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EXECUTIVE SUMMARY 
Neutron radiography and computed tomography are commonly used techniques to non-
destructively examine materials. Tomography refers to the cross-sectional imaging of an object 
from either transmission or reflection data collected by illuminating the object from many 
different directions. Typical neutron radiography and tomography analyze transmitted images 
in which a large fraction of the incident radiation is transmitted through the object without 
collisions. Many objects have small absorption rates but large scattering rates for neutrons. The 
scattering properties of the material increase the probability that multiple scattered neutrons 
could re-enter the beam and significantly decrease image resolution. Analysis of these structures 
using traditional techniques is a formidable task. Classical tomography fails to reconstruct the 
optical properties of thick scattering objects because it does not adequately account for the 
scattering component of the neutron beam intensity exiting the sample. In this work, a new 
method of computed tomography was developed which employs an inverse problem 
analysis of both the transmitted and scattered images generated from a beam passing 
through an optically thick object. All objectives of the project were successfully met.  

This inverse problem makes use of a computationally efficient, two-dimensional forward 
problem based on neutron transport theory that effectively calculates the detector readings 
around the edges of an object. The forward problem solution uses a Step-Characteristic (SC) 
code with known uncollided source per cell, zero boundary flux condition and Sn 
discretization for the angular dependence. The calculation of the uncollided sources is 
performed by using an accurate discretization scheme given properties and position of the 
incoming beam and beam collimator. The detector predictions are obtained considering 
both the collided and uncollided components of the incoming radiation.  

The inverse problem is referred as an optimization problem. The function to be minimized, 
called an objective function, is calculated as the normalized-squared error between 
predicted and measured data. The predicted data are calculated by assuming a uniform 
distribution for the optical properties of the object. The objective function depends directly 
on the optical properties of the object; therefore, by minimizing it, the correct property 
distribution can be found. The minimization of this multidimensional function is performed 
with the Polack Ribiere conjugate-gradient technique that makes use of the gradient of the 
function with respect to the cross sections of the internal cells of the domain. The code used 
to reconstruct the optical properties of the object from image data is called the Tomography 
Neutron Transport using Scattering code or TNTs.  

The forward and inverse models have been successfully tested against numerical results 
obtained with MCNP (Monte Carlo Neutral Particles) and experimental images taken using 
the Texas A&M University (TAMU) Nuclear Science Center (NSC) imaging facility. These 
test showed excellent agreement between reconstructed and actual object properties. The 
reconstructions of several objects were successful. In fact, it was shown that TNTs can 
reconstruct simple objects using illumination of the object from only one side and 
measuring images from three sides of the object. The use of multiple beams around the 
object will significantly improve the capability of TNTs since it increases the number of 
constraints for the minimization problem.  

The method developed here will allow for a more accurate determination of the location and size 
of any imperfections in objects and allow for more accurate reconstructions of the optical 
properties of objects. This research is the first of its kind using neutron transport theory as the 
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basis for image reconstruction and makes significant advances in methods used. These methods 
are computationally intensive but allow for much greater accuracy in image properties.  
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1. INTRODUCTION 

1.1. Overview 
Tomography refers to the cross-sectional imaging of an object from either transmission or 
reflection data collected by illuminating the object from many different directions. The incident 
radiation must penetrate the object before being detected. Therefore the choice of radiation type 
is crucial. Neutron radiation is typically more penetrating than x-ray, γ-ray or charged particle 
radiation. Thus, neutron radiography can often be used to evaluate thick objects. Neutron 
radiation also typically serves as a complement to x-ray radiation.  

Neutrons, compared to x-rays, have high interaction probability with hydrogen and a lower 
attenuation in several heavy elements which are “black” for x-rays (e.g. lead and bismuth).The 
attenuation of x-rays increases proportional to the atomic number (Z) of the material, whereas 
there is no direct relationship between neutron attenuation and Z. Thus neutron radiography is 
often complimentary to x-ray radiography

1
.  

The investigation of moisture and corrosion, the detection of explosives and adhesive 
connections, and the inspection of defects in nuclear fuel or in thick metallic samples

2
 are 

examples where neutron radiography can be utilized favorably. Neutron radiography and 
tomography applications are, in fact, present in many fields: nuclear engineering, material 
characterization and the biomedical fields are the principal ones.  

Other important examples of the versatility of the neutron radiography method are:  

• surveys of nuclear fuel
2,3,4,5 

,  
• imaging of two-phase flow

2,6 
,  

• analysis of carbon-fiber composite airplane wings
2
,  

• imaging for explosive devices
7
, and  

• fast imaging of combustion
2
.  

However, neutrons, or near-infrared light are strongly scattered in many materials. Thus, 
standard back projection techniques, such as those applied in x-ray tomography, have been of 
limited success

8
.  

The objective of the work described here was to develop an algorithm and a computational code 
to solve the inverse tomography problem accounting for neutron scattering. The hypothesis is 
that it is possible to more accurately reconstruct the optical properties of an object using the 
information contained in the scattered radiation as well in as the transmitted radiation than 
using transmitted radiation alone. Sometimes very highly scattering problems are so difficult to 
solve that only the analysis of the scattered component leads to a solution

9
.  

1.2. The Early History of Neutron Radiography 
The first radiographs were obtained in 1895, coinciding with the discovery of radiation. In 1985 
Röntgen was experimenting with high voltage discharges in a vacuum tube. When photographic 
plates that had been stored nearby were developed, they were found to be blackened without any 
obvious cause. Reasoning that some unknown radiation from the high voltage discharge could 
be affecting the photographic emulsion, Röntgen carried out ad hoc experiments and quickly 
established that this was in fact the case. