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Abstract 
The sequential probability ratio test (SPRT) minimizes the expected number of observations to a 

decision and can solve problems in sequential pattern recognition. Some problems have 

dependencies between the observations, and Markov chains can model dependencies where the 

state occupancy probability is geometric. For a non-geometric process we show how to use the 

effective amount of independent information to modify the decision process, so that we can 

account for the remaining dependencies. 

Along with dependencies between observations, a successful system needs to handle the 

unknown class in unconstrained environments. For example, in an acoustic pattern recognition 

problem any sound source not belonging to the target set is in the unknown class. We show how 

to incorporate goodness of fit (GOF) classifiers into the Markov SPRT, and determine the worse 

case nontarget model. We also develop a multiclass Markov SPRT using the GOF concept. 

Index Terms: Markov dependence, dependent observations, sequential pattern recognition, 
sequential probability ratio test, unknown class.  
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1 Acoustic Sensor System 
This paper discusses the problem of distinguishing and classifying acoustic signatures using the 

sequential probability ratio test (SPRT) [27]. The acoustic system hardware typically consists of 

a microphone array, and analog to digital converters with a digital signal processor system for 

processing the data.  

Figure 1 shows a diagram of a typical approach. The first block represents sensor data 

processing and measurement formation. Here, the analog acoustic signals are amplified, filtered, 

digitized, and broken into a series of overlapping time-slices. Next, the fast Fourier transform 

(FFT) magnitude of a time-slice for each acoustic channel is computed and averaged. This 

accounts for the microphone offsets and improves the signal to noise ratio.  

The second block represents feature extraction and target tracking. Feature vectors are 

extracted from each time-slice based on source characteristics. Typical approaches may use 

wavelet based processing or spectral information. A tracking algorithm associates the feature 

vectors from a moving target with a track. Thus, for each track we have an associated list of 

feature vectors, where each list represents an event. The problem of extracting feature vectors 

and associating them to a track is a difficult problem in itself and beyond the scope of this paper. 

Here, we minimize the role of the tracker by testing with relatively clean data; we use data with 

only a single sound source and more than 30 feature vectors in a track 

The final block represents feature classification and target identification. This is the 

block we will present in more detail. Here, a classifier takes an event and tries to identify the 

sequence as one of the possible known targets. We assume we have a sequence of feature vectors 

correctly associated to a track and we will concentrate on using the sequential probability ratio 

test (SPRT) to identify the sound source producing this sequence. 
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A variety of sensors using the approach in Figure 1 are conceivable. One such sensor may 

be part of a larger system processing data in non-real-time. Another variation might be a stand-

alone version with the target tracking and identification algorithms running in real-time on the 

digital signal processor local to the sensor. Here the sensor has a local database containing 

targets of interest. At the end of an event the sensor could report to an operator if the moving 

object belongs to the database of known targets or if the object is unknown. The system could 

also report a “confidence” on its decision. Hardware constraints for stand-alone sensors may 

necessitate simplification of portions of the SPRT algorithm. 

2 The Problem and Approach 
We have an event ξ  comprising of a sequence of features vectors ( )kY  from time, and 

a set of m target classes 

,1 nk K=

mθθ ,...,1 . We also have an unknown class denoted by 0θ . A local 

database contains template information describing the mean vector and covariance 

matrix of for target classes 

 ),( θθ ΣM

( ) kY θ . The target identification problem is to decide the class of ξ  

as mθθ ,...,1  or 0θ . It is important to note that we typically have a lot of information about 

mθθ ,...,1 , but very little information about 0θ . Along with the problem of the unknown class, the 

target identification approach needs to handle dependencies between ( )kY  and contamination of 

. ( )kY

 We use a goodness of fit (GOF) classifier to classify the ( )kY  as belonging to a target of 

interest or not. The GOF allows us to control the errors from 0θ . For targets, we restrict the 

output of the GOF classifier to have a normal probability density function (PDF). While this may 

seem limiting, application of the central limit theorem allows us to satisfy this restriction. The 

normal PDF allows the use of power analysis [8], [22] to model 0θ . The output of the GOF 
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classifier becomes our observations, and we then use a sequential probability ratio test 

(SPRT) 

 )(kw

[27], to combine the observations to make a decision. The SPRT minimizes the expected 

number of required observations to a decision [27].  

We use Markov chains to describe the dependencies between . For the 

dependencies not completely described by a Markov process, we can use the effective number of 

independent observations 

 )(kw

[5] to modify the decision process and account for any remaining 

dependencies.  

3 Goodness of Fit Classifiers: Controlling Out-of-Class Errors 
In making any decision, we want to control two types of errors: missed-detection and false alarm 

errors. Missed-detection (MD) errors can result from missing a target signature by calling it a 

nontarget, and false alarm (FA) errors can result from alarming on a nontarget signature by 

calling it a target. Here, we take the viewpoint of a one-class classifier. In this viewpoint we are 

just interested in one specific target 1θ  represented by the alternative hypothesis, and the null 

hypothesis represents the non-target 1θ  class. If we have other targets of interest mθθ ,...,2 then we 

would design a one-class classifier for each of them. For the 1θ  one-class classifier we can divide 

the nontargets into two groups: mθθ ,...,2  and 0θ . This allows us to further distinguish between 

two types of false alarm errors: between-class and out-of-class errors. Between-class errors occur 

when alarming on another target mθθ ,...,2  by calling it the target 1θ . Out-of-class errors occur 

when alarming on an unknown signature 0θ by calling it the target 1θ .  

The unknown class, which causes the out-of-class errors, is a significant problem in real-

world pattern recognition problems in unconstrained environments. For example, suppose we are 

developing a pattern recognition system to recognize a specific object with an imaging sensor. A 
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Bayesian classifier approach, while minimizing the between-class errors, would require models 

of the all the possible objects that could be imaged by the sensor to control the out-of-class 

errors. This model-the-whole-world approach is untenable for realistic systems.  

Whereas Bayesian classifiers minimize the between-class error, they do nothing to control the 

out-of-class errors. Figure 2a illustrates this potential problem. The figure shows a two-

dimensional feature space, with samples from two targets: target A represented by stars and 

target B represented by circles. Assuming normal distributions and equal covariance matrices for 

the targets, the Bayes decision boundary has a linear form. Whereas the Bayes classifier 

minimizes the between-class errors of the A and the B targets, it does not control the out-of-class 

errors caused by unknown objects represented by “x” symbols. Depending on which side of the 

boundary the nontarget falls, the classifier will assign the unknowns to one of the known classes 

and make 100% out-of-class errors. 

Our approach utilizes goodness of fit (GOF) classifiers for dealing with an unknown 

class. A common GOF metric uses the Mahalanobis distance shown in the following equation: 

))(()')(()( 1
θθθθ MYΣMY −−= − kkkd  (1) 

Distance classifiers allow us to differentiate a single class from all other classes with a template 

and a GOF metric. As shown in Figure 2b, large distances from the template will give decisions 

that the feature vector belongs to a nontarget class and small distances indicate feature vectors 

from the target class. Since the GOF classifier is not equivalent to a Bayesian classifier, the GOF 

classifier will not necessarily have minimal between-class errors. 

The random variable , representing the feature vector from the k)(kY th time slice, is 

assumed to have a multivariate normal distribution with a mean vector  and covariance matrix 

. Empirical results show this is a reasonable approximation for the feature vectors in our 

M

Σ
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acoustic identification problem. For our feature vectors, this gives the Mahalanobis distance (1) a 

chi-square distribution with ten degrees of freedom 10=v . 

As discussed earlier we require the GOF output to have a normal PDF. We accomplish 

this by using a cube root transform  )(3/1 kdθ [17][29]. This approximation allows for the fast 

computation of the SPRT log likelihood ratio in the sensor’s local processor and allows us to 

conveniently model the worst-case nontarget distribution. As we discussed in [18] the 

approximation is very good. Thus the GOF classifier for class θ  uses the following test: 

T

Tkd
kw

σ
μθ

θ
−

=
)(

)(
3/1

 
(2) 

where the parameters Tμ  and Tσ  represent the mean and standard deviation of  and are 

given by 

)(3/1 kdθ

[17][29]: 

6/13/2 3

2
  and    ,

9

)29(

vv

v
TT =

−
= σμ  

(3) 

Here,  represents the number of degrees of freedom for the chi-square distribution.  v

The test has a N(0,1) (normal distribution with mean 0 and standard deviation 1) 

distribution given observations from class 

 )(kwθ

θ . 

