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Abstract 
 

We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale 
Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for 
accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer 
Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software).  We use 
new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water 
model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes 
of MD for practitioners and researchers in numerical analysis and computational mechanics. 
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Chapter 1: Substructured molecular dynamics simulations using 
multibody dynamics algorithms through LAMMPS-POEMS 
coupling 
 
 
Rudranarayan M. Mukherjee 
Department of M.A.N.E., Rensselaer Polytechnic Institute, Troy, New York 12180 
 
Paul S. Crozier 
Sandia National Laboratories, Albuquerque, New Mexico 87185 
 

Abstract 
 

In this paper we outline a method of reduced order modeling of biomolecular systems as sub-
structured multi-rigid body articulated systems and the integration of molecular dynamics 
software with multibody dynamics software to facilitate this modeling effort. We use a recursive 

( )O n  method based on Kane’s method for generating and solving the equations of motion. The 
methodology is verified by simulating several biomolecular systems. The method shows good 
energy conservation in NVE ensembles and preserves the essential dynamics of the system. We 
have developed an open-source computational tool by combining a classical molecular dynamics 
software LAMMPS and a multibody dynamics research code called POEMS. This tool is freely 
available to all researchers and gains on the complementary nature of the two codes by coupling 
the efficient force calculation algorithms in LAMMPS with the efficient algorithm in POEMS 
for generating and solving the coupled equations of motion.   
 

1. Introduction 
 
Molecular dynamics (MD) simulations provide the methodology for detailed fine scale modeling 
on the molecular level. MD in the most traditional sense can be viewed as a process by which 
one generates atomic trajectories of a system of particles by direct numerical integration of 
Newton’s equations of motion for each particle, with the appropriate initial and boundary 
conditions. This type of procedure has the advantage that as the integration/simulation 
progresses, the simulation yields important information not only about the intermediate states 
and the mechanisms which produced them, but also the rates at which these processes occur. 
Additionally, not just these states, but the predicted rates serve as valuable means for validating 
the models. Unfortunately MD simulation using standard atomistic models quickly run into 
significant challenges for all but the most elementary systems. This is because classical 
molecular dynamics (MD) propagates the motion of molecular models by solving the equations 
of motion for all the atoms in the model. In the fully atomistic case, (i.e. the Newton’s equations 
of motion are derived and solved for every atom of the system), we have the most direct 
application of the physics involved, with the associated implementation being in many regards 
conceptually the simplest and easiest to apply. Unfortunately, due to the nature of the molecular 
interactions, specifically the stiffness of the bonds and other interaction, solving these equations 
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(though straight forward) requires very fine time steps in order to maintain temporal integrator 
stability (the highest frequency of the systems must be accurately captured). Depending on the 
temporal integration method used, at least one system wide force determination (to drive the 
equations of motion) must be performed and this determination is extremely expensive (often the 
most costly aspect) for large systems. Thus, though conceptually simple and easy to implement, 
such simplistic brute force methods grind to an effective halt under the burden of their sub-
femtosecond ( 1510<  sec.) required time steps and associated expensive force determinations.  
 
Due to these difficulties many approaches have been developed in an attempt accelerate the 
simulations. Many efforts have focused on overcoming the strict time step limits in MD 
simulations. If larger stable integration time steps can be taken, then fewer expensive force 
determinations (which generally dominate the overall cost) are needed. This accelerates the 
simulation because the CPU time required is roughly proportional to the number of systems level 
force determinations executed. These efforts have primarily focused on removing (or at least not 
considering) the high frequency components of the system. It is these highest frequency 
components which govern the required temporal integration step size [1]. Examples of these 
approaches include: Constrained Dynamics Through Explicit Constraints [2], Constrained 
Dynamics Through Implicit Constraints via Generalized Coordinates [3], Reduced 
Computational Order (Cost) Algorithms [4], Multirate Temporal Integration [5][6], Eigenvector 
(Modal) Schemes [7], Implicit integration schemes [8], Reduced Cost Force Determination [9] 
and the use of Multibody Dynamics Algorithms [4] among others.  
 
Each of these approaches offers it own advantages and real disadvantages. Outwardly these 
methods appear to have little in common other than the shared objective of performing accurate 
integration of the equations of motion in less time. Each in fact represents a form of model 
reduction. In this paper we outline a method of reduced order modeling of molecular systems as 
sub-structured multi-rigid body articulated systems and the integration of molecular dynamics 
software with multibody dynamics software to facilitate this modeling effort.  
 

2. Modeling Approach 
 
The fundamental idea behind this work is the coarse-graining of select spatial domains in a 
molecular dynamics simulation into uncoupled and coupled rigid body systems. This process can 
be viewed as aggregation where a large number of discreet particles such as atoms or molecules 
are constrained to move as either a single rigid body or a system of articulated rigid bodies 
connected by kinematic joints. This modeling approach is a valid if the in the spatial domain in 
consideration, the relative motion of these discreet particles is limited or localized. 
  

2.1 Kinematic Model 
 
The dynamics of a single rigid body as modeled using Newton-Euler equations of motion would 
include three degrees of translational motion and three degrees of orientational change. The 
translational degrees of freedom are easily those associated with the three Cartesian coordinates 
of the center of mass of the body. The time derivatives of these degrees of freedom give rise to 
the translational velocity and acceleration of the body. Similarly the time derivatives of the 
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orientational degrees of freedom (or some combination of the same) may give rise to the angular 
velocity and angular acceleration of the body. However the choice of the orientational degrees of 
freedom can be tricky and result in numerical difficulties. The easiest way to model the 
orientation would correspond to the three Euler angles with each angle associated with a rotation 
about each of the Cartesian directions. Although commonly used, this choice of degrees of 
freedom can result in numerical singularities arising from dependency in the kinematic equations 
relating the orientation angles. To overcome this singularity, quaternion or Euler parameters are 
used in modeling the orientation. Euler parameters are a set of four parameters related to each 
other through a constraint equation. Use of these parameters result in robust kinematic equations 
which never suffer from numerical singularities. The time derivative of the Euler parameters is 
related to the angular velocity of the body. The angular velocity of the body is the time rate of 
change of orientation of the body and modeled as having a component about each of the 
Cartesian directions.  
 
There are two different representations of these reduced order models. The first are single rigid 
bodies where there is no kinematic coupling between the dynamics of the bodies. The 
interactions between these rigid bodies are modeled explicitly through the use of force-fields 
such as all-atom or unified atom interactions. The second type is coupled rigid bodies. Two rigid 
bodies are coupled when they share a common atom. This common atom is treated as a 
kinematic joint location. In these models, along with the force-field interactions, there exist 
constraint inertial loads between bodies. This is because the bodies are coupled at the common 
atom location and a kinematic constraint exists between any two bodies in the coupled system. A 
set of coupled rigid bodies are hence forth referred to as chains. A system may have any number 
of chains in it. Different chains interact only through the force field interactions as there is no 
inertial coupling between different chains.  
 
Another type of reduced order model which again reduces to an articulated chain topology is the 
axial bond constrained systems. The fully atomistic representation of these systems consists of 
atoms or beads connected to each other by stiff joints. In the reduced order model, the axial stiff 
spring is replaced by a constant length massless rigid link. Each link and the next bead it is 
attached to is treated as a single body with unit mass and negligible inertia. The successive 
bodies are connected to the base body by joints allowing only rotational degrees of freedom.  
 
In our model, the chains are free floating. The base body is modeled as connected to the inertial 
reference frame by a six degree of freedom joint allowing relative translational and rotational 
degrees of freedom. Each joint is modeled using Euler parameters to avoid any singular 
configurations. Unlike the SHAKE or RATTLE formulations which require additional nonlinear 
equations to be solved to impose the constraints, our model does not require solving any 
additional equations for maintaining the constraints. Further while SHAKE and RATTLE impose 
the constraints iteratively and only to a specified tolerance, our modeling approach enforces the 
constraints non-iteratively and exactly with no constraint violation. The constraints are imposed 
implicitly through the use of relative (internal) coordinates which reduces the formulation to a 
minimum set of ordinary differential equations.  
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2.2. Generating the rigid body properties 
 
The calculation of the total mass, position of the center of mass and the velocity of the center of 
mass of any rigid body is a simple from the properties of all the atoms that are aggregated into 
that rigid body. However calculating the inertia matrix and the angular velocity of the bodies is 
more involved. The calculation of the inertia matrix of the body involves taking the second 
moment of the mass of each atom about the center of mass of the rigid body. As this inertia 
matrix would vary with the motion of the body, the temporally invariant principle moments of 
inertia are calculated by solving an eigenvalue problem from the calculated inertia matrix. The 
eigenvalue problem also produces the three principle directions associated with the principle 
moments. These directions are treated as the basis vectors of the body based reference frame 
thereby forming the transformation matrix from the body basis to the Newtonian basis. To 
calculate the angular velocity, the angular momentum of the system of atoms is calculated about 
the center of mass of the body by summing the first moment of momenta of each atom. It is then 
converted to the body basis. This now equals the product of the diagonal inertia matrix and the 
unknown angular velocity, which can now be easily calculated by a scalar division.  
 
 

3. Algorithm Overview 
 
In this section an overview of the recursive ( )O n  algorithm is presented. This algorithm uses the 
projection method as promoted by Kane and others [10] and uses internal coordinates instead of 
the Cartesian coordinates to formulate and solve the equations of motion. The algorithm begins 
by generating a topology or connectivity map of the chains in terms of relative coordinates, joints 
and body fixed reference frames. Each body is associated with its own body fixed dextral set of 
unit vectors. The joint locations, inertia values and the generalized velocities are expressed with 
respect to the body fixed reference frames. One end of the chain is chosen as the base body and it 
is connected to the inertial reference frame by a kinematic joint. Each successive body is 
connected by two kinematic joints, one to an inward body and the other to the outward body on 
the chain. The orientation and motion of a body is expressed in terms of the admissible degrees 
of freedom of the joints. The linear and angular velocities of a body are expressed as invertible 
linear combinations of the generalized speeds i.e. time derivatives of the relative degrees of 
freedom. The algorithm works in three recursive sweeps or traversals. The first sweep begins at 
the base body and moves outwards to the tip while recursively generating the kinematic 
preliminaries like partial velocities [10], inertias and applied forces from the known states of the 
system. The second traversal then begins at the tip and recursively moves inwards towards the 
base body. This is a triangulation traversal and it recursively generates the articulated compound 
inertias and forces. This traversal is equivalent to successively shifting the inertias and the forces 
inwards towards the base body. Since the boundary conditions are known at the base body, at the 
end of the triangulation sweep the equations of motion for the base body can be solved to 
generate the state derivatives of the base body. Starting at the base body the third traversal works 
outward while recursively solving for the state derivatives of each successive body. By the time 
the sweep ends at the tip, the state derivatives are all solved in an efficient ( )O n  complexity.  
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3.1. Mathematical Preliminaries 
 
To aid in the subsequent development, consider the notation associated with the description of an 
arbitrary set of interconnected rigid bodies shown in figure (1). For this system, proximal 
(parent) body [ ]Pr k  is connected to its child body k  through joint- k , via joint points k −  and k +  
which reside in bodies [ ]Pr k  and k , respectively. Similarly, the distal (child) bodies of body k  
are given as members of the set of bodies [ ]Dist k . The position vector ks  locates joint- k  
relative to the mass center of body [ ]Pr k , while the position vector kr  locates the mass center of 
body k  with respect to the outboard end of this same joint. It will also prove convenient to 
describe the position of child mass center k∗  relative to proximal mass center [ ]Pr k ∗  by the 
vector kγr .  
 

  
1. Notation Associated with an Arbitrary Set of Interconnected Rigid Bodies 

The angular velocity of any body k  with respect to the Newtonian reference frame N , and 
velocity of its associated mass center k∗  may always be written in terms of the generalized 
speeds as  

 
1

n
k k k

r r t
r

uω ω ω
=

= +∑  (1) 

and  

 
1

n
k k k

r r t
r

u
∗ ∗ ∗

=

= + .∑v v v  (2) 

In these expressions k
rω  and k

r

∗

v  are termed the thr  partial angular velocity of body k  and thr  
partial velocity of point k ∗ , in N , respectively. These quantities may be thought of as basis 
vectors for the space of admissible system velocities and angular velocities, while the associated 
generalized speeds are the velocity space measure numbers. Additionally, the terms k

tω  and k
t

∗

v  
appearing in equations (1)–(2), are referred to as the angular velocity remainder term of body k  
and velocity remainder term of point k∗ , in N , respectively. These quantities are most often 
associated with specified/prescribed motion, and thus are not associated with the time derivative 
of a system degree of freedom.  
When deriving this method it is often convenient to express quantities in a scalar matrix, as 
opposed to a tensor (vector and dyadic) form. For this purpose an arbitrary vector kϑ  will be 
represented in matrix form as kϑ , which is associated with the local dextral orthogonal unit 
vectors 1k̂ , 2k̂ , 3k̂ , fixed in body k . One may then define the velocity, partial velocity, and 
velocity remainder term matrices as  

 and
kkk
trk kk

r t kkk
tr

V VP
vvv

ωωω
∗∗∗

⎡ ⎤⎡ ⎤⎡ ⎤
= , = , = .⎢ ⎥⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (3) 

 
With these matrices so defined, equations (1) and (2) may be expressed as  
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1

n
kk k kk

rrt t
r

uV V VPV
=

= + = + .∑  (4) 

One can similarly represent the generalized acceleration matrix of an arbitrary body k  as defined 
in previous works [11], [12], as  

 
kN

k

kN
A

a

α
∗

⎡ ⎤
= ,⎢ ⎥
⎢ ⎥⎣ ⎦

 (5) 

 
where kA  may also be divided into two portions. One is kA , which contains all terms which are 

explicit in the unknown state derivatives u&  and the other is the acceleration remainder term k
tA , 

which represents all of the other acceleration terms (and may be calculated directly from the 
system state), giving  
 kk k

tA AA= + .  (6) 

 
 

4. ( )O n  Forward Dynamics Analysis 
 

The basic recursive ( )O n  algorithm for performing forward dynamics simulation associated with 
tree-structure systems consists for three principal steps, or “sweeps”. These steps are the 
Kinematics Sweep, the Triangularization Sweep, and the Back Substitution Sweep.  
 

4.1. Recursive Kinematic Relationships 
 
The Kinematic sweep starts at the base body and works outward to the tip while recursively 
using the kinematic relations to generate the partial velocities, transformation matrices, 
translational and rotational velocities and state dependent acceleration terms in the body basis. 
With the generalized velocity, generalized acceleration, and generalized acceleration remainder 
term matrices as represented above, it is possible to compactly represent the recursive 
relationships necessary for determining all system kinematic quantities. As has been 
demonstrated in [11] we have  
 [ ][( ) ]Pr kk k kkT

k k tV S u VPV= + + ,  (7) 

and  
 [ ][( ) ]Pr kkk k kT

k tkS uA P AA= + + .  (8) 

 
The quantity kS  appearing in equations (7)–(8) is the basis consistent linear transformation 
matrix  

 
6 60

kk k
k

k

C CS
C

γ
×

×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦ .

 (9) 



 13 

Within this expression [ ]k kPr kC C≡  is the direction cosine matrix which relates the body k  basis 

vectors to those fixed in its parent body [ ]Pr k ; 0  is a 3 3×  zero matrix; and kγ
×

 is the skew 

symmetric matrix equivalent to the vector cross product operation kγ × . The shift matrix 
transformation kS  converts a system of forces and moments acting through the center of mass 
of k , to an equivalent force system, acting though a point of k  which is instantaneously 
coincident with the center of mass of [ ]Pr k .  
At this time, it is also convenient to define the body k  generalized inertia kI  and the body k  

generalized force kF  matrices  

 6 6
0(10)[ ]

0

k k
k

k

II
M

∗/

×= ,  (11) 

  

 6 1

( )(12)
[ ]

k k kk k k k k
tk

kk k
t

T I I
F

aR M

α ω ω
∗ ∗/ /

×
×

− +
= .

−
 (13) 

 
 
Within these expressions, k kI

∗/  is the 3 3×  central inertia matrix of body k , and kM  is the 
diagonal translational mass matrix of this same body. By comparison kT  and kR  represent the 
resultant force system of all moments and forces, respectively, acting on body k  through its 
center of mass k∗ .  
 

4.2. Triangularization 
 
The triangularization procedure works recursively inward to compute the articulated inertia mass 
matrix 3

kI  and the articulated generalized active force 3
kF  expressing as  

 3 1 3
[ ]

( )k k j j j T

j Dist k∈

= + ,∑I I T I S  (14) 

 3 1 3
[ ]

k k j j

j Dist k∈

= + ,∑F F T F  (15) 

 
 
where [ ]Dist k  is the distal (children) set associated with body k . The triangularization operator 

jT  and the basis consistent shifting operator jS  used in (14)-(15) are defined as  

 3
1( ) ( )j j T j j j T

j j
jM

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= − ,T S U I P P  (16) 

  

 
0(17) (18)

0 0

j j
j

j

γ⎡ ⎤
⎢ ⎥ ×
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
= .⎢ ⎥

⎣ ⎦

C U
S

C U
 (19) 
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In (16) and (19), matrix jC  is the direction cosine matrix relating to local basis vector of body 
[ ]Dist k  to k , U  is an identity matrix, and jγ×  is the matrix representation of the vector cross 

product. The quantities kM  is also given by  
 3( )k T k k

k k kM = ,P I P  (20) 
 
 
with k

kP  defined as  

 
(21)N k

kk
k N k

k

ω⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

≡ .P
v

 (22) 

 
 

4.3. Back-Substitutions 
 
At the base body, information associated with an entire set of outboard bodies has all been 
accumulated and is explicitly available such that the equation 1 1

11 1 3M = P Fu&  can be isolated and 
yields the solution of 1u& . The solution for 1u&  is then substituted into the next equation to solve 
for 2u& . Proceeding in this manner, a generalized function expression for the solution of each 
generalized acceleration ku&  is given as follows  

 1
3 3

( ) [ ( ) ]
k T

k k k T kk
k

kM
−= − ,P F I S Au&  (23) 

 
with kA  computed from  
  
 1( )k k T k k

kk
−= + .A S A P u&  (24) 

  

5. Time Integration 
 
Velocity-Verlet temporal integration scheme for temporally advancing a dynamics simulations 
has been extensively used for atomistic simulations. Velocity-Verlet algorithms are symplectic 
and gives very good energy conservation characteristics. However for reduced order models 
involving coupled bodies, the performance of the Velocity-Verlet is not as good as with 
atomistic simulations. This is because the velocity dependent inertial forces such that the 
gyroscopic and Coriolis forces come into play for the reduced order models. Further, the motion 
of individual bodies in the articulated system is coupled and the motion of one affects all others 
resulting in constraint forces acting on the bodies. Also, as compared with an atomistic 
simulation, the integrands are not the Cartesian accelerations and velocities but the time 
derivatives of the generalized coordinates. For these reasons, the multibody dynamics equations 
of motions have been traditionally integrated by high order methods such as the Runge-Kutta4-5 
schemes. These schemes have traditionally been highly accurate and give good energy 
conservations for macroscopic problems like aerospace applications. However when applied to 
reduced order molecular dynamics simulations, these methods quickly become computationally 
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expensive as they require four expensive force calculations per integration step. For the systems 
studied in our work, the Lobatto III a-b partitioned Runge-Kutta integration scheme has been 
used. It is a second order method which iteratively calculates the velocities at the half step. The 
iteration quickly converges in one or two steps. The method efficiently accommodates for the 
velocity dependent inertial forces and requires only one force calculation per integration step.  
 

6. Applications and Results 
 
Discussed in this section are the test cases simulated to verify the validity of this development. 
The primary objective of simulating these test cases is to be able to reproduce the previously 
published results, and validate the stability of the simulations. Because of space constraints, the 
details of the results are not shown and can be found in an upcoming journal article.  
 

6.1. Water Box 
 
The fundamental test case to check the coupling of the two pieces of software is a box of waters 
consisting of 512 water molecules in NVE ensemble using different time steps of 0.5, 1 and 2 fs 
for a total simulation length of 100 ps. Each water molecule is treated as a single rigid body and 
the mass properties are calculated using the method outlined above. All atom force fields are 
used under periodic boundary conditions. The dynamics of the rigid bodies is simulated using 
POEMS and compared with the results obtained by imposing holonomic constant bond length 
constraints using SHAKE. While in SHAKE the Newton-Euler equations of motion are solved 
directly to generate the dynamics, in POEMS, Kane’s [10] equations of motion are used. In 
either case each rigid body is modeled as having three degrees of translational freedom modeled 
using Cartesian displacements and three degrees of rotational freedom modeled using body based 
reference frames and Euler parameters. In SHAKE the temporal integration was carried out using 
Velocity Verlet while the Lobatto III A-B scheme was used in POEMS. The energy conservation 
in the simulations is calculated using the ratio of standard deviation in energy to the mean energy 
value as the comparison metric. The simulations at different time steps showed good energy 
conservation with smaller time steps giving better energy conservation. To analyze the 
simulation results we calculated the mean square displacement of the water molecules and the 
coefficient of diffusion using Einstein’s equation. We also compared the thermodynamic 
properties using the POEMS and SHAKE approach. The results between the two sets of 
simulations were found to be in very good agreement.  
 

6.2. Alanine Dipeptide 
 
This molecule, CH3CONHCH(CH3)CONH, is a small enough molecule to avoid complexities 
of structure and yet has interesting dynamic behavior which makes it a prime candidate for initial 
simulation test to validate the method. The molecule has been sub-structured into two rigid 
bodies each corresponding to the -CONH unit while the remaining atoms are treated as bond 
constrained particles. All atom forces were calculated using LAMMPS while solving the 
multibody dynamics equations of motion of the sub-structured articulated system and the 
temporal integration were handled by POEMS. The simulation results, including energy 
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conservation, structural properties and configurational parameters were found to match with 
those generated using atomistic simulations. Further, because of the coarse-graining, an 
improvement of an order of magnitude in the integration time step was achieved.  
 

6.3. DNA simulations 
 
In these simulations we modeled the bond constrained dynamics of tethered DNA strands of 
lengths of 16 and 32 atoms. The fully atomistic interactions consist of FENE bonds and truncated 
Lennard Jones and Coulomb interactions. The DNA strands are tethered to a membrane which is 
modeled using a 9-3 Lennard Jones wall potential. In the reduced order model, the FENE bonds 
are constrained to fixed lengths modeled as massless rigid links. This reduces it to an articulated 
serial chain system modeled using POEMS. The simulation results were compared and validated 
against an atomistic simulation and an improvement in the integration time step of up to a factor 
of 6 was achieved.  
 

6.4. Box of alkanes 
 
We simulated a box of alkanes to validate the performance of the modeling scheme with a united 
atom potential. The systems under consideration were three boxes containing 216 chains of 
alkanes each of chain lengths 8,16 and 32 modeled under periodic boundary conditions in a NVE 
ensemble. The united atom Trepp3 force field was used in these simulations. The axial vibrations 
of the beads were constrained by modeling the stiff bonds as fixed length massless rigid links. 
This rendered the model as articulated chains of point masses connected by rigid links and 
kinematic joints. Three different time-steps of 1fs, 5fs and 10fs were used in the simulations. For 
these simulations too we used the energy metric discussed above to compare the simulations 
results with those obtained using SHAKE. The united atom force fields are smoother than the 
Lennard Jones potential and hence better energy conservation at larger time steps were expected 
using the articulated rigid body representation. We were able to achieve stable simulations with 
good energy conservation with increase in time steps by an order of magnitude.  
 

6.5. C-Terminal of Ribosomal 
 
This is a larger problem which provides better understanding of the performance of the 
methodology for complex biological systems. The C-terminal fragment (1CTF) of the L7/L2 
ribosomal protein from E. coli is used for this simulation. This system has been simulated in 
several references with different substructuring schemes. In this method the system is sub-
structured into 31 small rigid bodies with hinges at the φ  or ψ  angles. The simulation was 
monitored for energy conservation and preservation of essential dynamics.  
 

6.6. C-Terminal of Rubisco 
 
We have built a model of the RuBisCO (Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase) 
enzyme for simulation using our coupled LAMMPS POEMS simulation software. The fully 



 17 

atomistic model of the C-terminal of RuBisCO consists of 510 atoms modeled using harmonic 
bond potentials, CHARMM angle and dihedral potentials and non-bonding CHARMM Lennard-
Jones and Coulomb force fields with cut offs at 8 and 10. In the sub-structured model, the system 
consists of 11 rigid bodies connected together to form an articulated serial chain topology. All 
atom explicit force calculations are supported by this model. However intra-body interactions 
between the atoms that make up a rigid body are ignored as these would sum to zero. This is a 
modest sized problem which is a good example to validate the modeling approach. Using this 
model, NVE simulations were run for 1 nano-second. Different time steps were used to 
determine the drift in energy as a function of time-step. Ignoring the intra-body atomistic 
interactions give an immediate computational saving. Further, by using a rigid body model, an 
increase in the integration time step by an order of magnitude was observed.  
 

6.7. Rhodopsin 
 
Rhodopsin is a G-protein coupled receptor with a defined tertiary structure. It is a good example 
to study transduction and a large amount of experimental results are available about its structure 
and function. We have generated a sub-structured articulated rigid body model of the rhodopsin 
protein and have simulated the same with the LAMMPS-POEMS coupling. This is a fairly large 
system with the fully atomistic model consisting of about 5000 atoms. This atomistic model is 
sub-structured into 26 connected rigid bodies that form an articulated serial chain topology. 
Similar to the RuBisCO model, the Rhodopsin model was simulated in NVE ensemble for 1 
nanosecond at different time steps. The simulations showed good energy conservation at larger 
time steps. The coarse-graining provided significant computational savings in the calculations of 
the force interactions as the intra-body interactions were not calculated. Further using this model, 
we were able to obtain stable simulation with an increase in the time step by an order of 
magnitude.  
 

7. Software Development 
 
In this section the generation of the open source computational tool is discussed. The two 
research codes that are fundamental in this work are the LAMMPS: Large-scale 
Atomic/Molecular Massively Parallel Simulator software from Sandia National Laboratories and 
the multibody dynamics software POEMS: Parallelizable Open-source Efficient Multibody 
Software. LAMMPS is an open source code, with a GPL type license. Under development by the 
primary author, Steve Plimpton, and others since the mid 1990s, LAMMPS is a general purpose 
classical molecular dynamics code [13]. The POEMS code [14] is also open source, with a BSD 
type license. This is a general purpose multibody dynamics research code being developed by 
Rudranarayan Mukherjee and other members of Prof. Anderson’s research group at Rensselaer 
Polytechnic Institute. The two pieces of software have different functionalities which are 
complementary in nature. While LAMMPS is a classical molecular dynamics code with 
emphasis on atomistic simulations, POEMS is a multibody dynamics code with an emphasis on 
modeling dynamics of reduced order or coarse-grained models. A brief overview of both these 
pieces of software is presented in the next section.  
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LAMMPS is a classical molecular dynamics code that models an ensemble of particles in a 
liquid, solid, or gaseous state. LAMMPS can model atomic, polymeric, biological, metallic, or 
granular systems using a variety of force fields and boundary conditions. It runs efficiently on 
single-processor desktop or laptop machines, but is designed for parallel computers. In classical 
molecular dynamics, inter-particle force calculations are the most expensive part of MD 
simulations and hence have been carefully optimized and made more efficient as MD codes have 
matured. Among the many force fields (FF) currently available in LAMMPS are the commonly-
used CHARMM [15] and AMBER [16] biomolecular FF. LAMMPS also has all of the 
capabilities commonly required in biomolecular simulation, including full long-range 
electrostatics capabilities using Ewald or particle-particle/particle-mesh (PPPM, similar to 
particle-mesh Ewald), SHAKE bond and angle constraints, rRESPA [17] hierarchical 
timestepping, and NVE, NVT, and NPT integrators. LAMMPS also has the capability to 
simulate hybrid bio/non-bio systems through the superimposing of force fields.  
 
Though significant speedup can be gained from efficiently calculating the forces, which is the 
forte of LAMMPS, further substantial computational gains can be realized if the systems are 
coarse-grained by enforcing kinematic constraints. This is because imposing kinematic 
constraints can efficiently eliminate high frequency components thereby allowing larger 
temporal integration time-step. This results in a multiplying effect on improving simulation 
speed through combining larger integration step size and reduce force calculation costs. 
However, generating and solving the equations of motion of reduced order models particularly 
those which represent coupled multi-body systems can be challenging and unless some efficient 
formulation is resorted to, the computational cost can be as high as 3( )O n  where n  is the 
number of degree of freedom in the system. LAMMPS integrates Newton’s equations of motion 
for collections of atoms, molecules, or macroscopic particles and does not include any efficient 
formulations for effectively formulating and solving the equations of motions of reduced order 
models.  
 
This aspect has been addressed in POEMS. POEMS was written as a generic multibody 
simulation code which can efficiently handle the dynamics aspect of the reduced order models. 
POEMS is an object-oriented C++ research package for simulating the forward dynamics of 
multibody systems. Its emphasis was also placed on application to large ( 1n  ) systems, i.e. 
coupled systems involving many generalized coordinates. Majority of the effort in algorithm 
development has been oriented toward methods that perform well with applied to coupled 
systems involving many generalized coordinates. This code features libraries of different 
dynamics formulations for efficiently generating and solving the equations of motion of 
articulated system as well as different time integration schemes for advancing a simulation 
temporally. Commonly used kinematic and dynamic identities, organization of multibody 
topologies, and data structure with matrix manipulations which are generic to most multibody 
algorithms are built into the software using an object oriented design.  
 
The software in its current form has three algorithms for solving equations of motion of 
articulated multi-rigid body systems in chain and tree topologies.  

• KaneSolver() : The 3( )O n  complexity solver based on Kane’s method [10].  
• OnSolver() : The ( )O n  complexity recursive solver based [12].  
• DCASolver() : The Divide and Conquer method of ( ( ))O log n  complexity [18].  
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It also contains an implementation of a generalized impulse momentum formulation for correct 
kinematic coarse-graining of the reduced order models. This is a novel feature that enforces the 
correct initial conditions required to preserve the essential dynamics of the systems. No other 
research package has a comparable formulation and it is a significant development as it allows 
smooth transition between models of different resolutions. Because of space constraints this 
algorithm is not discussed here and presented in another upcoming research paper.  
 
Along with the solution of equations of motion, the software has temporal integration algorithms 
for temporal simulations. These include the following algorithms.  
 

Runge Kutta 4-5  Predictor Corrector  
Verlet and Velocity Verlet  Lobatto Partitioned III a-b Runge Kutta 4-5 

 
By coupling together these two pieces of software we have created a synergistic simulation tool 
which is freely available to all researchers working in molecular dynamics. The inherent features 
of these codes are complementary, with LAMMPS focused more on the efficient generation of 
force field and potential calculations while POEMS is aimed at efficiently handling the dynamics 
aspect of the reduced order models. This two fold approach is instrumental in accelerating 
molecular dynamics simulations and be applicable to a wide variety of problems in biomolecular 
and materials modeling. POEMS is built into LAMMPS as an external library and is distributed 
along with LAMMPS.  
 

8. Conclusions 
 
A novel method based on sub-structured coarse grained models of molecular dynamics systems 
is developed, implemented and validated. This method uses efficient ( )O n  complexity 
multibody dynamics algorithms for modeling the forward dynamics of these sub-structured 
models. A new computational tool is developed and released for public use under open source 
licensing. This computational tool culminates from coupling together the molecular dynamics 
code LAMMPS with the multibody dynamics software POEMS.  
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Abstract 
 

Rhodopsin is the prototypical G-protein coupled receptor, coupling light activation with high 
efficiency to signaling molecules.  The dark-state x-ray structures of the protein provide a 
starting point for consideration of the relaxation from initial light activation to conformational 
changes that may lead to signaling.  In this study we create an energetically unstable retinal in 
the light activated state and then use molecular dynamics simulations to examine the types of 
compensation, relaxation, and conformational changes that occur following the cis-trans light 
activation.  The results suggest that changes occur throughout the protein, with changes in the 
orientation of Helices 5 and 6, a closer interaction between Ala 169 on Helix 4 and retinal, and a 
shift in the Schiff base counterion that also reflects changes in sidechain interactions with the 
retinal.  Taken together, the simulation is suggestive of the types of changes that lead from local 
conformational change to light-activated signaling in this prototypical system. 

 

Introduction 
 
Rhodopsin is an excellent system for understanding the details of G-protein coupled receptors 
(GPCR) due to the large amount of experimental information related to both structure and 
function (for recent reviews, see Refs. 1; 2; 3; 4; 5; 6). It is also the first GPCR with a measured 
tertiary structure7 and is thus an excellent candidate for yielding insight into the molecular details 
of GPCR function. Explicit, all-atom molecular simulation can provide a view into the 
choreographic details of the structure-function relationship. A full understanding of these details 
is difficult, however, due to the large separation in time-scales between the photocycle of 
rhodopsin and current computational limits in computer simulation of biomolecules. In 
particular, the full photocycle occurs on the millisecond time scale,8 while the state-of-the-art in 
computer simulation of large proteins is tens of nanoseconds.  
 
Bovine rhodopsin has served as a model system for the understanding of transduction for many 
years.8 In particular, studies of bovine rods have led to initial  understanding of G-protein 
coupled systems,  to the first GPCR that was sequenced,9 and to understanding of the 
connections between particular residues and rhodopsin function.3; 10 For example, the role of Glu 
113 as the counterion,11 the critical role of certain residues in transduction,12; 13 and initial 
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suggestions for spectral tuning14; 15 all began with rhodopsin. An upcoming frontier is 
understanding the connections between the photocycle’s underlying conformational changes that 
lead to activation and signaling, and the structures of the G-protein itself 16; 17. 
A key aspect of understanding rhodopsin and other GPCRs is the dynamic motion of the ligand 
activation.18; 19 In rhodopsin, the cis-trans photoisomerization of retinal is the activation 
mechanism. The structural and energetic consequences of retinal’s isomerization are of great 
interest. Molecular dynamics (MD) simulations offer a means of obtaining atomic-scale 
dynamics of such systems. A main limitation has been the short time scales attainable in all-atom 
MD simulations. However, we have performed a 150-ns simulation — long enough to examine 
important dynamic events along the path from the dark-adapted to the light-adapted state. The 
transition to the LUMI intermediate state takes about 150 ns. Thus, we are within range of an 
early rhodopsin intermediate and can compare to corresponding experimental data. By 
constraining the C11-C12 dihedral angle of retinal in the simulation, we force the isomerization. 
In the subsequent dynamics, the constraint is turned off. We obtain a single trajectory of the 
consequences of the isomerization on the structure and energetics of rhodopsin. Within this 
comparison, we recognize that the simulation yields only one pathway to the state at 150 ns, not 
the statistical ensemble that actually exists. However, some aspects of the dynamics are highly 
probable and will occur for most trajectories. These aspects can safely be expected in the 
dynamics of our simulation.  
 
The details of the simulation are given in the methods section. We then describe the results of the 
simulation analysis concerning the structural dynamics and the energetics of our model 
rhodopsin system that are observed after the forced photoisomerization, including changes in 
retinal’s dihedral angles, a narrowing of the distance between Ala 169 and retinal’s ionone ring, 
helix kink and tilt angle transitions, a switch in the protonated Schiff base counterion, and 
changes in retinal’s interaction with its environment, including disengagement from Helix 6. 
These events are connected to other large-scale transitions in the post-photoisomerized state of 
rhodopsin and lead towards coupling with transducin. 
 

Simulation method 
 
The present work is a continuation of our earlier simulation of the dark-adapted state of 
rhodopsin.20 In this earlier work, MD simulations were performed using an all-atom 
representation. The lipid and water environment were explicitly treated. The CHARMM force 
field was used (version 22 for protein and version 27 for lipids, both released in August of 
1999)21; 22 which includes parameters defined for retinal.23 All calculations started from the first 
X-ray structure of rhodopsin (1F88).7  To be consistent with our previous work, we did not use 
the new rhodopsin dark-adapted structures24; 25; 26; 27 as our starting point.  Analysis of our earlier 
dark-adapted rhodopsin simulation has suggested relatively small changes from the original 
structure. The total system size (41,623 atoms) consisted of protein, 99 DOPC lipids, 100 milli-
molar salt concentration (14 sodium, 16 chloride), palmitylated lipids attached to Cys 322 and 
Cys 323, and 7441 TIP3 waters.  
 
The LAMMPS28 (lammps.sandia.gov) molecular simulation package was used to produce a 150-
ns trajectory. The initial state is the final state of the 40-ns simulation of the dark-adapted 
rhodopsin.20 Periodic images were used in all directions. The simulation was performed at 
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constant membrane surface area of 55Å x 77Å. The direction perpendicular to the lipid bilayer 
was controlled at a constant pressure of 1 atm. The temperature was controlled using the Nose-
Hoover thermostat at 307 K. All bonds to H atoms were constrained using the SHAKE algorithm 
and the equations of motion were integrated using the velocity verlet algorithm with a 2 fs 
timestep. Electrostatic interactions were treated using the particle-particle particle-mesh (P3M) 
method.  
 
In the simulation, the cis-trans photoisomerization occurs by constraining the C11-C12 dihedral 
angle. An MD simulation of 200 fs starts with the C11-C12 dihedral angle constrained in the cis 
state and ends at the trans state. Thereafter, the 150-ns simulation does not constrain the dihedral 
angle.  
 

Results 
 
C11-C12 dihedral transition 
We begin by discussing the post-isomerization dynamics of retinal itself. Figure 1 (a) shows the 
dihedral angle of the C11-C12 dihedral in retinal as a function of time, including both the 150 ns 
after isomerization and the 40 ns before the isomerization (from the earlier simulation of the 
dark-adapted state).20 The time before isomerization is represented as negative in this plot and 
subsequent plots. After isomerization the dihedral angle does not substantially change during the 
150-ns simulation. Thus, the C11-C12 dihedral transition is stable. After isomerization the self-
energy rises by about 7 kcal/mol (Figure 1 (b)), which is primarily due to the C11-C12 dihedral 
transition. In the vicinity of t = 20 ns there are fluctuations that bring the energy below the 
average cis state energy. By about 30 ns, the self-energy drops sharply and permanently below 
the average cis state self-energy and subsequently slowly decreases to about 4 kcal/mol below 
the cis state self-energy. This drop in energy is primarily due to the relaxation of dihedrals other 
than the C11-C12 dihedral. The C9-C10 dihedral angle transitions from 160° to the lower energy 
180° state. Also, prior to t = 30 ns, the C6-C7 dihedral exhibits oscillatory behavior between 60° 
and 150°, but settles near 60° after t = 30 ns, thus preventing the beta ionone ring from being 
coplanar with the retinal chain. In the first 30 ns after isomerization, the dihedral angles C12-C13 
and C8-C9 have large fluctuations, although about the average value of the dark adapted state. 
These large fluctuations end at about t = 30 ns, when the retinal self energy changes, and the 
average dihedral angle and the fluctuations return to the values of the dark adapted state. The 
effect of the dihedral motion involving C9 is to move the C19 methyl group to the same side of 
retinal as the C20 methyl group. 
 
The net structural changes in retinal can be examined by calculating a pseudo-dihedral angle. 
The N16 and C7 atoms with their respective H atoms are at opposite ends of the retinal chain. 
Hence, the H16-N16-C7-H7 dihedral angle is a measure of the linearity of the retinal chain (up 
to the ionone ring). In the dark-adapted state, the average value is 45°, which indicates the bend 
and twist of the chain, whereas after photoisomerization, a sudden shift occurs, and the dihedral 
then fluctuates between 60° and 180° for 30 ns. At t = 30 ns the dihedral angle changes to 180° 
and stays there for the remainder of the simulation. In this final conformation, the chain is linear 
and coplanar. The main relaxation after isomerization is the transition to this final flattened all-
trans conformation. 
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We have also examined retinal’s bond orientations for comparison with available deuterium 
NMR structural data for retinal in the dark-adapted state of rhodopsin.29  Bond orientation 
vectors with respect to the bilayer normal were computed for retinal’s methyl groups bonded to 
C5, C9, and C13 for both the dark-adapted state and post-photoisomerization. Considering the 
large instantaneous fluctuations in bond orientation and the limited statistical sampling achieved 
within the 40-ns dark-adapted simulation, results for the dark-adapted state are in good 
agreement with the NMR measurements (Table I). The C5 and C9 bond vector orientations 
undergo substantial transitions post-photoisomerization. This observed transition in the 
simulation could be compared with future NMR measurements of retinal’s methyl bond vectors 
post-photoisomerization. 
 
Retinal – Ala 169 gap narrows 
The isomerization of retinal starts a sequence of structural transformations that ultimately results 
in the light-adapted structure. For comparison to our 150 ns simulation, structural 
transformations that have occurred in the transition to the LUMI state are the most relevant. The 
isomerization directly moves the ionone ring. Consequently, the residues neighboring the ionone 
ring should change after isomerization. We have examined the distance between the ionone ring 
and Ala 169 as a function of the simulation time. Crosslinking experiments30 find that Ala 169 
and the ionone ring can be crosslinked for rhodopsin in the LUMI state. Figure 2 shows that in 
the simulation, the separation distance decreases after isomerization with the final separation at 
about 9Å. The crosslinking experiments imply a shorter separation, which could be achieved via 
rotation of Helix 4 (since Ala 169 is on the side of Helix 4 opposite to retinal), or by further 
movement of the ionone ring.  One would expect that there is a set of conformations for the 
LUMI state, and only an (unknown) fraction of them allow the ionone:Ala 169 crosslinking. Our 
simulation does show that the separation distance is reduced significantly, and that if Helix 4 
were to rotate, or if the ionone ring moved further, the crosslinking could occur. In the following 
sections, we discuss the structural transformations of the helices seen in the simulations. The 
large-scale motions of helices are naturally slower than the individual motions of residues or of 
retinal, which limits the helical motion that can be seen in ns-time-scale simulations. However, 
the 150 ns simulation is sufficiently long to observe transitions in some of the helices. 
 
Helix tilt and kink angle transitions 
An important characteristic of membrane proteins is the tilt of the transmembrane helices relative 
to the lipid bilayer. The tilt is an important mechanism by which the helix can match the bilayer 
thickness and the corresponding hydrophobic/hydrophilic regions. Kinks in the helices play a 
similar geometric role. Within the membrane protein there are internal interactions that also 
influence the structure of the transmembrane helices. The isomerization of retinal alters the 
interaction between retinal and the helices, which can lead to significant changes in the geometry 
of the helices. In this manner, the molecular-scale isomerization event can yield subsequent 
larger-scale transmembrane helix structural changes. Because these are transmembrane helices, 
the action of the isomerization is propagated across the membrane. Both the cytoplasmic ends of 
the transmembrane helices and the loops, which interact with the G-protein, are affected. Thus, 
we have a basic outline of the mechanism by which rhodopsin interacts with the G-protein. 
We examined the degree of tilt and kink of each helix as a function of simulation time. Since a 
kink can split the transmembrane helix into more than one part, with varying tilt angles, we 
calculate the tilt of each part of the helix. These parts have been defined in terms of the kink 
centers (see Ref. 20 and the figure captions for details of the definitions). Figure 3 shows tilt 
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angles as a function of time for Helix segments 5b, 5c, 6b and 7a. These tilt angles show 
significant changes during the simulation beyond the short time-scale fluctuations of about ± 5°. 
At about t = 32 ns, the tilt angles for Helices 5b and 5c start to shift considerably. For 5b, the tilt 
angle rises and continues to slowly rise until the end of the simulation. Segment 5c reaches a 
steady state by about t = 70 ns and fluctuates by about an average value of 30°. This structural 
change in tilt angle is also reflected in the change in kink angle for 5b-5c (Fig. 4). There is a 
sudden drop in the kink angle at t = 32 ns. Ultimately, this kink angle decreases from 25° in the 
dark adapted state to about 5° at t = 150 ns. This small kink angle reflects the fact that the tilt 
angles of 5b and 5c become almost identical after the transition. Thus, the main effect is almost 
complete removal of the kink in Helix 5.  
 
The retinal ionone ring is close to Helix 5. In fact, in the dark state the ionone ring is in contact 
with Met 207 on Helix 5. The kink in Helix 5 occurs at His 211. In the dark state, Met 207 is 
between His 211 and retinal. After isomerization, the ionone ring and Met 207 switch sides. His 
211 then can and does come in contact with retinal. Simulations of the single Helix 5 in the 
membrane have the same tilt and kink angles as the helix does in the dark adapted state.20 This 
implies that the interactions of Helix 5 with the rest of the rhodopsin protein do not affect the 
kink angle. The fact that isomerization results in a change in the kink angle implies that the 
structural changes resulting from isomerization cause the kink angle to almost disappear. For this 
to happen, some residues or retinal must be influencing the kink. Since His 211 comes into 
contact with retinal after isomerization, and since His 211 is the hinge point of the kink, the 
obvious candidate for the kink removal is the interaction of His 211 with the ionone ring. In 
Figure 5 the interaction energy between His 211 and the ionone ring is given.  Before 
isomerization, the energy switches between two states with energies of –6 and –10 kcal/mol, 
respectively. After isomerization, the energy drops to –14 kcal/mol. This confirms that the His 
211 interaction with the ionone ring increases in strength. In the first 30 ns, this interaction 
brings His 211 and ionone into position. Near t = 30 ns retinal completes the transition to a 
straight and mostly planar structure. At about the same time there is the sharp drop in the Helix 5 
kink angle (Figure 4). The straightening of retinal and the continued strong interaction between 
His 211 and the ionone ring pulls on the kink’s hinge and reduces the kink angle. 
 
The tilt and kink angles of Helix 6 exhibit a correlated dynamics. Within 70 ns of the forced 
isomerization, the tilt angle of Helix part 6b decreases from its dark state value of 35° to an 
average of about 17° (Fig. 3). The kink angle also decreases for the same 70 ns and thereafter 
oscillates about an average value of 20°. In this case, the tilt angle of section b is the major part 
of the dynamics; the kink angle change is a result of just 6b’s tilt dynamics. While the ionone 
ring in the dark state is in contact with Ala 269 of Helix 6, this contact does not appear to be the 
driver for the change in the tilt of Helix section 6b. Helix section 6b moves away from the 
ionone ring and there is not a strong interaction between the ionone ring and Ala 269 that would 
force the whole segment to have such a tilt (cf. Figure 5). It is thus more likely that the 
connection to Helix 7 through the short loop E3 exerts the pull on Helix 6 that alters the tilt of 
segment b. 
 
Following retinal’s cis-trans isomerization, interactions between retinal’s beta ionone ring and 
the nearby aromatic side chains of Helix 6 diminish.  The distance between them grows due to 
the movement of retinal itself. Figure 5 shows that the interaction energies between retinal’s beta 
ionone ring and Phe 261, Trp 265 and Tyr 268 on Helix 6 are well below kT after isomerization. 
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This shows the decoupling of Helix 6 from retinal that will allow subsequent large-scale Helix 6 
movement,31 which is coupled to C3 motion and transducin coupling. 
 
Since Helix 7 includes Lys 296, it is not surprising that its tilt angle is quickly influenced by the 
retinal isomerization. Figure 3 shows that after isomerization, the tilt angle of Helix section 7a 
increases slightly from about 7° to 15°. At about t = 70 ns (where the changes in the Helix 6 tilt 
angle stop), the tilt angle abruptly returns to the dark state value.  Correlation between the 
dynamics of Helices 6 and 7 likewise is not surprising given the strong interactions between their 
sidechains. 
 
PSB counterion switch 
From the helix tilt and kink angle data, it is clear that some event occurs near t = 70 ns that 
impacts the helix dynamics and structure. The event, a switch in the dominant counterion of the 
retinal protonated Schiff base (PSB), is itself interesting. In rhodopsin’s dark-adapted state, Glu 
113 acts as the counterion to the PSB. Some experimental evidence has suggested that Glu 181 is 
protonated in the dark-adapted state, but transfers its proton to Glu 113 via Ser 186 and then 
replaces Glu 113 as the PSB counterion.32 Other work suggests that both Glu 113 and Glu 181 
are unprotonated and that both act as the PSB counterion, with Glu 181 dominating in the Meta I 
state.64 We have simulated both Glu 113 and Glu 181 in their unprotonated states, and we find 
that structural changes occur that could lead to the PSB counterion switching from Glu 113 to 
Glu 181. The simulation shows that the salt bridge between the retinal PSB and Glu 113 breaks 
near t = 70 ns after photoisomerization and does not form again (see Figure 6 and Figure 7). 
Figure 6 also shows that at t = 146 ns a much stronger (~20 kcal/mol) interaction between Glu 
181 and the retinal PSB is briefly established. This occurs because of a dihedral transition in Glu 
181 and in Lys 296 simultaneously occurring to shorten the separation between the two residues.  
 
Important details concerning the breaking of the salt bridge are indicated in the plot of the 
interaction energies of retinal with its environment (Figure 8). In these calculations we take 
‘retinal’ to include Lys 296. It does not make sense to separate the PSB, in particular. After 
isomerization the energies remain at the same average value as before isomerization until just 
before t = 70 ns. At this point, the interaction with the solvent gets much stronger, while the 
interaction with the rest of the protein weakens by about 35 kcal/mol. We have already noted that 
the salt bridge between retinal and Glu 113 breaks at t = 70 ns. This loss of the strong binding 
energy results in the weakening of the interaction with the protein. The large strengthening in 
retinal:solvent interaction energy implies that some water molecules have moved into the protein 
close to retinal. This indeed is true as images of the region for times near t = 70 ns show (see 
Figure 9). 
 
 The changing hydrogen bond network involving retinal, including nearby water molecules, is 
shown in Figure 9, which shows images at t = 64, 65, 66, and 67 ns. At t = 64 ns the Glu 113 salt 
bridge with the N of Lys 296 is intact. In addition, there is a hydrogen bond between NH of Cys 
187 and the same O of Glu 113 that is part of the salt bridge.  At t = 65 ns, the NH of Cys 187 
switches to the other O of Glu 113 to form a hydrogen bond. At t = 66 ns, a water molecule is 
visible behind the Glu 113 and Cys 187. At t = 67 ns the water breaks the salt bridge by moving 
between the N of Lys 296 and the O of Glu 113. For the rest of the simulation, a water molecule 
is between Glu 113 and Lys 296. 
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C3 loop 
Cytoplasmic loop 3 (C3) is an important loop in the interaction between rhodopsin and its G-
protein. Without the presence of the G-protein in the simulation and without being in the active 
light-adapted state, direct understanding of how isomerization ultimately results in structural 
changes that impact the G-protein is not possible. Instead, we want to characterize how the 
structural changes in the helices affect the C3 loop structure. This gives a sense of the dynamic 
connection between isomerization and the C3 loop configuration. 
 
The C3 loop connects Helices 5 and 6, which undergo substantial structural changes in the 150 
ns time period as discussed above. These helix structural transformations impact the structure of 
the connecting loop. Figure 10 shows images of the C3 loop, where the final configuration of our 
dark-state simulation is compared with the final state of the 150 ns isomerization simulation. 
Sections of Helices 5 and 6 are also shown. Substantial motion has occurred in the loop, but this 
is inconclusive since the loop is primarily within solution and therefore has a large 
configurational space. The more important aspects of the figure are the differences in the helix 
positions and their effect on the loop. The end of Helix 6 which is attached to the C3 loop has 
rotated significantly, bringing the ends of the two helices closer together. The bottom image 
shows that the C3 loop near Helix 5 is adopting a more helical structure.  
 
Large-scale structural changes 
Figure 11 shows a comparison of the rhodopsin structure in the dark state and at t = 150 ns. To 
distinguish the two states, the dark state helices are gray in the top image. Otherwise each helix 
is colored differently to identify it. The structure of transmembrane Helices 1, 2, 3, 4 and 7 do 
not change much within the 150 ns simulation time. As described above, Helices 5 and 6 do 
undergo significant structural changes. The top image of Figure 11 shows retinal in the cis 
conformation, while the bottom image shows the trans conformation. The helices that have 
substantial structural changes are the ones near the ionone ring of retinal, i.e. Helices 5 and 6. 
However, Helix 4, which is near the ionone ring for trans retinal, does not undergo a structural 
change. The difference being that Helices 5 and 6 are in contact with retinal at t = 0 and 
immediately feel the effects of the isomerization of retinal. The changes for these two helices are 
complete by the time retinal has completed its structural transformations. More specifically, they 
are complete by t = 70 ns, after the Glu 113:retinal salt bridge has broken. In contrast, Helix 4 is 
not in contact with retinal at t = 0 and is not strongly affected by the retinal transformations.  
 

Discussion 
 
The relatively recent x-ray structure of rhodopsin provides an essential starting point for detailed 
consideration of how tertiary structure is linked to function for this key protein.7  Important 
issues for understanding this linkage concern how the conformational change in the retinal, 
induced by light, is coupled into large-scale conformational changes that ultimately lead to G-
protein signaling.1  Further and closely related questions concern the effects of mutations, the 
membrane environment, water molecules and charges. 
 
Molecular dynamics simulations can begin to address some of these issues, but also have 
important limitations that should be presented along with the advantages.  A particularly 
important limitation is that the present molecular dynamics capability can explore events near to 
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the starting state that are relatively rapid (up to several tens of ns). Without a sense of the 
structure of photo-intermediates, the method can suggest how these intermediates could form, 
but can’t predict them with confidence.  This is related to the same time-scale issue, since the 
number of possible intermediates formed from the dark-adapted rhodopsin structure is very 
large.  Ideally it would be the case that several thousand alternative starting conformational 
changes in the retinal could be performed and the ensemble set of these changes then used to 
determine a relative free energy surface for the transition.  Within that type of framework, the 
confidence for prediction of intermediate conformational states would be considerably greater.  
Taking advantage of the considerable computer resources available through Sandia, we are able 
to explore, with low statistical confidence, a key structural transition within the photocycle.  
Thus, our simulations are suggestive of the types of changes that might occur after photo-
isomerization, but should not be considered predictions of intermediate structures. 
 
It might be suggested that the current calculations should be augmented with detailed quantum 
calculations to understand the initial femtoseconds of excitation and the revised energy surface 
for the light activated transition. Multiple research groups are performing quantum chemical 
calculations of the initial events in photoisomerization.33; 34; 35; 36; 37; 38 We wanted to address the 
longer-time scale (ns towards ms) relaxation of the system following the initial light activation. 
While quantum chemical calculations have advanced significantly in the last few decades, they 
continue to be limited by the number of heavy atoms in the system and to explore very fast (fs to 
ps) time scales. For this reason, we accepted the fact that our characterization of the very early 
events in light activation are by necessity incomplete. The main point is that the excited, light 
activated state, will decay quickly, and that how the energy from the isomerized retinal leads to 
the relaxation and eventual signal activation of G-proteins from the rhodopsin protein are the 
main targets of our calculation. 
 
Recent work has suggested that rhodopsin may exist in a homodimer state in the native 
membrane.39; 40  The implications of that finding are not directly addressed in these calculations, 
but we can speculate somewhat, based on the dynamics results, on what might happen within a 
homodimer model that differ from the results of the monomer.  In particular, Helix 4 is believed 
to be involved in the dimerization.  Our results are consistent with experimental work showing 
that Ala 169 (in Helix 4) moves closer to the beta-ionone ring during activation.  This may lead 
to effects on coupling between two monomers.41  While it is less clear how this could impact 
signaling, it does suggest that activation of one monomer in a dimer pair would be 
communicated to the other monomer.  This could be viewed as a type of allostery, where the 
activation mechanism of the second monomer might be shifted to a more sensitive state due to 
the initial activation of the first monomer.   
 
In the remaining discussion, we will start with the early events of excitation and work our way to 
the longer-time scale events.  We will conclude the discussion with more speculative conclusions 
based on extrapolation of the results. 
 
Initial events in photoactivation:  A plausible candidate for the initial changes in retinal with 
light has been suggested based on a minimal motional change induced by light, but still 
consistent with a cis-trans isomerization.33; 34; 35; 36; 37; 38  Our initial model covers that change by 
forcing the main cis-trans isomerization and then allowing relaxation from that state within the 
CHARMM potential function.  The response to this change is then followed throughout the 
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remainder of the simulation.  Similar to ideas examining the effects of the initial velocity 
distribution on the range of motions examined in a trajectory, we do expect that the starting point 
will have an impact on the relaxation observed in the calculation.  At the same time, there are not 
sufficient computer resources available to any biophysical research group to create an ensemble 
set of all candidate transitions and their response properties.  Therefore, we took the most 
straightforwardly possible approach and forced the transition to allow the initial change to be 
consistent with experimental work. We examine the nature of the coupling between the local 
conformational change and the larger-scale conformational re-arrangements that ultimately lead 
to G-protein activation.  While we fully accept that this candidate starting transition may be 
inaccurate on the femtosecond time-scale, we want to emphasize that the relaxation from this 
excited state conformational change can still help us to understand how a local conformational 
change (in the retinal) can lead to larger-scale conformational change (and ultimately to G-
protein activation).  
 
It is interesting to speculate, however, on the types of cis-trans isomerizations that are not 
allowed – either quantum mechanically or from the molecular dynamics viewpoint.  In either 
formulation, the type of large cis-trans motion that would occur with a rigid retinal moiety would 
create very large and unfavorable van der Waals clashes within the protein cavity.  Thus, it 
makes biophysical sense that the type of motion adopted by the retinal chain would be as 
minimal as possible to allow the sensitivity of the response to be magnified and coupled to 
larger-scale motion.  Phrased in another way, the quantum chemical findings suggest that the 
rapid-relaxation of the retinal molecule is due to the effects of the protein cavity environment in 
pre-priming the conformation of the retinal such that the efficiency of cis-trans change is very 
high. Furthermore, once the trans state has been reached, there is a very high chance of the 
energy stored in the initially local conformational change of the retinal being carried over to 
larger changes in the coupling of G-proteins.  Thus, we argue that evolution has created an 
extremely sensitive molecular instrument for converting the energy of photon activation to 
protein conformational change and signal activation.  That the motional changes in the retinal are 
small, is significant, because it creates a system where the photon energy can be readily and 
efficiently absorbed and then the isomerized reaction readily focused on conformational change.  
We emphasize that the dark-adapted state of rhodopsin was the starting point for the calculations.  
If structures of the intermediates are determined, it would be possible to perform calculations 
exploring the whole range of conformational change that is initiated by the cis-trans 
photoconversion.  In other words, the prediction of intermediate conformations is not nearly as 
reliable as the experimental determination of those intermediates.  From the experimentally-
determined intermediates, simulations would be possible that create a thermodynamic picture of 
the molecular changes that occur during the photocycle.  Without x-ray structures for the 
intermediates, the nature of the changes are inferred from the current calculations and those 
changes should be seen as suggestive, rather than definitive predictions. 
 
Several other research groups have also performed molecular dynamics calculations of 
rhodopsin.42; 43; 44; 45; 46; 47  Each of these studies has something of value to add to our 
understanding of the molecular nature of rhodopsin and its activation by light.  Each group has 
made different choices with respect to membrane representation, length of simulation, size of 
simulation, and treatment of electrostatics.  It is too early to tell whether a subset of these models 
is more right or more wrong than others, due to the problem of sampling that all of the 
computational groups face.  It is possible to read each paper as a possible molecular story for 
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how the system might behave.  We suggest that the full set of these papers is very valuable for 
bringing new insights into the nature of the molecular behavior, in part because of the different 
characterization of the system (i.e. pK states, environment conditions, etc.). 
 
Nature of cis-trans potential function:  There has been considerable discussion in the literature 
about the nature of the changes in the retinal during photoactivation.  These changes are likely to 
be minimal in overall conformation, but in the absence of a light-adapted structure, it is difficult 
to be certain about the scale of the overall change with light activation.  In our simulations, the 
change was forced within 200 fs.  We emphasize that the potential energy surface used during 
the isomerization, as well as for the relaxation, is the ground-state surface defined by the 
CHARMM potential function.  That is, there is no attempt made to define a light-activated 
surface for the isomerization reaction and then to determine the longer-time relaxation process. 
Papers that examine the quantum dynamics on a short-time scale and connect to the FTIR spectra 
should be examined for this type of analysis.36  
 
Time-scale for isomerization:  Experimental work48 with femtosecond stimulated Raman 
spectroscopy has shown that there are significant changes in the retinal spectra during the 
transition from the dark-adapted state to the stable bathorhodopsin intermediate.49  The 
experimental work suggests that the full transition from dark-adapted to bathorhodopsin state is 
about 1 ps in length and that the efficiency of the process, as well as the capture of the energy for 
large-scale conformational change is very high.  In particular, the results suggest changes in 
C=C, C-C and C-H regions of the spectra that relax very quickly while also showing 
environmental effects suggestive of a change in interaction between retinal and the protein 
environment.  The bathorhodopsin state is then reached, the effective starting point for our 
calculations.  The conformation of this state is not fully determined experimentally, but may 
reflect a series of changes along the retinal structure, supporting a minimal change in the retinal 
overall shape.  This is consistent with detailed quantum chemical calculations as well as findings 
from lipid bilayer simulations that suggest that correlated dihedral changes can be made that 
prevent very large conformational changes.  As noted above, while we share an interest in 
determining the details of this bathorhodopsin starting stage, we elected not to explore the 
quantum details of the excited surface, nor to optimize all possible starting points.  Instead, our 
starting point (the bathorhodopsin state) is consistent with experimental information and is thus 
plausible as an energy storage state intermediate to the signaling cascade and thus to M-II.    
 
Initial relaxation events:  In our simulations there is a time-delay from the initial rapid 
isomerization to the larger-scale conformational transitions and the relaxation of the retinal 
conformation.  This makes sense, since the excited state surface for the initial conformational 
change will act as a trigger to create the larger-scale conformational changes that are seen 
experimentally in later stages of the photo-cycle.  In order for those longer-term events to occur, 
there must be a period of relaxation after the isomerization during which the retinal 
conformational change is adjusted and adapted to by the protein compartment.  In the initial 
stages of relaxation (roughly 30 ns in our simulation), the protein adjusts to the retinal.  This can 
be seen in the energy changes that occur within the retinal: initially 7 kcal/mol higher in energy 
than the dark-adapted self-energy and then a relaxation, after about 30 ns to a lower self energy 
state.  At the same time, within that 30 ns window, the coupling of the retinal to other sidechains 
near to the dark-adapted cavity is shifting and the beta-ionone ring is moving from being near 
one location to being near another.  While the nature of these changes is subtle, the overall effect 
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is very large.  This magnification is due to the hydrogen bonding nature of the protein, 
resembling a large allosteric network, with the changes in one location being communicated 
energetically to other locations.  The net effect is that within 30 ns, in this particular simulation, 
the initial relaxation events from the cis-trans isomerization have already been communicated to 
many other parts of the protein. 
 
Changes by end of 30 ns:  We find it fascinating that large scale changes occur from the small 
scale changes initiated by the cis-trans isomerization of retinal.  The nature of these changes, 
subject to our sampling limitations imposed by molecular dynamics calculations, suggest a tight 
coupling within the rhodopsin:retinal system.50; 51  Thus, the large tilt changes in Helix 6 are well 
underway by 30 ns, the changes in the G-protein activation region (Helices 5 and 6 and 
cytoplasmic loop C3) have also started.  But, the largest indicator of the nature of these shifts is 
the changes in sidechain-to-retinal coupling.  The almost complete decoupling of the retinal 
interaction energy between retinal and Phe 261, Trp 265 and Tyr 268 is already indicative of the 
types of changes that occur later in the cycle. 
 
Shift of beta-ionone ring and Ala 169:  Experimental work has suggested that at least part of the 
photocycle involves a shift in Helix 4 with Ala 169 and its interaction with retinal.30  The 
detailed molecular nature of the distance shift is not resolved in the experimental work, but it is 
suggested in the molecular dynamics simulations.  In particular, the shift is initiated by the 
decoupling of the retinal from the dark-adapted state sidechain interactions.  This loosening of 
dark-state interactions enables a relatively modest shift in conformational space of the retinal and 
a much larger shift in the packing of the protein around the trans retinal ring system.  The 
movement of Ala 169 to increase interaction with the retinal ring and the shift in Helix 4 is thus 
consistent with a shift in the overall energetics of the retinal/rhodopsin system following the 
relaxation from the trans state. 
 
Counter-ion Switch: Experimental work has suggested that part of the light activation could 
involve a switch of the Schiff base counter-ion from the Glu 113 to Glu 181.11; 32; 52; 53; 54; 55; 56; 57; 

58; 59; 60; 61; 62; 63  This would involve a change in protonation states during the photocycle64 and 
experimental work has confirmed that Glu 113 is the dark-state counter-ion and been suggestive, 
but not conclusive, that Glu 181 is active during the light activated stages.65; 66  The simulation 
results are intriguing in suggesting that this counterion switch mechanism could be present as 
part of the relaxation mechanism of the protein to the retinal conformational change.  We should 
emphasize that in our calculations there is no change in the charge state of Glu 181 during or 
after the forced isomerization.55; 67  Thus, the driving force for the change is not wholly from 
charge transfer during the photocycle, but could also be related to the coupled relaxation of the 
full system from the initial events of light activation.  In this regard, quantum calculations about 
the effect of the counterion switch are also suggestive of the types of changes occurring with a 
counterion switch that could underlie function.33; 68 
 
Longer (30 ns to 150 ns) changes:  Activation of G-protein coupled receptors will depend on 
changes in Helices 5 and 6 along with the C3 loop regions.31; 69; 70; 71; 72; 73; 74; 75  These locations 
have been implicated, by mutagenesis studies, as key players in the coupling of the activated 
rhodopsin to G-protein signaling.76   For this reason it is intriguing to note that the simulation 
results suggest large-scale changes in all three of these locations.  Helix 5 shows an increased 
degree of bending between upper and lower parts of the helices, and that drives further changes 
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in the C3 loop regions.  At the same time, Helix 6 shows a decrease in the kink angle and a shift 
to a more perpendicular orientation of the helix axis.  These three sets of coupled changes are all 
a relaxation response to the forced isomerization change.  It is not hard to imagine that the nature 
of these changes could lead to a shift in binding affinity for a G-protein system and thus to 
activation.77  At the same time, we emphasize that the simulations do not include the G-protein 
binding, since the details of this interaction are still not known experimentally, and that the 
timescale of activation within this system is clearly beyond the timescale of the current 
calculations.  Thus, the nature of these changes should be seen as suggestive of the types of shifts 
that are likely to occur with activation of the system. 
 
Implications for rhodopsin function:  Rhodopsin has evolved to be highly tuned to converting 
light energy to conformational change and signal amplification.  The simulations that we have 
performed are suggestive of some of the types of coupling and change that underlie this tight 
connection between structure and function.  This underlies much experimental work with 
mutants suggesting that disruption of the tight conformation of rhodopsin will lead to a loss of 
function.12  An example is the Cys 110-Cys 187 pair.78  In particular, if the retinal cis-trans 
isomerization were not coupled into a protein cavity setting that adjusted to support the 
transition, then the signal amplification and coupling would not be so efficient.  In other words, 
the nature of the coupled set of changes induced by light activation is amplified by the design of 
the retinal cavity to induce a set of protein changes that lead to activation.  In this sense the 
rhodopsin system is very much like the switch mechanism suggested by experimental work.79; 80; 

81  The relatively small change introduced by the retinal conformational change is then amplified 
through the hydrogen bond and sidechain interaction network into a shift in helix orientations, 
Schiff base partners, and eventual G-protein coupling.    
 
An emerging frontier is then to understand more about the nature of the coupling between the 
rhodopsin protein and G-protein.  Several groups have started to attempt this model, based on the 
x-ray structures of G-proteins16; 17; 82; 83; 84; 85; 86; 87 and we believe that the simulation results here 
may lead to speculation about the nature of the interfacial coupling between these domains.88; 89; 

90; 91; 92; 93; 94  In particular, we suggest that the shift in the surface properties of the rhodopsin 
protein on activation will be found to create a much less favorable environment for 
protein:protein interaction.  In this regard, the mutation studies and their effects on the surface of 
dark-adapted and light-activated (inferred) could be interesting95; 96; 97 as well as studies of the 
role of the cytoplasmic loop region.98  Several groups are working to understand more about 
protein:protein interactions and this could be a model system for understanding how the 
modulation of protein:protein interactions lead to shifts in function.    
 
Implications for spectral tuning:  While the current molecular dynamics calculations do not 
address the changes in the binding cavity that underlie spectral response, it is interesting to 
suggest several implications for spectral tuning from the results.  In particular, the results 
strongly underlie the importance of the protein cavity in forming a part of the solvation 
environment dictating the type of conformational change that will be determined by the light-
activated retinal.15; 99; 100; 101; 102; 103; 104; 105; 106; 107  In that sense, the nature of these sidechain and 
main chain interactions drive a preference for a particular type of excited state and a particular 
type of relaxation response.  Experimental work that shifts the nature of retinal further supports 
this type of thinking.108; 109; 110; 111; 112  It can also be inferred that spectral tuning will lead to a 
similar type of excited state conformation for retinal and, following that transition, to a similar 
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set of relaxation events that lead to G-protein activation.113  It is thus intriguing to consider the 
nature of the changes possibly induced by different environments.  An example is the set of 
mutants looking at hydroxyl changes.114   We would suggest that by shifting the energy required 
for isomerization and forcing a similar pathway for relaxation from the excited state, the 
retinal/rhodopsin system has been engineered for maximum flexibility by evolution.14 
 
Effect of the membrane environment:  While the current simulations did not directly compare 
different models for the membrane with the transition, it is clear from experimental work that 
rhodopsin is very sensitive to the details of the lipid setting.50; 115; 116; 117; 118; 119; 120; 121; 122; 123,  We 
can speculate, from our current and previous120 work about why this may be important.  We 
suggest that the nature of the coupling from the cis-trans activated state to the relaxed state will 
depend on an ability of the helices to re-orient, the sidechains to shift, and the cytoplasmic loops 
to adjust their relative positions.  The lipid environment then provides a resistance to this motion 
that can be either supportive of the change, making the free energy change for the large-scale 
motion relatively easy, or providing a setting that makes the relative shift in conformation much 
more difficult, allowing a change, but only with much greater resistance and thus with a decrease 
in signal to noise outcome.  We suggest that the effects of DHA on rhodopsin are to make the 
transitions between helix orientations (e.g. the kink changes in Helices 5 and 6) much easier and 
thus to support the nature of the large scale changes underlying function in this system.123; 124; 125; 

126 
 
Implications for other GPCR systems:  We believe that study of the rhodopsin system leads to 
insights important for other GPCR systems as well.3; 127; 128; 129  This is especially important due 
to the large number of important pharmacological targets within the large GPCR family.130; 131; 

132; 133; 134; 135; 136; 137; 138; 139; 140; 141  In our simulation results, the nature of the coupling between a 
local conformational change and a large-scale helix and loop change may be similar across the 
GPCR family.  This would imply that the effect of ligand binding to a GPCR is tightly regulated 
by a coupled set of energetic interactions, in a similar manner to that found within the retinal-
rhodopsin system.142  The intriguing result is that the nature of the second extracellular loop 
(containing the beta-bulge region) may thus be critical in determining the nature of the coupling 
between local conformational binding induced changes and large-scale signaling induced 
changes.143; 144; 145; 146  We would suggest that this is similar, in some ways, to the nature of 
spectral tuning in that adjustments to the binding cavity can support the relative efficiency and 
recognition of certain ligands relative to others.   
 

Conclusions 
 
The high quantum efficiency of rhodopsin is coupled to an ability to capture local changes in 
retinal behavior and induce conformational changes that lead to signaling.1; 147; 148; 149; 150; 151  
How this happens remains a mystery that will require more computational and experimental 
work.4; 152  The molecular details of how the stable bathorhodopsin intermediate (about 1 ps after 
light absorption and cis-trans isomerization) leads to conformational changes in the Meta II state 
were the target of our calculations in this paper.  What we find emphasizes the nature of the 
coupling throughout the protein that we had found in our previous simulation result, which is 
consistent with the general behavior of other protein systems.  In particular, the cis-trans 
isomerization leads to a change in the sidechain interactions with retinal, and eventually to large-
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scale changes in tilt and conformation of the system.  While the details of these changes may not 
be fully sampled in the current simulations, the results that we report are suggestive of the types 
of compensation that may occur in the system upon light activation.   
 
The preliminary analysis of the long simulation of rhodopsin after isomerization shows that 
significant structural changes occur in the 150 ns timeframe. The isomerization results in some 
of the 7 transmembrane helices undergoing tilt and kink angle changes that are well beyond their 
fluctuation range in the equilibrium dark state. One of the key structural changes is the motion of 
the ionone ring of retinal. The ring progressively gets closer to Ala 169. This is consistent with 
crosslink experiments30 where a crosslink forms between the ring and Ala 169. 
A strong energetic transition is observed to occur at t = 70 ns after isomerization. The majority of 
the energy of this transition involves breaking of the salt bridge between Glu 113 and the 
protonated Schiff base. Raman spectroscopy49 has shown that the protonated Schiff base 
stretching modes are indicative of very different Schiff base environments. This implies that the 
transition from bathorhodopsin to the LUMI state involves chromophore relaxation and dramatic 
changes in the Schiff base region. Our results are in agreement with these experimental 
observations. Furthermore, besides the structural dynamics, we show the connection to the 
energetics that drives the changes. 
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Table I 
 
Retinal bond orientations (θ/deg).   
 

 
a NMR data from Salgado et al.29 Note that the bond orientation θ was not distinguished from its 
supplement π - θ in the NMR measurements. Errors correspond to inverse curvature matrix of 
the χ2 hypersurface utilized for the nonlinear regression fits. b40-ns dark-adapted state simulation 
data from our previous work in Ref. 20. c150-ns post-photoisomerization simulation data from 
this work. dErrors correspond to the standard deviation from the average values given. 
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Figures 
 

 
Figure 1. (a) Retinal dihedral angles as a function of time. (b) Retinal’s self energy as a function 
of time. The gray line represents the dynamics for the 40 ns run of the dark adapted rhodopsin, 
i.e. retinal in the cis state and the C11-C12 dihedral has angle 0. The black line represent the 
dynamics after the cis-trans isomerization, i.e. retinal is in the trans state with the angle at 180 
(=-180). 
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Figure 2. The distance between retinal’s ionone ring and Ala 169. The gray line represents the 
dynamics for the 40 ns run of the dark adapted rhodopsin, i.e. retinal in the cis state. The black 
line represents the dynamics after the cis-trans isomerization, i.e. retinal is in the trans state. 
 

 
Figure 3. Tilt angles as a function of time for Helices 5b (Phe 203 – His 211), 5c (His 211 – Leu 
226), 6b (Pro 267 – Thr 277) and 7a (Ile 286 – Pro 291).  
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Figure 4. Kink angles as a function of time for Helices 5b-5c (kink at His 211) and 6a-6b (kink 
at Pro 267).  
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Figure 5. Interaction energies between retinal’s beta ionone ring and nearby side chains. 
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Figure 6. Interaction energies in kcal/mol between the retinal PSB (including Lys 296) and 
nearby PSB counterion candidates Glu 113 and Glu 181. Glu 113 acts as the counterion in the 
dark adapted state and through the first 65 ns after forced photoisomerization. Near t = 70 ns, the 
salt bridge between Glu 113 and retinal breaks. Later, near t = 146 ns, Glu 181 briefly becomes 
the PSB counterion, hinting at possible subsequent completion of the transition from Glu 113 to 
Glu 181 acting as the PSB counterion. The gray lines represent the dynamics for the 40 ns run of 
the dark adapted rhodopsin, i.e. retinal in the cis state. The black lines represent the dynamics 
after the cis-trans isomerization, i.e. retinal is in the trans state. 
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Figure 7. Distance between retinal’s H16 atom (the proton on the PSB), and the Cδ atom of 
potential counterions Glu 113 (gray) and Glu 181 (black). The minimum value of 2.8 Å in the 
Glu 181 time series corresponds with the maximum value of 6.3 Å in the Glu 113 time series 
(both at t = 146 ns). 
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Figure 8. Interaction energy of retinal with the surrounding aqueous solvent, and retinal with the 
rest of the rhodopsin molecule. Retinal:lipid interaction was negligible. The large shift near 70 ns 
is due to the breaking of the salt bridge between Glu 113 and the PSB. A water molecule 
partially compensates for the broken bridge as is evidenced by the lower retinal:solvent 
interaction energy.  
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Figure 9. Images153 of the rhodopsin protein, Lys 296 (retinal) with Glu 113 and Cys 187,  and 
nearby waters at different times a) t = 64 ns, b) t = 65 ns, c) t = 66 ns and d) t = 67 ns. Helices 3 
(orange) and 7 (cyan) are also visible in a cartoon representation. Lys 296 is on Helix 7 and Glu 
113 is on Helix 3. 
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Figure 10. Rhodopsin’s C3 loop in dark state (gray) and after 150 ns of simulation (blue).153 
Bottom image is 90° rotation of top image. The label 5 and 6 identify the respective 
transmembrane helices. 
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Figure 11. Comparison of helix positions in dark state (gray in top image) and after 150 ns after 
isomerization (color in top image).153 Top image shows retinal in cis state. The bottom image 
shows retinal in the trans state with the dark and 150 ns state both colored. The helix number and 
colors are 1 (blue), 2 (red), 3 (orange), 4 (yellow), 5 (magenta), 6 (cyan), 7 (green), and 8 
(purple). 
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Abstract 
 

Capillary waves occurring at the liquid-vapor interface of water are studied using molecular 

dynamics simulations. In addition, the surface tension, determined thermodynamically from the 

difference in the normal and tangential pressure at the liquid-vapor interface, is compared for a 

number of standard three- and four-point water models. We study four three-point models 

(SPC/E, TIP3P, TIP3P-CHARMM, and TIP3P-Ew) and two four-point models (TIP4P and 

TIP4P-Ew). All of the models examined underestimate the surface tension; the TIP4P-Ew model 

comes closest to reproducing the experimental data. The surface tension can also be determined 

from the amplitude of capillary waves at the liquid-vapor interface by varying the surface area of 

the interface. The surface tensions determined from the amplitude of the logarithmic divergence 

of the capillary interfacial width and from the traditional thermodynamic method agree only if 

the density profile is fitted to an error function instead of a hyperbolic tangent function.  

 

I. Introduction 
 
The ability to derive accurate property predictions for the liquid-vapor interface is a key test for 

an atomistic force field. Because of the frequent occurrence of water in systems of chemical and 

biological interest, interfacial property prediction is especially vital for force fields of water. The 

most important of these properties is surface tension, an intensive quantity that measures the 

differential surface work required to increase the interfacial area. Accurate models of the surface 

tension of water are essential for conducting large-scale simulations of the wetting and spreading 

of water droplets at surfaces.  
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An interface between two distinct thermodynamic phases can be characterized by a local 

gradient of an order parameter whose mean value changes between phases, such as the boundary 

between a liquid and its own vapor below the critical temperature cT . For simple fluids, 

thermodynamic arguments predict that the interfacial width Δ  depends only on temperature and 

the interaction energies within each phase and across the interface. However, the presence of the 

interface breaks the translational invariance of the system, inducing Goldstone fluctuations or 

“capillary waves” at the interface [1, 2]. Previous studies of capillary waves involving water 

have tended to focus on liquid-liquid interfaces or on model fluids [3, 4], and have generally 

examined relatively small systems of less than 10 000,  molecules; the present study represents 

the first study of capillary-wave behavior at the liquid-vapor interface of water.  

 

For two-dimensional interfaces, these non-critical fluctuations give rise to a logarithmic increase 

in the interfacial width Δ  with increasing L , the length of the interface. Most previous 

simulations [5, 6] of the liquid-vapor interface in three dimensions did not investigate the 

dependence of Δ  on the size of the interface. The purpose of this paper is to present atomistic 

molecular dynamics (MD) simulations of the liquid-vapor interface of water. In particular, we 

obtain the surface tension γ  in two different ways: from the difference in pressure parallel p  

and perpendicular p⊥  to the interface ( pγ ), and from the dependence of Δ  on L  ( wγ ). We 

confirm the previous result that wγ  depends on the functional form chosen to fit the order 

parameter (density profile) through the interface [7]. In particular, fitting the order parameter to 

an error function gives results for wγ  which are in strong agreement with pγ . However, fitting 

our data to a hyperbolic tangent function, a functional form derived from mean-field arguments 

[2], gives results for wγ  which are systematically smaller than pγ  and further away from 

experimental results.  

 

There are currently a large number of different atomic models for water. Guillot provides an 

extensive list of models developed through 2001 [8]; several additional models have been 

introduced since then [9-12]. The simplest of the commonly-used atomic models, the SPC model 

[13], is a rigid three-point model with fixed charges; the most complex model, the POL5 model 

[14], is a polarizable five-point model. Most of the commonly used models are three- and four-
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point models. In three-point models, such as SPC/E [15] and TIP3P [16], the electric charges are 

assigned directly to the hydrogen and oxygen atoms; four-point models, such as the TIP4P [16] 

and Watanabe-Klein [17] models, locate the negative charge at a massless point a fixed distance 

away from the oxygen atom. Five-point models, such as TIP5P [18], and the early Bernal-Fowler 

[19] and ST2 [20] models, represent the negative charge of the oxygen using a pair of massless 

charges to capture the quadrupolar behavior of water. Polarizable models, including the SPC/FQ 

and TIP4P/FQ models [21], allow the magnitude of the point charges to be treated as variables 

which can fluctuate according to the local environment.  

 

The proliferation of models has been motivated largely by the need to reproduce various physical 

and thermodynamic properties, such as the bulk density, the oxygen-oxygen radial distribution 

function, the heat of vaporization, and the diffusion coefficient. However, some models, such as 

the recent TIP3P-Ew [10] and TIP4P-Ew models [11], are reparameterizations of existing 

models designed to account for changes in the treatment of long-ranged electrostatic interactions.  

Most of the available water models adequately represent at least some of the thermodynamic 

properties of water; for a comprehensive review, see Jorgensen et al. [12]. Kuo et al. have shown 

that the changes introduced between, for example, the TIP4P and TIP4P/FQ models have little 

influence on properties such as the bulk liquid density or the mean distance between oxygen 

atoms either in bulk or at the interface [22]. However, the simulation behavior of models with 

nearly identical parameters can be markedly different: Mark and Nilsson have noted significant 

variation in physical and thermodynamic properties such as the self-diffusion constant and the 

radial distribution function of various three-point water models [23, 24]. Less is known about 

how well the various water models describe the liquid-vapor interface and the surface tension γ . 

Our own work, however, suggests that even models with very similar density and distribution 

profiles can have quite different predictions for surface tension.  

 

Experimental studies demonstrate that the surface tension of water decreases with a slight 

quadratic dependence on temperature in the range 273 K 373 KT< <  [25-29]. Surface tension 

results for higher temperatures have not been reported in the literature; we extrapolate the 

reported experimental data to higher temperatures. There have been a few studies for various 

three-point models [9, 30-36] which show that while most water models reproduce the observed 
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decrease in surface tension as temperature increases, they tend to underestimate γ  by amounts 

between 25  and 50  percent. Only Alejandre et al., Huang et al., and Shi et al. [30, 36, 37] report 

adequate agreement with experimental data. However, as we show below, the apparent 

agreement of both Alejandre et al. [30] and Shi et al. [36] is the result of inadequate simulation 

time. Alejandre et al. also employ a reciprocal-space mesh that is too coarse, while Huang et al. 

report values only for the SPC and SPC/E models at 298K  [37].  

 

Our primary goal is to study capillary waves at the liquid-vapor interface of water, and to 

distinguish between various functional representations for the density profile near the interface. 

Additionally, we first determine the surface tension as a function of temperature for six 

commonly used three- and four-point models of water, in part to establish a basis for comparison 

with the capillary-wave simulations.  

 

In Section II, we provide a brief overview of methods for computing the surface tension from 

molecular simulation data, of the various water models examined in this study, and of the 

simulation methods employed. Section III presents our findings on the temperature dependence 

of the surface tension, as well as the effects of the tail correction, interaction cutoffs, and 

reciprocal-space mesh refinement. We discuss the results obtained from the analysis of capillary 

waves at the liquid-vapor interface in Section IV before offering our conclusions in Section V.  

    

II. Models and methodology 

A. Surface tension 
 
1. Thermodynamic method 
 
There are two primary methods used to compute the surface tension using molecular simulations. 

The first approach, developed by Tolman [38] and refined by Kirkwood and Buff [39], computes 

the surface tension as an integral of the difference between the normal and tangential pressures 

( )p z⊥  and ( )p z : 

 ( ) ( )( )1
2p p z p z dzγ

∞

⊥−∞
= − ,∫   (1) 

where, in our geometry (see Figure 1),  
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( ) ( )
( ) ( ) ( )( ) 2

z

x y

p z p z

p z p z p z
⊥ = ,

= + / .

 

The dominant contributions to the integral in Eq. (1) occur near the interface; in the bulk away 

from the interface, p p⊥ =   and the integrand vanishes. For the specific case shown in Figure 1, 

where the interface separates a bulk liquid from its corresponding vapor phase, the integral in Eq. 

(1) can be replaced with an ensemble average of the difference between the normal and 

tangential pressures, 

 
2 2 2

x yz z
p z

p pL Lp p pγ ⊥

⎡ ⎤+
= − = − .⎢ ⎥

⎢ ⎥⎣ ⎦
  (2) 

The outer factor of 1 2/  in Eq. (2) accounts for the presence of two liquid-vapor interfaces. 

 

  

Figure 1.  Sample simulation cell, showing equilibrated configurations of 1000 SPC/E water 
molecules at (a) 300 K  and (b) 500 K . The dimensions of the cell are 2 3 nmx yL L L= = = .  and 

13 5 nmzL L⊥= = . . 

 
In most numerical simulations, the interatomic and electrostatic interactions are only applied 

within a cutoff range cr . The introduction of the cutoff in the interparticle potential reduces the 

surface tension in much the same way that the introduction of a cutoff reduces the bulk pressure 

at constant density. Thus, the simulation result pγ  will underestimate the total surface tension; a 

better estimate of the total surface tension can be obtained from 

 p tailγ γ γ= + ,  (3) 

where tailγ , the tail correction for pγ , can be determined from [40, 41] 

 ( ) ( ) ( ) ( ) ( )( )( )1 23 2

1
1 3

2 c
tail Gr

r U r g r s z z sr z dr ds dzπγ ρ ρ ρ
∞ ∞ ′ ⎛ ⎞

⎜ ⎟
⎝ ⎠−∞ −

= − × − − ,∫ ∫ ∫  (4) 
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where ( )U r  is the pairwise potential, ( )g r  is the radial distribution function, ( )zρ  is the 

observed interfacial profile, and ( )G zρ  is a Gibbs dividing surface: 

 ( ) ( )
2G cz sgn zρρ ρ Δ= + ∗ .  (5) 

Although the use of the tail correction in Eq. (3) improves the estimate of the surface tension, its 

use is restricted to systems in which the two phases contain the same components; for composite 

systems, such as water at the surface of a solid, only pγ  should be used.  

 

We assume in Eqs. (4) and (5) that the liquid-vapor interface is centered at 0z = . In Eq. (5), 

( ) 2c l vρ ρ ρ= + /  is the average density of the two phases, and l vρ ρ ρΔ = −  is the difference 

between the average densities of the two phases. Thus, ( )G vzρ ρ=  for 0z <  and lρ  for 0z > . 

There are multiple possible choices for determining the observed density profile ( )zρ . Although 

it is possible to use the profile calculated from the simulation directly, both the tail-correction 

and capillary-wave calculations are simplified by fitting the profile to a function. In the present 

study, the density profile is fitted to both an error function and a hyperbolic tangent function, as 

discussed in the following section.  

 

2. Capillary-wave method 
 
The thermodynamic approach for computing surface tension assumes a sharp liquid-vapor 

interface when in reality it is quite rough. The roughness of the interface increases at high 

temperatures, as seen in Figure 1. A second method for computing the surface tension assumes 

that the observed magnitude of the fluctuations is derived from two sources: an intrinsic 

contribution plus a logarithmic term that represents broadening of the interface as a result of the 

capillary waves [1, 7, 42-45].  

 

If the contributions from capillary waves can be decoupled from density fluctuations, then the 

surface tension can be computed by determining the interfacial profiles for a number of different 

system sizes. The relationship between the observed interfacial width Δ  and the intrinsic 

interfacial width 0Δ  is given by 



 63 

 2 2
0

0

ln
2

B

w

Lk T
Bπγ

⎛ ⎞
Δ = Δ + ,⎜ ⎟

⎝ ⎠
  (6) 

where x yL L L= =  is the length of the interface, and 0B  is a characteristic length scale related to 

the short-wavelength cutoff in the interfacial behavior. It is unnecessary to determine 0B  before 

computing the surface tension wγ .  

Computation of wγ  requires the scaled density profile,  

 ( ) ( )2
2

L V

L V

z z ρ ρρ
ρ ρ

+⎛ ⎞Ψ = − ,⎜ ⎟− ⎝ ⎠
 (7) 

in the z -direction. Given ( )zΨ , the variance in the derivative of the profile ( ) ( )f z z′= Ψ  can 

be computed in either real or reciprocal (Fourier) space: 
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where ( )f q%  is the Fourier transform of ( )f z . The simple form of Eq. (8) suggests that fitting 

the profile ( )zΨ  to a functional form will be both more convenient and lead to more accurate 

results than using the raw profile data. Several different functional forms for ( )zΨ  have been 

proposed in the literature. Relying on mean-field arguments, most previous theoretical and 

computational studies of surface tension have fitted the profile to a hyperbolic tangent function 

[22, 30, 40-41],  

 ( ) 2tanht
t

zz
w

⎛ ⎞
Ψ = ,⎜ ⎟

⎝ ⎠
 (9) 

while Huang and Webb [42] and Beysens and Robert [43] propose the use of an error function, 

 ( )e
e

zz erf
w
π⎛ ⎞

Ψ = .⎜ ⎟⎜ ⎟
⎝ ⎠

 (10) 

If the density profile ( )zΨ  is fitted to a hyperbolic tangent function Eq. (9), then from Eq. (8) 

we find that [7]  

 2 2 2 48t twπΔ = / ,  

while for an error function Eq. (10), the interfacial width 2
eΔ  is given by 
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 2 2 2e ew πΔ = / .  

We will show that there is a significant discrepancy between the surface tensions obtained from 

the hyperbolic tangent profile, Eq. (9), and the error function profile, Eq. (10), with the error 

function giving results in closer agreement with Eq. (2).  

 

B. Water models 
 
We consider four different three-point models: the SPC/E model; the original TIP3P model; the 

modification of the TIP3P model [46] implemented in CHARMM (hereafter referred to as 

TIP3P-C); and the TIP3P-Ew model [10], a recent reparameterization incorporating the effects of 

Ewald summation. The parameters for the different water models are summarized in Table I.  

 

The basic structure of the different models is similar. The common features of all models include 

a specified oxygen-hydrogen bond length OHl  and hydrogen-oxygen-hydrogen bond angle HOHθ , 

a charge on each hydrogen atom, and a Lennard-Jones 12-6 potential describing the interaction 

between the oxygen atoms, 
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 (11) 

where OOε  and OOσ  are the model-dependent well depth and equilibrium O-O distance, and OOr  

is the distance between oxygen atoms. The TIP3P-C model incorporates hydrogen-hydrogen and 

hydrogen-oxygen Lennard-Jones interactions as well.  
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TABLE I: Parameters for commonly used three- and four-point models of water. 

Parameter SPC/E TIP3P TIP3P-C TIP3P-Ew TIP4P TIP4P-Ew 

Hq  0.410 0.417 0.417 0.415 0.520 0.5242 

Oq  -0.820 -0.834 -0.834 -0.830   

Mq      -1.040 -1.0484 

HOHθ , deg 109.47 104.52 104.52 104.52 104.52 104.52 

OHl , Å 1.0 0.9572 0.9572 0.9572 0.9572 0.9572 

OMl , Å     0.1500 0.1250 

OOε , kcal/mol 0.1553 0.1521 0.1521 0.102 0.1550 0.16275 

OOσ , Å 3.166 3.1506 3.1507 3.188 3.1536 3.16435 

OHε , kcal/mol   0.0836    

OHσ , Å   1.7753    

HHε , kcal/mol   0.0460    

HHσ , Å   0.4000    

 

 

In addition to the Lennard-Jones interaction, there are electrostatic interactions between the 

charge sites: 

 
1 1 04

N N
i j

es ij
i j ij

q q
U r

rπε
⎛ ⎞
⎜ ⎟
⎝ ⎠

= =

= ,∑∑  (12) 

where qα  is the charge on atom α , and ijr  is the distance between atoms i  and j  in the 

simulation box. Previous studies have shown that significant variations in the values obtained for 

surface tension can occur depending upon how the sum in Eq. (12) is performed [31]. Except in 

Section 1.3, Ewald summations were used throughout our simulations.  

 

We also consider a pair of four-point water models: the TIP4P model [16], and the TIP4P-Ew 

model [11], a recent reparameterization designed to account for the presence of long-range 

interactions. The four-point models introduce a bare charge at a new site, designated M , located 
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on the bisector of the HOH bond angle; the charge is of strength Mq . The forces acting on the 

massless site are distributed to the O and H atoms in the same molecule [47]: 

 
( )1 2ij O ij M

ij H ij M

a

a
, ,

, ,

= − ,

= ,

F F

F F
 

where ( )( )cos 2OM OH HOHa l l θ= / /  and ij M,F  is the force acting on the massless site associated 

with oxygen i  due to atom j . For the TIP4P model, the charge is located 0 15OMl = . Å away 

from the oxygen atom. The TIP4P-Ew model changes the values of OMl , the charge Mq , as well 

as the separation OOσ  and well-depth OOε  of the Lennard-Jones interaction.  

