be appealed to for this purpose. Consequently, general
predictions made with CP models should be carefully checked with fully self-
consistent simulations. Nevertheless, the simplicity of the model facilitates
analysis of characteristic particle orbits that can, in turn, aid interpretation
of complicated transport limiting processes such as halo production, particle
losses, and contributions to beam rms emittance growth from particles evolv-
ing outside the beam core.

Uniform density core beams modeled by the self-consistent KV distribution
have typically been employed in transverse CP models[8]. This approach has
advantages in that the evolution of the beam core can be simply described in
terms of the evolution of the beam edge. Envelope equations that describe the
edge evolution of the KV beam core are coupled ordinary differential equa-
tions that are well understood both in terms of the matched envelope (i.e.,
the beam edge has the periodicity of the focusing lattice) and any mismatch
perturbations[9,10]. The KV distribution is presently the only known exact
equilibrium solution to Vlasov’s equation in a periodic focusing lattice. Alter-
native models for nonuniform beam cores have been proposed, often by assum-
ing a self-similarly evolving nonuniform density profile core (see for example,
Refs. [11–13] and references therein). No self-consistent equilibrium distribu-
tions are known that generate self-similar density oscillations, and even if such
equilibria exist they are unlikely to approximate the physical Vlasov evolution
of a realistic core. Generally, the collective wave response is expected to be
such that the functional form of spatial variations in the beam density profile
evolve from the initial form. Normal mode calculations with simple (continu-
ous focusing model) equilibrium distributions suggest that perturbations will
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generally evolve with wavelengths incommensurate with the lattice period in
a periodic transport channel[14,15]. Hence it is highly improbable that an
initial density nonuniformity can project on a spectrum of normal mode per-
turbations that add together to produce a self-similarly evolving beam density
profile.

For a particle moving both inside and outside a core distribution, forces acting
on core-particle model test particles will result from the linear applied focusing
fields of the lattice and space-charge fields generated by the core. The applied
field forces rapidly oscillate in a periodic focusing lattice. The space-charge
forces produced by the core can be resolved as being a component due to a
uniform density, rms-equivalent beam with elliptical envelope plus a compo-
nent due to the difference between the actual and uniform beam distribution.
For the uniform component, the fields exterior to the beam will be highly non-
linear and the fields interior to the beam will be linear. Both the interior and
exterior components will oscillate with the variation of the elliptical envelope
in response to applied focusing forces of the lattice and self-field defocusing
forces. The impulse imparted by the oscillating linear forces of the core on
a test particle traversing the core can increase or decrease the energy of the
particle depending on the phase of the particle’s oscillation through the core.
The self-fields generated by the nonuniform density component will rapidly os-
cillate (the collective response will be at harmonics of the plasma frequency)
producing nonlinear fields both interior and exterior to the edge of the beam
core. Collective mode decompositions of the nonuniform density perturbations
will have normal mode components with a broad spectrum of wavelengths gen-
erally incommensurate with the lattice period. Since the nonuniform density
component carries zero net charge, it is expected to only weakly perturb the
external forces generated by a uniform density beam core except for when the
particle is close to the edge of the core and nonuniformities are large. (By
Gauss’ Law the nonuniformities will generate zero perturbations external to
the core of an axisymmetric beam.) The interior nonlinear forces produced by
the nonuniform density component will oscillate rapidly within the lattice pe-
riod and one would expect for limited amplitudes and distributed phases of the
mode components that these perturbations will impart minimal net impulse
on particles diving in and out of the core over several periods of the lattice.
This random phase argument will also apply to external force components, fur-
ther lessening the influence of the nonuniformities external to the core. These
effects lead one to believe that KV distribution based CP models should be
reliable for strongly expressed resonances of a particle diving in and out of
a realistic space-charge dominated core distribution where the density profile
is expected to be relatively uniform due to Debye screening effects[14], phase
mixing, Landau damping, and various nonlinear relaxation processes[16]. The
model can also apply for relatively weak space-charge because although the
space-charge field may be inaccurately described by a uniform beam model,
the component of the force acting on the particle due to space-charge becomes
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relatively weaker.

Here, we derive an efficient CP model to calculate trajectories of test “halo”
particles evolving both inside and outside a uniform density elliptical beam
with linear applied focusing forces varying arbitrarily in the axial coordinate
s of the lattice. This model is applied to a matched beam propagating in a
periodic focusing lattices to analyze strong chaotic processes that can allow
particles moving just outside the beam edge to rapidly increase in oscillation
amplitude. Recent studies have shown that such processes can elucidate space-
charge transport limits that result from statistical beam emittance blow-up
and particle losses[17,5].

The organization of this paper is the following. An efficient core-particle model
for a test particle moving inside and outside a uniform density elliptical beam
core is derived in Sec. 2. Effects of both s-varying applied fields and space-
charge fields (direct and image) generated by the core are analyzed. Diag-
nostics and a numerical code implementation are discussed. Example appli-
cations of this model are presented in Sec. 3 to illustrate processes leading
to space-charge transport limits associated with matched beams propagating
in periodic quadrupole and solenoidal focusing lattices. Concluding comments
in Sec. 4 summarize how the model can be applied to analyze space-charge
related transport transport limits due to beam emittance growth and particle
losses.

2 Core-Particle Model

We assume a continuous, unbunched ion beam core propagating in an arbi-
trary linear transport lattice. The axial coordinate is s and the linear applied
focusing fields of the lattice are described by focusing functions κj(s) with
j = x, y. A test ion of charge q and mass m with axial relativistic factors

βb = const and γb = 1/
√

1 − β2
b moves in the presence of the core beam and

the applied focusing forces. In the paraxial approximation, the transverse co-
ordinates x(s) and y(s) of the test particle evolve according to the equations
of motion[10,9]

x′′ + κxx = − q

mγ3
b β

2
b c

2

∂φ

∂x
,

y′′ + κyy = − q

mγ3
b β

2
b c

2

∂φ

∂y
.