4 SPRT for Pattern Recognition 
The SPRT has been widely used for RADAR target detection [9], [16], [25], [28], and also for 

pattern recognition [20], [13] and multisensor fusion systems [2], [6], [15], [19] . For notational 

simplicity we assume we are interested in only one class T=1θ . Later on we will extend our 

framework to multiple targets. We set hypothesis  to the nontarget class (unknown) 0H T  and 

 to the target class T. In our problem the observations  represent a multinomial 

transformation of the GOF output  Error! Reference source not found.. We will discuss 

1H nxxx ,,, 21 K

)(kwT
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this transform in more detail in the next section. The Type I error α  represents the probability of 

alarming on a nontarget, or the FA rate, and the Type II error β  represents the probability of not 

detecting a target and calling it a nontarget, or the MD rate. In general, the random variables  

have a PDF of 

kx

)|( θkxf , where θ  represents the parameter we want to test (T  or T ). For now, 

assuming  are independently and identically distributed (iid), Wald’s test kx [27] computes the 

likelihood ratio: 

( )
( ) ∏∏

==

==Λ
n

i
i

n

i i

i

Txf

Txf
n

11

  
|

|
)( λ  

(4) 

and makes a decision based on the constants A and B representing the upper and lower stopping 

boundaries respectively. 

We find it more convenient to work in the log-likelihood space: 

  ,)log())(log()(
11
∑∑
==

==Λ=
n

i
i

n

i
i znnZ λ  

(5)  

We call  the weight of evidence, and if iz ( ) ( )01 || HxfHxf ii <  giving  then we say  

leads to negative weight of evidence for the target and if 

0<iz ix

( ) ( )01 || HxfHxf ii >  giving  we 

say  leads to positive weight of evidence for the target. The test then becomes: 

0>iz

ix

anZb

bnZ

anZ

H

H

≤≤
≤
≥

)( If

)( If

)( If

    

data moreGet 

Accept 

Reject 

0

0

 
(6)  

where 

α
β

α
β

−
==

−
==

1
log)log(   and  

1
log)log( BbAa . 

(7)  
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Since the test almost never ends exactly at the boundaries, the equations in (7) are only an 

approximation. Approaches for computing the exact boundaries exist, but require numerical 

integration [1], recursion [25], or a multinomial distribution [26]. 

5 Markov Modeling for Dependence 
To determine the PDF of  we quantize  and then use a Markov chain to model the 

multinomial random variable. The reasons for this decision are twofold. Firstly, a Markov model 

allows us to model the dependencies between the observations. Secondly, the quantization 

produces decisions robust to outliers or contamination that can appear in the data. A Markov 

model is completely described by states, an a priori probability vector , and transition 

matrix . 

)(kwT )(kwT

 Q kp

kT

For each  we have a Markov model with parameters subscripted by k. For Markov 

model k, the following equation gives : 

kH

kp

[ ]  ,)1(Pr)(Pr)0(Pr −= QQp kikkk KK  (8) 

where  represents the a priori probability of being in state . The transition probabilities 

represent the probability of state  following state  in an event sequence or . For 

Markov model k, the following equation gives the transition matrix : 

)(Pr ik Q iQ

jQ iQ )|(Pr ijk QQ

kT

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−

=

)1|1(Pr)1|0(Pr

)|(Pr

)0|1(Pr)0|0(Pr

QQQ

QQ

Q

T

kk

ijk

kk

k

K

MM

K

. 
(9) 
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The vector  and matrix  have the property that the sum of their rows equals one. For 

stationary processes we have the following relationship between the a priori probability vector 

 and : 

kp kT

kp kT

n
k

n
kk TpP

∞→
=′= lim]1,,1,1[ K  (10) 

where  is a column vector of length Q . A first order Markov chain has the important 

property that:  

]1,,1,1[ ′K

))1((|)(Pr())1(),1(|)(Pr( −=− ixixixxix K . (11) 

In general, to quantize the test into quantiles or states we need a set of  )(kw  Q 1 +Q  

thresholds { }Qττττ ,, 10 K= . We use the convention that −∞=0τ  and +∞=Qτ . The new 

quantized random variable is given by:  )(kx

1qq )(   when,)( +≤<= ττ kwqkx . (12) 

To determine the quantization thresholds [26], we assume we have event training data and find 

the thresholds that maximize: 

}]|{)|{[max 01 HEHE ll −
τ

 (13) 

where l is a random variable determined as follows:  

1,,0 ,
)|Pr(

)|Pr(
log

0

1 −=⎥
⎦

⎤
⎢
⎣

⎡
=
=

= Qq
Hqx

Hqx
lq K . 

