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Abstract

Prokaryotic single-cell microbes are the simplest of all self-sufficient living organisms. Yet microbes
create and use much of the molecular machinery present in more complex organisms, and the macro-
molecules in microbial cells interact in regulatory, metabolic, and signaling pathways that are prototypical
of the reaction networks present in all cells. We have developed a simple simulation model of a prokaryotic
cell that treats proteins, protein complexes, and other organic molecules as particles which diffuse via
Brownian motion and react with nearby particles in accord with chemical rate equations. The code
models protein motion and chemistry within an idealized cellular geometry. It has been used to simulate
several simple reaction networks and compared to more idealized models which do not include spatial
effects. In this report we describe an initial version of the simulation code that was developed with
FYO03 funding. We discuss the motivation for the model, highlight its underlying equations, and describe
simulations of a 3-stage kinase cascade and a portion of the carbon fixation pathway in the Synechococcus
microbe.



1 Introduction

One of the next grand-challenge goals in biology, building on the deluge of genomics and proteomics data, is
to understand how individual cells function as a collection of interacting biochemical molecules and molecular
machines. Prokaryotic single-cell microbes are the simplest of all self-sufficient living organisms; at a macro-
scopic level they are small bags of biochemical cytoplasm with little internal structure. Yet microbes create
and use the fundamental molecular machinery common to all life: protein synthesis via DNA transcription
and ribosomal mRNA translation, gene regulation, cell membrane control of small molecule transport, signal
propagation and metabolic regulation via protein networks, etc. The DOE has also taken a strong interest
in prokaryotic biology [7] due to the role microbes play in bio-remediation of waste and carbon sequestration
(which affects CO; levels and thus global warming), and the national security implications of bio-terrorism.

From a modeling perspective, microbial organisms are an ideal starting point for building cellular models
because their structure is simple and they contain a relatively small number of large bio-molecules. For
example, consider Escherichia Coli (E Coli), the most studied and best understood of all microbes. E Coli
is cylindrical in shape, a few cubic microns in size, with a dozen flagella. Its single strand of DNA has
3000 genes, most of whose function is known. An E Coli cell contains on the order of a few million protein
molecules, tens of thousands of ribosomes, similar numbers of tRNA and mRNA molecules, and tens of
millions of small organic molecules and ions, with the remaining 70% of the cell volume being water [5].
From a high-performance computing standpoint, where simulations of 100s of millions or even billions of
particles or grid cells are becoming commonplace, a simulation of an E Coli cell could potentially model all
the bio-molecules in the cell (excluding water).

It is worthwhile to take note of several cell modeling efforts at other labs and universities. At the
continuum end of the spectrum, the Virtual Cell project [10] uses grids to model cell interiors and solves
reaction-diffusion PDEs to track species concentrations spatially and in time. In a similar vein, Sandia
researchers have used the finite-element MPSalsa code and its reaction-diffusion solvers in conjunction with
complex meshes of convoluted internal cell structures, such as the endoplasmic reticulum (ER), to model
calcium concentrations as a function of time inside the ER [2].

Many cellular events, particularly in small microbes, occur due to one or a few genes producing a few
copies of a protein, which is a concentration level not trackable by continuum representations. Stochastic
cellular models that handle low concentrations of reacting species have their origin in the work of Gillespie [4].
A vector of particle counts (one value per species) is stored, along with a list of chemical reactions and rates.
Particles have no spatial location; the system is assumed to be “well-mixed” so that any particle can interact
with any other. At each step in the simulation, each reaction is assigned a probability based on the reactant
concentrations and the reaction rate. Random numbers are used to choose which reaction occurs and at what
time interval. Time advances and the vector of particle counts is updated to account for reactants becoming
products due to the selected reaction. Several strategies for making Gillespie-style stochastic simulations

very efficient have been formulated [3]. Such models were used by Arkin and collaborators to study complex



gene regulatory networks, such as the phage A lysis-lysogeny decision network in E Coli [1].

Larry Lok at The Molecular Sciences Institute (TMSI, a collaborator in our modeling effort, see Section
6) has implemented a Gillespie-style model called Moleculizer which does not require an input list of chemical
reactions to run a simulation. Instead, rules are specified which describe binding sites on macro-molecules
and what states the molecule may be in (e.g. phosphorylation or methylation state). A simulation is initiated
with particle counts for a few simple species. Over time, new species are created on-the-fly as binding sites
are occupied and large protein complexes form. When a new species comes into existence for the first time,
all the association and dissociation reactions it can participate in are also enumerated as possible reaction
choices and assigned estimated rates. The advantage of this approach is that for reaction networks involving
protein complexes with several constituent proteins, each of which can be in several states, there can be a
combinatorial explosion of intermediate species and reactions that must be tracked; Moleculizer does this
without the need to pre-compute all the possibilities or the need to identify the interesting subset.

The StochSim model written by Bray’s group at Cambridge University [11] is also a stochastic simulator
but models individual particles (proteins, protein complexes, etc). Each timestep, a pair of reactants (or
a single reactant) is picked randomly and reacted at the appropriate rate. As before, the “well-mixed”
assumption holds, so that Gillespie-style stochastic results are produced. StochSim has been used to model
the bacterial chemotaxis effect in E Coli where the cell senses a chemical gradient in its extra-cellular
environment and performs a series of protein-based chemical reactions to change its flagellar motor control
and alter its motile behavior. In his thesis work, Shimizu enhanced Stochsim to include limited spatial
molecular information [12], which is possible because Stochsim tracks individual particles. Specifically,
membrane receptors in the chemotaxis pathway were allowed to cluster in different orientations and interact
cooperatively.

Finally, the cell modeling effort most similar to our methodology is the MCell project of Stiles and Bartol
[8]. They track individual particles (proteins, organic molecules, etc) moving via Brownian motion within a
cellular volume that includes membrane surfaces. The surfaces are triangulated so they can be created with
considerable geometric complexity to faithfully capture internal or external membrane topologies. Diffusing
particles do not interact with each other in the MCell model, but each surface can be embedded with receptor
patches that react with particles when they collide with the surface. Collisions are detected by ray-tracing
the particle’s path thru nearby surface elements. MCell has been used with great success to model the bio-
and electro-chemistry of neuromuscular junctions where the geometry of the junction surfaces plays a critical
role [13].

The cellular model we describe in this report has similarities and differences with respect to the models
just described. In our model each bio-molecule is represented as a single ”particle” within a cell. As in all the
stochastic models, a particle could be a single protein or protein complex (in a particular state) or a small
organic molecule. The cell itself is represented as a simple geometric volume with semi-permeable internal

and external boundaries that capture some of the biological characteristics of cell membranes. The model is



hierarchical in the sense that internal boundaries represent compartments (e.g. a nucleus or organelle) that
can have their own external membranes and internal sub-compartments. Unlike MCell, the boundaries in
our model are geometrically simple (e.g. a sphere), so they are more appropriate for prokaryotic cells than
for eukaryotic cells with complex internal structure.

As time advances in the simulation, particles diffuse independently via Brownian motion, within an
implicit background of water and small organic molecules. Compartment boundaries affect the motion as
particles may be constrained to move within a membrane or compartment volume or be allowed to permeate
from one compartment to the next. Each step, particles also interact with nearby particles (not with the
membranes) in a probabilistic sense. As in several of the models described above, the rules for particle-
particle interactions are encoded in chemical rate equations (e.g. A+ B — C) with specified rate constants.

From a computational standpoint, this model is similar to other large-scale particle codes developed at
Sandia and elsewhere - e.g. molecular dynamics, direct-simulation Monte Carlo (DSMC), and electromagnetic
particle-in-cell (PIC) models. Computational issues that have been addressed in those models, such as
Monte Carlo rules for probabilistic interactions, efficient neighbor finding, and parallel implementation, can
be brought to bear on the cellular model as well. From a biology standpoint, the challenge is to represent
cellular function with model inputs (diffusion constants, list of reactions, reaction rates) that enable both
qualitative and quantitative comparison of simulation results with experiment, and which ultimately leads to
biological insight. This is a difficult challenge, since many model inputs are often not known to high fidelity.

This report describes our initial implementation of this model. While still preliminary in some respects,
it does capture several features thought to be important for modeling prokaryotic cell biochemistry. It
allows for arbitrarily low concentrations of a particular particle species. Particles are tracked spatially which
allows for concentration gradients and for diffusion-limited reaction effects to be captured. Particles can be
localized within compartments, which cells use in conjunction with semi-permeable membranes to isolate
and concentrate desired reactants. Similarly, membranes are modeled as two-dimensional diffusion/reaction
environments with permeability options, which mimics their true biological behavior. Diffusing particles
interact with other diffusing particles, as a model of solution-based chemistry.

The remainder of this report proceeds as follows. In the next section we provide details of our model. In
section 3 we describe the simulation options and commands in a user’s guide format. In section 4 we present
the results of several simulations performed with the new code. Finally, in section 5 we highlight features

we plan to add to the simulation model.

2 Model

In this section we describe a simple cellular model which can represent individual macro-molecules and
their interactions with each other. The model has several components: particles, cellular geometry, particle
motion, and particle interactions. We discuss each of these in turn, then describe how they are combined in

the model to create a simulation.



As described in the previous section, the number of “interesting” macro-molecules in a microbial cell
is often no more than a few million. By “interesting” we mean those that are participating in a reaction
network one is attempting to model. Of course, for simplified models of small portions of a full network, the
particle count may be much smaller. In our model, an individual particle represents a single macro-molecule.
It could be an individual protein, a protein complex (e.g. a membrane-bound ABC transporter), a molecular
machine (e.g. a ribosome), a portion of a DNA strand (e.g. a gene or operon), or a smaller organic molecule
that will bind to a protein target. Particles in the model have an x,y,z position and a type (or species). A
particular protein or complex that exists in several states (e.g. due to phosphorylation) can be represented
by different types.

Cellular geometry is represented in a very simplified form in our model. This is due in part to our
focus on prokaryotic cells which have limited internal structure, and in part to our focus on particle-particle
interactions rather than particle-geometry interactions (e.g. with a convoluted membrane surface). Cells
are represented as a hierarchy of compartments. An individual compartment is either a 3d sphere or a 2d
membrane on the surface of a 3d sphere. (Additional compartment geometries are planned; see Section 5).
In a topological sense, compartments can be placed inside other compartments which is what is meant by
hierarchy. For example, Figure 1 is a 2d representation of a 3d model where a cell with an outer membrane
contains a nucleus (with its own membrane) and another organelle. In this hierarchy, the nuclear volume is
inside its membrane, which is inside the cell cytoplasm, which is inside the cellular membrane. The organelle
is simply inside the cytoplasm. Relatively complex geometries can be built up using the rule that each
compartment is inside either 0 or 1 other compartments.

