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Heat Transfer Phenomena in Supercritical Water  
Nuclear Reactors 
 

ABSTRACT 

 

A supercritical water heat transfer facility has been built at the University of 

Wisconsin to study heat transfer in a circular and square annular flow channel.  A 

series of integral heat transfer measurements has been carried out over a wide 

range of heat flux (up to 1.0 MW/m2), mass velocity (200–1400 kg/m2s) and bulk 

water temperatures (150–410 oC) at a pressure of 25 MPa. The circular annular 

test section geometry is a 1.07 cm diameter heater rod within a 4.29 cm diameter 

flow channel.  The square annular test section geometry is a 1.07 cm diameter 

heater rod within a 2.88 cm wide flow channel.  A 76 cm development section 

precedes a 1.01 m long heated section, which includes 16 thermocouples for 

inner cladding temperature measurements.  The accuracy and validity of 

selected heat transfer correlations and buoyancy criterion were compared with 

heat transfer measurements.  Jackson’s Nusselt correlation was able to best 

predict the test data, capturing 86 % of the data within 25 %.   Watts Nusselt 

correlation showed a similar trend but under predicted measurements by 10 % 

relative to Jackson’s.  Comparison of experimental results with results of 

previous investigators has shown general agreement with high mass velocity 

data.  Low mass velocity data has provided some insight into the difficulty in 

applying these Nusselt correlations to a region of deteriorated heat transfer.  

Geometrical differences in heat transfer were seen when deterioration was 



present.  Jackson’s buoyancy criterion predicted the onset of deterioration while 

modifications were applied to Seo’s Froude number based criterion. 
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Notation and Symbols 

Letters 

A Flow Area     [m2] 

A  Local Q” Correction Factor   [-] 

a Particle Diameter    [m] 

B Position of Tic (diameter)   [m] 

cp   Specific Heat      [J/kg-K] 

pc  Integrated Specific Heat, 
bw

bw

TT
ii

−
−   [J/kg-K] 

C Discharge Coefficient    [-] 

D Diameter      [m] 

D Fitting Parameter    [m-4] 

d Diameter (Orifice)    [m] 

dp Differential Pressure    [Pa] 

E Fitting Parameter    [m-5] 

f Frequency     [Hz] 

Fr  Froude Number     [-] 

g Gravity       [m/s2] 

G Mass Velocity      [kg/m2-s] 

Gr Grashof Number 
( )

2

3

ρν
ρρ gDHwb −   [-] 

Gr  Grashof Number 
( )

2

3

ρν
ρρ gDHb −    [-] 



h Heat Transfer Coefficient   [W/m2K] 

i Enthalpy       [J/kg] 

k Thermal Conductivity     [W/m-K] 

L Heated Length     [m] 

Nu Nusselt Number 
b

H

k
hD     [-] 

P Pressure      [Pa] 

Po Laser Power     [W] 

Pr Prandtl Number     [-] 

Pr  
b

b

bw

bw

kTT
ii µ

−
−      [-] 

Q Heater Power     [W] 

Q” Heat Flux      [W/m2] 

Re Reynolds Number    [-] 

T Temperature      [oC] 

u’ Fluctuating Axial Velocity   [m/s] 

u Velocity      [m/s] 

u+ Non dimensional Velocity   [-] 

V Velocity      [m/s] 

v’ Fluctuating Radial Velocity   [m/s] 

y Distance      [m] 

y+ Non Dimensional Distance   [-] 

yo Distance Bias     [m] 

Greek 



β Diameter Ratio d/D    [-] 

∆F Bandwidth Frequency    [Hz] 

∆ρ Density Difference    [kg/m3] 

ν Kinematic Viscosity     [m2/s] 

µ Dynamic Viscosity     [kg/m-s] 

ρ Density      [kg/m3] 

ρ’ Fluctuating Density    [kg/m3] 

ρ  Integrated Density ( ) ∫−

w

b

T

Tbw

dT
TT

ρ1   [kg/m3] 

ρT ( ) ( )finfin TT −− /ρρ      [kg/m3-K] 

τ Shear Stress      [kg/m2s] 

Subscripts 

b  Bulk 

DB  Dittus-Boelter 

in  Inlet 

f  Film, based on ( ) 2wb TT +  

H  Hydraulic 

ic  Inner Cladding 

in  Inlet Temperature 

i  Inlet Temperature 

p  Particle 

pc  Pseudocritical 

rod  Heater Rod 



s  Film, based on ( ) 2pcin TT +  

s  Settling Velocity 

w Wall  

τ Shear 

Abbreviations 

2D  Two Dimensional 

3D  Three Dimensional  

ASME  American Society of Mechanical Engineers 

BWR  Boiling Water Reactor 

CFD  Computational Fluid Dynamics 

DNS  Direct Numerical Simulations 

DB  Dittus-Boelter 

GPM  Gallons Per Minute 

HPLC  High Pressure Liquid Chromatography 

INEEL  Idaho National Environmental Engineering Laboratory 

Ja  Jackson 

Kr  Krasnoshchekov 

LDV  Laser Doppler Velocimetry 

LES  Large Eddy Simulation 

LWR  Light Water Reactor 

MIR  Matched Index of Refraction 

PDM  Photo Detector Module 

PIV  Particle Image Velocimetry 



PMT  Photomultiplier Tube 

PTFE  PolyTetraFluoroEthylene 

RANS  Reynolds Averaged Navier Stokes 

RPM  Rounds Per Minute 

SCW  SuperCritical Water 

SCW  SuperCritical Water Reactor 

SCFW  Supercritical Fast Reactor 

SCLWR Supercritical Light Water Reactor 

SNR  Signal to Noise Ratio 

UW  University of Wisconsin 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 1 – Introduction 
 

1.1  Introduction 
 
In an effort to improve the efficiency of current Light Water Reactors (LWR's), the 

Generation IV initiative has included the conceptual design of Supercritical Water 

Reactor (SCWR) as one of the next steps in future nuclear reactors [8].  A SCWR 

will achieve efficiencies of about 44%, compared with current LWR efficiencies of 

about 34%, by operating its coolant at higher temperature (500 oC) and pressure 

(25 MPa) than current LWR's (Figure 1-1 and Table 1).  These operating 

conditions are above the pseudo-critical temperature of water (defined as the 

temperature, for a given pressure, at which the specific heat exhibits a maximum) 

and thus the coolant of SCW reactors will undergo large thermo-physical 

property changes (Figure 1-2). 

 

Reactor Type BWR PWR SCLWR-H SCFR-H 
Efficiency (%) 34.1 33.7 43.8 44.4 
Inlet Temperature (oC) 269 300 280 280 
Outlet Temperature (oC) 286 332 508 526 
Pressure (MPa) 7 15.5 25 25 
Ave Heat Flux (kW/m2) 653 692 624 800 
Mass Flux (kg/m2s) 1201 3373 965 1286 

 

Table 1 Note worthy parameters of current and proposed water-cooled reactors [10][34]. 



 

Figure 1-1 Operating Conditions of SCWR compared with BWR’s and PWR’s [6]. 

 
 

 

Figure 1-2 Thermophysical property variation of water as a function of temperature at 25 MPa 
calculated with Steam_IAPWS formulae [25]. 

 



Two key experiments performed by Yamagata et al. [53] and Shitsman 

[48] investigated the thermophysical property variation effects on SCW heat 

transfer in a heated up-flow tube geometry at high and low mass velocities.  

Yamagata's data was performed at a relatively high mass velocity of (1260 

kg/m2s) with varying heat flux.  Yamagata's data shows that as the bulk enthalpy 

is increased through the pseudo-critical temperature an enhancement in heat 

transfer occurs (Figure 1-3).  This enhanced heat transfer is diminished by 

increasing heat flux and suggests that at some critical heat flux, the 

enhancement will be completely inhibited. 

 

Figure 1-3 Experimental results of Yamagata et al. 



Shitsman's data (low mass velocity, (430 kg/m2s)) indicates that as the 

bulk coolant enthalpy is increased through the pseudocritical temperature, 

deterioration in heat transfer can occur (Figure 1-4).  At a low heat flux there is 

indication of a localized enhancement in heat transfer.  As the heat flux is 

increased, the heat transfer progresses from an enhanced condition to a 

deteriorated condition.  In fact at the highest heat flux case, the heat transfer is 

so poor that it resulted in a localized temperature spike from 400 to 600 oC.  

However, it should be noted that in difference to two-phase critical heat flux 

phenomena, the heat transfer recovers after either an enhancement or 

deterioration. 

 

Figure 1-4 Experimental results of Shitsman. 



Many of the previous heat transfer experiments with supercritical fluids, 

both for water and carbon dioxide (a surrogate fluid typically used due its lower 

critical temperature and pressure), have shown similar deviations from normal 

heat transfer.  In general, deviations from normal heat transfer have been found 

to occur when the wall temperature is greater than the pseudo-critical 

temperature and the bulk temperature is less than the pseudo-critical 

temperature (Tw > Tpc > Tb) [7]. This condition indicates that large property 

variations occur within the near heated-wall region, which one might expect 

would greatly impact the heat transfer. 

 

The enhancement and deterioration of heat transfer have been described 

by Jackson and Hall [23] and can be explained with the help of Figure 1-5.  For 

reference, typical heat transfer (no property variation) to pipe flow has a parabolic 

velocity profile and for simplicity, a linear temperature profile in the near wall 

region (Figure 1-5a).  Enhanced heat transfer occurs at a low heat flux with bulk 

temperatures near the pseudo-critical temperature.  At these conditions, the 

energy input is not large enough to overcome the large values of specific heat 

and thus a low gradient in wall to bulk temperature is achieved (Figure 1-5b). 

 

The impairment of enhanced heat transfer due to an increased heat flux 

can be explained as follows.  Where at a low heat flux the large value of specific 

heat is felt across most of the boundary layer, an increase in heat flux will 

produce enough energy input to overcome the large values of specific heat, 



resulting in an increase in temperature gradient across the boundary layer.  

Thus, the large values of specific heat will become more localized within the 

boundary layer, impairing the enhanced heat transfer by reducing the integrated 

effect of the specific heat (Figure 1-5c). 

 

Increasing Density Layer

Accelerating
Density Layer

High specific heat

Localized high specific heat

Wall

Temperature

Flow Direction

a) Normal heat transfer
(No property variation)

b) Enhanced heat transfer
(Large G, low Q”)

c) Impairment of enhanced
heat transfer
(Large G, increasing Q”)

d) Deteriorating heat transfer
(Low G)

e) Recovering heat transfer
(Low G)

 

Figure 1-5 Description of heat transfer effects. 

 

 

In the case where the heat flux is high compared to the mass velocity, it is 

possible that buoyancy effects can dominate and cause a deterioration and 

recovery of the heat transfer in upward flow.  Hall and Jackson state that the 

turbulent diffusivity is reduced for upward flow when the low-density wall layer 



becomes thick enough to reduce the shear stress in the region where energy is 

typically fed into the turbulence, thus effectively reducing the heat transfer.  As 

the process develops along the tube, the increasing wall temperature further 

increases the density difference between the near wall region and the core 

(Figure 1-5d).  This density difference eventually becomes significant enough to 

cause an upward acceleration of the boundary layer, restoring the turbulence 

production and hence, the heat transfer (Figure 1-5e). 