(1)

Here, primes denote derivatives with respect to s, the speed of light in vacuo is
denoted c, and φ is the electrostatic potential of the beam core. The potential
is given in terms of the core charge density ρ by the solution to the transverse
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Poisson equation
(

∂2

∂x2
+

∂2

∂y2

)

φ = − ρ

ε0
. (2)

Here, ε0 is the permitivity of free-space. Solutions for φ must satisfy boundary
conditions (φ = const) on any conducting surfaces associated with material
apertures.

This formulation can be applied to a wide variety of focusing lattices includ-
ing continuous (κj = k2

β0 = const), solenoidal (κx = κy), and quadrupole
(κx = −κy) focusing. Specific forms for the focusing coefficient κj can be
found in Ref. [10]. For solenoidal focusing, the particle orbits must be inter-
preted as being expressed in a rotating Larmor frame (see Appendix A of
Ref. [10]). The lattice need not be periodic. For periodic lattices, the scales of
the κj can always be set by the undepressed particle phase advances σ0j (mea-
sured in degrees per lattice period). In lattices with sufficient plane-symmetry,
σ0x = σ0y ≡ σ0. Example piecewise constant FODO quadrupole and solenoidal
focusing lattices that will be employed in examples in Sec. 3 are shown in
Fig. 1. We denote the lattice period by Lp, the fractional occupancy of fo-
cusing elements in the period by η ∈ (0, 1], and the drift distances between
focusing elements by d. Formulas for setting σ0 in simple lattices with piece-
wise constant κj can be found in the references. Although it is not necessary
for the general validity of the model, in the remainder of the present study we
assume that the species of the test ions are identical to the species of ion in
the core beam and that the axial velocity of the test ions is equal to the mean
axial velocity of the unbunched ion beam core.

D Quad

F Quad

Lattice Period

Lattice Period

a) FODO Quadrupole

b) Solenoid

s

s

Lp

Lp

d d`

`

d/2 d/2ηLp d/2

κx(s)

κx(s)

(κx = −κy)

(κx = κy)

−
̂κ

̂κ

d = (1− η)Lp/2

` = ηLp/2

d = (1− η)Lp/2

Fig. 1. Periodic focusing lattices for a) FODO quadrupole focusing, and b) solenoidal
focusing.

Regardless of the structure of the charge density ρ(x⊥) as a function of the

5



transverse coordinate x⊥ = xx̂ + yŷ, the linearity of the Poisson equation (2)
can be exploited to resolve the electric self-field of the beam as

E⊥ = − ∂φ

∂x⊥
= Ed

⊥ + Ei
⊥, (3)

where

Ed
⊥(x⊥) =

1

2πε0

∫

d2x̃⊥
ρ(x̃⊥)(x⊥ − x̃⊥)

|x⊥ − x̃⊥|2
(4)

is the direct field produced by the beam charge density in free-space, and

Ei
⊥(x⊥) =

1

2πε0

∫

d2x̃⊥
ρi(x̃⊥)(x⊥ − x̃⊥)

|x⊥ − x̃⊥|2
(5)

is the so-called image charge field produced by the induced charge density
ρi(x⊥) on the conducting aperture of the machine. The image charge field Ei

⊥

depends both on the geometry of the machine aperture and on the distribution
of beam space-charge internal to the aperture.

In a linear focusing system it is reasonable to expect an idealized beam to
have elliptical symmetry charge density ρ, i.e., with ρ constant on surfaces
with (x/rx)

2 + (y/ry)
2 = const. Here, the rj are taken to be positive and the

ratio rx/ry defines the ellipticity of ρ. Generally, the rj will vary as a function
of s consistent with the evolution of the core distribution. For such elliptical
symmetry ρ, the direct field Ed

⊥ produced by the beam core can be calculated
in terms of a potential φd as Ed

⊥ = ∂φd/∂x⊥ with[18]

φd = −rxry

4ε0

∫ ∞

0
dξ

Γ(χ)
√

r2
x + ξ

√

r2
y + ξ

+ const. (6)

Here, χ ≡ x2/(r2
x + ξ) + y2/(r2

y + ξ) and Γ(χ) is any function such that

ρ =
dΓ(χ)

dχ

∣

∣

∣

∣

∣

ξ=0

. (7)

An appropriate choice of Γ can always be made for elliptical symmetry ρ. It is
straightforward to verify that Eqs. (6) and (7) satisfy the direct field Poisson

equation ∂2φ
∂x

2

⊥

= − ρ
ε0

for ρ with elliptical symmetry.

Motivated by the overview discussion in Sec. 1, we consider a uniform density
beam core centered at x = 0 = y with

ρ =











λ
πrxry

, if x2

r2
x

+ y2

r2
y
≤ 1,

0, if x2

r2
x

+ y2

r2
y

> 1.
(8)
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Here, λ = const is the beam line-charge density, and rj are the edge radii of a
uniform density elliptical beam. It is straightforward to verify that

Γ(χ) =
λ

πrxry











χ, if χ ≤ 1,

1, if χ > 1,
(9)

produces the required uniform density elliptical core consistent with Eqs. (7)
and (8). Inserting Eq. (9) in (6) gives[19,14]

φd = − λ

4πε0











∫ ξb

0

dξ
√

r2
x + ξ

√

r2
y + ξ

+

∫ ∞

ξb

dξ
√

r2
x + ξ

√

r2
y + ξ

(

x2

r2
x + ξ

+
y2

r2
y + ξ

)