Particles in our model move via Brownian motion and each species is assigned a diffusion coefficient. If
the coeflicient is infinite, the particle simply moves each timestep to a new random location anywhere within
its compartment. The more interesting (and common) case is when the diffusion coefficient is finite. Since
the cytoplasm is densely packed with macro-molecules, smaller organic molecules, and water, timesteps in
the model are large compared to the time between molecular collisions. Particles undergo a random walk
due to such collisions, which for large timesteps gives rise to diffusive behavior.

If a particle with diffusion coefficient D is at the origin at time 0.0 and diffuses for a time ¢, the probability

it ends up at position (x,y,z) is given by

1 —r?
P(xayazat) - (47TDt)3/2 exp (m)

2 = 22 + y? + 2%. The average distance T a particle moves each timestep ¢ is given by the integral

where r

of r x P() over all volume which yields

r:%m

P(z,y,z,t) is the product of three 1d Gaussians, which means the movement of a diffusing particle

can be computed with 3 random displacements in z,y, z, each sampled from a Gaussian distribution with



nucleus

Figure 1: A 2d representation of a simple 3d cellular geometry with several compartments. The red circles
are membranes around the cell and nucleus. An organelle without a membrane is also shown. Particles of

various species (colors) diffuse within and between compartments.

the appropriate o = v/2D¢. This computation is performed each timestep for each particle. For particles in
membranes, a 2d version of this computation is performed, and the particle diffuses within the zero-thickness
membrane.

For 3d motion, the new position of the diffusing particle is tested to determine if it is outside its compart-
ment or inside an interior compartment. If not, the move is finished. If so, movement from one compartment
to another can be assigned a permeability factor from 0.0 to 1.0 (see Section 3). A random number is
generated to determine whether the particle permeates from the original compartment to the new one. If
it moves to the new compartment then it is placed on the boundary between the two compartments. If it
stays in its original compartment then it is also placed on the boundary, but an additional diffusive move is
done for a portion of the timestep to allow it to move away from the boundary.

Particle interactions in our model are derived from an input list of chemical reactions. A chemical reaction
takes one or more reactants and converts them to one or more products at a specified rate. Without loss of
generality our model treats reactions with one or two reactants, since reactions with 3 or more reactants can
be written as a series of simpler reactions.

Consider the one-reactant reaction

A—-B+C+...

with a rate constant k in units of 1/time. If there are N particles of species A in the simulation, then in



a timestep of size ¢, the number that should perform the reaction is Nkt. In our model, a decision for each
A particle is made by performing the reaction if a random number is less than kt. If the reaction occurs,
particle A is deleted, and new particles B, C, ...are created at A’s location.

Now consider the two-reactant reaction

A+B—->C+D+...

with a rate constant & in units of 1/molarity-time. For a well-mixed system of volume V' with N4 particles

of species A and Np particles of species B, the number of reactions N that will occur in time ¢ is given by

kENaNgt
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where A, is Avogadro’s number. We desire the same number of reactions to occur in our spatial system

N =

each timestep (on average), between pairs of nearby particles. One simple way to do this is to consider all
A B pairs closer than some cutoff distance R as potential reaction partners and react each of them with a
probability F' so as to produce IV reactions. In a snapshot of a well-mixed dilute system, for small R, the
number of A,B pairs closer than R apart is given by Np = NyNpVg/V where Vi = §WR3. If a fraction
P of them react in a timestep, then NV = PNp. Setting the two expressions for N equal yields an equation

that is independent of V', N4, and Np, namely

okt
B AUVR

As expected, this means that for a given k and ¢ there is an inverse relationship between the choice of

P

R and P. The larger R is chosen, the smaller P must be set to induce the correct number of reactions.
Conversely, the smaller R is chosen, the larger P must be. Since P cannot exceed one, this sets a lower
limit on R. Note that the choice of P and R can be different for each reaction. This leaves considerable
freedom for setting P and R values in our model. Most generally, the reactivity cutoff distance R should
be a function of the diffusion rates for A and B. This is an option we are exploring; see Section 5. In the
current version of the code, the user sets a maximum P, for any reaction (e.g. 0.5) and the simulation sets
a universal R value for all reactions that gives the desired P, for the fastest reaction. The P values for all
the other reactions are set accordingly to values less than P,,. Note that these same reaction rules are used
(and assumed valid) for non-homogeneous systems where the well-mixed assumption no longer holds.

A simulation using the model just described has two phases: setup and timestepping. During the setup
phase, particle species and reactions are defined, as is the cellular compartment geometry and topology.
In the setup phase particles with desired counts and spatial distributions are also created within specified
compartments.

The timestepping portion of the simulation proceeds in the following way. Each timestep consists of 3
stages: particle motion, neighbor finding, and reactions. At the end of each timestep, output of various

statistics or particle snapshots can (optionally) be performed.



The particle motion stage moves each particle to a new position within its compartment (or to the
boundary of a neighboring compartment) using the Brownian motion rules described above. A key point is
that each particle moves independently of all others. The next stage is to find pairs of nearby particles. This
is done by binning the particles into 3d bins whose size is equal to the reaction cutoff R, described above.
The binning is an O(N) operation in the number of particles N. The key point is that two particles can
only interact in this timestep if they are in the same or adjacent bins.

The final stage is to perform reactions by looping over the particles and checking surrounding bins for
potential reaction partners. If two reactants are within a distance R of each other, a random number is
generated and the reaction occurs if it is less than the corresponding P-value. If it occurs, the reactant
particles are deleted, and the product particles are created. They are placed at the spatial midpoint between
the 2 reactants if both reactants have non-zero diffusion coefficients. If one of the reactants has a zero
diffusivity, the products are created at its location. The products are flagged so that they cannot perform a
second reaction in the same timestep. After all neighbors are checked, if the particle participates in one (or
more) one-reactant reactions, random numbers are used to check for that possibility as well. The assumption
is that in any timestep a single particle can participate in at most a small number of reactions (few neighbors),
each of which has a small likelihood of occurring. Thus treating the reactions as independent possibilities is

both accurate and efficient.

3 Code Commands

The basic model described in the previous section has been implemented in a C++ code called ChemCell,
that is designed to be both modular and easy to extend with new features. For example, the current
version has only spherical volumes and spherical membranes as geometry options. However, the C++ classes
that implement the spherical equations could be cloned to create sibling classes that implement alternate
geometries (ellipsoids, capped cylinders, etc). The current version of the code is serial (runs on a single
processor), but the data structures and algorithms of the code were designed with parallelism in mind. See
section 5 for more discussion of these issues.

ChemCell takes an input script as its argument (“chemcell in.kinase”), which is a text file containing
a list of commands. The code reads the file, one line at a time, and acts on the command. Typically the
command sets some particle or geometry option within the simulation. When a “run” command is read, the
simulation runs for a number of timesteps. Subsequent commands can change desired options and invoke
additional “run” commands. The code exits after the last line of the input script is read.

The input script can contain blank lines. The first word of a non-blank line is treated as a command.
Subsequent words (separated by white space) are arguments for the command. Any text following a '#’
character is treated as a comment and ignored. Commands and their arguments must be in lower case, with
the exception that user-specified IDs and filenames can include upper-case characters. Generally speaking,

commands can appear in any order in the input script; exceptions are noted below.
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ChemCell commands can be grouped in 4 categories as follows:

Global settings:

timestep set the timestep size

seed set the random number seed

dump dump output to a file

screen write output to the screen

max_prob set the maximum probability that a reaction will occur
move_style set the style of Brownian motion

Geometry commands:

compartment define a compartment within a cell

inside define relationship between 2 cell compartments

Particle commands:

species name a particle species

distribution define spatial distribution of particles in a compartment

create create a group of particles

diffusion set a diffusion coefficient

reaction define a chemical reaction

permeable set permeability for a species into or out of a compartment
Miscellaneous:

include include another input file

run run a simulation

We now list each command in alphabetic order, giving arguments and options for each command. Note
that some commands have default values, which means they do not have to be specified in an input script

unless the default needs to be changed.

COMPARTMENT COMMAND
Syntax:
compartment ID style args
ID = any string
style = “sphere” or “membrane”

args:

11



for style = sphere, args =xy zr
X y z = center of sphere
r = radius of sphere
for style = membrane, args = xy z r
x y z = center of membrane
r = radius of membrane
Examples:
compartment cytoplasm sphere 0 0 0 10
compartment outer-membrane membrane 0 0 0 10
compartment nucleus sphere 2 2 3 3.5
Discussion:
Create a cellular compartment to hold particles. A sphere is a 3d sphere. A membrane is the surface of
a 3d sphere. All numeric values are specified in units of microns.
Related commands:

inside, permeable

CREATE COMMAND
Syntax:
create N species-ID comp-ID dist-ID
N = number of particles to create
species-ID = what species they are
comp-ID = what compartment to create them in
dist-ID = what spatial distribution to create them with
Examples:
create 1000 CO2 cytoplasm dist1
create 50 receptor3 outer-membrane uniform
Discussion:
Create N particles of a species in a compartment using the specified distribution. The species, compart-
ment, and distribution IDs must exist before this command is used.
Related commands:

species, compartment, distribution

DIFFUSION COMMAND
Syntax:

diffusion species-ID value

12



species-ID = ID of a particle species
value = diffusion coefficient in em?/sec
Examples:
diffusion CO2 1.0E-5
diffusion RuBisCO 0.0
diffusion ribulose INF
Discussion:
Set the diffusion coefficient for particles of a given species. A value of 0.0 means the particle never moves.
A value of INF means it moves to a random new location within its compartment in a timestep. The default
value is 0.0 for all species. The species ID must exist before this command is used.
Related commands:

species

DISTRIBUTION COMMAND
Syntax:
distribution ID style args
ID = any string
style = “uniform” or “exp” or “gaussian”
args:
for style = uniform, args = rl r2
rl, r2 = starting, ending coords (from 0.0 to 1.0)
for style = exp, args = rl1 r2 A
rl, r2 = starting, ending coords (from 0.0 to 1.0)
A = exponent of the distribution (sign is ignored)
for style = gaussian, args = sigma r0
sigma = width of Gaussian
r0 = mean of Gaussian (from 0.0 to 1.0)
Examples:

distribution distl uniform 0.0 1.0

Discussion:

Create a distribution function to use in particle creation. This enables particles to be created at varying
densities in different regions of a compartment. Distributions are unitless; they only get mapped to a real
compartment when used with the create command.