 

In the case where the mass flow rate is high enough that near wall 

buoyancy effects do not occur, another type of heat transfer impairment can 

occur.  Impairment due to acceleration occurs, in a tube geometry for example, 

when the exit density is much lower than the inlet density.  Under these 

conditions, maintaining a constant mass flow rate along the tube requires that the 

fluid accelerate in the direction of the flow, altering the near wall shear stress in a 

manner that causes a reduction in heat transfer.  The fact that this effect is 

different from buoyancy effects has been shown theoretically [21] and 

experimentally [47].  Experiments have shown that acceleration effects cause an 

impairment in heat transfer in both upward and downward flow, whereas 

buoyancy effects cause an impairment in upward flow and an enhancement in 

downward flow. 

 

There are many previous investigations of the heat transfer phenomena 

with water as the coolant, as cited by Pioro [38], however, the correlations that 



were derived from these studies vary wildly (Figure 1-6).  Several investigators 

have tried to further understand the heat transfer phenomena with radial velocity 

and temperature profiles in pipe flow with supercritical carbon dioxide as the 

coolant [5][29][32][52], however, the results of these experiments do not 

completely agree with each other. 

 

Figure 1-6 Variation in heat transfer correlations.  Reproduced from [37]. 



Seo et al. [45] used the CFD code FLUENT to attempt to model the 

supercritical water heat transfer. The numerical scheme used a standard k-

epsilon model to simulate Yamagata's and Shitsman's data.  The results showed 

that FLUENT was able to predict Yamagata's data but completely missed the 

deterioration in heat transfer of Shitsman's data.  The failure of the k-epsilon 

model is believed to be due to an inaccurate, oversimplified wall function model.  

The wall function model relates the first meshed cell values to wall values.  In 

other words, the wall function attempts to bridge the law of the wall region in the 

flow to the wall values, neglecting any thermophysical property changes within 

the viscous sub-layer.  Since the standard wall function used in FLUENT was 

developed for constant property flows, it failed to capture the correct flow 

characteristics.  Seo et al. [44] therefore developed a new wall function model 

that included previously neglected terms to account for the property changes.  

The new wall function model that was developed requires input from 

experimental data under a set of appropriate conditions to determine key 

constants. To obtain these constants, details of the momentum and thermal 

boundary layer thickness and turbulence levels in the momentum and thermal 

boundary layer are needed i.e., the fluctuating velocities and density as a 

function of radial position (u’, v’, and ρ’). 

1.2 Goals of This Work 

 
No detailed velocity, density, or turbulence profiles have been made in water at 

critical pressures.  In order to progress the development of SCW reactors, 



mechanisms of heat transfer to supercritical fluids need to be further clarified to 

improve heat transfer calculations.   The purpose of this experimental 

investigation is to develop a set of heat transfer measurements and compare 

them with selected heat transfer correlations and distinguish which conditions 

require further analysis. The experimental results will serve as a database to 

compare existing models and to further understand the physical phenomena so 

that improved models can be developed.  This work is broken down into four 

tasks: 

 

1. Design and build a facility for prototypic heat transfer to supercritical water 

with the ability to optically visualize the flow.  

2. Perform heat transfer measurements at supercritical pressures in a 

circular and square annular flow channel at varying conditions.  These 

results are compared with several selected heat transfer correlations and 

criteria.  This information will be used to select conditions in need of 

further investigation. 

 

The first task is partially simplified due to experience in design, construction, and 

operation of a similar facility used in studying materials corrosion with water at 

supercritical pressures. 

 

The second task provides a database of heat transfer measurements at 

conditions similar to current SCWR designs and allows comparison to previous 



experiments.  The conditions of these experiments will provide measurements in 

three heat transfer regimes (normal, deteriorated, and enhanced).  The results of 

these heat transfer measurements are to be compared with selected heat 

transfer correlations and criteria to aid in selection of heat transfer conditions for 

further study with optical measurements. 

  

 



Chapter 2 – Background on Heat Transfer to 

Supercritical Pressure Fluids. 

2.1 Supercritical Water 

For future reference it may be helpful to first have a closer look at the properties 

of water at and above the critical pressure (Figure 2-1).  At pressures and 

temperatures above the critical point, a pseudo-critical line is formed by the line 

connecting the maximum of the specific heat for varying pressures.   Density, 

viscosity, and conductivity all drop significantly near the pseudo-critical point, 

however, the conductivity exhibits a small peak near the critical temperature.  For 

all properties, it can be seen that an increase in pressure results in a reduction in 

the magnitude of property variation.  However, at the proposed pressure of 25 

MPa (Tpc = 385 oC) for SCWR, there still exists a significant property variation.  

An interesting phenomena called critical opalescence has been found to occur 

for near critical fluids [50].  Near the pseudo-critical temperature, the molecular 

randomness cause water to fluctuate between vapor-like and liquid-like volumes.  

These fluctuations approach a scale of a fraction of a micron, strongly scattering 

visible light, possibly causing the fluid to appear cloudy.  Based on work 

conducted by Allex [3], this should not restrict optical measurements, since he 

was able to optically measure density throughout the operating conditions of 

SCW. 

  



 

 

 

Figure 2-1 Properties of water at various pressures calculated with IAPWS formulae [25]. 

 



2.2 Previous Experiments 

There are over 450 papers on the subject of heat transfer to fluids at critical 

pressures.  Recently there have been several literature review papers that 

summarize previous work [7][37][38][39][40][41].  Pioro et al. [37][38][39] have 

given the most complete reviews of previous work.  They found that there are 

over 100 papers involving heat transfer to water at critical pressures.  

Geometries used in previous experiments have included vertical and horizontal 

tubes, annuli, and bundles.  The majority of the experiments have been 

performed in tubes, where as 5 experiments used annuli and only 2 used 

bundles.   

2.2.1 Nusselt Correlations 

The correlations that were derived from these studies vary wildly.  Of the 

available pipe correlations, two stand out as best being able to capture the heat 

transfer in tubes in the absence of buoyancy effects.  Jackson's correlation [22], 

Equation 1, and the Krasnoshchekov et al. correlation [28], Equation 2, has been 

found to perform best based on 2000 data points with CO2 (25% of data) and 

water (75% of data) as the coolant [21].  Each of these correlations has been 

found to correlate 97% of the data with an accuracy of 25%.  The Jackson 

correlation is given by: 

Equation 1   

n
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The Krasnoschekov et al. correlation is given by: 

Equation 2   
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Where the exponent n is (T in Kelvin): 

     n = 0.4 for (Tw/Tpc)≤ 1 or (Tb/Tpc) ≥ 1.2; 

     n = n1 = 0.22+0.18(Tw/Tpc) for 1 ≤  (Tw/Tpc) ≤ 2.5; and 

     n = n1+(5n1-2)(1-(Tb/Tpc)) for 1 ≤  (Tb/Tpc) ≤ 1.2. 

A particularly interesting correlation, which has gained some recent attention in 

work performed by Komita et al. [27], was developed by Watts et al. [51]. This 

correlation is interesting in that it takes advantage of Jackson’s buoyancy criteria 

(to be discussed later).  The Watts correlation for normal heat transfer is given 

by: 



Equation 3   
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Although these correlations have been found to work reasonably well in the 

absence of heat transfer deterioration, some SCWR design and analysis work 

has included the simpler, less accurate Dittus-Boelter correlation [9]: 

Equation 4   4.08.0
, PrRe023.0 fffDBNu =  

2.2.2 Enhancement 

Supercritical heat transfer experiments performed at relatively high mass 

velocities and low heat flux have been found to exhibit an enhancement in heat 

transfer.  Increasing the heat flux from low to high heat flux has been found to 

impair enhanced heat transfer.  These characteristics in heat transfer have best 

been observed in experiments performed by Yamagata et al. (Figure 1-3,Table 

2). 

Case Mass Velocity 
(kg/m2s) 

Heat Flux 
(kW/m2) 

Pressure 
(MPa) 

Tube Diameter 
(mm) 

Key notes 

1 230 
2 465 
3 698 
4 

 
1260 

933 

 
24.5 

 
7.5 

-High mass 
velocity 

-Low to high 
heat flux 

Table 2 Experimental parameters of Yamagata et al. 

 



Heat transfer correlations have been developed that adequately capture this type 

of heat transfer.  This has been accomplished by modifying typical heat transfer 

correlations like Dittus-Boelter and multiplying them by property ratios evaluated 

at the wall and the bulk and raising this to a suitable power.  A literature review 

on this subject has been performed by Pioro [39].  In general, CFD codes and 

some Nusselt correlations are in reasonable agreement with these experiments 

(Figure 2-2). 

 

Figure 2-2 Comparison of CFD code [44] and Jackson Correlation [22] with data obtained by 
Yamagata et al. 

 

2.2.3 Buoyancy Influenced Deterioration  

A significant amount of work on buoyancy influenced heat transfer has been 

produced over the last four decades and is summarized by Jackson [24].   

Experiments have shown that the buoyancy effects are not limited to supercritical 



pressure fluids and can be seen, for example, in heat transfer to water and air at 

atmospheric pressure, however, in a less dramatic form due to the smaller 

variation in properties as compared to supercritical fluids.  Experiments have 

included both buoyancy aided flow (upward flow) and buoyancy opposed 

(downward flow) conditions.  The fact that deterioration in heat transfer is due to 

buoyancy was shown by work carried out by Jackson et al.  They demonstrated 

that conditions which caused deteriorated heat transfer in upward flow, led to 

enhanced heat transfer in downward flow, suggesting buoyancy effects (Figure 

2-3). 

 

Figure 2-3 Comparison of wall temperature at two heat flux cases (a: 31 kW/m2, b: 57 
kW/m2) for CO2 with upward and downward flow (solid and dashed line, respectively). 
 



Velocity measurements have been taken for buoyancy influenced heat transfer to 

low-pressure fluids has shown how the mean values are altered.  For buoyancy 

aided flow, the peak in velocity becomes skewed towards the heated wall, 

whereas for downward, the near wall velocity becomes lower.  Turbulence 

measurements verified the turbulence production was changing in a manner that 

effected the turbulent diffusion of heat. 

 

The deterioration in heat transfer has been observed at conditions of a 

relatively low mass velocity at low to moderate heat fluxes.  Increasing the heat 

flux to even modest values can cause a severe reduction in heat transfer (Figure 

1-4, Table 3).  This effect has not yet been adequately captured with any CFD 

method (Figure 2-4). 

Case Mass 
Velocity 
(kg/m2s) 

Heat Flux 
(kW/m2) 

Pressure 
(MPa) 

Tube 
Diameter 

(mm) 

Deterioration Key notes 

5 210 no 
6 281 maybe 
7 300 yes 
8 337 yes 
9 

 
 

430 

386 

 
 

23.3 

 
 

8 

yes 

-low mass 
velocity 

-low heat 
flux 

Table 3 Experimental parameters of Shitsman. 

 



 

Figure 2-4 CFD and Nusselt correlation in comparison to Shitsman experiment. 

2.2.4 Deterioration due to acceleration 

Unlike buoyancy-influenced deterioration, deterioration due to acceleration 

occurs only with supercritical fluids.  The reason for this is need for large 

variation in properties to achieve large differences in inlet and exit densities.  

Additionally, deterioration is present for both upward and downward flows.  

However, like buoyancy-influenced deterioration, CFD calculations have not 

been able to capture acceleration effects.  There has not been much work 

beyond typical integral heat transfer measurements, like there has been for 

buoyancy-influenced flow.  This is likely due geometry limitations.  In order to 



achieve a large density difference between the inlet and exit, a small hydraulic 

diameter is needed, however, velocity measurements may require the use of a 

larger hydraulic diameter. 

2.3 Deterioration Criteria 

Due to the inability of heat transfer correlations (Equation 1 - Equation 4) to 

accurately capture heat transfer deterioration, investigators have tried to develop 

criterion to predict weather or not it will occur for a given experimental condition. 

 

Initially, investigators defined deterioration with a heat flux to mass velocity 

ratio such as: 

Equation 5   tconsG
Q tan" <  

However, these equations were only valid for a particular experiment since 

the constant was different for each geometry.  Yamagata et al. developed a 

criterion that appeared to work better (Equation 6). 

Equation 6   2.02.1
" <G

Q  

A comparison of Yamagata's correlation with data from Shitsman and Yamagata 

shows good agreement for the prediction of deterioration.  However, the downfall 

to this equation is that it has no temperature dependence.  This means that this 

deterioration in heat transfer would occur at any bulk temperature.  If this heat 

transfer deterioration were to be a buoyancy effect this cannot be true since, for 



example, at bulk temperatures above and well below the pseudo-critical 

temperature there wouldn't be a large density difference to drive the buoyancy. 

 

Jackson and Hall [20][21][23] developed the most accurate criteria derived 

from simple boundary layer theory.  The results of the derivation showed that two 

additional components to the shear stress could be found when considering 

supercritical fluids; one due to buoyancy and the second due to acceleration. The 

buoyancy criterion is given here (Equation 7).   

Equation 7   5
7.2 10
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−<

b

bGr  

While Equation 7 has been found to work well, it is difficult to use from an 

experimental design standpoint.  Seo et al. [43] recently developed a criterion 

based on the Froude number (Equation 8), which can be defined as the ratio of 

inertial forces to buoyant forces. 
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Here, the properties are evaluated at a film temperature based on the inlet and 

pseudo-critical temperatures and the only other inputs are geometry, heat flux, 

and mass velocity.  The fact that the inputs to this equation are based on known 

variables makes this equation easy to use in development of an experiment.  It 

should be noted that this equation has not been adequately tested.  Comparison 

with data of Shitsman and Yamagata et al. suggests that an inverse Froude 

number less than 0.03 is needed for negligible buoyancy effects [43]. 



Chapter 3 – Heat Transfer Facility 

3.1 Brief Overview 

The UW has built a SCW heat transfer facility to allow for a detailed study of heat 

transfer to SCW in a circular and square annular geometry.  The loop (Figure 

3-1) has dimensions of approximately 2 m wide by 3 m tall and is made of 4.29 

cm inner diameter Inconel 625 piping.  A 3.3 m long heater rod with a diameter of 

1.07 cm spans the entire right leg of the loop and protrudes out both ends.  This 

design permits the use of 16 thermocouples evenly spaced along the inner 

cladding of the 1.01 m heated length.  The center portion of the right leg of the 

loop serves as the test section, allowing a 76 cm entrance length for both upward 

and downward flow studies.  The circular annular test section geometry is a 1.07 

cm diameter heater rod within a 4.29 cm diameter flow channel.  The square 

annular test section geometry is a 1.07 cm diameter heater rod within a 2.88 cm 

wide flow channel.  The heater is centered within the flow channel with six 

spacers; four of which are located on either side of the tees and two that are 5 

cm from either end of the heated section.  The heater can generate up to 50 kW, 

giving a maximum heat flux of 1.5 MW/m2.  A pump capable of operating at 

supercritical conditions generates mass velocities in the range of 200 to 2000 

kg/m2s.  The current configuration is up-flow, however the facility was designed 

for flows in either direction with only minor modification.  The facility is capable of 

operating at any steady state heat flux condition by using a variable heat removal 

system made up of copper cooling coils.   Eight copper coils of various contact 



area are tightly wrapped to the Inconel piping.  Heat removal by the cooling coils 

can be set to match that supplied by the heater by simply controlling the number 

of coils receiving cooling water and controlling their respective flow rates. 

 

Figure 3-1 Heat transfer loop. 

3.2 Facility 
 

The UW SCW heat transfer facility is located in an underground laboratory at the 

UW's Tantalus laboratory due to safety issues associated with the high 

temperature and pressure.  All materials operated at supercritical temperatures 



and pressures are made of Inconel 625.  The main loop piping has a inner and 

outer diameter of 4.29 cm and 6.03 cm, respectively (2" schedule 160).  Pipe 

connections are made with either Grayloc fittings or standard 2500 pound 

flanges.  The loop stands 3 meters tall by 2 meters wide and is enclosed within 

concrete barriers.  The loop itself is fixed in position at the location of the pump, 

while the rest of the loop is attached to a steel structure with springs to allow for 

thermal expansion (Appendix C – Facility Layout). 

 

3.3 Preliminary Design Criteria 

In order to design an experiment for heat transfer to SCW, there needs to be 

some initial idea as to what conditions will exhibit enhancement and 

deterioration.  The general Froude number criterion was applied to the 

predetermined geometry of our experiment in order to find the temperature, mass 

velocity, and heat flux that would produce deterioration.  Using a Froude number 

of 0.03, a 3 dimensional plot of the three variables was produced (Figure 3-2).  

Operating conditions that result in a location above the plane, i.e. 1/Fr << 1, 

indicate that buoyancy effects will be negligible.  Conditions below this plane, i.e. 

1/Fr  >> 1, will result in buoyancy effected flow. 



 

Figure 3-2 Expected deterioration region based on the Froude criterion. 

3.4 Main Pump 

A Chempump brand impeller pump (model GCT-5k 36I) (Figure 3-3) is capable of 

operating at SCW conditions (3600 PSI at 593 oC).  The materials for pressure-

retaining parts are made of Inconel (ASTM B--564, UNS N06600).  The pump 

has a 12.7 cm (5 in) impeller powered by a 5.9 kW motor with spike-resistant 

motor windings, which allow for a variable-frequency drive.  The pump is driven 

with a VLT 5000 series frequency inverter.  The pump has a maximum flow rate 

of 41 m3hr (180 GPM). 



 

Figure 3-3 Main SCW pump. 

The experiment was designed for both upward and downward flow through the 

test section (Figure 3-4).  In the upward flow configuration, as shown in Figure 

3-1, flow is discharged from the pump head in a downward direction.  At the tee, 

the flow splits to go upward through the re-circulation leg, and downward through 

the test section leg.  This split in flow is needed to cover the wide range of flow 

rates.  Reversed flow is achieved by rotating the pump head and recirculation leg 

180 degrees.  The pump stand was designed to easily accommodate either 

configuration.  Flow rates in both the recirculation and test section leg are 

regulated with orifice plates and a frequency inverter.  ASME piping specs were 

followed for proper upstream lengths, downstream lengths, and pressure tap 

locations, however, required flange and orifice plate designs could not be 

followed due to costs.  Chapter 4.3 Evaluation of the Mass Flux discusses 

the details of the orifice design and the results of the calibration test.  The 



achievable mass flux range through the test section at 3450 RPM as function of 

temperature is shown in Figure 3-5. 

 

Figure 3-4 Orientation of pump head and recirculation leg for upward and downward flow. 

 

Figure 3-5 Achievable mass velocity range. 



3.5 Temperature Control System 

The temperature control system consists of both external heating and cooling.  

Twenty 1.3 kW external wrap heaters (model AWH-102-080D) 2.54 cm (1 in) in 

width and 2.44 m (8 feet) in length are tightly wrapped to the Inconel piping and 

controlled with LabVIEWTM.  These wrap heaters serve to bring the bulk fluid to 

operating temperatures and to maintain steady state conditions.  The cooling 

system can only operate at discrete power removal rates, so external wrap 

heaters are used to match cooling and heating powers.   

 

The Cooling system was designed to be able to remove 2/3rds of the 50 

kW power input at 300 oC and 25 MPa.  Building water is passed through two 

parallel water filters before entering the facilities cooling system.  A Dayton 

booster pump (model 4YC12) is used to boost the pressure to 6.89 bar (100 PSI) 

giving a 30 GPM flow rate through the cooling system.  An overpressure safety 

valve prevents against excessive pressure by redirecting flow to the building 

drain.  The pump feeds water to the distribution manifold (Figure 3-6).  The 

distribution manifold has thirteen discharge lines (one of which is a bypass line), 

of which each uses a globe valve to control flow and a flow meter (0-4 GPM) to 

monitor flow.  The return distribution manifold empties to the building drain. 



 

Figure 3-6 Distribution manifold. 

Twelve (feed and return) 1.9 cm (3/4 in) copper feed tubes provide cooling water 

for various applications (Main pump cooling, Chemistry line and Accumulator 

cooling baths, Aspirator, and copper cooling coils) (Figure 3-7).  Twenty-four 

custom-made grounded E-type thermocouples provide bulk coolant temperatures 

for both feed and return lines to monitor heat removal.  Main pump cooling, 

cooling baths, and aspirator transmission lines are also 1.9 cm (3/4 in) copper 

tubing.  Main copper cooling coil transmission lines are 9.5 mm (3/8 in) soft 

copper tubing.   



 

Figure 3-7 Cooling supply lines. 

 

Figure 3-8 Cooling coils. 

Main copper cooling coils are made from 3/8" soft copper tubing (Figure 3-8).  

Enhanced thermal contact between the soft copper tubing and Inconel 625 piping 

was achieved by running the copper tubing through a roller to create a flattened 

edge.  Hose clamps are also used to further compress the copper coils onto the 



Inconel piping.  Nine total cooling coils were used and configured as shown in 

Figure 3-1.  Two sets of cooling coils were combined to form cooler 1 and cooler 

7.  Flow rates through each of the cooling lines averages about 2 GPM.  

Additional cooling is supplied to the main pump at 3 GPM, cooling baths at 3 

GPM, aspirator at 1.5 GPM, and heater rod pressure boundaries at 1 GPM each. 

3.6 Heater Rod 

 

Figure 3-9 Heater schematic. 

Heater Description Materials (I.D.) Dimensions (mm) (O.D.) 
Filament Monel K500 5.13 6.325 

Electric Insulation Boron Nitride 6.325 8.076 
Sheath Inconel 600 8.076 9.93 
Clad Inconel 600 9.93 10.725 ± 0.019 

Thermocouple Clad Inconel 600 0.374 (min) 0.526 
Thermocouple filler Boron Nitride   
Thermocouple Wire K-type  0.1 

Approx. Wire Junction K-type  0.076-0.127 
 

Table 4 Heater component dimensions and materials. 

The heater design is based on that of a typical fuel pin and was made by Stern 

Laboratories (Figure 3-9).  Relevant dimensions and materials are listed in Table 

4.  The heater has a diameter of 1.07 cm with a heated length of 1.01 m and an 

overall length of about 3.3 m.  It was designed to produce a maximum heat flux 

of 1500 kW/m2 (50.4 kW total power), which is slightly higher than that expected 

under transient conditions in either fossil or nuclear power designs.  Heater 



power is supplied by a Miller Thermal Inc. DC power supply providing variable 

control up to 600 amps and 95 volts.  Current is monitored with a 1000 Amp 100 

mV shunt.  Heat is generated by a ribbon shaped filament cut from Monel K-500 

tubing.  The filament is electrically insulated from its environment with boron 

nitride.  The filament and insulation are enclosed within a two-piece cladding 

consisting of an inner sheath and outer wall cladding, both made of Inconel 600.  