 

C. Simulation method 
 
1. Thermodynamic method 
 
To determine the surface tension of the various three-point water models, 1000 molecules were 

placed into a periodic, rectangular box of dimensions 2 3 nmx yL L L= = = .  and 

13 5 nmzL L⊥= = . . The increased system size in the z -direction minimizes the interactions of 

water molecules in the liquid phase with their z -periodic images through the long-range 

Coulombic interactions in Eq. (12). Similarly, 1000 molecules of the four-point models were 

simulated in a box with dimensions 2 7 nmx yL L L= = = .  and 12 0 nmzL L⊥= = . , each also 

containing 1000  molecules. The initial configuration was constructed by placing the water 

molecules at the center of a simple cubic lattice with 7 molecules each in the x - and y -

directions, and the z -spacing chosen to create a density of 30 98 g/cm.  for the three-point 

models, and 31 00 g/cm.  for the four-point models. The same starting configuration was used for 

all simulations of a given water model. At equilibrium, the thickness of the slab in the z -

direction varied between approximately 5 5 nm.  at 300 K  and 7 5 nm.  at 500 K .  

 

For each of the six models examined, molecular dynamics (MD) simulations were performed in 

the NVT  ensemble in 25 -degree increments between 300 K  and 500 K  using the LAMMPS 

simulation package [48]. The cutoff for the Lennard-Jones potentials and the short-range cutoff 
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for the electrostatic potentials were set to 10 Å, unless otherwise specified. The bond lengths and 

bond angles of the various models were constrained using the SHAKE technique [49]. The 

equations of motion were integrated using the Verlet algorithm with velocity rescaling to control 

the temperature. The difference in the surface tension between simulations performed with 

velocity rescaling and those with a Nosé-Hoover thermostat with a damping constant of 1100 ps−  

was significantly less than the simulation uncertainty. Each simulation was performed for a total 

of 2 ns  with time step 1 fstΔ = .  The system was allowed to equilibrate for 1 ns ; data from the 

second 1 ns  were used to compute the surface tension.  

 

The electrostatic interactions were calculated using the particle-particle particle-mesh (PPPM) 

technique of Hockney and Eastwood [50]. The mesh spacing in this work was selected to ensure 

that the root-mean-squared accuracy of the force calculation was within 410− ; the resulting grid 

was of dimensions 12 12 48× × . Most previous simulations were carried out with a maximum of 
max 20zh =  cells in the z -direction [30, 31]. In several of those studies, simulations were carried 

out with max 10zh =  or less, and some did not include long-range electrostatic interactions at all 

[32]. We consider the effects of mesh refinement on the surface tension in Section III D.  

 

2. Capillary-wave method 
 
Observation of capillary waves requires simulations with larger interfacial surface areas than 

were used in the thermodynamic method above. Consequently, we studied systems with 

x yL L L= =   varying between 9 2 nm.  and 46 0 nm. . The resulting simulations used to compute 

the surface tension have surface areas between 284 6 nm.  and 22116 0 nm. ,  and contained 

between 16 000,  and 400 000,  water molecules. To construct the initial configuration, we take an 

equilibrated sample and replicate it multiple times in the x - and y -directions. The SPC/E model 

was used for this study, as it was the most computationally efficient of the models studied.  

 

To ensure that artifacts from the replication process were eliminated, the simulation time varied 

between 1 0 ns.  and 6 0 ns.  as an increasing function of L . Only the last 750 ps  of the 

simulation were used for recording data; the preceding steps were used for equilibration and 



 68 

discarded. We output the position of every atom after every 5000  timesteps, and then assigned 

each atom to one of 500 bins depending on its location in the z -direction. To ensure that the 

interfacial profile was not altered by drifts in the density profile, the profile was shifted so that 

the center of the mass was located at 0z = . Sample profiles for the SPC/E model of water at 

several temperatures are shown in Figure 2. After the average density profile ( )zρ  was 

computed, the two halves of the profile, on either side of 0z = , were averaged together, rescaled 

to values between 1−  and 1 using Eq. (7), and then fitted to hyperbolic tangent and error 

functions of the form of Eq. (9) and Eq. (10). 
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FIGURE 2.  Density profiles for the SPC/E model of water at 300 K (thick solid line), 400 K 

(thick dashed line), and 500 K (thick dashed-dotted line). Fits to error functions are shown as 

thin solid lines. 
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III. Thermodynamic Surface Tension: Results and Discussion 

A. Temperature dependence 
 
The surface tension p tailγ γ γ= +  of the various water models, computed using Eq. (2), are 

collected in Table II. Results for the three-point models are shown in Figure 3(a) as a function of 

temperature. Using the method of Flyvbjerg and Petersen [51], the uncertainty in the results was 

found to be between 2 4.  and 3 0 mN/m. . Comparing the four three-point models, we find that 

SPC/E model is the closest to the experimental data, with better agreement at higher 

temperatures. For most temperatures, the various TIP3P models agree with the SPC/E model 

within the uncertainty of the simulation. Although the three-point models considered do not 

achieve agreement with experimental data, the overall temperature dependence of γ  for the 

models is in good agreement with the experimental data. For the three-point models, γ  is 

generally between 15 mN/m  and 20 mN/m  less than the experimental data, especially in the 

temperature range 300 K 425 KT< < . 

 

TABLE II: Surface tensiona for three- and four-point water models, including tail correction. 

 Surface Tension, γ  (mN/m) 

T (K) SPC/E TIP3P TIP3P-Ew TIP3P-C TIP4P TIP4P-Ew Expt. b  

300 55.4 51.1 47.4 48.8 53.6 61.2 71.7 

325 47.9 45.9 43.6 47.5 50.9 55.6 67.6 

350 47.0 42.8 39.2 45.7 45.7 52.7 63.2 

375 44.6 37.8 37.7 39.9 41.4 48.1 58.4 

400 37.6 35.5 34.3 36.9 35.9 43.5 53.3 

425 32.0 31.5 28.9 31.9 31.2 38.6 47.9 

450 30.6 27.3 25.9 28.2 25.7 34.5 42.1 

475 26.8 24.7 23.2 23.2 19.1 29.3 36.0 

500 23.2 17.0 16.9 18.1 15.2 24.8 29.5 

Notes: a Uncertainty for all simulation results is between 2.4 and 3.0 mN/m. b Experimental data 
taken from Refs. [25-27]; data above 400 K is extrapolated from quadratic fit provided in Ref. 
[26].      
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Alejandre et al. [30] and Shi et al. [36] reported excellent agreement with experimental results 

for the SPC/E model. However, our results for the SPC/E model clearly disagree with their data 

as well as with experimental results, although the simulations were performed under essentially 

identical conditions with respect to the number of molecules and the dimensions of the system, 

potentials employed, temperature range, and cutoffs. We study the potential causes of the 

disagreement in the results below.  

 

Results for the four-point models as a function of temperature are shown in Figure 3(b). The 

uncertainty for the four-point models is the same as for the three-point models. Like the three-

point models, the four-point models underestimate the surface tension, with the TIP4P model 

offering results comparable to the TIP3P-C and TIP3P-Ew models, while the performance of the 

TIP4P-Ew model is significantly closer to the experimental data than any of the other models 

examined here. Unlike the TIP3P models, at most temperatures considered here, the TIP4P and 

TIP4P-Ew models do not agree within simulation uncertainty.  
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Figure 3. (Top figure) Surface tension of the three-point models of water as a function of 
temperature: SPC/E (filled circles), TIP3P (squares), TIP3P-C (triangles), and TIP3P-Ew 
(diamonds). Simulation data from Alejandre et al. [30] (open circles) are included for 
comparison. (Bottom figure) Surface tension of the four-point models of water as a function of 
temperature: TIP4P (circles) and TIP4P-Ew (squares). In both figures, experimental data [25-27] 
(solid curve) and extrapolation of quadratic fit to higher temperatures (dashed curve) are 
included for comparison. 
 

A. Tail correction 
 

While tail corrections can exist for both the Lennard-Jones and the electrostatic interactions, by 

using Ewald summations, we avoid the need for a Coulombic tail correction. In evaluating the 

tail correction, Eq. (4) for the Lennard-Jones potential in the region r σ , 

( ) 6 724dU r dr rεσ −/ ≈ . Assuming that for cr r> , the radial distribution function ( ) 1g r ≈  and 

that the density profile is an error function of the form Eq. (10), we can evaluate Eq. (4). After 

integration over s , 
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where ewξ π≡ /  and  

 ( ) ( )( ) ( )( )f r z erf r z erf r zξ ξ ξ, , = + + − .  

Eq. (13) is then evaluated numerically for each density profile. For the SPC/E model of water, 

the interfacial thickness, density difference, and tail correction are shown in Table III. Because 

of the existence of capillary waves at the interface, as shown in Section IV, the interfacial 

thickness parameter ew  depends logarithmically on the length L  of the interfacial surface .   

 

The tail correction depends strongly upon the Lennard-Jones parameters, scaling as 6εσ , and 

decays exponentially as a function of the chosen interaction cutoff cr . Because OOε  and OOσ  are 

approximately equal for the SPC/E and TIP3P models, the tail corrections at all temperatures are 

almost identical for the two models. While the TIP3P-C has additional tail corrections for the O-

H and H-H interactions, their magnitudes are negligible in comparison to the correction for the 

O-O interaction. Only the TIP3P-Ew model, which has a significantly smaller value for the 

Lennard-Jones interaction strength OOε , has a noticeably different tail correction from the other 

three-point models. The tail corrections for the four-point models are likewise close to that of the 

SPC/E model, with the TIP4P model having a slightly smaller tail correction and the TIP4P-Ew 

model a slightly larger tail correction.  
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TABLE III. Interfacial properties of SPC/E water as a function of temperature, for a 1000-

molecule system with rc = 10 Å and L = 2.3 nm. 

 

Temperature 
T, K 

Interface thickness 
ew , Å 

Liquid density 
Lρ , g/cm 3  

Vapor density 
Vρ , g/cm 3  

Tail correction 
tailγ , mN/m 

300 3.12 0.990 0.0005 5.5 

325 3.37 0.977 0.0008 5.2 

350 3.75 0.959 0.0005 5.0 

375 4.22 0.941 0.0005 4.8 

400 4.63 0.913 0.0015 4.5 

425 5.23 0.886 0.0023 4.1 

450 5.74 0.855 0.0049 3.8 

475 6.00 0.818 0.0093 3.5 

500 7.54 0.779 0.0199 3.0 

 

A. Cutoff effects 
 

The original parameterizations for the SPC/E and TIP3P models of water employed cutoffs for 

both electrostatic and Lennard-Jones interactions [15, 16]. To study the effect of varying the 

electrostatic cutoff, we applied a short-range cutoff to both the LJ and electrostatic potentials of 

the SPC/E model, truncating the potentials at 10cutr = , 12 , 14 , 16 , 18 , and 20A . Using Eq. (2) 

to determine the surface tension, we found that the estimated values of the surface tension were 

nonsensical, ranging between 3700−  and 1700 mN/m , with no value smaller in magnitude than 

140 mN/m . This shows that truncated electrostatic potentials are inappropriate for use in the 

determination of the surface tension of water.  

 

To determine the effect of varying only the range of the Lennard-Jones interaction on pγ  before 

incorporating the tail correction, we performed runs for the SPC/E model at 300 K with LJ 

cutoffs of 10 , 12 , 14 , 16 , 18 , and 20 Å, using the PPPM Ewald technique for the electrostatic 

forces. The starting configuration for these runs was the final configuration from the 300 K 

simulation used to compute the surface tension in Section III A. The resulting values of the 
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surface tension are shown in Table IV. The values for the surface tension are within the 

simulation uncertainties, although they tend to rise with increasing cr . This is further reflected in 

the density profiles, which show that the liquid-phase density Lρ  increases with cr  for values of 

cr  between 10 Å and 18 Å. The overall effect of the choice of cr  can be seen when comparing 

the surface tensions of SPC/E water in the temperature range 300 K to 500 K for LJ cutoffs of 10 

Å and 16 Å. The resulting data are shown in Table V. The data demonstrate that the surface 

tensions for 10 Å and 16 Å cutoffs are equal, within simulation uncertainty, after the 

corresponding tail corrections have been applied to each set of data. Thus, the 10 Å Lennard-

Jones cutoff with long-range tail corrections is sufficiently accurate for computing the surface 

tension.  

 

 

 

TABLE IV: Surface tensions pγ  and γ  and liquid-phase density Lρ  for the SPC/E model as a 
function of LJ cutoff cr , with and without tail correction, at 300 K. 

cr  (Å) pγ  (mN/m) γ  (mN/m) Lρ  (g/cm 3 ) 

10.0 46.3 51.8 0.990 

12.0 51.2 55.0 0.992 

14.0 47.9 50.6 0.994 

16.0 49.7 51.8 0.996 

18.0 49.9 51.5 0.996 

20.0 52.8 54.1 0.995 
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TABLE V: Surface tension for the SPC/E model as a function of LJ cutoff. 

pγ  (mN/m) p tailγ γ γ= +  (mN/m) 
T  (K) 

10cr =  Å 16cr =  Å 10cr =  Å 16cr =  Å 

300 49.9 50.2 55.4 52.3 

325 42.8 48.7 47.8 50.7 

350 42.2 47.2 47.0 49.1 

375 40.0 40.3 44.6 42.1 

400 33.3 37.7 37.6 39.4 

425 28.1 33.5 32.0 35.0 

450 27.0 29.2 30.6 30.6 

475 23.6 23.6 26.8 24.9 

500 20.5 22.3 23.2 23.3 

 

A. Reciprocal space accuracy dependence 
 

Alejandre et al. [30] found that the surface tension depended on the mesh refinement maxh  used 

to evaluate the long-range Coulombic interactions. To test the dependence of pγ  on max ,h  we 

show results in Figure 4 for three different models as a function of maxh . From the figure, 

several trends become apparent. First, for both the TIP3P and TIP3P-Ew models, the long-time 

average of the surface tension depends significantly on the value maxh : the long-time average 

for a 5 5 20× ×  mesh ( max 20=h , rms accuracy 34 0 10−. × ) is between 15  and 20 mN/m  larger 

than for a 12 12 48× ×  mesh ( max 50=h , rms accuracy 410− ). For larger values of max ,h  there is 

no significant adjustment in the surface tension. Additionally, as found above, for a given value 

of the precision, there is little difference in the long-time average of the two models. 
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FIGURE 4. Equilibration of the surface tension of the SPC/E (black circles), TIP3P (red 
squares), and TIP3P-Ew (blue diamonds) models of water for rms k -space accuracies of 34 10−×  
(dashed curves, open symbols) and 410−  (solid curves, solid symbols). 

 
 
For the SPC/E model, there is little difference between the equilibrium values for the 5 5 20× ×  

mesh and the 12 12 48× ×  mesh. However, it takes approximately 1ns  to achieve agreement 

between the two precision levels; before this, the less-refined mesh has a significantly greater 

surface tension. In the work of Alejandre et al., the total simulation time was only 0.375 ns.  

After 0.375 ns, the average surface tension from our simulation using the 5 5 20× ×  mesh was 

approximately 60 mN/mγ = , which closely corresponds with the result 60 6 mN/mγ = .  

obtained in the earlier study. However, for long simulation times, the surface tension of the 

SPC/E model does not exhibit a strong dependence on the mesh size. Consequently, since the 

long-time averages are essentially equal within simulation uncertainty, we have used the finer 

12 12 48× ×  mesh refinement for all of the simulations reported in this paper unless otherwise 

specified. 
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To further demonstrate that the accuracy of the reciprocal-space calculation does not affect the 

results for the surface tension of the SPC/E model when averaged over sufficiently long times, 

we performed simulations of the SPC/E model, as described above, with k -space meshes of 

5 5 20× × , 12 12 48× × , and 20 20 80× × ,  corresponding to rms accuracies of 34 10−× , 410− , and 
510− , respectively. The results are shown in Figure 5 for the time ranges of 125 to 375 ps used by 

Alejandre et al., and 1 to 2 ns used in the present work. Clearly, the results for the shorter time 

range (125  to 375 ps) have not converged: there is significant disagreement of as much as 20 

mN/m, particularly at higher temperatures. However, for longer times, the results have 

converged, with the differences among the three mesh refinements being essentially within 

simulation uncertainty. It is interesting to note that the converged surface tensions of the 

different mesh refinements corresponds very closely to the profile obtained for the intermediate 

mesh refinement (12 12 48× × ) after 375 ps. Our intermediate mesh refinement is comparable to 

the most refined k -space mesh considered by Alejandre et al. [30] (shown in Fig. 7 of their 

paper for a single, instantaneous configuration). 
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FIGURE 5. Surface tension for the SPC/E model of water as a function of mesh accuracy 
averaged over (top) 125-375 ps and (bottom) 1-2 ns for a 5 5 20× ×  mesh (circles), a 12 12 48× ×  
mesh (diamonds), and a 20 20 80× ×  mesh (triangles). 
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IV. Capillary waves 
 

The interfacial width 2Δ  was computed for various system sizes as described in Section II. The 

resulting plots of 2Δ  versus ln L  were computed and the value of wγ  extracted using Eq. (6). A 

plot showing the data obtained for 300 K for the SPC/E water model is shown in Figure 6; the 

resulting values of wγ  for the two functional forms at 300 K, 400 K, and 500 K are shown in 

Table VI. 
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FIGURE 6. Regression fit of Eq. (6) for hyperbolic tangent (diamonds) and error function 

(circles) profiles at 300 K. 
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TABLE VI: Comparison of surface tension for the SPC/E model as a function of calculation 
method. 

Surface tension, mN/m 

Capillary-wave  method T (K) 
Erf, wγ  Tanh, wγ  

Pressure-integration method, pγ  

300 46.1 36.5 49.9 

400 32.0 27.8 33.1 

500 19.0 19.0 20.2 

 
 

Our results indicate that at all three temperatures, good agreement between the pressure-

integration estimate of the surface tension, pγ , and the capillary-wave estimate of the surface 

tension, wγ , is obtained only if the interfacial density profile is fit to an error function. There is 

substantial disagreement between the error function and hyperbolic tangent functions at lower 

temperatures: the hyperbolic tangent profile always yields lower estimates than the error function 

profile. However, the magnitude of the discrepancy between the two estimates of γ  decreases 

the two narrows as temperature increases, and essentially vanishes at 500 K.  