(14) 

This approach finds the thresholds that maximize the expected log-likelihood ratio difference 

between  and , and as a result we maximize the SPRT’s ability to distinguish the two 

hypotheses. It assumes we are equally interested in and . For Q quantiles, we can write 

1H 0H

1H 0H

(13) as: 
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⎭
⎬
⎫

⎩
⎨
⎧

−∑
−

=
qq

Q

q
q lHlHl )]|Pr()|[Pr(max 0

1

0
1τ

. 
(15) 

6 Markov SPRT 
Using (4) and (11) the SPRT likelihood ratio for Markov dependence [7] [10] and a sequence of 

quantized GOF scores   becomes: )(ix )1( ni K=

( )
( )

( )
( )

( )
( ) ∏∏∏

===

=
−
−

==Λ
n

i

n

i

n

i

i
ixix

ixix

x

x

Hixf

Hixf
n

12 0

1

0

1

1 0

1 )(  
)1(|)(Pr

)1(|)(Pr

)1(Pr

)1(Pr

|)(

|)(
)( λ . 

(16) 

The log likelihood ratio for the Markov model is: 

( )
( )

( )
( )   .)())(log(

)1(|)(Pr

)1(|)(Pr
log

)1(Pr

)1(Pr
log))(log()(

112 0

1

0

1 ∑∑∑
===

==⎥
⎦

⎤
⎢
⎣

⎡
−
−

+⎥
⎦

⎤
⎢
⎣

⎡
=Λ=

n

i

n

i

n

i

izi
ixix

ixix

x

x
nnZ λ  (17) 

From equations (8), (9), and (17) we can define the weights of evidence vector and matrix. The 

weight of evidence vector  comes from the term: 0e

( )
( )  

)1(Pr

)1(Pr
log

0

1
⎥
⎦

⎤
⎢
⎣

⎡
x

x
 

(18) 

in equation (17). The following equation gives the ith element of : 0e

⎥
⎦

⎤
⎢
⎣

⎡
=

)(

)(
log)(

0

1
0 ip

ip
ie . 

(19) 

The weight of evidence matrix  comes from the term: 1E

( )
( )⎥⎦

⎤
⎢
⎣

⎡
−
−

)1(|)(Pr

)1(|)(Pr
log

0

1

ixix

ixix
 

(20) 

in equation (17). The following equation gives the (i,j) element of : 1E

⎥
⎦

⎤
⎢
⎣

⎡
=

),(

),(
log),(

0

1
1 jiT

jiT
jiE . 

(21) 
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Given an initial state  or a transition from state to we can respectively use or as a 

table lookup for the amount of evidence to accumulate in favor of a target. 

1x ix jx 0e 1E

7 Modeling the Nontarget Class 
In most pattern recognition problems in an unconstrained environment, we typically have a lot of 

information on the target class, but very little information on the nontarget class. Here, the target 

has a simple hypothesis, but the nontarget class usually requires a composite hypothesis. 

One approach for handling the composite hypothesis models every object that will be sensed by 

the sensor. Although such an approach would, in theory, produce an optimal classifier, this 

approach of modeling the “whole world” is often untenable. Our approach for modeling the 

nontarget class determines the worse case nontarget distribution )|(* Twf . The approach has 

some similarities to that taken by [14] for modeling composite hypotheses by determining the 

least favorable choice. We can then use the worse case nontarget to determine the quantization 

thresholds using (13) and ultimately the evidence vector (19) and matrix (21). 

 If we have a pool of close nontargets we can determine the least favorable choice by 

finding the nontarget distribution that is closest to the target distribution and use that nontarget as 

)|(* Twf . Otherwise we use statistical power analysis [8], [22] to find )|(* Twf . We now 

discuss each method in turn. 

7.1 Worse Case Nontarget from a Pool of Nontargets 
Here, for each target we have a pool of nontargets and we would like to have a similarity metric 

to determine which nontarget is closest to the target. Rabiner [23] suggests the following for the 

distance between two Markov models: 

2

}{}{ 01
01

zz EE
D

−
= . 

(22) 
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We can compute  directly using the following equation: }{ kE z

∑∑
= =

=
Q

i

Q

j
kkk jpjiTjiEE

1 1
1 )(),(),(}{z . 

(23) 

 

For the target classifier, this distance is essentially the difference between the average weight 

of evidence given a target and the average weight of evidence given a nontarget. The smaller this 

difference the closer the target and nontarget become. The target that minimizes 

01D

(22) is the worst 

case nontarget. 

7.2 Worse Case Nontarget using Power Analysis 
Power analysis considers a hypothesis test whose null hypothesis of a procedure having no-effect 

has a known distribution. Usually, we do not know the distribution of the alternative hypothesis 

of the procedure having some effect. Here, we cannot compute the Type II error or the 

probability of accepting the no-effect hypothesis when no-effect hypothesis is false.  