Inconel 600 was chosen due to its corrosion resistance and similarity to Inconel 

625.  The outer diameter of the sheath contains axial grooves that contain the 

thermocouple wire (Figure 3-10a).  The heater contains 16 thermocouples equally 

spaced (every 66.67 mm) axially along the heated section between the cladding 

and the sheath.  The thermocouple wire itself has a cladding made of Inconel 

600, which surrounds a boron nitride insulation that encloses the thermocouple 

leads (Figure 3-10b).   

 

Figure 3-10 (a) Thermocouple grooves of the unrolled sheath. (b) Cartoon of the radial 
components of the heater (not to scale). 

 



The use of 16 thermocouples requires that thermocouple wires exit out both ends 

of the heater (Eight out each end).  Thermal expansion issues require that one 

end of the heater is fixed in place while the other end is allowed to slide with 

respect to the piping.  In the configuration shown in Figure 3-1, the top heater rod 

pressure boundary is fixed (Figure 3-11).  This is accomplished by first reducing 

the pipe diameter (1/2 in schedule 160) and cooling the fluid with a cooper coiling 

coil.  An end mounted through bolt compresses a washer, which in turn 

compresses graphite into the heater rod and fitting wall, effectively forming a 

fixed pressure barrier (it should be noted that while graphite is rated for 10,000 

PSI and 1000 oC, it is not compatible with SCW).  Detailed drawings can be 

found in Appendix B – Heater End Dimensions. 

 

Figure 3-11 Pressure boundary holding heater in a fixed position. 

The bottom heater rod pressure boundary allows the heater to move with respect 

to the loop while maintaining a pressure boundary (Figure 3-12).  This is 

accomplished again by first reducing the pipe diameter (1/2 in schedule 160) and 

cooling the fluid with a cooper coiling coil.  A set of O-rings within a flange where 



selected and designed based on a static seal following the Parker O-ring 

handbook [42].  A PTFE O-ring (AS568A-905) is used to form a seal between the 

flange faces.  A Viton O-ring (AS568A-012) and a urethane Backup-ring (U1002-

013, 90D hardness) are used to form a seal between the flange and the heater 

rod.  Details can be found in Appendix B – Heater End Dimensions. 

 

Figure 3-12 Pressure boundary allowing for differential thermal expansion. 

3.7 Heater Spacers 

Due to the length and flexibility of the heater rod, a method was required to 

minimize vibrations and center the heater within the outer piping.  It was 

estimated that, in the worst case, that supports should be placed every 3 feet.  

Supports (Figure 3-13) were placed 5 cm (2 in) away from the heated section 

and at the tees at the beginning and end of the test section leg.  The supports, or 

spring clips, were made of 410 stainless steel due to its spring like properties and 

ability to withstand SCW.  The thickness of the metal was chosen so that the 



spring clip could flex without permanently yielding.  The clip works by using the 

four corners of the larger lobes to hold itself within the tube.  As is, the inner 

points used to hold the heater are not separated enough to allow the heater to 

penetrate through the middle.  Pulling the smaller two lobes outward opens up 

the center allowing the heater to slide through.  Releasing the lobes causes the 

inner four points to close down on the heater, firmly securing it in place. 

Square Flow
Guide

Heater support

Outer Piping

Heater Rod

Heater support

Outer Piping

Heater Rod

1.07
4.29

6.033

0.159

1.07 4.29
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Figure 3-13 Top:  Spring clip designed to support heater rod in circular geometry.  Bottom:  pins used 
to support heater rod in square geometry. 

 



Due the smaller flow area, the square geometry required a different method for 

supporting the heater rod.  A four pin system made of 1.59 mm (0.0625”) Inconel 

welding rod was used with placement similar to that of the circular geometry.  An 

additional set of pins was placed 6 cm downstream of the optical test section for 

improved positioning.  It should be noted that the pins were designed to have 

0.15 mm (0.006”) gap between itself and the wall to allow for thermal expansion 

and dimensional uncertainty. 

3.8 Test Section 

Two test sections were created, one for standard heat transfer measurements in 

a circular annular flow, and another for square annular flow with optical access.  

Two test sections were made so that heat transfer measurements could be 

performed while details of the density measurement could be investigated with 

the optical test section.   

 

Only 1.01 m of the 3.3 m heater rod is heated (Figure 3-1).  The removable 

section is offset of the heated section due to the uncertainty in behavior of the 

heat transfer during deterioration.  It was not known if the deterioration would 

occur across the entire axis of the heated section or if it would occur at a 

localized section.  With the current design the optical access can be placed in the 

center as shown, or the removable piece can be flipped allowing a view of the 

near-end heat transfer.  The entrance region can be observed by rotating the 

entire right half the loop 180 degrees.  To minimize optical distortion (flat window 

rather than curved), the chosen geometry was a square annular flow.  The optical 



test section was designed to allow laser light from various optical instruments to 

enter and exit at 90 degrees of separation.  The viewing window section is 

square while the ends transition to connect with the normal piping (Figure 3-14).  

Square flow guides are inserted above and below the optical window creating a 

square flow channel along the entire test section leg.   

 

Figure 3-14 3D rendering of optical test section. 

3.9 Accumulator 

An accumulator is used to control pressure and dampen pressure oscillations 

(Figure 3-15, Figure 3-16).  The volume of the accumulator is similar to that of 

the main loop (3.33 gallons).  A 3.2 mm  (1/8 in) stainless steel tube is used to 

connect the main loop to the accumulator.  The line is passed through a cooling 

bath to keep the accumulator fluid at room temperature.  The water level in the 



reservoir is monitored with a Siemens differential pressure gauge (model 

7MF4532-1EA32-1NC1-), with a case pressure of 420 bar and differential of 20--

600 mbar.  The pressure inside the reservoir is measured with Siemens sitrans P 

pressure gauge (model 7MF4032-1GA10-1NC1-Z) rated for 13--400 bar.  

Pressure can be automatically or manually controlled with LabVIEWTM.   

 

Figure 3-15 Picture of the pressure control components. 



 

Figure 3-16 Schematic of the pressure control system. 

3.10 Chemistry Control 

Water chemistry is controlled by removing dissolved oxygen and filtering  (Figure 

3-17, Figure 3-18).  A 3.2 mm (1/8 in) stainless steel line from the loop is passed 

through a cooling bath prior to entering the chemistry control line.  A needle valve 

controls flow through chemistry line.  A 5 µm particle filter is used to clean the 

water.  A mini module membrane contactor made by liqui-cel (model G478), 

allows water to flow around a mesh of oxygen permeable tubular membranes.  A 

vacuum is used to draw the oxygen through the membranes.   This system can 

bring the dissolved oxygen content down to ~20 parts per billion. 

 

The dual chrome tech prep 100 digital pump can produce flow rates of 0.1 

to 100 ml/min.  A reservoir precedes the pump in order to provide some flexibility 

in pump speed.  The pump is controlled both manually and via a RS232C serial 



communication.  The reservoir water height is monitored with a Siemens Sitrans 

P (model 7MF4432-1CA22-9316782) pressure transmitter with a measuring span 

of 2mbar-60mbar.  The flow rate through the chemistry line can be controlled 

automatically by either holding the main loop pressure constant or maintaining 

constant water level in the chemistry reservoir.  The chemistry line contains 

automated valves at both the inlet and exit for isolation. 

 

Figure 3-17 Picture of chemistry control components. 



 

Figure 3-18 Schematic of chemistry control system. 

 

3.11 Data Acquisition, Motion, and Control 

The data acquisition system for the loop is currently a National Instrument 

system along with LabVIEWTM interface.  This system consists of a 16 bit 333 

kHz A/D converter (6052E) connected to a SCXI 1001 chassis that can hold up 

to 12 SCXI modules.  The chassis powers the SCXI modules and handles all 

timing, triggering, and signal routing between the digitizer and SCXI modules.  

Currently there are four 32 channel 1102 high accuracy thermocouple modules 

used for temperature and voltage measurements around the loop and four 1160 

general-purpose switching modules consisting of 16 independent relays with 

power capabilities of up to 2 A at 250 Vrms to control valves and external heaters 



on the loop.  Two PCI-7342 motion control cards control the two two-axis 

National instrument nuDrive power amplifiers (model 2SX-411).  LabVIEW 7.1 

software is used to monitor, control, and record facility parameters.  This program 

is outlined in Appendix D – LabVIEW Code. 

 

Figure 3-19 The driver seat. 

3.12 Operating Procedure for Heat Transfer Measurements 

The method for operating an experiment is as follows.   

• Replace faulty gasket in main pump. 

• Electroplate faulty seal rings. 

• Install proper orifice plates. 



• Fill loop with distilled water and pressure test to 26 MPa at room 

temperature. 

• If pressure test fails, fix leak and repeat pressure test.  Else continue. 

• Run the chemistry line one-three day to remove dissolved oxygen from 

loop water. 

• With most of the oxygen removed, initialize both loop and accumulator 

pressure to 8--12 MPa and open interconnecting valve. 

• Begin cooling on pressure boundary ends, cooling baths, and the main 

pump. 

• Start main pump flow. 

• Began external heating at 1 oC/min with external heating control. 

• Maintain and adjust chemistry line flow to drive excess water to 

accumulator. 

• Adjust pressure as needed by injecting argon or dumping excess water. 

• As desired temperature is approached, turn on internal heater and ramp 

down external heater to reach steady state. 

• Adjust internal and external heaters and add external cooling to reach 

desired bulk temperature and heat flux. 

• Adjust pressure and flow rate as necessary. 

• When steady state conditions are reached, save data for 5 minutes. 

• Maintain steady state. 

• Adjust internal heating, external heating and cooling power as necessary 

to achieve desired conditions. 



• Shut down:  Phase out internal heating and external cooling and adjust 

external heating to hold at steady state. 

• Ramp down temperature at  1 oC/min with external heating control. 

• When external heating temperature equals internal bulk temperature 

(typically at a bulk temperature of 180 oC), shut off experiment by turning 

off pump, external heating, and all cooling except for pressure boundary 

ends and pump cooling.   

• Next day shut off all cooling water. 

 Modifications needed for use of optical windows: 

• Window seals require an internal pressure of about 15 MPa, and thus this 

must be maintained during start up and shut down. 

• Windows must be polished prior to every run with a minimum of 1 µm 

diamond paste on a polishing machine (Buehler).  

3.13 Operational Experience 

Currently the heat transfer facility has been found to operate exceptional well and 

has been operated up to bulk temperatures of 400 oC, with external piping 

approaching 600 oC.  Pressure boundaries have been maintained up to 30 MPa 

at room temperature and 26 MPa at 400 oC.  Changing to and from different 

steady state conditions is easily accomplished and steady state operating 

conditions are easily sustained.  The pressure boundaries between the 

protruding heater and the loop have also tested successfully to 30 MPa.  The 

static seal allowing for thermal expansions has also been successfully tested for 

proper expansion.  One major issue is that supercritical water has been found to 



degrade the gasket material (graphite) of the main pump while operating near 

and above the pseudo-critical point.  However, this has not yet inhibited 

operation near and above critical temperatures.  Pressure tests following near or 

exceeding supercritical temperature experiments have always failed, resulting in 

disassembly of the pump and replacement of the main gasket.  A new gasket 

material, vermiculite, has been inserted, however it has yet to be tested beyond 

350 oC. 