+ const,

(10)

where ξb = 0 when (x/rx)
2+(y/ry)

2 ≤ 1 (within the core) and ξb is the positive
root of

x2

r2
x + ξb

+
y2

r2
y + ξb

= 1 (11)

when (x/rx)
2 + (y/ry)

2 > 1 (outside the core). This gives both inside and
outside the core,

Ed
x = −∂φd

∂x
=

λ

2πε0

∫ ∞

ξb

dξ
√

r2
x + ξ

√

r2
y + ξ

x

r2
x + ξ

=
λ

πε0

x

(rx + ry)rx
F d

x ,

Ed
y = −∂φd

∂y
=

λ

2πε0

∫ ∞

ξb

dξ
√

r2
x + ξ

√

r2
y + ξ

y

r2
y + ξ

=
λ

πε0

y

(rx + ry)ry
F d

y ,

(12)

where F d
j are direct field form factors given by

F d
x =

rx

rx − ry



1 −
√

√

√

√

r2
y + ξb

r2
x + ξb



 ,

F d
y =

ry

ry − rx



1 −
√

√

√

√

r2
x + ξb

r2
y + ξb



 ,

(13)
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and

ξb =











0, if x2

r2
x

+ y2

r2
y
≤ 1,

− (r2
x+r2

y−x2−y2)

2
+

√
(r2

x+r2
y−x2−y2)2−4(r2

xr2
y−x2r2

y−y2r2
x)

2
, if x2

r2
x

+ y2

r2
y

> 1.

(14)
Equations (12)–(14) for the direct fields have been employed in Eq. (1) with
zero image fields by Wang[3] to analyze test particles evolving in the presence
of a uniform density elliptical beam.

Interior to the beam core, ξb = 0 giving F d
j = 1 and Eq. (12) reduces to the

well-known result for the direct fields within a uniform density elliptical beam
with[20,14]

Ed
x =

λ

πε0

x

(rx + ry)rx
, Ed

y =
λ

πε0

y

(rx + ry)ry
. (15)

Note that inside the beam Ed
x and Ed

y are linear functions of x and y. Exterior
to the beam, ξb 6= 0 and the direct fields are complicated nonlinear functions
of the coordinates and beam edge radii rj. For the special case of a round
beam (rx = ry = rb), a limit analysis of Eqs. (12)–(14) for the exterior fields
shows that

Ed
x = Ed

y =
λ

2πε0r
(16)

with r =
√

x2 + y2. The characteristic 1/r exterior (r > rb) nonlinearity is
consistent with the well known result obtained from a direct application of
Gauss’ Law.

For a test particle evolving both inside and outside of the uniform density
elliptical beam core, the equations of motion (1) can be conveniently expressed
as

x′′ + κxx =
2QFx

(rx + ry)rx

x,

y′′ + κyy =
2QFy

(rx + ry)ry
y.

(17)

Here,

Fj = F d
j + F i

j (18)

are form-factors due to due to direct (d) and image (i) contributions, and

Q =
qλ

2πε0mγ3
b β

2
b c

2
= const (19)

is the dimensionless perveance[9]. Because Fj = 1 within a uniform density
core beam without image charge effects, the form of Eq. (17) emphasizes
nonlinear effects (i.e., Fj 6= 1 with variation in x and y) due to direct external
fields and image charges.
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An alternative calculation of the direct field Ed
⊥ exterior to a uniform density

elliptical beam can be carried out as follows to obtain a simpler expression
than given by Eqs. (12)–(14). First, without loss in generality, Eq. (4) for the
direct field can be expressed in complex form as

Ed ≡ Ed
y + iEd

x =
i

2πε0

∫

d2x̃⊥
ρ(x̃⊥)

z − z̃
. (20)

Here, underlines denote complex quantities, i ≡
√
−1, and z = x + iy. Using

an exterior multipole form expansion exterior to the beam, one obtains

Ed =
∞
∑

n=1

Cnz−n (21)

with

Cn =
i

2πε0

∫

d2x⊥ ρ(x⊥)zn−1. (22)

Exterior to beam, the direct field Ed
⊥ satisfies the vacuum Maxwell equations

∇⊥ ·Ed
⊥ = 0 and ∇⊥×Ed

⊥ = 0. Or equivalently, the transverse field components
satisfy

∂Ex

∂x
= −∂Ey

∂y
,

∂Ey

∂x
=

∂Ex

∂y
, (23)

which can be recognized as the Cauchy-Riemann conditions for the complex
field Ed = Ed

y + iEd
x to be an analytical function of z = x+ iy. This analyticity

of Ed(z) allows the series expansion given by Eqs. (21) and (22) to be applied in
the entire vacuum region exterior to the elliptical beam core. Using the uniform
density ρ defined by Eq. (8) in Eq. (22) obtains for (x/rx)

2 + (y/ry)
2 > 1

Ed =
iλ

πε0

∞
∑

n=1,3,5,···

(n − 1)!

2n
(

n−1
2

+ 1
)

!
(

n−1
2

)

!

(r2
x − r2

y)
(n−1)/2

zn
. (24)

This series can be summed and the form factor definitions applied to show
that exterior to the beam

F d
x = (rx + ry)

rx

x
Re[S],

F d
y = −(rx + ry)

ry

y
Im[S],

(25)

where

S ≡ z

r2
x − r2

y



1 −
√

1 − r2
x − r2

y

z2





=
1

2z

[

1 +
1

2

r2
x − r2

y

z2
+

1

8

(r2
x − r2

y)
2

z4
+ · · ·

]

.

(26)

The second expanded form of S in Eq. (26) is useful when then beam envelope
is nearly round with rx ' ry. Note that for a round beam with rx = ry = rb,
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only one term in the sum remains giving S = (x− iy)/(2r2) with F d
j = r2

b/r
2.