 

In addition to computing the surface tension wγ , we can also compute an upper-bound estimate 

for the intrinsic interfacial width 0Δ  [7]. After obtaining the slope wα  and intercept wβ  for the 

least-squares fit of Eq. (6), we assume that the parameter 0 0B c= Δ , where c  is a constant to be 

specified. The intercept wβ  and 0Δ  are then related by 

 ( )2
0 0lnw w cβ α= Δ − Δ .  (14) 

For values of c  less than some threshold c∗ , there is no real solution to (14); above the 

threshold, 0Δ  quickly decays as c  increases. Thus, 0Δ  has a maximum at the threshold value 

c c∗=  where the imaginary part of the solution vanishes. For the system sizes under 

consideration, we find that the maximum intrinsic width 0 0 8Δ ≈ .  Å, 1.0 Å, and 1.5 Å at T = 300 

K, 400 K, and 500 K.  
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Further evidence that fitting the density profile to an error function yields more accurate results 

than fitting to a hyperbolic tangent function can be seen by comparing the density fits 

themselves. As shown in Figure 7, although the two profiles are similar, the error function fit 

more closely adheres to simulation results than the hyperbolic tangent profile. Although the 2χ  

parameter for both functional fits was relatively small, the coefficient for the hyperbolic tangent 
2χ  parameter ( 310− ) was approximately two orders of magnitude larger than the 

corresponding error function 2χ  parameter ( 510− ). The greater accuracy of the error function 

is further seen by comparing the magnitude of the differences between the simulation results and 

the fitted functional profiles, as shown in Figure 8.  
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FIGURE 7.  Density profile in the interfacial region for a slab of 400,000 SPC/E water 

molecules at 300K  ( 46 0 nmL = . ). Simulation results are shown as circles; fits to error function 

(solid curve) and hyperbolic tangent function (dashed curve) are also included. 
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FIGURE 8. Difference between simulation results and the error function (solid curve) and the 

hyperbolic tangent (dashed curve) fits for the same system shown in Figure 2. 

 

 

In addition to observing capillary wave behavior, the larger simulations can be used to study the 

effect of the interfacial area 2L  on the surface tension computed using Eqs. (2) and (13). Since 

surface tension is an intensive property, it should be independent of 2L . Although Eq. (13) is a 

slowly decreasing function of the parameter ew , over the range of values for ew  and 2Δ  

considered here, the tail contribution tailγ  varies by less than 2%. Thus, we expect the simulation 

values for the surface tension to remain constant, independent of L . Examining the results for 

the surface tension pγ  (without tail correction) versus the system size N , as shown in Table VII, 

we find a slight increase in γ  as L  increases, although the results remain within simulation 

uncertainty, even for large values of L . 
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TABLE VII: Surface tension for the SPC/E model as a function of system size at 300 K. 

Interfacial length L , Å pγ  (mN/m) γ  (mN/m) 

2.3 49.9 55.4 

9.2 52.0 57.5 

11.5 51.5 57.0 

13.8 51.8 57.3 

16.1 51.9 57.4 

23.0 51.6 57.1 

34.5 52.0 57.5 

46.0 51.8 57.3 

 

 

V. Conclusions 
 
An investigation of surface tension as a function of temperature for a number of popular three- 

and four-point water models shows systematic disagreement between experimental and 

simulation results for all six models considered. All six models considered consistently 

underestimate the surface tension relative to the experimental data. The TIP4P-Ew model is 

closest to the experimental data, although not in quantitative agreement.  

 

Examining the SPC/E model in greater detail, we have illustrated the importance of having a 

sufficiently long simulation time and sufficiently fine k -space mesh: significant variations in the 

surface tension can result if the equilibration period is too short. In the SPC/E, TIP3P, and 

TIP3P-Ew models, significant variations were also observed if a small number of k -space 

vectors are used.  

 

The present study also includes the first in-depth study of the effect of large system sizes on 

interfacial properties, studying capillary waves for systems of up to 54 10×  molecules. We have 

demonstrated that examining capillary waves at the liquid-vapor interface can be used to 

determine the surface tension of real fluids, and that the use of an error function profile offers 
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better results in comparison to experimental data than the use of a hyperbolic tangent profile. 

Finally, we note that the interfacial width Δ  depends on the interfacial length L , and that 

attempting to extract an interfacial width without taking into account the effect of capillary 

waves [22] is incorrect. 
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Abstract 
 

Molecular dynamics (MD) is a computer simulation technique where the time evolution of a set 

of interacting atoms is followed by integrating their equations of motion. Our goal is to motivate 

the recipes of MD for practitioners and researchers in numerical analysis and computational 

mechanics. The vast majority of these practitioners and researchers work with continuum 

mechanics. In contrast, an atomistic method such as MD is both culturally and intellectually 

distinct. The recent interest in multiscale analysis, in particular, Atomistic-to-Continuum 

coupling necessitates a sophisticated understanding of MD, its goals, limitations and 

computation.   

 

1. Introduction 
 
Molecular dynamics (MD) is a computer simulation technique where the time evolution of a set 

of interacting atoms is followed by integrating their equations of motion. Our goal is to motivate 

the recipes of MD for practitioners and researchers in numerical analysis and computational 

mechanics. The vast majority of these practitioners and researchers work with continuum 

mechanics. In contrast, an atomistic method such as MD is both culturally and intellectually 

distinct. The recent interest in multiscale analysis, in particular, Atomistic-to-Continuum 

coupling necessitates a sophisticated understanding of MD, its goals, limitations and 

computation.  

 

In contrast to continuum methods where accurate trajectories are of interest, MD is rarely 

concerned with accurate trajectories. In point of fact, accurate trajectories are not, in general, 

possible. Instead, quantities of interest are statistical averages computed during the sampling of 
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phase space. Primarily, our manuscript indicates why MD works from a mathematical 

perspective. We point out that our manuscript does not focus on geometric time integration 

issues, rather what are the relevant features of a time integrator that results in an acceptable 

sampling of phase space. Much of our discussion revolves around explaining in a mathematical 

fashion, both formally and informally, what the MD community of users and researchers has 

learned via dint of hard work and careful physical reasoning.  

 

Key concepts. We identified in the literature a number of concepts that play key roles in 

assessing the numerical integration of a Hamiltonian system in order to ascertain whether phase 

space is sampled accordingly.  

1. Measure preservation: This concept relates a map (transformation) T : X → X  to a 

probability-measure μ  on the space X : T  is said to preserve the measure μ  if for all 

sets A ⊂ X, the preimage1 of A  has the same measure as A , that is: 1( ( )) ( )T A Aμ μ− = . 

If T  is differentiable, and μ  is available in analytic form, then it is analytically verifiable 

whether T  preserves μ  or not (see Section 3).  

2. Ergodicity: A measure-preserving map T : X → X  is said to be ergodic if the only T -

invariant2 sets are trivial, in the sense that their measure is either zero or one. 

Alternatively, X cannot be split into disjoint sets of non-zero measure, each being 

invariant under T . In the statistical physics literature ergodicity is typically defined to be 

the property that for any statistical quantity Ψ , if we view the map T  as a transition 

from one step to the next, the “time”-averages of T  converge to the average of T  over 

the space X, that is:  

 
1

0

1lim ( ) ( ) ( )
n

i

n i
T x y d y

n
μ

−

→∞ =

Ψ = Ψ∑ ∫X  (1.1) 

for almost all x ∈X. As usual, ( )iT x  means ( ( ( ( ) )
itimes

T T … T x …
64748

, with 0 ( )T x x= . Indeed, the 

property expressed in (1.1) is the desired one because it expresses the potential for 

computing the average on the right-hand side of (1.1) by means of the available time-

averages on the left-hand side. However, verifying (1.1) may be extremely difficult, 
                                                 
1The preimage of A  (through T) is the collection of points x ∈X  such that ( )T x A∈ . 
2The set A  is T -invariant if ( )T A A⊂ . 
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mathematicians regard (1.1) rather as a consequence of ergodicity, and not as ergodicity 

itself. We emphasize that verifying whether a map is ergodic (or not) may be nontrivial.  

3. Sensitive dependence on initial conditions (SDIC): A map T : X → X  is said to have 

SDIC if for every starting point x ∈X we can find arbitrarily close points x′ , such that 

the positive orbit3 starting at x′  eventually diverges from the one starting at x . As a 

consequence, trajectories for a map having SDIC cannot be computed numerically for 

long periods of time in a classical sense (that is, point-to-point matching between exact 

value and computed value), because even the unavoidable round-off error will naturally 

be magnified, thus potentially rendering irrelevant computed values.  

4. Symplecticness: A differential map 2 2d dT : →   is symplectic if at each point 2dx ∈  

its Jacobian ( )T x′  satisfies the algebraic equation (2.11). If an analytic expression is 

given for T , then the symplecticness of T  is normally analytically verifiable.  

There are various links between these concepts in the context of Hamiltonian systems. Firstly, 

the flow map of a Hamiltonian system is symplectic. A symplectic map from 2d  to itself 

preserves the Lebesgue measure. However, symplecticness is a more involved kind of measure 

preservation than just global measure preservation, as discussed in Section 2.3. In particular, the 

flow map preserves the projection of the Lebesgue measure on the constant energy-surface. 

Generically4 measure-preserving maps generically have SDIC and are ergodic. The former 

property implies that we cannot expect to compute accurate trajectories of the Hamiltonian flow 

map. However, ergodicity allows us the extract statistical information from the same 

computations. The current state of affairs is that, if a discretization of the flow map tT Δ≈ Φ  is 

symplectic, then time-averages of a statistic φ  computed with T  will converge to the desired 

spatial average as the time step 0tΔ → . Our thesis statement is that if T  approximately 

conserves energy and preserves the projection onto S  of the Lebesgue measure, then accurate 

statistical information is extracted from T .  

 

The paper is organized as follows: In Section 2 we review the basic properties of Hamiltonian 

systems. We provide more mathematical background and language for the discussion above in 

                                                 
3The positive orbit of T  starting at x  is the set { ( ) 0}nT x n: ≥ . 
4Generically is meant in a precise mathematical sense (see Section 3 and Appendix B). 
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Section 3. The last section is devoted to the question of what are sufficient conditions for 

numerical integrators to give correct answers, in light of the discussion from Section 3.   

 

2. Background Information 
 
This section quickly provides some background information on Hamiltonian dynamics. The 

reader is referred to [5] and the sources cited for an excellent introduction to Hamiltonian 

dynamics.  

 

2.1. Mathematical Model 
 
Our object of this discussion is the n -body problem for the regime of MD-simulations. As usual, 

if we denote the positions of n  particles at time t  particles by 3( ) nt ∈q  , then Newton’s second 

law is  

 0 0( ) (0) (0)= , = , =Mq F q q q p p&&  (2.1) 

where M  is a diagonal matrix consisting of the particle masses. We assume that the force field is 

conservative, that is, there exists a potential 3nV : →  , such that  

 ( ) ( )V= −∇ .qF q q  

An additional level of abstraction is achieved by introducing the Hamiltonian or energy 

functional  

 11( ) ( )
2

TH V−, = + ,q p p M p q  (2.2) 

where the momenta of the particles is denoted by =p Mq& . This notation implies that the 

system (2.1) is equivalent to  

 
( )
( )

H
H

= ∇ ,⎧
.⎨ = −∇ ,⎩

p

q

q q p
p q p
&

&
 (2.3) 

We define the matrix 2 20
0
d d d

d

×⎡ ⎤
= ∈⎢ ⎥−⎣ ⎦

I
J

I
 , and vector 2d⎛ ⎞

= ∈⎜ ⎟
⎝ ⎠

q
z

p
 , respectively, where 

3d n= . Therefore, (4) can be rewritten as  

 ( )H= ∇ .zz J z&  (2.4) 
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Under suitable assumptions5 on (2.4), there is a unique solution for every initial condition, and 

we define the flow map  

 0 0( ) ( ) ( )
def

tt t, = Φ .z z za  

The flow map ( )tt Φ za  satisfies (2.3) with initial condition 0 ( )Φ =z z , i.e.,  

 ( ) ( ( ))t t
d H
dt

Φ = ∇ Φ .zz J z  (2.5) 

 
A basic property satisfied by a solution of (2.4) is energy conservation. A simple calculation 

yields  

 ( ) ( ) ( ) ( ) ( ) ( ) 0T T T Td H H H H H H H
dt

= ∇ + ∇ = ∇ ∇ + ∇ −∇ = ,q p q p p qz q p& &   

  

therefore ( )H z  is constant of motion. A functional that is constant on solutions of (2.4) is called 

a first integral, therefore the Hamiltonian is a first integral. However, energy conservation is 

only necessary for Hamiltonian dynamics. The necessary and sufficient condition of Hamiltonian 

dynamics is that the flow (or trajectory) is symplectic, a concept discussed in Section 2.3. In 

other words, Hamiltonian dynamics occurs if and only if the flow map (2.5) is symplectic6.  

 

2.2. Phase space conservation 
 
The Hamiltonian set of equations (2.3) gives rise to an important conservation law that has an 

analogy in continuum mechanics.  

 
We first introduce some terminology. The space given by the vectors z  defined by (2.4) is called 

phase space. Phase points are parameterized by time t  and so the flow (2.5) lies in phase space. 

Note that each phase point defines a unique trajectory because the associated z  represent a 

solution of Hamilton’s equations and are uniquely determined. Therefore each phase point 

defines a state of a mechanical system. We can consider a continuum of points in phase space 

occupying a volume V  in phase space. This notion of phase space volume is well considered 

because in reality, we cannot identify the precise positions and momentums of the Hamiltonian 

                                                 
5for example, the Lipschitz property 
6The precise statement discusses locally Hamiltonian flow. See Theorem 2.6 [4, pp. 173-174]. 
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system. Instead, each of the points in V  represents a possible state of the system. The collection 

of states is called an ensemble and represents a useful idealization. The following theorem proves 

central to our discussion, and provides an extremely useful analogy with incompressible fluid 

flow. The theorem describes the motion of an ensemble in phase space.  

 
Theorem 2.1 (Liouville)  Let the Hamiltonian set of equations (4) be given. If Ω  denotes a 

region, or volume, of phase space, denote ( )t tΩ = Φ Ω , and by ( ) ( )tV t vol= Ω . Then  

 
( ) 0dV t

dt
= .  (2.6) 

 

Proof. We have  

 
t t t

dV d d dS d
dt dt Ω ∂Ω Ω

= = − ⋅ = − ∇ ⋅ .∫ ∫ ∫ zz z n z z& &  

Liouville’s theorem is established because  

 ( ) ( ) ( ) 0
t t t

dz H dz H d d
Ω Ω Ω

∇ ⋅ = ∇ ⋅ ∇ = ∇ ⋅∇ − ∇ ⋅∇ , = ,∫ ∫ ∫z z z q p p qz J z q p q p&  (2.7) 

where we used Hamiltonian set of equations (2.4).        

Because the volume V  is arbitrary, phase space flow is incompressible, i.e.  

 0∇ ⋅ = .z z&  

If ( )ρ ρ≡ z  is the density of system points in phase space per unit volume, then VρΔ  is the 

amount of system points in an infinitesimal volume VΔ . Because the amount of system points 

remains constant, we have  

 0 ( )d d d dV V V V V
dt dt dt dt t

ρ ρ ρ ρ ρ ρ∂= Δ = Δ + Δ = Δ = Δ + ⋅∇ ,
∂ zz&  

where we used Liouville’s Theorem in going from the second to third equality. If we divide 

through by VΔ , and use the incompressibility of phase space flow, then  

 ( )
t t

ρρ ρ ρ ρ∂ ∂+ ⋅∇ + ∇ ⋅ = + ∇ ⋅ .
∂ ∂z z zz z z& & &  

Therefore we have the Lagrangian and Eulerian version of the continuity equation  

 ( ) 0d
dt t

ρρ ρ∂= + ∇ ⋅ = ,
∂ z z&  (2.8) 

for phase space density. In words, the amount of system points in any volume VΔ  moving with 

the fluid remains constant.  
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In reality, as explained before Theorem 2.1, precise positions and momentums of the 

Hamiltonian system are not available. And so z  can be identified with a random variable with 

distribution ρ  that evolves in time via (2.8). If we define statistical equilibrium as the 

distribution, or measure, where ρ  is constant at every point in phase space, then (2.8) gives that 

incompressible phase space flow is a necessary and sufficient condition for statistical 

equilibrium.  

 

Hamiltonian set of equations (2.4) imply that we can rewrite (2.8) as  

 ( ) ( )
t
ρ ρ ρ ρ∂ = −∇ ⋅ = − ⋅∇ =

∂ z zz z z& & L  

where 
def

H H= ∇ ⋅∇ − ∇ ⋅∇p q q pL  is called the Liouville operator. Because the operator is linear, 

we have the formal solution  

 ( ) ( 0)tt eρ ρ−, = , .z zL  

The Liouville operator is skew-symmetric, and so the eigenvalues all lie on the imaginary axis. 

Hence the phase space density ( )tρ ,z  oscillates and does not have a limit as t  increases. The 

formal solution also allows us to specify an important property that any density ρ  must satisfy. 

Using (2.8) gives that  

 0 d H H
dt
ρ ρ ρ ρ= = − = ∇ ⋅∇ − ∇ ⋅∇p q q pL  

so that ρ  must commute with the Hamiltonian. If ρ  is selected equal to a function of H , then 

this function of ρ  commutes with H .  

2.3. Symplectic Flow 
 
By differentiating (2.5) with respect to z  we conclude that the derivative with respect to the 

initial condition, or Jacobian  

 ( ) ( )t t
∂= Φ
∂

F z z
z

 (2.9) 

satisfies the linear differential equation  

 2( ) ( ( )) ( )t t t
d H
dt

= ∂ Φ ,zzF z J z F z  (2.10) 
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with 0 2( ) d=F z I .  A differentiable map 2 2d d: →T    is called symplectic if the Jacobian 

satisfies the matrix relation  

 T ∂= , ≡
∂

A JA J A T
z

 (2.11) 

 

Theorem 2.2. The Jacobian of the flow map (given by (1)) is a symplectic map, i.e.  

 ( ) 2( ) ( )T d
t t t= ∀ ∈,∀ ∈ ,F z JF z J z   (2.12) 

and so the flow map tΦ  is symplectic.   

Proof. For example, see [5, p. 54].          

 

It follows that a symplectic map preserves the Lebesgue measure. However, symplecticness is 

much more than measure-preservation. In order to describe symplecticness in geometrical terms 

we extract the following discussion from [5, pp 56-61]. Consider the bilinear form  

 2( ) for
def

T dΩ , − , , ∈ .=y x y Jx y x   (2.13) 

If 1d = , then  

 1 1 3
1 2 2 1

2 2

( ) T T
i i

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Ω , = − , ≡ , ≡ , , ∈ .
x y

y x y x y x x y x y
x y

  (2.14) 

The right-hand side expression from (2.14) represents the signed area of the parallelogram 

spanned by the vectors x  and y . In general, we have that  

 2

1

( )
d

T T d
i d i d i i

i
+ +

=

Ω , = − , , ∈ .∑y x y x y x y x   (2.15) 

In words, ( )Ω ,y x  is obtained by summing up the signed areas of the projections on the ( )i i,q p -

planes of the parallelogram spanned by y  and x . It is the preservation of this quantity that 

characterizes symplectic maps. Preservation of the Ω -form is more restrictive than measure-

preservation in full-space, e.g. that given by (2.8). In other words, the incompressibility of phase 

space flow is a weaker condition than that of symplectic flow.  
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3. Computing Statistics, Ergodicity And Chaotic Behavior 
 

The flow map associated with a Hamiltonian is a family of measure-preserving transformations 

in phase-space. Generically, measure-preserving maps are both chaotic and ergodic. While the 

former property inhibits the possibility of following trajectories for a long time, the latter allows 

for retrieving global statistical information by following almost all trajectories for infinite time. 