 SCW has also been found to have the ability to etch the sapphire 

windows.  Experience suggests that the combination of flowing SCW with modest 

amounts of dissolved oxygen leads to the etching of sapphire.  Keeping the 

dissolved oxygen content as low as possible minimized this effect. 



Chapter 4 – Experimental Method, Procedure, and 

Uncertainties 

4.1 Brief Overview 

This chapter discusses the main measurement variables, calculations, and the 

associated uncertainties.  The main experimental variables are mass flux, heater 

power, and fluid and cladding temperatures.  Calculations include wall 

temperature and Nusselt number. 

4.2 Nusselt number 

The heat transfer to a fluid from a cylinder with internal temperature 

measurements is defined by: 
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This equation now must be rewritten in terms of primitive (measured) variables. 

For simplicity, the heater diameter is evaluated based on the temperature 

of the inner cladding temperature.  The Stern Lab inspection report states the 



diameter (dh’) to be 10.725 mm with the minimum being 10.7061 mm and the 

maximum being 10.7442 mm.  The diameter (dh) is defined as: 

( ) ( )[ ]roomicThh TTdd
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The thermal expansion of Inconel 600 is shown in the following figure (data 

source: High temp metals data base) 
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Figure 4-1 Thermal expansion of Inconel 600. 

600α = 1.3e-5 ± 1.11e-7 + (3.77e-9 ± 3.84e-10) x T 

600α =C1+C2 x T 

The Uncertainties are based on the linear fit and the coefficients are defined as 

C1 and C2. 

The calculated heated length is based on the thermal expansion of Monel 

K-500, where the expansion is evaluated based on the temperature of the inner 

cladding temperature measurement: 

( )( )[ ]roomicTK TTLL
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−+′= 5001 α  



L’ is found to be 1010 mm based on the Stern Lab inspection report.  The 

thermal expansion coefficient αK500 is 13.7e-6 as found from the ESPI metals data 

base. 

The thermal conductivity of Inconel 600 is based on the High Temp Metals 

data base and evaluated at the inner cladding temperature measurement. 
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Figure 4-2 Thermal conductivity of Inconel 600. 

k = 14.37 ± 0.07 + (0.0152  ± 0.0003) x T   

k =C3+C4 x T 

Again, the uncertainties are based on the linear fit and coefficients are defined as 

C3 and C4. 

Method for calculating heater power (assuming uniform power 

distribution): 

Q = VI 

Current (I) found from voltage drop across a 1000 amp shunt (max power supply 

current  = 600 amps, max used = 400 amps). 

s

s

R
VI =  



The Shunt resistance ( sR ) is 0.00005 ohms ± 0.1 %.  The shunt voltage ( sV ) is 

too large to be measured directly so a voltage divider is used (measure voltage 

2V ). 

21 VVVs +=  

( ) vs IRRV 21 +=  

2

2

R
VIv =  

So, putting it together: 
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1R = 7660 ohms, 5W resistor 

2R =711 ohms, 5W resistor 

2V  Measured with NI data acq: ± 0.04 % of reading 

Inner cladding temperature measurements are made with K-type thermocouples 

made from 100 µm (0.004”) diameter wire (XL-K-MO-020) with an uncertainty of 

± 1.1 oC or 0.4%, which ever is greater. 

 The bulk axial temperature is found from the from: 

)( inletx iimQ −= &  

Which can be rewritten 
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2
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This is then rearranged to find the bulk enthalpy as a function of position: 
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Two variables to left to find, m&  and inleti .  The inlet enthalpy inleti  is 

evaluated at the inlet temperature ( inletT ) and pressure.  The inlet temperature is 

measured with an E-type thermocouple (GEMQIN-0625-12) with an uncertainty 

of ± 1.0 oC or 0.4%, which ever is greater. 

The mass flow rate is found with an orifice and differential pressure 

transducer combination with the following equation: 
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The discharge coefficient ( dC ) is dependent on orifice the orifice diameter, both 

of which are discussed in greater detail in the following section (Section 4.3

 Evaluation of the Mass Flux).  The orifice diameter is evaluated based in the 

bulk inlet temperature: 

( )( )[ ]roombTo TTdd
b

−+′= 6250 1 α  

The thermal expansion of Inconel 625 is based on data from High Temp Metals. 
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Figure 4-3 Thermal expansion of Inconel 625. 

( )bT625α  = (1.26e-5 ± 1.22e-7) + (1.67e-9 ± 4.59e-10) x 

T + (3.2e-12 ± 3.81e-13) x T2 

( )bT625α = C5+C6 x T + C7 x T2 

The uncertainties are based on the fit and three new coefficients are obtained.  

The room temperature orifice diameters ( 0d ′ ) are 0.01778, 0.01016, and 0.02667 

m. 

 The pipe diameter is found by: 

( )( )[ ]roombTpp TTDD
b

−+′= 6251 α  

pD′  = 0.0429 m 

The pressure drop ( P∆ ) is measured with a Siemens differential pressure 

transducer with an uncertainty ± 0.1%, although uncertainties are dominated by 

experimental fluctuations.  The signal is acquired by measuring the voltage 

across a resistor: 
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C8 = 18.75, C9 = 75 

4ma = 0 kPa, 20 ma = 300 kPa 

oR  = 306 ohms 

oV  ± 0.04 % of reading 

And finally, if you’re still diligently following along, the final result is: 
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Appendix F – Heat Transfer Uncertainty Example, gives an example of the 

uncertainty found from typical experiments at various operating conditions (normal heat 

transfer high mass velocity, normal heat transfer low mass velocity, deteriorated heat 

transfer, and enhanced heat transfer). 

4.3 Evaluation of the Mass Flux 

As previously stated, the ASME standard could not be followed in the design of 

the orifice plates, and with custom plates (Figure 4-4) the discharge coefficients 

needed to be experimentally determined.  Four different orifice plates were used 

to achieve the desired mass velocity at different temperatures (Table 5). 

 

Figure 4-4 Orifice system schematic. 

   



Case T (oC) G (kg/m2s) Test Section β Recirculation leg β 
A, B, C, D, E Subcritical High 0.414 0.622 

G, H, M-U  Subcritical Low 0.237 0.681 
K, L Subcritical Low 0.237 0.622 
I, J Supercritical High 0.622 Closed 
F Supercritical Low 0.414 0.622 

Table 5 Orifice plate configuration for varying conditions. 

Calibration of the discharge coefficient for each orifice plate was performed by 

removing the center test section piece and replacing it with a Foxboro (model 83) 

vortex flow meter.  The fluid used was water at room temperature, pressure of 1 

MPa, and with dissolved gases removed via the chemistry line.  

 

For β = 0.237, the discharge coefficient was estimated at 0.61 ± 0.04.  

Figure 4-5 shows the experimentally measured discharge coefficient as function 

of Reynolds Number compared with the expected value had ASME standards 

been followed.  Uncertainties shown are due to experimental fluctuations.  A 

large uncertainty of the discharge coefficient was chosen based on both the 

measured values and the fact that the maximum Reynolds number achievable at 

room temperature is an order of magnitude lower than typical operating 

conditions.  However, the values expected, had ASME standards been followed, 

indicate that there should be little change in the discharge coefficient at larger 

Reynolds numbers.  An uncertainty of 0.04 is assumed to be very conservative. 



  

 

Figure 4-5 Measured discharge coefficient compared with measured.  (a) β = 0.237, (b) β = 0.414, 
(c) β = 0.622. 

For β = 0.414, the discharge coefficient was estimated at 0.64 ± 0.04.  Again the 

uncertainty was obtained as described above. 

The pressure drop across the orifice is measured with a Siemens 

differential pressure transducer (model: 7MF4032-1GA10-1NC1-Z) with an 

instrumental uncertainty of 0.1 %, however, fluctuations typically dominated the 

uncertainty.   

In the end, the mass velocity uncertainty was dominated by the 

uncertainty in the discharge coefficient. 



4.4 Evaluation of the wall temperature 

The calculation of the wall temperature from inner cladding temperature 

measurements becomes complicated by an interesting design issue associated 

with the heating element of the heater rod.  The heating element is shaped as a 

ribbon producing an oscillating temperature profile along its axis.  ANSYS 

calculations performed by Carl Martin show this temperature fluctuation (Figure 

4-6). 

 

 

Figure 4-6 Surface temp variation of a section of heater rod with Q” = 1MW/m2 and Tb = 370 oC. 



The design of the heating element alters both the heat flux and temperature at 

the surface of the heater rod.  The equation used to discuss such a problem is 

given by: 
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where α is a correction factor for the local heat flux and B is the physical location 

of Tic.  However, this is one equation with three unknowns (α, B, Tw).  The proper 

way to solve this problem is to use the results of an experiment coupled with a 

full CFD simulation of the heater and flow.  However, this requires a significant 

amount meshing nodes and computer memory, and knowledge of the axial 

position of thermocouples relative to the heating ribbon.  Currently this type of 

analysis is not possible so another method is needed to obtain Tw.  In order to 

solve this problem, it was assumed that the variation in Q" was negligible and 

that the variation in measured temperature was mostly due to the radial position 

of Tic.  This reduces the problem to one equation and two unknowns (β and Tw.  

For this to work, the results should show that B is constant for several different 

heat transfer experiments, and in particular, differing heat flux.  It was decided to 

use experiments with constant bulk temperature and mass velocity with varying 

heat flux.  Four experiments with (Tb = 300 oC, G = 1400 kg/m2s, and Q" = 250 - 

1000 kW/m2) were used to locate the position of Tic.  These four experiments 

were then modeled in FLUENT, a CFD code, using the assumption of a uniform 

heat flux.  This model revealed the expected wall temperature to be used in the 

above equation.  Since it is assumed that the heat flux is uniform, we now have 1 



equation and 1 unknown.  Solving for B for each thermocouple and for each of 

the four runs results in Figure 4-7.  

 

Figure 4-7 Variation in radial thermocouple position assuming the position is the dominant 
factor in varying relative temperature measurements. 

It can be seen that the majority of the thermocouple bead locations are within the 

acceptable physical location and the variation is relatively small.  The farthest 

outer and inner lines represent the gap in which the thermocouple wire lays.  The 

other two lines are an estimate of the maximum thickness of the thermocouple 

cladding, as determined by Stern Laboratories.  These results are acceptable 

considering other unknown factors such as varying conductivity, inter facial 

conductivity, and dimensional uncertainties.  These results are used in 

calculating wall temperature and heat transfer coefficient of all runs. 

4.5 Repeatability 

While instrumental uncertainties limit the accuracy of the heat transfer 

experiments, it is important to also consider the repeatability of an experiment.  



Figure 4-8 shows that the wall temperature repeatability of the experiments is 

quite good (< ± 1.3 oC). 

 

Figure 4-8 Repeatability of five experiments. 



Chapter 5 – Heat Transfer Results and Discussion 

5.1 Brief Overview 

This section covers four topics: 1) Heat transfer correlations comparison; 2) High 

mass velocity data; 3) Low mass velocity data; 4) and buoyancy criterion.  While 

all calculations performed were evaluated at local conditions, unless otherwise 

stated, data for each run is presented as an average of the inner 14 

measurements. 

 

The 3D Froude criterion plot (Figure 3-2) can be represented as a 2D plot 

with constant lines of heat flux.  Completed experiments are overlaid on this plot 

showing how completed experiments relate to potential deteriorated heat transfer 

(Figure 5-1).  Each star represents a range of heat flux experiments for a 

constant mass velocity and bulk temperature. 



 

Figure 5-1 Completed experiments in relation to the buoyancy effected region. 