After some manipulation, it can be shown that the form factors given by
Eqs. (13) and (25) are identical. The complex form expression (25) can be
more efficient to employ in numerical studies.

Unfortunately, explicit evaluation of the image field described by Eq. (5) is
complicated and depends on aperture geometry. To estimate characteristic
image field effects, we consider the simple case of a circular aperture of radius
rp centered at x⊥ = 0. Then the image induced by the charge density ρ(x⊥) is
ρi = −ρ at location xi

⊥ = r2
px⊥/|x⊥|2, and Eq. (5) gives

Ei
⊥(x⊥) = − 1

2πε0

∫

pipe
d2x̃⊥

ρ(x̃⊥)(x⊥ − r2
px̃⊥/|x̃⊥|2)

|x⊥ − r2
px̃⊥/|x̃⊥|2|2

. (27)

Two limiting forms of Eq. (27) can be examined to illustrate properties of the
image field. First, to the leading order, an off-axis beam can be approximated
as being a line-charge displaced along the x-axis at x = X with |X| < rp [i.e.,
ρ(x⊥) = λδ(x⊥ − Xx̂)]. Then the image field is

Ei
⊥ = − λ

2πε0

x⊥ − r2
p

X
x̂

∣

∣

∣x⊥ − r2
p

X
x̂
∣

∣

∣

2 . (28)

For r2
p/|X| large, the image field Ei

⊥ will generally be small relative to the direct

field Ed
⊥ ' λ

2πε0

x⊥

|x⊥|2
. Next, we take ρ to be given by Eq. (8), corresponding

to an uniform density, on-axis elliptical beam. In this limit, the image charge
field of the uniform density beam can be explicitly calculated from Eq. (27)
using complex variables (for notational convenience). Series expansion shows
that within the aperture

Ei = Ei
y + iEi

x =
∞
∑

n=2,4,···

Cnzn−1, (29)

where

Cn =
i

2πε0

∫

pipe
d2x⊥ ρ(x⊥)

(x − iy)n

r2n
p

=
iλn!

2πε02n(n/2 + 1)!(n/2)!

(

r2
x − r2

y

r4
p

)n/2

.

(30)

The leading order n = 2 components of this image field are linear with

Ei
x =

λ

8πε0

r2
x − r2

y

r4
p

x, Ei
y = − λ

8πε0

r2
x − r2

y

r4
p

y. (31)

These expressions show that leading order image charge corrections produced
for an on-axis elliptical beam are weak relative to the direct fields for small
beam ellipticities with |rx/ry−1| � 1 and/or a large pipe radius rp. Motivated
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by these limiting case results, for present purposes of analyzing leading order
effects we take F i = 0 and neglect image charge corrections. Results in the
literature[21,13] can also be applied to calculate more elaborate image charge
corrections.

To complete the core-particle model, evolution equations must be derived for
the envelope radii rj of the uniform density beam core. For the centered, on-
axis beam with image charge effects neglected, the core can be self-consistently
described by the KV distribution function where the envelope radii evolve
according the KV envelope equations[10,9]

r′′j + κjrj −
2Q

rx + ry
− ε2

j

r3
j

= 0. (32)

Here,

εx = 4
[

〈x2〉⊥〈x′2〉⊥ − 〈xx′〉2⊥
]1/2

= const,

εy = 4
[

〈y2〉⊥〈y′2〉⊥ − 〈yy′〉2⊥
]1/2

= const
(33)

are the x- and y-plane rms edge emittances of a centered elliptical beam
(〈x〉⊥ = 0 = 〈y〉⊥) and 〈· · · 〉⊥ denotes a transverse statistical average over
the core distribution. For the case of a periodic lattice with lattice period Lp,
κj(s+Lp) = κj(s) and the beam core is said to be matched when the envelope
radii rj have the periodicity of the lattice

rj(s + Lp) = rj(s). (34)

Envelope matching requires that the rj satisfy appropriate initial conditions in
the lattice. For a matched beam, the phase advance of particles moving with
the KV beam core in the presence of linear applied focusing and space-charge
defocusing forces can be calculated as[9,10]

σj = εj

∫ si+Lp

si

ds

r2
j (s)

, (35)

independent of the initial value of s = si. The ratio of depressed to undepressed
particle phase advance σj/σ0j ∈ (0, 1) provides a convenient, normalized mea-
sure of relative space-charge strength with σj/σ0j → 1 corresponding to neg-
ligible space-charge (Q → 0 with εj finite), and σj/σ0j → 0 corresponding
to maximum (εj → 0 with Q finite) space-charge intensity. For systems with
sufficient plane symmetry (σ0j = σ0 and εx = εy), we denote σj/σ0j = σ/σ0.

A Mathematica[22] based CP code was written to numerically integrate the
particle equations of motion (17) from initial conditions using a symplectic or-
dinary differential equation solver. Tests verify that particles launched with ini-
tial conditions that are contained within maximum phase-space extent of the
KV equilibrium core remain confined within the core as the particles evolve.
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The code numerically calculates the scale of the κj needed to achieve specified
input values of σ0 for a variety of periodic lattices (continuous, solenoid, FODO
quadrupole, and quadrupole doublet, ...) with piecewise constant κj(s) that
are described in Ref. [10]. Beam cores with both matched and mismatched en-
velopes can be launched in periodic lattices. Matched envelopes are calculated
using the methods described in Ref. [23] and are specified by the lattice type
and lattice parameters (Lp, η, and σ0j), and the depressed phase advances σj

and emittances εj of the beam core. This parameterization allows convenient
expression of the relative applied focusing and space-charge strength. Specific
envelope mismatch modes can also be launched using formulations described
in Ref. [10].