Power analysis assumes the tested effect is linear and the measured effect size (small, medium or 

large) is known. Typically, power analysis allows the statistician to determine if enough samples 

were collected to give the test a high power β−1 .  

 Let  represent the distribution of our GOF random variable  given a 

target hypothesis 

)()|( wgTwf w= w

T . This is similar to the no-effect hypothesis in power analysis. Assuming a 

linear model with parameters  the GOF for the nontarget is ),( 10 aa w10 aa +  and the distribution 

for the nontarget hypothesis T  is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

1

0

1

1
)|(

a

aw
g

a
Twf w . We assume  and , since 

small  point to a target hypothesis. We define the worse case nontarget as the one that 

maximizes the expected number of observations to a decision given a nontarget. 

00 ≥a 01 >a

s'w
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Theorem 1. Let  represent the target distribution and )()|( wgTwf w=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

1

0

1

1
)|(

a

aw
g

a
Twf w  represent the nontarget distribution using power analysis. 

When  and  we have the worse case nontarget, since it that 

maximizes the expected number of observations to a decision given a nontarget. 

11 =a )1,0(~)( Nwgw

Proof. See Appendix B in [18]. 

With  and a normal distribution the worse case nontarget11 =a )|(* Twf  is  

where the location parameter  gives the effect size. For the nontarget hypothesis, the location 

parameter 

)1,( 0aN

0a

Na μ=0  represents the smallest acceptable effective difference between the target and 

nontarget. For a signature with Nμμ <  we accept that the target and signature are so close that 

the errors we make have no practical consequence and this preference increases with decreasing 

μ . For a signature with Nμμ >  we call this a nontarget and this preference increases with 

increasing μ . 

 Using )|(* Twf  we can determine τ  and , but we still need  for the Markov model 

of . We define a worst case nontarget  as the Markov model with the smallest  

0p 0T

0H 0T 01D (22). 

From  (21), (22), and (23) we get the following objective function: 

∑∑∑∑
= == =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

Q

i

Q

j

Q

i

Q

j

jpjiT
jiT

jiT
jpjiT

jiT

jiT
J

1 1
00

0

1

1 1
11

0

1 )(),(
),(

),(
log)(),(

),(

),(
log . 

(24) 

We also have constraints on :  0T

,lim   ,1),(   ,1),(0 00
1

00 PTjiTjiT n

n

Q

j

==≤≤
∞→

=
∑  

(25) 
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where  00 ]1,,1,1[ pP ′= K (10). To enforce the limit constraint between  and , we use the 

expansion of   in terms of spectral matrices 

0T 0p

kT [3]: 

)()( k
1

k iSiT
Q

i
k ∑

=

= γ  
(26) 

Here )(ikγ  represents the eigenvalues ordered largest to smallest of  and the spectral matrices 

 consist of  the right eigenvectors and the left eigenvectors . Spectral 

expansions have the following properties 

kT

)()()( iuiviS kkk ′= )(ivk )(iuk′
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Using these properties and the spectral expansion of , the limit constraint becomes: 0T

00

00
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00
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n
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γ  (28) 

Thus, we need to make  a spectral matrix of . Using the spectral expansion properties we 

can enforce this by introducing the following constraint: 

0P 0T

000 PTP = . 
(29) 

The constraints become: 

000
1

00    ,1),(   ,1),(0 PTPjiTjiT
Q

j

==≤≤ ∑
=

. 
(30) 

We solve this optimization problem (24)  with the constraints (30) numerically using Matlab’s 

nonlinear optimization routine for equality and inequality constraints. 

 As an example, consider  with 2=Q
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(31) 

To satisfy the first two constraints on  we require 0T 1,0 ≤≤ kk ζψ . We assume we know  and 

we want to determine  or find the 

1T

0T 0ψ  and 0ζ  that minimizes (24). To enforce the third 

constrain on  we first perform a spectral decomposition for : 0T kT
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For stationary processes the first term of the spectral decomposition gives , and thus to satisfy 

the third constraint on  we require: 

kp

0T

[ ]11
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= kk

kk
kp ψζ

ζψ
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(33) 

Assuming a target distribution of )1,0()|( NTwf = , power analysis gives )1,()|( NNTwf μ= . 