5.2 Heat Transfer Correlations 

 Table 6 shows the results of the four Nusselt correlations compared with 

all 1077 circular geometry data points.  Beginning with the Dittus-Boelter 

correlation, it can be seen that 79% of that data are captured with a 25 % 

accuracy.   Figure 5-2 shows that such a simplistic Nusselt correlation cannot 

capture the heat transfer effects seen in the near pseudocritical temperature 

region.  Ideally the data should collapse to line so that experimental data is 

represented by the correlation.  There is, as expected, large differences at the 

lower Nusselt numbers, or the region in which deterioration is occurring, 



indicating that the Dittus-Boelter correlation is over predicting the heat transfer.  

This is consistent with results of just about every Nusselt correlation developed.  

Also of importance in this evaluation are the thermal entry length effects of these 

experiments.  For example, the group of data points at the highest Nusselt 

numbers (Figure 5-2) is from one experiment and represents the measurements 

across the heater.  The effect of this is for the Nusselt correlation to tend to under 

predict the heat transfer in the entry region.   Since the thermal entry length 

effects are dependent on the operating conditions, it was decided to not attempt 

to correct for this. 

Case Run Geometry Tb G Q” Heat Transfer
A 1-4 Circle 300 1425 250-1000 N 
B 5-8 Circle 370 1160 250-1000 E 
C 9-14 Circle 370 1160-680 500 N, D 
D 15-18 Circle 300 1120 250-1000 N 
E 19-22 Circle 370 1120 250-1000 E 
F 23-25 Circle 393 400 250-500 N 
G 26-30 Circle 300 400 125-625 N, D 
H 32-35 Circle 350 400 125-500 N, D 
I 36-39 Circle 385 1120 250-1000 E 
J 40-43 Circle 400 1120 250-1000 N 
K 44-47 Circle 370 400 125-500 N, D 
L 48-62 Circle 300-360 400 130-350 N, D 
M 63-77 Circle 340-350 400 125-375 N, D 
N 78-90 Square 300 400 125-650 N, D 
O 94-100 Square 300 350-700 125 N 
P 101-107 Square 300 350-700 250 N 
Q 108-114 Square 300 350-700 375 N, D 
R 116-122 Square 300 350-700 500 N, D 
S 124-129 Square 300 407-700 625 N, D 
T 132,131,115,123,130 Square 300 400 125-625 N, D 

Table 6 Experimental conditions.  N = normal, E = enhanced, D = deteriorated. 
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Figure 5-2 Comparison of experimental Nusselt number and Dittus-Boelter correlation. 

Jackson’s Nusselt correlation captures 86 % of the data with 25 % accuracy 

(Figure 5-3).  This is lower than accuracy found by Jackson, however our 

calculation includes data that has experienced deterioration and again, there are 

thermal entry length effects to consider.  Jackson’s correlation appears to work 

well in that the data collapses to a straight line (with the exception of low Nusselt 

data), however, the experiment appears to have a consistently higher Nusselt 

number than what is predicted.  The difference may be due to the fact that this 

correlation has been developed from circular pipe flow data while our geometry is 

annular.  Experimental research has shown that there is an increased heat 

transfer in annular geometries for the same overall flow conditions.  For example, 

applying a correction factor suggested by Petukhov et al. [36] results in a 7% 

increase in heat transfer for our geometry.  Due to the length of the simulated 

fuel pin (3.3 meters), it was determined necessary to add spacers to hold the 



heater rod in the center of the annular geometry and to prevent oscillations in the 

heater rod. The affects of the spacers used to support the simulated fuel pin on 

the heat transfer was considered, with this in mind the spacers were designed to 

minimize free stream turbulence production while still supporting the heated rod. 

The spacers were also positioned such that they were as far upstream and 

downstream from the measurement location as possible to minimize their effect.   

To determine the impact of the spacers a CFD simulation with FLUENT was 

conducted at fluid conditions well below the critical point for both geometries.  

The calculations agreed with the measured data under these conditions and 

showed similar trends between the circular annular and square annular heat 

transfer data, suggesting little impact of the spacers on the heat transfer 

measurements. This is due in part to the design of the spacers, their position in 

the flow channel, and the fact that the experiments have a large channel cross 

sectional area, resulting in little change in the free stream turbulence levels.  In 

addition to the CFD analysis several experiments were conducted both with and 

without thermocouples obstructions in the bulk flow (these thermocouples were 

similar to the pin spacers of the square annulus) and no measurable effect on the 

heat transfer was observed. 
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Figure 5-3 Comparison of experimental Nusselt number and Jackson’s Nusselt correlation. 

Krasnoshchekov’s Nusselt correlation captures only 54 % of the data with an 

accuracy of 25 %, which is much lower than expected (Figure 5-4).  The 

Krasnoshchekov correlation appears to form two lines of which the upper line is 

high mass velocity, high bulk temperature data.  These data points are outside 

the range from which the Krasnoshchekov correlation was developed.  Ignoring 

these data points, the rest of the data still scatters more than the Jackson 

correlation. 
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Figure 5-4 Comparison of experimental Nusselt number and Krasnoshchekov correlation 

Watt’s Nusselt correlation captures only 56 % of the data with an accuracy of 25 

% (Figure 5-5).  Even though this number is low, the data collapses to a line 

extremely well with only a spread in data at low Nusselt numbers, which is to be 

expected.  Watts Nusselt correlation under predicted measurements by 10 % 

relative to Jackson’s.  Both the Watt’s and Jackson correlation appear to need 

modification to account for the increased heat transfer of annular heat transfer 

over pipe geometries. 
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Figure 5-5 Comparison of experimental Nusselt number and Watts Nusselt correlation. 

A relatively small test matrix (case N thru T) was performed in the square 

geometry at low mass velocities to evaluate the onset of deterioration and the 

performance of selected heat transfer correlations.  All data collected for the 

square geometry is shown in Figure 5-6 and compared with the Jackson and 

Watts correlation.  Similar to results found for the circular geometry, the Jackson 

correlation is best able capture experimental results under normal heat transfer 

conditions while the Watts correlation under predicted results relative to 

Jackson’s correlation. 
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Figure 5-6 Comparison of Watts and Jackson Nusselt correlation (square geometry). 

5.3 Experimental Comparison 

Additional insight can be gained by comparing high and low mass velocity data 

with results from previous experiments of different geometries under similar 

conditions.  In order to compare high mass velocity data with results from 

Yamagata et al., the axial heat transfer coefficient was averaged across the 

heater.  The high mass velocity results in a very low enthalpy rise across the 

heated section resulting in similar heat transfer along the heater.  Yamagata et 

al. experienced an enhancement in heat transfer near the pseudo-critical 

temperature.  An Increase in heat flux led to a reduction in the enhancement as 

previously described.  Comparing the heat transfer coefficient as a function of 

temperature and heat flux shows that our results are in agreement (Figure 5-7).    

At 300 oC, both experiments show that heat transfer coefficient is independent of 



heat flux.  At 370 oC, the heat transfer coefficient is beginning to show 

dependence on the heat flux due to the increasing specific heat.  At or near the 

pseudo-critical temperature, the heat transfer coefficient exhibits a maximum.  At 

400 oC, the enhancement in heat transfer is again reduced due to the reduction 

in specific heat. 

  

Figure 5-7 High mass velocity comparison of Yamagata et al. and UW data. 

No deterioration in heat transfer was seen at high mass velocities (greater than 

1000 kg/m2s) for our range of bulk temperature and heat flux.  However, at low 

mass velocities of 400 kg/m2s, deterioration in heat transfer was present for a 

wide range of conditions.  When deterioration was present, it almost always 

occurred over the first portion of the heated section (Figure 5-8a).  That is, the 

inlet wall temperatures are similar to that expected (i.e. as predicted by Jackson’s 

correlation), followed by deterioration and a recovery back to the expected 

values.  This same feature was found in other experiments (watts et al. [51]).  

Figure 5-8b shows how deterioration in our experiment compares with that found 

in Shitsman’s experiments.  An interesting feature is the difference in enthalpy 

range over which deterioration occurs.  Two different processes could be 



occurring. The first is that at our pressure (25 MPa) the heat transfer 

deterioration is being suppressed.  In other words, at higher pressure the 

property changes that cause deterioration are less significant.  The second is that 

there is a region, prior to the pseudo-critical temperature, in which conditions are 

favorable for deterioration, and that the difference in results is due to the differing 

geometries (i.e. hydraulic diameter).  For example, Figure 5-8c shows that at a 

low heat flux of 250 kW/m2 there is no deterioration over the bulk temperature 

range of 300-400 oC, however, an increase in heat flux to 500 kW/m2 results in 

multiple deterioration points in the region prior to the pseudo-critical temperature. 

 

 

Figure 5-8 (a) Example of the evolution in heat transfer deterioration (UW data).  (b) 
Comparison of UW data and Shitsman data under similar conditions.  (c) 
Example of multiple spikes in wall temperature. 



 

Experiments performed at identical conditions, less than 2 % deviation, were 

performed both the circle and square annular flow channel (Table 6: cases G and 

T).  These set of conditions exhibit normal heat transfer effects at a low heat flux 

(125-250 kW/m2) and a deteriorated heat transfer at a high heat flux (375-625 

kW/m2).  Comparison of the heat transfer coefficients shows geometrical 

differences for both high heat flux conditions (Figure 5-9). 
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Figure 5-9 Comparison of circle and square annular flow geometry heat transfer. 

At a low heat flux and normal heat transfer conditions, the circular geometry heat 

transfer varies from 2 % less than the square geometry to 10 % greater.  

However, the uncertainties are on the order of 10 % suggesting that the two 

geometries statistically produce the same heat transfer.  At a high heat flux and 

conditions of deterioration, the circular geometry heat transfer varies from 6 % 

greater to 25 % less than that of the square geometry.  At these conditions the 



two geometries produce different heat transfer coefficients.  A similar observation 

is seen when comparing circular annular flow with data from Shitsman (Figure 

5-8b).  That is, at the similar operating conditions, normal heat transfer was in 

agreement with correlations and experiments of different geometries, whereas 

conditions of deterioration were found to differ with both.  It was proposed that 

the effects of deterioration, i.e. wall temperature, were dependent on the 

hydraulic diameter.  The reason for these differences in heat transfer remain up 

for debate, however, continuing work should lead to further insight of the 

processes occurring under these conditions. 

5.4 Buoyancy Criterion 

In an effort to clearly present data, the locally calculated buoyancy criterion were 

averaged to get one criterion value for each experiment.  Evaluating all of the 

experiments led to the problem of determining when buoyancy (or deterioration) 

was actually present.  Some experiments exhibited 100 oC temperature rises 

while others showed a 5 to 10 oC change.  It was decided that one value for a 

criterion limit was not very useful so two limits were found.  One limit was chosen 

to be over inclusive, meaning that any experiment that appeared to have a small, 

localized, increase in temperature was marked as deterioration.  Another criterion 

limit was chosen in which large, localized, temperature spikes were easily 

visualized, neglecting smaller temperature increases.  Figure 5-9 shows the 

results using Jackson’s criterion and Seo’s criterion.  The y-axis is the calculated 

criterion value normalized with the average of the two criterion limits.  

Experiments resulting in criterion values above the limit experienced deterioration 



where as values below the limit exhibited normal heat transfer.  The middle band 

indicates a region in which deterioration may or may not be present. 