The CP code launches groups of test particles at an arbitrary axial location
si in the focusing lattice. There is an extensive range of options for setting
initial transverse x⊥–x′

⊥ phase-space coordinates of the particles. All parti-
cles have identical axial velocities (βb = const). Spatial coordinates of par-
ticles x⊥(si) can be initialized along principal axes of the elliptical beam or
within an annular region of specified extent in the radial and azimuthal coor-
dinates ξ =

√

x2/r2
x + y2/r2

y and θ = tan−1(y, x). The initial coordinates can

be randomly dispersed within the annular region or regularly distributed. We
typically launch particles with initial x and y coordinates outside the beam
edge (i.e., x2/r2

x + y2/r2
y > 1). Angles of particles x′

⊥(si) can be initialized
with additive coherent and incoherent components. The coherent component
is set consistently by extrapolating flows associated with the flutter of the KV
equivalent core with

x′ = r′x
x

rx
, y′ = r′y

y

ry
. (36)

Incoherent angle contributions are randomly set by either uniform or Gaussian
distributions with amplitudes set consistent with local rms spread values (i.e.,
“temperatures”) that can vary with spatial coordinate in a specified manner.

Various diagnostics are implemented in the core-test particle code including:
particle trajectories, single particle emittances defined by (for the x-plane, the
y-plane is analogous)

εx =

√

√

√

√

(

x

rx

)2

+
(

r′xx − x′rx

εx

)2

, (37)

stroboscopic Poincaré phase-space plots in various phase-space coordinates,
and particle oscillation wavelengths calculated from Fourier transforms of or-
bits. The single particle emittance εx should not be confused with the statis-
tical beam emittance εx. εx is normalized such that a particle oscillating in
the x-plane has εx = 1 when the particle touches the edge of the core dis-
tribution in x-x′ phase-space. Particle trajectories and Poincaré phase-spaces
can be plotted in scaled coordinates [e.g., with x–x′ projections scaled as
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x/rx–(x′rx − r′xx)/εx] to better illustrate oscillation extents relative to the
matched beam core. To help determine if certain classes of initial conditions
become excited to larger amplitude, diagnostics can be carried out for groups
of test particles launched within specified ranges of the radial coordinate
ξ =

√

x2/r2
x + y2/r2

y.

Particles evolving both inside and outside the beam envelope will experience a
substantial, space-charge dependent nonlinearity when moving exterior to the
beam. To better illustrate this effect, the scaled radial force acting on particles
for a continuously focused matched beam (κj = (σ0/Lp)

2, εx = εy) of radius
r = rb = const is plotted as a function of r/rb. The force is proportional to
(σ2

0/L
2
p)r − (QF d

x /r2
b )r and is produced by the applied focusing and space-

charge defocusing forces. Note that the nonlinear force transition at r/rb = 1
becomes stronger as relative space-charge strength increases (i.e., σ/σ0 de-
creases) and there is no nonlinear transition for zero space-charge strength
(σ/σ0 = 1).
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0σ/σ  = 0.2

Fig. 2. Scaled radial force from applied and self-fields versus radial coordinate r
for a round, uniform density continuously focused beam of radius r = rb. Curves
correspond to relative space-charge strengths σ/σ0 = 0, 0.2, 0.4, . . . , 1.0.

Nonlinear space-charge effects can be modulated by the periodic variations
(flutter) of the envelope radii for a matched, elliptical beam in a periodic
focusing lattice to drive strong resonances for particles oscillating outside the
core of the beam[5]. For simple lattices with a high degree of symmetry, a
measure of the flutter is given by Max[rx]/rx. Here, Max[rx] is the maximum
radial excursion of the matched envelope over the lattice period and rx =
(1/Lp)

∫ Lp

0 ds rx is the average excursion of the matched envelope in the lattice
period. Unfortunately, direct calculation of the envelope flutter is difficult
since the envelope equation (32) is nonlinear. For a given lattice and a beam
with εj = ε, the structure of the matched beam envelope will depend on the
symmetry and strength of the focusing functions κj (with scale set by σ0) and
(more weakly) on ε and σ/σ0[10]. Using the methods presented by Lee [24],
it can be shown that the flutter of the matched beam envelope for periodic
solenoidal and FODO quadrupole focusing systems with piecewise constant
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κj(s) is given approximately for σ/σ0 � 1 by

Max[rx]

rx
− 1 '











(1−cos σ0)1/2(1−η/2)

23/2(1−2η/3)1/2 , Quadrupole Focusing,

(1−cos σ0)(1−η)(1−η/2)
6

, Solenoidal Focusing.
(38)

Equation (38) shows that quadrupole envelope flutter depends strongly on
σ0 and only weakly on the lattice occupancy η (the maximum variation in
Max[rx]/rx in η is ∼ 13%), whereas solenoidal focused envelope flutter depends
both on σ0 and η with zero flutter for η = 1 (continuous focusing limit). Note
that when σ0 increases, matched beam envelope flutter also increases.

From the discussions above it is clear that nonlinear forces acting on a particle
moving inside and outside the beam core will become stronger for increasing
space-charge strength (relatively small σ/σ0). Nonlinear forces will oscillate in
periodic focusing lattices due to the matched beam envelope flutter (generally
increasing with σ0). The CP model will be employed in Sec. 3 to analyze
how these effects can lead to large space-charge induced increases in particle
oscillation amplitudes for particles moving just outside the matched beam
core. Plausible arguments are presented on how strong, chaotic effects leading
to the oscillation amplitude increases can produce transport limits in periodic
focusing channels[5].