Symplecticness is intimately related both to measure-preservation and to the property of a system 

to be Hamiltonian, therefore it plays a key role in our discussion of numerical integration for 

Hamiltonian ordinary differential equations. In this section we attempt to introduce the 

mathematical framework in which the ideas above reside.  

 

A critical component in our exposition is the idea that the preserved measure of interest is a 

measure on the constant-energy surface, with the density given by (3.5). A statement common to 

the statistical mechanics and MD literature is that all states on the energy surface are equally 

probable. If the surface under discussion were, say, the unit cube in 2d , then a well-intended 

mathematician would read in this statement that the underlying probability is the Lebesgue 

measure7. That is, the probability density with respect to the natural measure on the set of interest 

(here, the cube) has a constant value of 1. Since every subsurface of 2d  is naturally equipped 

with a measure inherited from the Lebesgue measure of 2d , namely the one given by the 

volume-form8, one may be tempted to read in the aforementioned statement that the probability 

density with respect to this inherited measure on the surface has a constant value of 1. As we will 

see below, this is not the case here. We refer the unfamiliar reader to [8] for a definition of the 

volume-form.  

As mentioned in Section 1, given a probability space ( )μ,Σ,X 9, a map T : X → X  is said to 

preserve the measure μ  if  

 1( ( )) ( ) measurableT A A A Aμ μ− = ,∀ ⊂ , ,X  (3.1) 

                                                 
7An ill-intended mathematician might say: ‘Of course they are equally probable, each individual state has 
probability zero’. 
8 For example, the inherited measure of the sphere of radius r  regarded as a subsurface of 3  is 24 rπ , that is, the 
known surface-area of the sphere. 
9 Σ  is a σ -algebra of subsets of X , and [0 )μ : Σ → ,∞  is a probability measure. 
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where 1( )T A−  is the preimage of A , that is, 1( ) { ( ) }T A x T x A− = ∈ : ∈X . If T  is one-to-one, 

onto, and 1T −  is measurable, then (3.1) is equivalent to  

 ( ( )) ( ) measurableT A A A Aμ μ= ,∀ ⊂ , ,X  (3.2) 

where ( )T A  is the image of A . If X is equipped with a differentiable structure as well, and if 

the probability measure is given by a density ρ  with respect to a volume-form dσ , i.e. 

dμ ρ σ= , then the change-of-variable formula (see [8]) implies that  

 
( )

( )
( ) ( ) ( ) ( ( )) ( ) ( ) det ( ) ( ( )) ( )| |

y T x

A T A A
x d x A T A y d y T x T x d xρ σ μ μ ρ σ ρ σ

=

′= = = ,=∫ ∫ ∫  

where ( )T x′  is the Jacobian matrix of T  at x . Since the above holds for every measurable set 

A , we conclude that T  preserves the measure μ  if and only if the integrants above are equal 

a.e., that is,  

 
( )det ( ) a.e. [ ]

( ( ))
xT x d

T x
ρ σ

ρ
′ = , .  (3.3) 

For example, if m= X  and 1ρ ≡ , then μ  is the Lebesgue measure, and T  preserves μ  if and 

only if | det ( ) | 1T x′ =  a.e. We should point out that the definition of measure-preserving maps 

does not require them to be one-to-one, however, since the flow-map of a Hamiltonian is one-to-

one and onto, we restrict the discussion to the latter case.  

Let 2{ ( ) }d
E z H z E= ∈ : =S  be the constant-energy surface at level energy level E . The fact 

that the Hamiltonian flow tΦ  preserves energy may be restated as  

 ( )t E EΦ ⊆ .S S  

Since the dynamics is restricted to the surface ES , a crucial question is to identify a nontrivial 

measure on ES  that is preserved by tΦ . This measure is provided both in the statistical 

mechanics and MD literatures (e.g., [7, 9]) and the dynamical systems literature [3], but the 

notation differs between the two. The statistical mechanics and MD communities describe the 

invariant measure by  

 ( ) ( ( ) ) for EA
A H X E dX Aμ δ= − , ⊆ ,∫ S  (3.4) 

with δ  being the Dirac delta-distribution. Mathematicians might prefer the description of μ  as 

provided in [3] because a measure is defined explicitly on the surface ES . If we denote by 

2 1ddσ −  the (2 1)d − -dimensional volume-element of ES , then (3.4) can be written as  
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 2 1( )
|| ||

d
A

z

dA
H

σμ −= ,
∇∫  (3.5) 

where || ||z H∇  is the Euclidian norm of the gradient of the Hamiltonian. An excellent intuitive 

explanation of why μ  is preserved by tΦ  can be found in [7], Chapter 8. For the sake of 

completeness we provide a formal mathematical argument in Appendix A. We should stress that 

the formal proof in Appendix A relies on verifying an equation similar to (3.3), however, on the 

left-hand side we have the Jacobian of the restriction of tΦ  to the hyperplane tangent to ES . 

Assuming that ( )Eμ < ∞S  we rescale μ  in order to produce an invariant probability measure  

 ( ) ( ) ( )
redefine

EA Aμ μ μ/ .= S  (3.6) 

We will return to this probability shortly. 

 

We used the term generically in the introductory paragraph of this section in a topological sense. 

Technically, a property is called generic if the set of all elements satisfying that property is 

“rich” in the sense that it contains a countable intersection of dense open sets. To the reader who 

is less familiar with the subject this may seem an odd way of a regarding a set as rich. We restrict 

our comments on this issue to two items. Firstly, if a property is generic then it is satisfied by a 

dense set of elements10. Secondly, if properties ( 1P ) and ( 2P ) are generic then so is the property 

( 1 2P P∧ ). For example, the property of a number in [0 1],  to be rational is not generic, but the 

property of being irrational is. This is an example where topological genericity coincides with 

the measure-theoretical genericity, since almost all numbers in [0 1],  are irrational. However, 

there are examples of generic sets that have zero Lebesgue measure (see Example B.1). We 

provide exact definitions and basic results that justify the use of topological genericity in 

Appendix B.  

 

The topological context of interest for the present discussion is the metric space ( )EM μ,S  of 

measure-preserving maps from ( )E μ,S  onto itself. We define the uniform metric on ( )EM μ,S :  

 1 2 1 2( ) ( ( ) ( ))ess sup
E

def

xT T d T x T xδ ∈, = , .S  (3.7) 

                                                 
10A set A  is called dense in a metric space T  if for every element in T  we can find arbitrarily close elements that 
belong to A . 
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Recall that (3.7) implies that  

 1 2 1 2( ( ) ( )) ( ) a.e. [ ]d T x T x T Tδ μ, ≤ , .  

Two properties of interest to us are generic in this metric space: ergodicity, and the property of 

being chaotic (see [1] and Theorem B.1). There are several definitions of what it means for a 

map to be chaotic, nevertheless, they all have in common sensitive dependence on initial 

conditions (SDIC). A map T  has SDIC if small perturbations in the initial state are magnified by 

propagation through T . A more precise statement is that for each initial condition, there exist 

arbitrary close initial conditions whose orbits eventually diverge from that of 0x . A linear map T  

has SDIC if it has an expanding direction, i.e., an eigenvector y  associated with an eigenvalue 

λ  with 1λ > 11. For a nonlinear map, a strong indication of SDIC is when it’s linearization ( )T x′  

has an expanding direction at each point x . If T  is measure-preserving in 2d , then 

det( ( )) 1T x′ = , therefore  

 
( ( ))

| | 1
T xλ σ

λ
′∈

= .∏  

Hence, unless all eigenvalues in ( ( ))T xσ ′  have absolute value 1, we will find at least one 

( ( ))T xλ σ ′∈  with 1λ > . Loosely speaking, the linearization of a measure-preserving map has 

an expanding direction around each point. We remark that this heuristic argument is not meant to 

replace the rigorous result expressed in Theorem B.1(ii), however, it should suffice to convince 

the reader that numerically following individual orbits of a measure-preserving map such as tΦ  

for a long time period is a futile task.  

 

As previously mentioned, the value of long-time numerical solutions for measure-preserving 

maps resides in retrieving statistical information. So what does it mean to retrieve statistics? The 

basic assumption is that the flow tΦ  correctly samples the constant-energy surface ES . Thus, it 

is natural to define empirically a probability on the measurable subsets of ES ; namely the 

probability of a set A  is the fraction of time that an orbit spends in A :  

 0({ [0 ] ( ) })( ) lim s

t

s t z AA
t

λν
→∞

∈ , : Φ ∈= ,  

                                                 
11For any 0x  and ε  we have 0 0( ) ( ) ( )n n n n

nT x T x y T y yε ε ελ →∞− + = = → ∞ . 
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where λ  is the Lebesgue measure on the real line. Given a statistic ψ , i.e., an integrable 

function on ES , we expect the long-term averaged value of ψ  on the orbit to be equal to the 

spatial average value of ψ  with respect to ν :  

 00

1lim ( ( )) ( ) ( )
E

t

st
z ds z d z

t
ψ ψ ν

→∞
Φ = .∫ ∫S  (3.8) 

The question remains of whether such a probability measure ν  can be defined independently of 

the starting point of the orbit. In particular, the average on the right-hand side of (3.8) should be 

the same, independent on the moment in time when we start averaging on the left-hand side 

of (3.8). This shows the necessity for the measure ν  to be preserved by the flow map τΦ . 

However, we have already encountered such a (nontrivial) measure, namely μ  defined in (3.6). 

Retrieving statistical information in MD is based on the fact that the ergodic hypothesis holds, 

that is, the equality (3.8) is valid with μ  in place of ν , for almost all points 0 Ez ∈S :  

 00

1lim ( ( )) ( ) ( )
E

t

st
z ds z z

t
ψ ψ μ

→∞
Φ = .∫ ∫S  (3.9) 

The equality (3.9) is typically regarded in the MD literature as the definition of ergodicity for 

the flow map. In general, (3.9) is not directly verifiable. Finding hypotheses under which (3.9) 

holds forms the object of ergodic theory. According to ergodic theory, given a probability space 

( )μ,Σ,X , a map T : X → X   is defined to be ergodic (with respect to the probability measure 

μ ) if it is measure-preserving, and if 1( )T A A− ⊆  implies ( ) 0Aμ =  or ( ) 1Aμ = . Perhaps the 

most celebrated result in ergodic theory is Birkhoff’s strong ergodic theorem, which states that 

the averages of a measurable function ψ  on sets of consequent iterates of an ergodic map 

converge to the spatial average of ψ  for almost every orbit:  

 

Theorem 3.1 (Birkhoff’s strong ergodic theorem) Let T  be an ergodic transformation of the 

probability space ( )μ,Σ,X , and let ψ  be integrable. Then for almost every x ∈X   

 
1

0

1lim ( )
n

j

n j

T x Td
n

ψ μ
−

→∞ =

= .∑ ∫o
X

 (3.10) 

For tT Δ= Φ  ( 0tΔ > ) the statement (3.10) reads  

 
1

0

1lim ( ( ))
E

n

j tn j

x Td
n

ψ μ
−

Δ→∞ =

Φ = ,∑ ∫S  (3.11) 
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provided tΔΦ  is ergodic. Note that the expression on the left-hand side of (3.11) is an 

approximation of the integral on the left-hand side of (3.9), with exact integration being replaced 

by the trapezoidal rule. The question of why tΔΦ  is ergodic cannot be answered in general. With 

the exception of simple examples, (see Examples B.2 and B.3) we have to rely on the fact that 

generic measure-preserving maps are ergodic (see Theorem B.1(i)). However, there is one 

instance when we know a priori that tΔΦ  is not ergodic on ES , namely when there is an 

additional first integral G , independent of H , i.e., ( )z H z∇  and ( )zG z∇  are linearly independent 

for all Ez ∈S . In this case sets of the type { ( ) }Ez l G z r∈ : < <S  may have nontrivial measure, 

and are invariant under the flow. It is easy to see that in fact the flow is restricted to a subsurface 

of ES  of the form { ( ) }Ez G z C∈ : ≡S , therefore one orbit cannot sample the whole of ES . 

However, in this case, an invariant measure that plays the same role as μ  can be explicitly 

defined on the (2 2)d − -dimensional surface  

 2{ ( ) and ( ) }d
E C z H z E G z C, = ∈ : = = .S  

 

In conclusion, the main reason for which the continuous flow tΦ  is expected (but not 

guaranteed) to sample correctly the constant-energy surface ES  lies in the fact that is preserves 

the measure μ .  
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Appendix A: An Invariant Measure On The Constant-Energy Surface 
 
Lemma A.1 (invariant measure on the surface). The measure μ  defined in (3.5) is preserved by 
the flow restricted to ES .  
  
Proof. Let 0 Ez ∈S . Since ES  is flow-invariant, the Jacobian 0( )z t z∂ Φ  maps the tangent plane 

0z ET S  at 0z  to the surface ES  onto the tangent plane 
0( )t z EΦT S  at 0( )t zΦ . If we choose an 

orthonormal basis in each of the two planes, the relevant quantity for volume preservation on the 
surface ES  is  

 
00det ( )

z Ez t z
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
∂ Φ | .T S  

Let 0( ) ( ( ))z tN t H z= ∇ Φ , be the unnormalized vector orthogonal to ES  at the point 0( )t zΦ , and 

0 0( ) ( ( )) || ( ( )) ||z t z tn t H z H z= ∇ Φ / ∇ Φ  be the unit normal vector. We have  

 

( )
( ) ( )

( )
( )

0

0 0

(2.5), (2.10)
2

0 0 0

2
0 0 0

( ) (0) ( )

( ( )) (0) ( ) ( ) (0) ( )

( ( )) ( ) (0) ( ( ))

( ) (0) ( ( ) ( ( )

0 .
T

t z t

t z t z t t

zz t z t z t

z t zz t z t

z n N t

z n N t z n N t

H z z n H z

z n H z H z
=−

∂ ∂ Φ ⋅ ,

= ∂ ∂ Φ ⋅ , + ∂ Φ ⋅ ,∂

= ⋅∂ Φ ⋅∂ Φ ⋅ ,∇ Φ +

∂ Φ ⋅ ,∂ Φ ⋅ ⋅∇ Φ

=
J J

J

J

 

 
Since N(t) = ||N(t)|| ( )n t⋅  and 0 0( )z t tz I=∂ Φ | =  we obtain  
 ( )0|| (0) || ( ) (0) ( ) || ( ) ||z tN z n n t N t= ∂ Φ ⋅ , ⋅ .  (A.1) 

Therefore 

 ( )
0

0 0 0det( ( )) det ( ) ( ) (0) ( ) 1
z Ez t z t z tz z z n n t

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∂ Φ = ∂ Φ | ⋅ ∂ Φ ⋅ , = .T S  (A.2) 

This together with (A.1) implies  

 0
0

0 0

det ( ) 1
|| ( ( )) || || ( ) ||

z Ez t

z t z

z

H z H z

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∂ Φ |
= ,

∇ Φ ∇
T S

 (A.3) 

which, by (3.3), completes the proof.         
 
It should also be mentioned that an invariant measure similar to μ can be given explicitly when 
more than one first integral is known.  
 
Lemma A.2. Assume 1 2 kH H H … H= , , ,  are constants of the motion that are linearly 
independent, and denoted by 

1

2
1{ ( ) }

k

k d
E … E i i iz H z E, , == ∩ ∈ : =S  the submanifold on which the 

flow is restricted. We define the measure  

 
1

2

1

( ) for
( ) k

d k
E … EA

k z z k

dA A
H … Hvol
σν −

, ,= , ⊂ .
∇ , ,∇∫ S  (A.4) 
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where 1( )k z z kH … Hvol ∇ , ,∇  is the k -dimensional volume of the parallelepiped formed by the 
vectors 1z z kH … H∇ , ,∇ . Then tΦ  preserves ν .   
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Appendix B: Topological considerations 
 
Definition B.1 A map X Xφ : →  is said to have sensitive dependence on initial conditions 
(SDIC) if there exists 0D > , such that x∀ ∈X  and 0ε >  there exists x X′∈  with ( )d x x ε′, ≤  
and 0n >  such that ( )n nd x x Dφ φ ′, > .   
 
In words, given any orbit O, there are orbits that start arbitrarily close but eventually diverge 
away from O.  
 
Theorem B.1 (genericity)  Let [0 1]NX = ,  be the unit cube equipped with the Lebesgue measure 
and the usual Euclidian metric. Then  
 

i. the set of ergodic maps is generic in ( )X μ,M ;  
ii. the set of chaotic maps is generic in ( )X μ,M .  

 
Part ( )i  of Theorem B.1 is due to Oxtoby and Ulam [6] and is the main result of their theory. A 
proof of the statements in Theorem 2, nearby results, and further discussions of the subject can 
be found in [1]. We should point out that from the fact that generically measure-preserving maps 
are chaotic and ergodic, we cannot automatically come to the same conclusion if additional 
information is known about the map. In particular no conclusion can be drawn about an 
individual map other than that there exists a nearby map that is both ergodic and chaotic. An 
extreme example is the identity map: it preserves any measure, but it is neither chaotic nor 
ergodic. (extension to compact manifolds)  
 
Example B.1 (A generic set of zero measure).  Arrange the rationals in [0 1],  in a sequence 

1 2r r …, , , and define the sets  

 1 1 1( ) [0 1]
2 2k k kk kQ r rε
ε ε∞

= + +
⎛ ⎞= ∪ − , + ∩ , .⎜ ⎟
⎝ ⎠

 

Then Qε  is a dense open set in [0 1], , with Lebesgue measure  

 
1

1( )
2k

k
Qελ ε ε

∞

=

≤ = .∑  

The set  
 10 1

n
nQ Q∞

== ∩  

is generic (a dense set of type Gδ ). Since 1 1
1n n

Q Q
+

⊆ , 10( ) lim ( ) 0
n

nQ Qλ λ→∞= = .   

The dyadic permutations provide a simple example of an ergodic map:  
 

Example B.2 (dyadic permutations of unit interval)  We divide the unit interval in N  equal 
intervals 1[0 1] N

i kI I== , = ∪ , with [( 1) ]kI k N k N= − / , / . For a permutation Nσ ∈S  we define Tσ  to 
map kI  onto ( )kIσ  by translation. Then Tσ  is measure-preserving. If σ  is cyclic, then Tσ  is also 
ergodic.   
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Theorem B.2 (Poincaré’s recursion theorem). Let T  be an ergodic transformation of the 
probability space X . Then for almost every point x ∈X , for every neighborhood V  of x , the 
orbit of x  crosses V  infinitely many times.    
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