 

 

Figure 5-10 Buoyancy criterion evaluated at local conditions in UW experiment. 

Seo suggested that the criterion limit was found to be 0.03 based on previous 

experiments, however this criterion was developed with the Dittus-Boelter 



Correlation, which is not the best correlation.  Instead, this paper uses Seo’s 

criterion with Jackson’s heat transfer correlation replacing the Dittus-Boelter 

correlation and replacing property subscripts in equation 6 with wall and bulk 

instead of film subscripts.  In the term including a difference in density and 

temperature, the wall subscript was used; all other s subscripts were replaced 

with the bulk subscript.  Using this method, a conservative criterion limit of 0.1 

was found with the more severe deteriorations occurring at a values greater than 

0.43. 

 

Jackson’s criterion is promising in that his suggested criterion limit 

conservatively captures all experiments with deteriorated heat transfer.   Again, a 

higher limit was taken to encompass only data with significant deterioration.  Both 

criterion exhibit similar trends suggesting that both may be successful at 

predicting deterioration.  However, only Jackson’s criterion limit has been proven 

universal to various experiments, further comparisons are required to evaluate 

Seo’s criterion limit with the modifications described in this paper. 

5.5 Summary 

Jackson's heat transfer correlation shows the best agreement with all UW data.  

The Watt’s correlation may also be applicable with slight modification of the 

leading coefficient.  These correlations work for both high and low mass velocity 

experiments in the absence of heat transfer deterioration.  Accounting for 

increased heat transfer in annular flows should improve the performance of these 

Nusselt correlations. 



 

  High mass velocity data exhibits an enhancement in heat transfer 

centered near the pseudo-critical temperature where there is a large value of 

specific heat.  An increase in heat flux impairs the magnitude of the heat transfer 

coefficient in the region surrounding the pseudocritical region.  These results are 

consistent with previous investigations in the literature [53]. 

 

  Low mass velocity data exhibited heat transfer deterioration at sub-

pseudocritical temperatures.  This deterioration was present in previous 

investigations; however, UW data has shown its dependence on geometry.  It is 

believed that deteriorated heat transfer cannot be reproduced with Nusselt 

correlations due to its dependence on localized conditions such as thermal 

profile, velocity profile, inlet temperature, pressure, mass velocity, and heat flux. 

Local computational models to examine the likely effects of variable properties 

and turbulent transport would be needed. 

 

 Both the Froude Number criterion (Seo) and Jackson’s criterion are able 

to predict the onset of buoyancy effects with the proper criterion value.  

Jackson’s suggested criterion value has been found to be valid for our set of 

operating conditions.  A new conservative criterion limit of 0.1 has been 

suggested for Seo’s criterion limit when modified to use Jackson’s Nusselt 

correlation and local property values. Such an approach provides a conservative 



bound on the expected onset of heat transfer degradation with the known inlet 

flow and heat transfer conditions. 
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Appendix A – Heater X-ray Images 
 

 

 

 

 

X-ray images of the heating element with in the heater rod.  Pictures centered at the end 
point of thermocouples: a) B, b) E, c) X, d) A (end of heated element). 
 
The heating element gap (ribbon) is depicted as the light gray colored sinusoidal strip.  
The darker gray middle is the actual heated material.  The internal thermocouple wires 
can be faintly be seen as the light gray colored lines running the length of the heater. 
Only wires positioned in the center of rod can be visualized (i.e. away from the top and 
bottom of the pictures). 



Appendix B – Heater End Dimensions 
 

 
 
Details of fixed pressure boundary of the protruding heater rod. 
 
 

 
 Details of pressure boundary allowing for differential thermal expansion of the 
protruding heater rod. 



Appendix C – Facility Layout 
 

 



 

 



Appendix D – LabVIEW Code 
 

 



 





 



 



 



Appendix E – Heater Surface Roughness Measurements 
 

 Ra (µm) Ry (µm) Rz (µm) 
pre .4 2.7 1.8 
 .5 5.4 2.7 
 .4 3.6 2.1 
 .4 2.4 1.5 
 .5 3 1.6 
 .3 2.1 1.3 
 .3 2.3 1.3 
post .46  3.27 
 .28  2.38 
 .48  3.36 
 .31  2.59 
 .36  2.93 

Heater rod surface roughness measurements prior to use and following circular 
annular heat transfer measurements. 



Appendix F – Heat Transfer Uncertainty Example  
 

Run Th Nus Nus_sig d_ic P Vo Vs V2 Tin Tclad d_h C1 C2 C3 C4 C5
16 2 708 41 -15.25 -0.02 -0.03 0.17 0.17 25.28 -25.70 2.81 -0.03 -0.03 -1.28 -1.97 0.00
16 3 687 38 -14.81 -0.02 -0.06 0.15 0.15 23.91 -24.12 2.62 -0.03 -0.03 -0.80 -1.21 0.00
16 4 662 36 -14.13 -0.02 -0.08 0.16 0.16 22.28 -22.52 2.34 -0.02 -0.03 -1.16 -1.80 0.00
16 5 651 35 -13.82 -0.02 -0.11 0.14 0.14 21.57 -21.66 2.26 -0.02 -0.03 -0.75 -1.14 0.00
16 6 639 34 -13.23 -0.02 -0.13 0.16 0.16 20.88 -21.09 2.12 -0.02 -0.03 -1.26 -1.98 0.00
16 7 646 35 -13.94 -0.02 -0.16 0.14 0.15 21.26 -21.38 2.20 -0.02 -0.03 -0.88 -1.35 0.00
16 8 622 32 -12.31 -0.02 -0.17 0.13 0.13 19.81 -19.77 1.99 -0.02 -0.03 -0.59 -0.89 0.00
16 9 647 34 -13.16 -0.02 -0.21 0.14 0.14 21.35 -21.40 2.22 -0.02 -0.03 -0.66 -1.01 0.00
16 10 624 32 -12.39 -0.02 -0.22 0.13 0.13 19.96 -19.96 2.01 -0.02 -0.03 -0.70 -1.07 0.00
16 11 612 32 -12.61 -0.02 -0.24 0.15 0.15 19.27 -19.38 1.88 -0.02 -0.03 -1.16 -1.84 0.00
16 12 586 29 -11.75 -0.02 -0.24 0.13 0.13 17.76 -17.68 1.67 -0.02 -0.03 -0.75 -1.17 0.00
16 13 616 32 -12.83 -0.02 -0.29 0.13 0.13 19.49 -19.46 1.94 -0.02 -0.03 -0.66 -1.02 0.00
16 14 628 32 -12.15 -0.02 -0.33 0.13 0.13 20.25 -20.25 2.05 -0.02 -0.03 -0.63 -0.96 0.00
16 15 597 30 -11.02 -0.02 -0.32 0.13 0.13 18.38 -18.34 1.76 -0.02 -0.03 -0.74 -1.16 0.00
16 637 34 -13.10 -0.02 -0.19 0.14 0.14 20.82 -20.91 2.13 -0.02 -0.03 -0.86 -1.33 0.00

C6 C7 C8 C9 L R1 R2 Rs alphak500 Cd Do Dp Ro
0.00 0.00 0.00 0.00 -1.06 1.28 -1.38 -10.74 -0.04 -0.18 0.00 2.20 0.01
0.00 0.00 0.00 0.00 -0.90 1.10 -1.18 -9.19 -0.03 -0.34 -0.01 2.14 0.02
0.00 0.00 0.00 0.00 -0.98 1.19 -1.29 -9.99 -0.03 -0.47 -0.01 2.06 0.03
0.00 0.00 0.00 0.00 -0.86 1.04 -1.12 -8.74 -0.03 -0.61 -0.01 2.03 0.04
0.00 0.00 0.00 0.00 -0.99 1.21 -1.30 -10.11 -0.03 -0.74 -0.01 1.99 0.04
0.00 0.00 0.00 0.00 -0.89 1.09 -1.17 -9.10 -0.03 -0.91 -0.02 2.01 0.05
0.00 0.00 0.00 0.00 -0.78 0.96 -1.04 -8.05 -0.03 -0.98 -0.02 1.94 0.06
0.00 0.00 0.00 0.00 -0.83 1.02 -1.10 -8.56 -0.03 -1.21 -0.02 2.02 0.07
0.00 0.00 0.00 0.00 -0.81 1.01 -1.09 -8.43 -0.03 -1.27 -0.02 1.95 0.07
0.00 0.00 0.00 0.00 -0.94 1.16 -1.25 -9.68 -0.03 -1.37 -0.03 1.91 0.08
0.00 0.00 0.00 0.00 -0.79 0.98 -1.06 -8.25 -0.03 -1.39 -0.03 1.83 0.08
0.00 0.00 0.00 0.00 -0.80 1.00 -1.07 -8.33 -0.03 -1.66 -0.03 1.93 0.10
0.00 0.00 0.00 0.00 -0.80 1.00 -1.08 -8.38 -0.03 -1.87 -0.03 1.97 0.11
0.00 0.00 0.00 0.00 -0.80 1.00 -1.08 -8.41 -0.03 -1.82 -0.03 1.87 0.11
0.00 0.00 0.00 0.00 -0.87 1.07 -1.16 -9.00 -0.03 -1.06 -0.02 1.99 0.06

Run Th Nus Nus_sig d_ic P Vo Vs V2 Tin Tclad d_h C1 C2 C3 C4 C5
23 2 1332 97 -19.94 4.43 -0.02 0.31 0.20 0.00 -92.30 2.65 -0.06 -0.09 -1.59 -2.91 0.00
23 3 1353 99 -21.18 4.61 -0.05 0.29 0.19 0.00 -95.22 2.82 -0.06 -0.09 -1.09 -1.97 0.00
23 4 1215 81 -17.61 3.56 -0.06 0.29 0.18 0.00 -77.07 1.94 -0.05 -0.08 -1.37 -2.53 0.00
23 5 1145 72 -15.82 3.08 -0.07 0.24 0.16 0.00 -68.51 1.57 -0.05 -0.08 -0.81 -1.49 0.00
23 6 1161 75 -16.23 3.19 -0.09 0.28 0.18 0.00 -70.81 1.64 -0.05 -0.08 -1.47 -2.73 0.00
23 7 1183 77 -17.39 3.34 -0.11 0.26 0.17 0.00 -73.44 1.78 -0.05 -0.08 -1.04 -1.91 0.00
23 8 1145 72 -15.50 3.08 -0.12 0.24 0.16 0.00 -68.78 1.57 -0.05 -0.08 -0.70 -1.28 0.00
23 9 1178 77 -16.26 3.32 -0.15 0.25 0.16 0.00 -73.07 1.76 -0.05 -0.08 -0.78 -1.42 0.00
23 10 1179 77 -16.52 3.32 -0.17 0.26 0.17 0.00 -73.34 1.77 -0.05 -0.08 -0.88 -1.61 0.00
23 11 1094 67 -15.10 2.76 -0.16 0.26 0.17 0.00 -63.47 1.30 -0.05 -0.08 -1.32 -2.47 0.00
23 12 1044 61 -13.97 2.46 -0.17 0.23 0.15 0.00 -57.81 1.07 -0.05 -0.07 -0.85 -1.57 0.00
23 13 1083 66 -14.86 2.70 -0.19 0.24 0.15 0.00 -62.22 1.27 -0.05 -0.07 -0.73 -1.34 0.00
23 14 1153 74 -15.36 3.15 -0.24 0.25 0.16 0.00 -70.66 1.64 -0.05 -0.08 -0.75 -1.37 0.00
23 15 1063 63 -13.15 2.58 -0.22 0.25 0.15 0.00 -60.25 1.17 -0.05 -0.07 -0.84 -1.56 0.00
23 1166 76 -16.35 3.26 -0.13 0.26 0.17 0.00 -71.93 1.71 -0.05 -0.08 -1.02 -1.87 0.00