3 Example Application: Matched Beam Transport Limits

Regions of experimentally observed instability for a initially plane equilibrated
(εx = εy), envelope matched beam in a FODO quadrupole transport channel
are shown in Fig. 3 as a function of the undepressed single particle phase
advance σ0 (focusing strength) and the ratio of depressed to undepressed
phase advance σ/σ0 of the rms equivalent beam core (relative space-charge
strength)[25,5]. The range of σ0 is cut off at σ0 = 180◦, corresponding to the
single-particle and centroid stability limit[9]. The envelope instability band is
plotted in gray[10] and rules out a broad region of possible operating points
with σ0 > 90◦. Further regions of experimentally observed[25] higher-order
instability are shown in red. Operation in these regions is observed to result
in rapid statistical rms emittance growth and particle losses. Measured tran-
sition points are indicated on the plot for two threshold values and a curve fit
to the experimental transition data gives

σ2
0 − σ2 =

1

2
(120◦)2. (39)

For FODO quadrupole transport there is little change in these results with
variation of quadrupole occupancy η or the absolute scale of the beam (set by
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the lattice parameters Lp and η, and the emittances εx = εy). These results
are believed to apply to a wide range of smooth, plane equilibrated initial
distribution functions described by a purely transverse Vlasov-Poisson model.
Parametric self-consistent simulation studies with a variety of initial distribu-
tion functions produce similar conclusions in the lower region of higher-order
instability with pronounced emittance growth and particle losses with a lim-
ited machine aperture[5]. Points of interest labeled a (σ0 = 60◦, σ/σ0 = 0.1;
lower σ0, strong space-charge), b (σ0 = 95◦, σ/σ0 = 0.67; high σ0 and in-
termediate space-charge), and c (σ0 = 110◦, σ/σ0 = 0.1; high σ0 and strong
space-charge) are indicated inside and outside the lower region of higher-order
instability.

0 30 60 90 120 150 180
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0.8

1.0

Stable
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Higher Order

Instability

Envelope
Instability

Order
Higher

Instability
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95%   core

a c

b

σ0 (degrees)

σ
/σ

0

Fig. 3. (color online) Characteristic stability regions in FODO quadrupole transport.

Poincaré plots in scaled x/rx and (x′rx − r′xx)/εx phase-space coordinates are
shown in Fig. 4 for the three points labeled a, b, and c in Fig. 3. The beam
cores are envelope matched, and the Poincaré strobes are taken at every lattice
period in the middle of focusing-in-x quadrupoles. Particles are launched be-
tween quadrupoles (middle of a drift before a focusing-in-x quadrupole) along
the x-axis (y = 0 = y′) with x′ = r′x(x/rx). Initial x-coordinates are chosen in
uniform increments from the edge of the beam-core until well outside the core.
The Poincaré strobes are initiated after enough lattice periods to allow non-
linearities to shift oscillation phases to decohere the specific choice of initial
conditions. Strobes are accumulated over enough lattice periods to throughly
sample accessible phase-space. Scaled coordinates employed in the Poincaré
plots to reduce the main effects of the matched flutter motion of the beam
core in the periodic lattice, rendering the choice of Poincaré strobe phase in
the lattice period less critical. The phase-space boundary of the core beam is
indicated by the solid green ellipse with unit principal axis radii. Note that
the Poincaré phase-spaces appear chaotic in all cases near the core and that
higher-order resonant structures appear at large amplitudes well outside the
core as noted previously by Ryne[26] and Lagniel[6,7]. At very large ampli-
tudes (beyond the range plotted), the phase-space becomes regular as should
be expected when the applied focusing dominates the evolution.
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Fig. 4. (color online) Poincaré plots of x/rx and (x′rx − r′xx)/εx phase-space of a
FODO matched quadrupole focused beam core for the points a, b, and c labeled in
Fig. 3. [Lp = 0.5 m, η = 0.5, and εx = εy = 50 mm-mrad]

To aid interpretation of the phase-spaces, the same Poincaré plots in Fig. 4
are repeated in Fig. 5 for a limited range of launching amplitudes with x/rx ∈
[1.1, 1.2]. This change to a limited launch range outside the core helps identify
and categorize processes that can result in particles just outside the beam edge
evolving to large amplitudes. Particles may evolve just outside the edge of the
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core due to a large number of processes that are not explicitly investigated (see
Sec. 1 discussion). The dashed red ellipses indicate extrapolations of the initial
range in phase-space that would occur if the particles evolved with a linear-
force Courant-Snyder invariant[14] with values set by the initial conditions.
The Poincaré plots exhibit distinctly different behavior when contrasting la-
beled points a and b (stable region) with c (lower unstable region). For points
a and b, particles maintain radial confinement near the initial launch ranges
without increasing significantly in maximum excursion measured by x/rx. For
point a, the stronger space-charge nonlinearity results in significantly larger
excursions in (x′rx−r′xx)/εx with modest increases in x/rx excursions, while for
point b excursions increase little in either phase-space coordinate. In contrast,
for the unstable case corresponding to point c, particle oscillation amplitudes
increase significantly (note the large change in scale) beyond the launch range
near the core. Within the lower region of higher-order instability, amplitudes
appear to grow until a 4-lobe resonant structure is reached that limits the
achieved amplitude growth.