A style of “uniform” means particles will be created with a uniform volumetric density within some

sub-region of the compartment. If r1 = 0.0 and r2 = 1.0 then the entire compartment is filled. If r1 = 0.0
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and r2 = 0.5, then no particles are created at a radius greater than half the compartment size; only the
innermost half of the sphere would be filled.

A style of “exp” biases the distribution radially using the weighting factor exp(—Ar) where A is the 3rd
argument listed above. The rl and r2 arguments are the same as in the ”uniform” case. Thus if rl = 0.5
and r2 = 1.0 and A = 1.0, then only the outer half of the spherical compartment will be filled with particles,
and they will be more dense at the inner radius of the sphere (rl) than they are at the outer (r2). The larger
A is, the larger the weighting factor that is applied.

A style of “gaussian” creates a Gaussian spread of particles centered at a specified radius (r0) within the
spherical compartment. The width of the spread is given by the sigma parameter. Thus if r0 = 0.5 and
sigma = 0.1, then a relatively narrow radial shell of particles is created at half the radius of the spherical
compartment.

Related commands:

create, compartment

DuMP COMMAND
Syntax:
dump N filename
N = dump particle snapshots every this many timesteps
filename = file to dump to
Examples:
dump 100 cell.out
dump 0
Discussion:
Dump a shapshot of particle coordinates and species types to the specified file every N steps. If N = 0,
no dump is performed and the file need not be specified. The default for N is 0.
Related commands:

screen

INCLUDE COMMAND
Syntax:
include filename
filename = new file to take input commands from
Examples:
include reaction.list2

include all_species

14



Discussion:
Begin reading input commands from the specified file. When that file ends, return to the current file and
continue reading. This allows long lists of reactions or species to be stored in separate files. Include files can

be nested.

INSIDE COMMAND
Syntax:
inside comp-ID nl n2 n3 ...
comp-ID = ID of parent compartment
nl, etc = IDs of one or more children compartments that are inside the parent
Examples:

inside membrane cytoplasm

inside cytoplasm carbox1 carbox?2
Discussion:

Define what compartments are inside another compartment. Each compartment can have 0 or more com-
partments inside it. Each compartment can have 0 or 1 compartment outside it. The various compartment
IDs must exist before this command is used.

Related commands:

compartment, permeable

MAX_PROB COMMAND
Syntax:
max_prob value
value = number between 0.0 and 1.0
Examples:

max_prob 0.2
Discussion:

Set the maximum probability for any reaction to occur in a given timestep. This value is used in
computing the actual probability that a specific reaction will occur. See Section 2 for a discussion of how
this parameter is used. The default value for max_prob is 0.5.

Related commands:

reaction

MOVE_STYLE COMMAND

15



Syntax:

move_style geom_style sample_style

geom_style = ”cube” or ”sphere”
sample_style = ”"uniform” or ”brownian”
Examples:

move_style sphere brownian
move_style cube uniform

Discussion:

Set the style for how particles move as they diffuse in 3d space. The “cube” setting means they move

within a small cube surrounding their current location. The “sphere” setting means they move in a radially

symmetric fashion within a small sphere. The size of the cube or sphere is determined by the diffusion

coefficient for the particle.

The “uniform” setting means particles move with equal probability to any location in the cube or sphere.

The “brownian” setting means the new location is sampled from a Gaussian that is truncated to fit within

the cube or sphere. See the discussion in Section 2 for more details.
The default move_style setting is cube brownian.
Related commands:

diffusion

PERMEABLE COMMAND
Syntax:
permeable species-ID compl-ID comp2-ID value new-species-ID
species-ID = species ID of particle in its original compartment
compl-ID = ID of compartment particle is moving from
comp2-ID = ID of compartment particle is moving to
value = fractional permeability (0.0 to 1.0)
new-species-ID = species ID the particle becomes if it moves to comp2-1D
Examples:
permeable CO2 cytoplasm carboxysome 1.0 CO2
permeable CO2 carboxysome cytoplasm 0.5 CO2
permeable Signal interior membrane 0.1 Signal-bound

Discussion:

Set the permeability for a particle as it attempts to move from one compartment to another. The two

compartments must be connected via an “inside” command. The permeability is directional; one value can

be specified for movement from compartment A to B, and another value for B to A. The particle can become

another species if it successfully moves to the new compartment, or new-species-ID can be the same as
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species-ID. The default permeability is 0.0 for all species and compartment connections.

compartment IDs must exist before this command is used.
Related commands:

compartment, inside

REACTION COMMAND
Syntax:
reaction reacl reac2 value prodl prod2 prod3 ...
reaction reacl value prodl prod2 ...
reacl, reac2 = species IDs of 1 or 2 reactants
value = reaction rate
prodl, etc = species IDs of 0 or more products
Examples:
reaction A B 1.0e-7 C
reaction C 1.0e10 A B
reaction Receptor Signal 1.0e-8 ActiveReceptor

Discussion:

The species and

Define a reaction that converts reactants to products at the specified rate. All reactions must have one

or two reactants. Any number of products is allowed. The value is the rate at which the reaction occurs in

a well-mixed system. The rate is in units of 1/molarity-time if there are 2 reactants; it is in units of 1/time

if there is only 1 reactant. All species IDs must exist before this command is used.
Related commands:

max_prob

RUN COMMAND

Syntax:

run N

N = number of timesteps

Examples:

run 1000
Discussion:

Run a simulation for N timesteps.
Related commands:

timestep
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SCREEN COMMAND

Syntax:

screen N

N = print particle counts to screen every this many timesteps

Examples:

screen 100
Discussion:

Print particle counts to the screen every N steps. If N = 0, no information is written to the screen. The
default for N is 10.
Related commands:

dump

SEED COMMAND

Syntax:

seed value

value = 1 to 8-digit integer random number seed

Examples:

seed 9585938
Discussion:

Set a unique random number seed that will be used to initialize the random number generator and thus
determine the sequence of random numbers used for Monte Carlo decisions within the simulation. The

default seed is 123456.