For  and using 2=Q (15), we get { }∞∞−= ,, 2
1

Nμτ . The Gaussian distributions combined with 

the optimal quantization thresholds τ  gives )2()1( 00 pp = . Thus using (33): 
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(34) 

and solving for 0ψ : 
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10101
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(35) 

Since we assume we know the target transition matrix 1ψ  and 1ζ , we just need to find the 0ζ  that 

minimizes J (24). Using (33) and (32) the following equation gives J as:  
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(37) 

We can minimize (36) numerically for 0ζ  given  1ψ  and 1ζ  and using (35) for 0ψ . 

8 Estimating Markov Parameters 
The weights of evidence and thereby a classifier for target T  are defined by the quintuple 

),,,,( 0011 TpTpτ . The parameters  and  are estimated from sequences of GOF scores from the 

target 

1p 1T

T using the quantization thresholds from the set τ . The parameter  is estimated using 

the same quantization thresholds, except now we use GOF scores from the worst case nontarget 

0p

T . For , we can use the sequences from the worst case nontarget, if available, or minimize the 

objective function 

0T

(24). We estimate the a priori probability vector in the usual way; we count 

the numbers of each state in training sequences for hypothesis k and then normalize , so that 

its row sum equals one. The transition matrix  is estimate similarly, but instead we count 

numbers of each possible transition and again apply the constraint that the rows should sum to 

one.  

kp

kp

kT

One problem that occurs in the estimation process is insufficient training data. Here, we 

have an insufficient number of states occurrences to get good estimates of model parameters. 

Increasing numbers of states or large distances between the target and worst case nontarget 

exasperates this problem. The problem becomes intolerable when there is no occurrence of a 

state and the weights of evidence (19) (21) go to ∞± . Since it is often impractical to increase the 
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training set size, we add extra constraints to the model parameters to insure that no model 

parameter falls below a specified level . Thus we require estimates of  and 

 to have values greater than . If this constraint is violated then we set the 

offending values to  and renormalize so that the row sums equal one. For our results we use 

. Such post-processing techniques have been applied to problems in speech 

recognition 

εp )(Pr ik Q

)|(Pr ijk QQ εp

εp

3105 −×=εp

[23]. 

9 Effective Number of Independent Observations: Handling Feature 
Dependence 

Unfortunately the Markov model doesn’t always account for all the dependencies present in the 

data. For a Markov model, the state occupancy duration δ  has a probability function of 

geometric:  where  is the probability of remaining in the same state. 

If the system stays in a state, on average, longer than expected then the Markov model will not 

completely account for all the dependencies and the number of errors will be larger than 

expected. Approaches to overcome this limitation model the true 

)1()Pr( 1
δδδ ppn n −== −

δp

)Pr( n=δ , for example semi-

Markov models [24] explicitly characterize the state occupancy probabilities. Determining the 

form of these models and their parameters is difficult without a lot of training data. Instead, we 

estimate the remaining dependency and use that to modify the SPRT decision process. 

Here we build an SPRT assuming Markov dependence and then adjust the design, so the 

relationship between the error rates and the decision boundaries (7) is maintained. Let  

represent a set of actual training data and 

tΩ

sΩ  represent a set of Monte Carlo simulation data 

using the appropriate Markov parameters. If the Markov model does not adequately describe the 
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dependence, then we expect },|)({Var jt HnZ Ω  to be larger than the , and we 

use the ratio  

},|)({Var js HnZ Ω

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω
Ω

=
},|)({Var

},|)({Var
,1max 

1

1
d HnZ

HnZ

s

tκ  
(38) 

to modify the SPRT decision process. The ratio is constant if we assume the unexplained 

dependence results from a serially correlated, and weakly stationary process [5]. The 

modification to the SPRT is presented in the following theorem: 

Theorem 2. To handle dependency not completely describe by the Markov model we modify the 

SPRT decision boundaries. The new decision boundaries a′  and b′  become aa d  κ=′  

and bb d  κ=′ . 

Proof. See Appendix A in [18]. 