These processes categorized above are halo-like in that they involve particles
oscillating outside the core. However, they need not only influence tenuous
distribution components and may act to significantly perturb the core beam
should a significant number of particles participate. If a significant number
of particles evolve a small distance outside the rms equivalent beam core in
operating regions corresponding to higher-order instability, the large increase
in oscillation amplitudes of these particles can produce a blow-up of statistical
beam rms emittance and particle losses in machines with a limited aperture.
Because no smooth equilibrium core distribution is known for periodic focus-
ing and injected beams are in any event unlikely to be near any equilibrium
form, collective waves within the core resulting from the lack of equilibrium
structure provide a ready mechanism to drive enough particles sufficiently
outside the core in the high σ0-regions of observed higher-order instability to
degrade transport. The specific number and initial rate of particles increasing
in oscillation amplitude will likely depend on the form of the core distribu-
tion. But the underlying mechanism of a strongly chaotic region of phase-space
induced by strong overlapping resonances which approaches the core in para-
metric regions of observed higher-order instability will apply to a wide variety
of relatively smooth core beams in a fully consistent model. Eventually, these
unstable regime processes will also act to degrade the beam core in a fully
consistent model. Similar results are observed for particles with space-charge
coupled oscillations in both x-x′ and y-y′ phase space. Detailed expressions of
the effect are more complicated in these cases, but the primary characteris-
tics observed for particle oscillations along the principal x- and y-axes persist.
Poincaré plots generated by accumulating particles evolving outside the core
in fully self-consistent particle-in-cell simulations of a variety of smooth core
distributions confirm essential features of the predictions.

17



−

−

−

1.5

1.5

−

−

−

1.0

1.0

−

−

−

0.5

0.5

0.0

0.0

0.5

0.5 1.0

1.0 1.5

1.5

−

−

−

1.5

4

−

−

−

1.0

2

−0.5

0

0.0

2

0.5

4

1.0

1.5

20

10

0

10

20
3 2 1 0 1 2 3

a) σ0 = 60◦, σ/σ0 = 0.1

b) σ0 = 95◦, σ/σ0 = 0.67

c) σ0 = 110◦, σ/σ0 = 0.1

x/rx

x/rx

x/rx

(x
′
r x
−
r′ x
x
)/
ε x

(x
′
r x
−
r′ x
x
)/
ε x

(x
′
r x
−
r′ x
x
)/
ε x

Fig. 5. (color online) Poincaré plots shown in Fig. 4 for particles launched with
x/rx ∈ [1.1, 1.2].

To further illustrate characteristics of these results, Figs. 6 and 7 show plots
of scaled particle orbits x/rx and single-particle emittance

εx =
√

(x/rx)2 + (x′rx − r′xx)2/ε2
x evolutions. Cases shown correspond to points

a (stable case) and c (unstable case) in Fig. 5. Note that |x|/rx = 1 and εx = 1
(indicated with green lines on the plots) for a particle at the edge of the beam
core. Only a subset of particles employed in the Poincaré plots of Fig. 5 are
shown to allow visualization of features. The plots of x/rx provide a clear
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measure on how far the particles are evolving outside the core, whereas the
single particle emittance plots indicate the corresponding phase-space ampli-
tude of the excursions. In the case of instability, note that a higher density
of particles appear to remain nearer to the core (but still with large ampli-
tude) than those that explore the farthest reaches of the limiting resonance
[see Fig. 5(c)]. The orbit plots indicate that nonlinear processes quickly deco-
here the phases of particle oscillations both in the stable and unstable cases.
In the unstable case the large particle excursions and large increase in the
single particle emittances reinforce the hypothesis that beam quality will be
degraded if a significant number of near edge particles participate in these
effects. For the case of instability, note that the peak single-particle emittance
values are achieved for these initial conditions in a limited number of lattice
periods (significant growths in ∼ 5 periods and saturation in ∼ 15 periods).
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Fig. 6. (color online) Plots of the scaled particle orbits x/rx versus lattice periods
(s/Lp). Particles plotted are a subset of those shown in the corresponding labeled
Poincaré plots in Fig. 5.

The maximum achieved particle oscillation amplitudes in x/rx for a FODO
lattice are contoured in Fig. 8 as a function of σ0 and σ/σ0. Maximum ampli-
tudes are calculated from Poincaré plots generated analogously to Fig. 5 for
particles launched with two limited ranges of initial values of x/rx chosen a
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periods (s/Lp). Particles plotted are a subset of those shown in the corresponding
labeled Poincaré plots in Fig. 5.

small distance outside of the matched beam core. The first three black con-
tours are threshold amplitudes [in a) 1.2, 1.3, and 1.4; and in b) 1.3, and 1.4]
and the labeled blue contours range from 1.5, 2.0, 2.5, . . . [max amplitudes
are: in a) 11.0 and in b) 11.3]. For reference, the extent of the envelope in-
stability band[10] (band within the solid red curves) and a curve fit to the
experimentally measured transition to higher-order instability[25] (dashed red
curve) are indicated. Note that the transition to large amplitudes is abrupt
when space-charge is strong (small σ/σ0) and σ0 increases beyond σ0 & 85◦.
Comparing Figs. 8(a) and 8(b), this transition appears to be relatively in-
sensitive to the specific values of launch radius near the outside of the core.
This is in qualitative agreement with observed trends in transport degradation
based on simulations and experimental measurements of FODO quadrupole
transport lattices (see citations within Ref. [5]). Operation close to this ampli-
tude transition region will likely result in distribution sensitive degradations
in beam quality depending on how many particles evolve significantly outside
the core due to a variety of processes (collective waves internal to the core that
evolve outside the core, error fields, small mismatches, etc.). For stable trans-
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port with respect to higher-order instability for smooth distributions, machine
operating parameters can be chosen to avoid regions of large amplitude growth
factors. For strong space-charge, this appears consistent with limiting the ap-
plied focusing strength to σ0 < 85◦ which is also consistent with usual design
criteria for quadrupole transport of beams with high space-charge intensity.
What specific amplitude growth factor can be regarded as sufficiently safe for
reliable transport without significant emittance growth or particle losses must
likely be investigated on the basis of fully self-consistent simulations. Detailed
higher-order stability criteria may require information on the specific form
of the core distribution and errors acting on the beam. This becomes espe-
cially true if operation is desired close to transition regions with significant
amplitude growth factors. In this region one would expect more sensitivity to
processes that might drive particles a little outside the beam core.