SPECIES COMMAND
Syntax:
species ID aliasl alias2 alias3 ...
ID = any string
aliasl, etc = additional strings that refer to the same species
Examples:
species CO2
species Rap3 0x0001847 signal-protein
Discussion:
Define a species of particle that will be used in the simulation. Each species has a base ID and 0 or more

aliases. In any command that uses a species ID, the base ID or any of the aliases may be used. Aliases
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are useful when lists of species names are generated by other programs, sometimes in a computer-generated

format. See the discussion of Moleculizer in Section 5.

TIMESTEP COMMAND
Syntax:
timestep value
value = size of timestep (in seconds)
Examples:
timestep 0.01
Discussion:

Set the size of a timestep in the simulation. The default value is 0.01 sec.

4 Results

In this section we discuss results from 3 models we have simulated with ChemCell. The first is for a very
simple system, involving only the bi-directional A + B + C reaction. The second is for a 3-stage kinase
cascade (9 species, 7 reactions) that is a simplified model for how a signaling event occurs within a cell. In
both cases we compare the spatial ChemCell output with that of a stochastic Gillespie model which includes
no explicit spatial representation of its particles. The third model is for a portion of the carbon fixation
process in a microbial cell, involving 12 chemical species and 11 reactions.

Consider three species A, B, C undergoing two competing reactions: A + B — C' and C — A + B, with
respective rate constants 10'° per molarity-sec and 1.0 per sec. The simulation is run for 1000 timesteps in
a 3d spherical volume of 10~!! liters with initial counts of 3000 A particles and 1000 B particles. Figure 2
shows the concentration of the three species over time when each particle has an infinite diffusion coefficient
(moves to a random new position within the volume each timestep). Within a second, the two reactions
reach equilibrium and the species concentrations are roughly constant. The black curves in the figure are for
a stochastic Gillespie simulation (zero-dimensional) of the same reactions and particle counts. The Gillespie
model treats diffusion only in the limit that all particles are assumed to be well-mixed at each timestep. The
two models give statistically identical results.

In Figure 3, particle count traces are shown for runs of the same model with varying particle diffusivities.
The black curve is data from Figure 2 with infinite diffusivity. For D = 1.0E-6 cm?/sec (red), the results
are essentially identical. For a 10x and 100x smaller diffusivity, the curves begin to diverge, though they are
asymptoting to the same equilibrium value. This is because the system has become diffusion-limited; for
small diffusivities the particles do not move fast enough to find new reaction partners and so the reactions

proceed more slowly.
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Figure 2: Particle counts versus time for A (red), B (blue), and C (green) species in a ChemCell simulation.
The diffusion rate for all 8 species is infinite. Black curves are the corresponding particle counts for the

same system run with a stochastic Gillespie model.

Kinase proteins often act within signaling networks within cells. Several kinase species can work in series
to trigger the desired response. A 3-stage kinase cascade can be modeled as a set of 7 coupled reactions as

listed below:

R*+K; - R*+ K} Ki+P— K +P

K+ Ky, —» K{+ K, K;+P—>Ky+P

K+ K; - K; + K; K;+P—> K3+ P
R* =+ R

An activated receptor R* will react with the first kinase species K; to produce an activated K;. The
activated K7 will in turn react with inactive Ky to produce activated K3. Likewise, activated K35 will
produce activated K3. Each of the activated kinase species are de-activated by a reaction with a phosphatase
P molecule. Similarly, the last reaction in the list indicates that the activated receptor R* slowly becomes
inactive over time. The choice of rate constants for the various reactions determines how quickly and how

strongly each of the activated kinase species will be triggered by its antecedent.
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Figure 3: Particle counts versus time for the A and C species of Figure 2 simulated at different diffusivities.
At D = 1.0E-6 ecm?/sec, the counts track the infinite diffusivity (or Gillespie) model; at smaller diffusivities,

the reaction system becomes diffusion-limited.

A plot of the particle counts for the 3 activated kinases and the originating signal receptor is shown in
Figure 4 for a ChemCell simulation of 5000 timesteps in a volume of 1072 liters with prototypical reaction
rates assigned to each of the 7 reactions. Initially there are 1000 activated receptors. The concentration
of each of the 3 kinase species spikes upward, one after the other, and their concentrations decay as the
signal receptors go inactive. The colored curves are for a simulation with infinite diffusion coefficients; the
black curves are the counts for the corresponding stochastic Gillespie simulation. As before, the 3d particle
simulation tracks the zero-dimensional Gillespie model, with only a slight statistical variation. Both the
peak heights and their positions (in time) are well-matched.