10 Multiclass SPRT 
There are many nonoptimal approaches for handling sequential testing of multiple hypotheses 

[12], [16]. Using a Bayesian sequential decision procedure, a multiclass SPRT (MSPRT) has 

been shown to be optimal in the average number of observations [4] [11], but requires 

knowledge of classes’ a priori probabilities. Unfortunately, we could not directly translate any of 

the preceding approaches to use the unknown class. Similar to the MSPRT approach we define a 

multiclass SPRT using the SPRT one-class classifier formulation, but cannot make any claims to 

optimality. For each known class iθ  ( )mi ,,1K=  we have a SPRT one-class classifier and a 

corresponding cumulative log-likelihood ratio , with  measuring a pattern’s log-

likelihood of belonging to 

)(nZi )(nZi

iθ  and iθ (not class iθ ). For classifier iθ , we define 
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)|  DecidePr( iii θθα =  and )|  DecidePr( iii θθβ = , and we also use 0θ  to represent the unknown 

class. We propose the following multiclass decision: 

⎪⎩

⎪
⎨

⎧
=∀≤
≥

Otherwise

,,1   )( If

 )(first   For the

    

data moreGet 

  class  Decide

  class  Decide

0 mibnZ

anZ

ii

iii

Kθ
θ

. 
(39) 

The decision boundaries  and  for class ia ib iθ  are determined by iα  and iβ  (7).  

Theorem 3. For class iθ  the resulting errors iα′  and iβ ′  from using the multiclass decision (39) 

are bounded by the original SPRT one-class error rates iα  and iβ . 

Proof. See Appendix C in [18]. 

11 Computation of Confidences: Terminating the Test 
Due to the sequential nature of the test we cannot guarantee we will have enough data to make a 

decision. Instead of using forced termination techniques [7],[13], [21], [28] we can define the 

confidence of the system’s largest absolute response. Also, signal/image analysts would like to 

have a single number representing the confidence of the system’s decision. Intuitively, we can 

imagine shrinking the  and  decision boundaries towards zero until a decision is made. This 

shrinkage can be accomplished by making the error rates 

a b

α  and β  equal to γ . Adjusting γ  

from its initially small value to 0.5 can shrink the boundaries toward zero (7). Mathematically, 

we define confidence as ξ−1  where ξ  represents the probability of error. Here, the errors 

associated with the final decision boundary are inversely related to the confidence. For the 

SPRT: 

).()()()|()()|()( 101100 HPHPHPHerrorPHPHerrorPerrorP βαξ +=+==  
(40) 

Assuming equal a priori probabilities and equal error rates γβα == , the confidence φ  is 
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.1 γφ −=  
(41) 

We define 5 levels of confidence at 0.99, 0.95, 0.85, 0.75, and 0.5. The minimal 0.5 confidence 

level forces the SPRT to make a decision (a=b=0) and has high associated errors. As our 

confidence increases the associated errors decrease. 

12 Data, Testing, and Results 
To test our algorithm, we use data collected over many different experiments and in realistic 

conditions of three sound sources moving by an acoustic sensor. For this testing, the role of the 

tracker is minimized by testing with relatively clean data; we use data with only single sound 

sources and more than 30 feature vectors in a track. This data provides a difficult test for our 

approach. We distinguish the targets with three symbols: T1, T2, and T3. The T1 and T2 targets 

have similar acoustic signatures, making them a difficult test case for the identification 

algorithm. The T1 target has a larger feature variance causing larger errors. The T3 target is fairly 

distinct and requires power analysis to determine its worse case nontarget. We use the tracking 

algorithm to give a list of feature vectors for each target event. We also have experiments with 

nuisance sound sources gathered by the sensor. The letter U denotes these sources. This data is 

assigned to the unknown class and is used to test the unknown class rejection capabilities of the 

SPRT classifiers. 

12.1 SPRT Results 
Now we discuss the results of T1, T2, and T3 target identification based on the SPRT. All the 

results are based on using four quantiles (Q=4) to model the GOF outputs as a Markov process. 

The dκ  for T1, T2, and T3 has been estimated as 4, 6, and 5 respectively. The worse case 

nontarget for T1 is T2 and vice versa. The worse case nontarget for T3 is determined based on 

power analysis using nμ =3. First we take the classifiers for each target separately and perform 
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an analysis for each assuming a GOF classifier. Then we put the three together and analyze them 

in a multiclass system. 

12.1.1 Model Verification 
To check the models used for the SPRT, we use verification plots by selecting a theoretical error, 

γ , and computing the  decision boundaries using ),( BA γβα ==  and equation (7). Using these 

decision boundaries we estimate the actual error and then plot the theoretical vs. the actual error 

for a range of γ  values. While this doesn’t cover all the possible combinations of possible ( )βα,  

errors, it does cover the small errors since α1≈A  and β1≈B  for 1, <<βα .  