C6 C7 C8 C9 L R1 R2 Rs alphak500 Cd Do Dp Ro
0.00 0.00 0.00 0.00 -1.79 2.16 -2.33 -18.14 -0.07 -0.14 0.00 4.15 0.01
0.00 0.00 0.00 0.00 -1.66 2.01 -2.17 -16.90 -0.07 -0.29 -0.01 4.22 0.03
0.00 0.00 0.00 0.00 -1.62 1.96 -2.11 -16.44 -0.07 -0.36 -0.06 3.80 0.03
0.00 0.00 0.00 0.00 -1.38 1.68 -1.81 -14.12 -0.06 -0.44 -0.01 3.59 0.04
0.00 0.00 0.00 0.00 -1.60 1.94 -2.09 -16.32 -0.07 -0.57 -0.01 3.65 0.05
0.00 0.00 0.00 0.00 -1.49 1.81 -1.95 -15.30 -0.06 -0.71 -0.01 3.72 0.07
0.00 0.00 0.00 0.00 -1.36 1.65 -1.78 -13.95 -0.06 -0.78 -0.01 3.61 0.07

Normal Heat Transfer (high mass velocity)

Normal Heat Transfer (Low mass velocity)
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Run Th Nus Nus_sig d_ic P Vo Vs V2 Tin Tclad d_h C1 C2 C3 C4 C5
35 2 377 13 -3.48 -0.03 -0.02 0.10 0.07 9.41 -7.53 0.10 -0.02 -0.03 -0.27 -0.52 0.00
35 3 288 8 -2.06 -0.02 -0.03 0.07 0.05 6.00 -4.39 -0.12 -0.01 -0.02 -0.10 -0.20 0.00
35 4 149 3 -0.53 -0.01 -0.02 0.03 0.02 2.15 -1.19 -0.22 -0.01 -0.02 -0.04 -0.09 0.00
35 5 145 3 -0.50 -0.01 -0.02 0.03 0.02 2.06 -1.12 -0.22 -0.01 -0.02 -0.02 -0.06 0.00
35 6 159 3 -0.61 -0.01 -0.03 0.04 0.03 2.37 -1.36 -0.23 -0.01 -0.02 -0.05 -0.12 0.00
35 7 175 4 -0.78 -0.01 -0.04 0.04 0.03 2.74 -1.63 -0.23 -0.01 -0.02 -0.04 -0.10 0.00
35 8 186 4 -0.84 -0.01 -0.06 0.04 0.03 3.01 -1.84 -0.23 -0.01 -0.02 -0.04 -0.08 0.00
35 9 215 5 -1.13 -0.02 -0.08 0.05 0.04 3.79 -2.47 -0.21 -0.01 -0.02 -0.05 -0.11 0.00
35 10 234 6 -1.37 -0.02 -0.10 0.06 0.04 4.34 -2.94 -0.20 -0.01 -0.02 -0.07 -0.15 0.00
35 11 233 6 -1.44 -0.02 -0.11 0.06 0.04 4.31 -2.93 -0.20 -0.01 -0.02 -0.12 -0.26 0.00
35 12 244 7 -1.61 -0.02 -0.13 0.06 0.04 4.65 -3.21 -0.19 -0.01 -0.02 -0.09 -0.20 0.00
35 13 248 7 -1.65 -0.02 -0.15 0.06 0.04 4.78 -3.31 -0.18 -0.01 -0.02 -0.08 -0.16 0.00
35 14 263 7 -1.70 -0.02 -0.18 0.06 0.05 5.27 -3.73 -0.16 -0.01 -0.02 -0.08 -0.16 0.00
35 15 261 7 -1.69 -0.02 -0.19 0.07 0.05 5.21 -3.69 -0.17 -0.01 -0.02 -0.10 -0.22 0.00
35 227 6 -1.39 -0.02 -0.08 0.06 0.04 4.29 -2.95 -0.17 -0.01 -0.02 -0.08 -0.17 0.00

C6 C7 C8 C9 L R1 R2 Rs alphak500 Cd Do Dp Ro
0.00 0.00 0.00 0.00 -0.46 0.55 -0.60 -4.63 -0.02 -0.13 0.00 1.17 0.01
0.00 0.00 0.00 0.00 -0.32 0.39 -0.42 -3.23 -0.01 -0.17 -0.01 0.90 0.01
0.00 0.00 0.00 0.00 -0.16 0.20 -0.21 -1.64 -0.01 -0.09 0.00 0.47 0.00
0.00 0.00 0.00 0.00 -0.15 0.19 -0.20 -1.55 -0.01 -0.12 0.00 0.45 0.01
0.00 0.00 0.00 0.00 -0.18 0.21 -0.23 -1.80 -0.01 -0.17 -0.01 0.50 0.01
0.00 0.00 0.00 0.00 -0.19 0.23 -0.25 -1.94 -0.01 -0.23 -0.01 0.55 0.01
0.00 0.00 0.00 0.00 -0.20 0.24 -0.26 -2.03 -0.01 -0.30 -0.01 0.58 0.01
0.00 0.00 0.00 0.00 -0.23 0.29 -0.31 -2.40 -0.01 -0.43 -0.01 0.68 0.02
0.00 0.00 0.00 0.00 -0.26 0.32 -0.34 -2.68 -0.01 -0.55 -0.02 0.74 0.02
0.00 0.00 0.00 0.00 -0.27 0.34 -0.37 -2.84 -0.01 -0.61 -0.02 0.74 0.03
0.00 0.00 0.00 0.00 -0.27 0.34 -0.37 -2.89 -0.01 -0.72 -0.02 0.77 0.03
0.00 0.00 0.00 0.00 -0.27 0.35 -0.37 -2.89 -0.01 -0.81 -0.02 0.79 0.04
0.00 0.00 0.00 0.00 -0.29 0.37 -0.40 -3.08 -0.01 -0.96 -0.03 0.84 0.04
0.00 0.00 0.00 0.00 -0.30 0.38 -0.41 -3.15 -0.01 -1.02 -0.03 0.83 0.05
0.00 0.00 0.00 0.00 -0.25 0.31 -0.34 -2.62 -0.01 -0.45 -0.01 0.71 0.02

Run Th Nus Nus_sig d_ic P Vo Vs V2 Tin Tclad d_h C1 C2 C3 C4 C5
36 2 3191 869 -205.35 30.47 -0.02 2.88 2.07 0.00 -836.95 53.60 -0.13 -0.18 -16.76 -28.60 0.00
36 3 3006 768 -187.04 27.09 -0.03 2.09 1.50 0.00 -740.65 47.23 -0.12 -0.17 -9.79 -16.58 0.00
36 4 3453 1021 -255.06 35.70 -0.06 3.36 2.40 0.00 -980.34 63.47 -0.14 -0.20 -20.35 -34.72 0.00
36 5 3510 1050 -265.94 36.91 -0.08 2.72 1.95 0.00 -1009.97 65.89 -0.14 -0.20 -14.03 -23.73 0.00
36 6 2846 696 -174.06 24.40 -0.07 2.71 1.94 0.00 -666.84 41.77 -0.12 -0.17 -16.15 -27.76 0.00
36 7 2897 718 -185.73 25.29 -0.08 2.22 1.59 0.00 -688.79 43.54 -0.12 -0.16 -11.36 -19.33 0.00
36 8 2958 744 -184.17 26.39 -0.10 1.95 1.40 0.00 -716.84 45.64 -0.12 -0.17 -8.51 -14.40 0.00
36 9 2744 640 -156.26 22.76 -0.10 1.78 1.28 0.00 -616.70 38.73 -0.11 -0.15 -7.65 -12.96 0.00
36 10 2346 469 -115.61 16.73 -0.08 1.50 1.07 0.00 -451.38 27.44 -0.10 -0.13 -6.29 -10.73 0.00
36 11 2890 719 -186.40 25.28 -0.14 2.79 2.00 0.00 -687.26 43.15 -0.12 -0.17 -16.74 -28.78 0.00
36 12 2559 562 -148.18 19.89 -0.12 1.87 1.35 0.00 -537.47 33.18 -0.11 -0.15 -9.23 -15.76 0.00
36 13 2799 670 -174.92 23.77 -0.16 1.92 1.38 0.00 -642.00 40.43 -0.12 -0.16 -8.76 -14.87 0.00
36 14 2552 553 -132.07 19.83 -0.14 1.61 1.15 0.00 -533.49 33.05 -0.11 -0.14 -6.60 -11.20 0.00
36 15 2263 437 -104.58 15.66 -0.12 1.54 1.10 0.00 -420.27 25.29 -0.09 -0.13 -6.88 -11.76 0.00
36 2858 708 -176.81 25.01 -0.09 2.21 1.58 0.00 -680.64 43.03 -0.12 -0.16 -11.36 -19.37 0.00

C6 C7 C8 C9 L R1 R2 Rs alphak500 Cd Do Dp Ro
0.00 0.00 0.00 0.00 -8.00 9.66 -10.41 -80.86 -0.30 -0.32 0.00 9.92 0.03
0.00 0.00 0.00 0.00 -5.80 7.01 -7.55 -58.63 -0.22 -0.57 -0.01 9.35 0.06
0.00 0.00 0.00 0.00 -9.30 11.24 -12.11 -94.07 -0.35 -1.12 -0.02 10.75 0.11
0.00 0.00 0.00 0.00 -7.52 9.10 -9.80 -76.15 -0.28 -1.54 -0.02 10.93 0.15
0.00 0.00 0.00 0.00 -7.49 9.06 -9.77 -75.85 -0.29 -1.28 -0.02 8.86 0.13
0.00 0.00 0.00 0.00 -6.15 7.44 -8.02 -62.30 -0.23 -1.59 -0.02 9.02 0.16
0.00 0.00 0.00 0.00 -5.38 6.53 -7.03 -54.61 -0.20 -1.92 -0.03 9.22 0.19
0.00 0.00 0.00 0.00 -4.92 5.98 -6.43 -49.95 -0.18 -1.90 -0.03 8.55 0.19
0.00 0.00 0.00 0.00 -4.14 5.02 -5.41 -42.02 -0.16 -1.58 -0.02 7.31 0.16
0.00 0.00 0.00 0.00 -7.71 9.35 -10.07 -78.21 -0.29 -2.61 -0.04 9.01 0.26
0.00 0.00 0.00 0.00 -5.20 6.32 -6.80 -52.82 -0.20 -2.27 0.00 7.98 0.23
0.00 0.00 0.00 0.00 -5.30 6.44 -6.94 -53.89 -0.20 -2.93 -0.04 8.73 0.30
0.00 0.00 0.00 0.00 -4.43 5.39 -5.81 -45.08 -0.17 -2.66 -0.04 7.96 0.27
0.00 0.00 0.00 0.00 -4.23 5.14 -5.54 -43.00 -0.16 -2.27 -0.03 7.06 0.23
0.00 0.00 0.00 0.00 -6.11 7.41 -7.98 -61.96 -0.23 -1.75 -0.02 8.90 0.18

Deteriorated Heat Transfer

Enhanced Heat Transfer

 
 