In Figure 5 the particle counts for the activated Kinase 1 species are shown for ChemCell simulations
with different diffusivities. As before, with a relatively large diffusion coefficient of 1.0E-6 e¢m?/sec, the
system tracks the infinite diffusion (or Gillespie) model. For smaller diffusivities, the kinase responds more
slowly to the activated receptor and thus the peak height is smaller, due to the decay in receptor counts. The
other two kinase peaks exhibit similar behavior. As before, this is a signature of diffusion-limited reactions,
where the kinase particles do not find reaction partners quickly enough for the appropriate reactions to
occur. These results for both the simple (ABC) and kinase model indicate the importance of accounting for

spatial locality (ignored in the zero-dimensional Gillespie model) in cellular systems where diffusion effects
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Figure 4: Particle counts versus time for the signal receptor (red) and 3 activated kinase species (green,
blue, magenta) in a ChemCell simulation. The diffusion rate for all species is infinite. Black curves are the

corresponding particle counts for the same reactions run with a stochastic Gillespie model.

are important.

Finally, we describe a ChemCell model that is a simplified encoding of a portion of the carbon fixation
process in a microbial cell. Autotrophic organisms use photosynthesis to convert inorganic carbon into amino
acids and starches for use in their metabolism. This carbon fixation process is a fundamental step at the base
of the food chain and is also a factor in global warming scenarios since large amounts of C'O» are sequestered
by organisms that fix carbon.

Carbon fixation is facilitated by the RuBisCO enzyme, which has a dual reaction profile wherein it can
act as a carboxylase (reacting with C'O2) or an oxygenase (reacting with Oy). This dual propensity reduces
the efficiency of carbon fixation, and a variety of methods have been evolved by organisms to enhance the
process. Photosynthetic marine bacteria, like Synechococcus, use carbon concentration mechanisms (CCMs)
to create a high inorganic carbon concentration in the proximity of its RuBisCO proteins. This occurs in
two stages, as indicated in the schematic of Figure 6. First, HCO; (bicarbonate ion) is concentrated in the
cytoplasm via transport through the cell membrane from the surrounding sea water. Second, the organisms
contain small organelles called carboxysomes which contain carbonic anhydrase, an enzyme which converts
HCOj to COs. Since the cell’s RuBisCO is also inside the carboxysomes, the enzyme is thus exposed to a
high concentration of COs.

In our model we use two nested compartments to represent the basic geometry of the CCM, one for
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Figure 5: Particle counts versus time for the Kinase 1 species of Figure 4 simulated at different diffusivi-
ties. As before, at high diffusivity, the count tracks the infinite diffusivity (or Gillespie) model; at smaller
diffusivities, the peak height is shifted in time and height due to diffusion-limited reactions.

the Synechococcus cell, and one for an internal carboxysome. The two compartments are shown outlined
with extra particles in Figure 7 which is a 2d slice through the 3d simulation model. Non-diffusing carbonic
anhydrase (CA) and RuBisCO (RUB) particles are placed inside the carboxysome, shown in pink and red in
the figure. Initially, HCO3 particles (black) are placed outside the cell. The permeability of the outer cell
membrane for HC'Oj5 is set 10x larger for diffusion into the cell than out of the cell, mimicking the operation of
the active transporters for HC'Oy in the membrane. The HCOj is also free to diffuse into the carboxysome.
There it is converted by CA to COs. The carboxysome membrane has a low permeability for COs back
into the cytosol, which is a known restrictive function of the carboxysome’s proteinaceous membrane. This
enable RuBisCO to enzymatically react with the CO; to produce organic sugars. Specifically, the 11 reactions

modeled in our simplified version of the process are as follows:

HCO; +CA—CO2+CA

RUB + rib — RUB* CO; + RUB* - SUG + SUG + RUB
SUG + SUG — SUG» SUG + SUG, = SUGH
SUG + SUG3 — SUG, SUG2 + SUGy — SUG,
SUG + SUG4 — rib+ rib+rib SUG2 + SUG3 — rib + rib + rib
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Figure 6: A schematic of the carbon concentration mechanism in cyanobacteria such as Synechococcus. Taken

from the Price and Badger research group’s WWW page at hitp://www.rsbs.anu.edu.au/profiles/price.asp.

SUGy - GLU SUG + SUG —- GLU

RuBisCO (RUB) must first bind a small organic substrate, a ribulose molecule (rib) (small blue in figure),
in order to become enzymatically active (RUB*). After this occurs it can perform the carboxylase reaction
to create 3-carbon sugars (SUG). The sugars react in various combinations to form two products: more
ribulose substrate molecules, and 6-carbon glucose (GLU). These reactions are written above in a simplified
form that ignores many intermediate steps and enzymatic partners, but does conserve the number of carbon
atoms in the model.

An initial and final snapshot from the ChemCell simulation are shown in Figures 7 and 8. 200 initial
HCOj3 ions were used and the simulation ran for 50,000 timesteps. All the intermediate species are not
visualized, but production of the final product (glucose) is evident in the final snapshot.

A plot of the particle counts (concentration) of the HCO; , CO,, and glucose versus time is shown in
Figure 9. HCOj is depleted in the environment external to the cell and builds up in the cytosol (and
carboxysome). Similarly, CO, concentration grows within the carboxysome, with the result that glucose is
steadily produced.