In Figure 3 we show the verification plots for the three GOF classifiers and the multiclass 

classifier. It’s important to note that the verification plots are based on all the possible thresholds 

and thus errors for each target event. Figure 3a shows the analysis of the T1 GOF classifier. The 

diagonal line shows the theoretical error matching the actual error. The four curves show the 

results of putting the data streams from the three targets and the unknown into the T1 GOF 

classifier. The dotted bars show the σ2  confidence interval for the error estimates. In this plot, 

the theoretical error approximates or bounds the actual error. This gives an indication that we 

have reasonable models for approximating the target and nontarget distributions. Figures 3b and 

3c show the same results for the T2 and T3 classifiers respectively. In both cases the theoretical 

error clearly bounds the actual measured errors. Figure 3d shows the verification plot for the 

multiclass system. Again the actual errors are bounded by the SPRT theoretical errors. 

12.1.2 Performance Characteristics 
Figure 4 shows the performance plot for each classifier. Each plot graphs the probability of 

making an incorrect  call vs. the probability of making a correct call  at different levels of 

confidence for each target and the unknown. The error rates (  and 

ip cp

ip cp−1 ) shown in Figure 4 
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are different than the error rates shown in Figure 3. The error rates in Figure 4 are based on only 

those target events in which the classifier was able to make a call. 

At any point on the performance curve the probability of no-call  is . 

Here, the no-call rates represent the percentage of targets or nontargets that have final and 

intermediate SPRT values between the thresholds A and B. Recall, we can only make a call of 

target if the likelihood ratio goes above A or a call of nontarget if the likelihood ratio goes below 

B. The diagonal line shows when 

ncp ic pp −−1

0=ncp  or when the system is forced to make a call. Here the 

confidence is 0.5. The markers on the curve indicate different levels of confidence. There are 

five markers, one for each level of confidence given in Section 11. In general, we can decrease 

the no-call rate by decreasing our desired confidence, but the price we pay is an increased error 

. Thus as we travel up the curves  increases, but the confidence decreases. ip cp

Figure 4a shows the performance results for the T1 GOF Classifier. The large no-call 

rates at high levels of confidence for all the sound sources indicate the high variability in of the 

T1’s features. Figure 4b shows the results for the T2 GOF Classifier. The high no-call rates for the 

T1 target at high confidences shows the difficulty of distinguishing the T1 and T2 targets. Figure 

4c shows the results for the T3 GOF Classifier. The fast drop off of no-call rates and the small 

error rates show that the T3 target has a significantly different signature from the T1 and T2 

targets. For the T1 or T2 GOF classifier the operating condition must be selected carefully. 

Requiring too large of a confidence would result in too many no-calls, and a small confidence 

may produce too many errors. Depending on the operation scenario it may be possible to 

combine the two classes. Improvements in the sensor, feature extraction algorithms, or the 

incorporation of another modality should improve the no-call performance at the higher 

confidence levels. Figure 4d shows the result of combining the GOF classifiers into a multiclass 
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classifier. In general, adding multiple classifiers improves the performance over the one-class 

classifier. For example, suppose the T1 classifier alarms on a T2 event. The T2 classifier might call 

the event a target before the T1 classifier can false alarm on it.  

13 Conclusion 
We have applied the Markov SPRT and its extensions to a difficult problem of identifying 

acoustic signatures. The SPRT can take a stream of observations and classify it as a target or a 

nontarget. The Markov property allows the SPRT to handle dependent observations, where the 

state occupancy probability is geometric. For a non-geometric process we show how to use the 

effective amount of independent information to modify the decision process, so that we can 

account for the remaining dependencies. 

  The desired error rates determine the SPRT’s upper and lower decision boundaries. From 

this property we develop a method of computing the confidence of a decision. We also use 

power analysis to develop statistical models of the worst-case nontarget class. This approach 

does not require training with every possible nontarget that will move by the sensor. Results 

show a viable system with statistical analysis allowing a user to understand the tradeoffs in 

determining the system’s operational concept. 
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Figure 1. Block diagram of approach. 
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Figure 2. Comparison of Bayes and goodness of fit (GOF) classifiers. (a) Bayes classifier. 
(b) GOF classifier.  
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(a) (b)

(c) (d)  
Figure 3. Verification plots for target identification using acoustic signatures. (a) GOF 
SPRT classifier for the T1 target. (b) GOF SPRT classifier for the T2 target. (c) GOF 
SPRT classifier for the T3 target. (d) Multiclass SPRT classifier.
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(a) (b)

(c) (d)  
 
Figure 4. Operating characteristics for target identification of acoustic targets. (A) GOF T1 
classifier. (B) GOF T2 classifier. (C) GOF T3 classifier. (D) Multiclass classifier. 
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