The CP model employed where the core is a uniform KV beam should be most
reliable in a regime of strong space-charge (σ/σ0 relatively small) where De-
bye screening[14] effects are expected to produce a flat beam core out to the
sharp edge regardless of the detailed distribution form. Strong, overlapping
resonances associated with the transport limits are unlikely to disappear with
lesser degrees of model idealization with different core descriptions. Indeed,
further fluctuations from internal space-charge waves etc. might be expected
to enhance chaotic transitions observed in the idealized uniform core model.
The use of the CP model should be most reliable in predicting parametric
regions with strong higher-order instability induced by the chaotic processes
described. However, the CP model is inadequate to address issues of satura-
tion, total emittance growth and particle losses, and core distortions induced
by these processes. Comparing Figs. 3 and 8, note that the higher-order in-
stability region above the envelope band found experimentally appears not to
be reproduced in the CP model. Likewise, limited data from self-consistent
simulations appear not to reproduce this upper, higher-order instability re-
gion[5]. It is unclear whether this is discrepancy is due to model limitations in
this weak space-charge regime or due to measurement and procedure limita-
tions associated with very high focusing strength (large σ0) operation of the
machine in the experiment. Although this regime is not relevant to the high-
est space-charge intensity transport, it should be more throughly investigated
with self-consistent simulations to verify if higher-order instability induced
transport limits are relevant above the envelope band. If so, ring applications
where σ0 is high may be impacted. For example, in fast rotation bunch com-
pressions space-charge may become large enough at peak rotations where the
beam could enter an upper region of instability.

Analogous amplitude growth contours to those presented in Fig. 8 for FODO
quadrupole transport are shown for matched beam solenoidal transport for
lattices of low- and high-occupancy η in Fig. 9. The same contour labeling
scheme is employed as in Fig. 8. Particles are launched along the x-axis with
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Fig. 8. (color online) Contours of growth in maximum particle oscillation ampli-
tude in x/rx as a function of σ0 and σ/σ0 for particles launched just outside of a
matched FODO quadrupole beam. Results are shown for particles launched with
a) x/rx ∈ [1.05, 1.10] and b) x/rx ∈ [1.1, 1.2]. [Lp = 0.5 m, η = 0.5, εx = εy = 50
mm-mrad]

x/rx ∈ [1.05, 1.10] and x′ = r′x(x/rx). Black threshold contours are labeled 1.2,
1.3, and 1.4 and blue contours are labeled 1.5, 2.0, 2.5, . . . [max amplitudes
are: in a) 4.7 and in b) 1.6]. The extent of the bands of solenoidal focus-
ing envelope instability[10] are indicated on the plots with solid red curves.
Note that in contrast to FODO quadrupole focusing (see Fig. 8), there are
two distinct bands of envelope instability for solenoidal focusing and the in-
stability bands become broader with decreasing lattice occupancy (η smaller).
Although the space-charge and envelope flutter induced growth in particle am-
plitudes is measured for solenoidal focusing, the effect is much weaker than for
quadrupole focusing, particularly for higher lattice occupancies. Moreover, the
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effect for solenoids, in contrast to quadrupoles, is strongly related to the lat-
tice occupancy. This is not surprising due to solenoidal focusing being purely
focusing (i.e., no defocusing) which results in less matched beam envelope flut-
ter than quadrupole focusing for a given value of focusing strength (σ0). In
the limit of high occupancy (η → 1) solenoidal focusing is equivalent to con-
tinuous focusing with a constant matched envelope and no driving mechanism
for amplitude increase. For high lattice occupancies and strong space-charge,
it appears from Fig. 9(b) that the band of breathing mode instability will
act to limit focusing strength before processes leading to near-edge particle
amplitude blow-up.
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Fig. 9. (color online) Contours of growth in particle oscillation amplitude in x/rx for
particles as a function of σ0 and σ/σ0 for a solenoidal focusing lattice with lattice
occupancies a) η = 0.1 and b) η = 0.75. [Lp = 0.5 m, εx = εy = 50 mm-mrad]
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4 Conclusions

An efficient core-particle model has been derived to analyze test particles
evolving inside and outside a uniform density elliptical beam. This model
is expected to be reliable for beams with high space-charge intensity. The
edge (envelope) of the core beam can oscillate due to s-varying applied fo-
cusing forces (matched envelope flutter) and distribution mismatches of the
core. For a given periodic focusing lattice, envelope oscillations tend to be-
come larger as the applied focusing strength of the lattice is increased (i.e.,
as σ0 increases). Diagnostics developed show that halo-like particles evolv-
ing with amplitudes just outside the beam envelope can experience strong,
nonlinear resonance effects when the envelope is oscillating and space-charge
intensities are high. These resonances can overlap and orbits near the core
can become strongly chaotic, leading to a rapid growth in particle oscillation
amplitude. If a significant fraction of particles participate in such effects (non-
tenuous halo), statistical rms beam emittance blow-up and significant particle
losses can result, causing degradation of transport that can be interpreted as
a higher-order instability. Such transport limits can be reduced by designing
lattices and choosing beam parameters where matched envelope oscillations
are reduced to the extent possible. Strong (e.g., quadrupole doublet) focusing
lattices will generally be more susceptible to such effects than weak focusing
(e.g., solenoidal) focusing lattices due to larger intrinsic envelope oscillations
with quadrupole focusing. The higher-order instability processes described will
be further enhanced by beam envelope mismatch and in cases where there are
lattice transitions, such as matching sections to decrease beam size, since these
will act to increase envelope excursions and effective particle phase-advances
– which are both driving mechanisms.
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