This model is an over-simplification of the true carbon fixation process. Our initial implementation also
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Figure 7: Initial snapshot of ChemCell simulation of microbial cell with an inner carbozysome organelle. A
2d slice of the 3d simulation geometry is shown. HCOg3 (black) begins outside the cell; ribulose molecules

(blue) are in the cytosol; carbonic anhydrase (pink) and RuBisCO (red) enzymes are inside the carboxysome.

involves educated guesses for diffusion rates, reaction rates, and background concentrations. However, the
results are indicative of the kinds of issues and questions that can be addressed with a model that includes
spatial locality at accurate length scales and involves realistic numbers of reacting particles. The simulation
is able to model the influence of various carbon concentration mechanisms and track glucose production
on time scales that are experimentally relevant (a few molecules per second). We are currently enhancing
the simulation model to examine questions such as (1) which reaction rates and permeability factors is the
glucose production sensitive to, (2) will inclusion of more compartments (for other stages of the carbon
fixation process) alter the simulation dynamics, and (3) how does placement of RuBisCO versus CA in the

carboxysome affect glucose production rates.
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Figure 8: Final snapshot of ChemCell simulation. HCO3 has diffused into the carbozysome where it has
been converted into COs (brown). A series of reactions mediated by the RuBisCO enzyme has converted the

inorganic COz to organic glucose (green).

5 Future Plans

The work discussed in this report indicates it is possible to model the biochemistry of prokaryotic cells with a
particle-based model that tracks the diffusive motion of individual molecular reactants and products within
a simplified compartment model of the cell geometry. However, the initial version of ChemCell discussed
here is still rudimentary in several respects. We view our work to date as a proof-of-concept implementation
that illustrates the promise such a simulation holds for modeling cellular processes.

These are some of the new features we are currently adding to ChemCell to make it a more realistic
cellular model:

(1) Geometry enhancements: The current version only recognizes spheres and spherical membranes.
Ellipsoidal and capped cylinder compartments are being added. Sub-structures (patches) within membranes

are also being considered to enable modeling of more realistic membrane properties.
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Figure 9: Counts of bicarbonate ions, carbon dioxide, and glucose molecules during the ChemCell simulation.

(2) Reactions: The reaction mechanism described in Section 2 is a simple formulation that reproduces
well-mixed reaction statistics. A more realistic formulation is to couple the reaction probability to the
probability of “overlap” between two diffusing particles. Consider one particle at the origin and a second a
distance R away. If both particles move via Brownian motion with diffusion coefficients D; and D, for a
time 7T, then the fraction of time F' they spend overlapping each other (within a distance Lg) is given by the

integral

1 T oo oo 1 1
PR Du Do Lo) = 2 |0 | | (5072 (Do)
I rs - R)?

—r° —(r: — R) —(r —m)?
exp <4D1t> exp (Tﬂ) exp <T> dridradt

Ly represents the concept of reaction volume; i.e. if the 2 particles are within a distance Lg of each other,

then they are close enough to react. Physically, it might be related to the size of a globular protein or protein
complex. Our plan is to pre-tabulate solutions to this integral for all pairs of reacting species as a function
of R since Dy, D>, and Ly are constants and 7' is the simulation timestep. For a pair of nearby particles,
a reaction probability can then be computed using the pre-tabulated values and the Monte Carlo strategies
described in Section 2.

(3) Parallel implementation: The current version of ChemCell is serial, but parallel speed-ups will be

needed as models are run with larger particle counts and more realistic reaction networks. The diffusion
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and reaction stages of each timestep are naturally parallel since particles move independently and reactant
pairs can also be treated independently. Since diffusion and reactions occur with spatial locality, the natural
partitioning of the model for parallel is a spatial decomposition. This is complicated by the fact that cell
geometries and particle densities can be somewhat non-uniform. We plan to use a dynamic load-balancer
that partitions based on geometry metrics to enable effective spatial partitioning. The Zoltan library [6] has

several tools for both partitioning and particle exchange between partitions that will be useful in this effort.
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Figure 10: Schematic of a portion of the reproductive alpha pathway in yeast. A signal is triggered by the
extra-cellular alpha factor binding to a Ste2 membrane protein. Ste2 in turn can bind to Ste4 which binds
to a scaffolding protein Steb5. Various other proteins can bind to the complex, some of which can be in
one of several phosphorylation states indicated by the small dark circles. GDP and GTP also bind to the
Gpal protein as indicated by the dark pentagon. A complex series of events results in the Fus3 protein being

released to transmit the signal into the cell interior. This figure is due to Larry Lok at TMSI.

(4) Species and reaction network generation: Complex reaction networks such as that of Figure 10 can

involve dozens of interacting proteins. Each partially formed complex (which proteins are bound, what
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states they are in) is a unique species in the ChemCell nomenclature. For the portion of the alpha pathway
illustrated there could clearly be hundreds or thousands of intermediate species and related reactions (the
combinatorial explosion described in Section 1). In the general case, the full set of reactions and reaction
products for all intermediate species is not known a priori. It would thus be difficult in ChemCell to specify
all species and reactions as inputs. We are working on this problem with collaborators at The Molecular
Sciences Institute (TMSI) and their Moleculizer code. As described in Section 1, Moleculizer has the ability
to generate new species and new reactions on-the-fly as a stochastic simulation progresses, based on user
identification of molecular binding sites and rules for how large protein complexes are built from simpler
components. We are working to automate the use of Moleculizer output to be used as ChemCell input; a
longer-term goal is to merge the functionality of the two codes.

(5) Output: We are developing a richer set of output options within ChemCell for simulations with
large numbers of particles, species, and reactions. A related issue is the need for better post-processing 3d
visualization of cell geometries and particle motion. We are investigating several possible approaches to this

problem, including the DReAMM visualization package distributed by the MCell group [9].
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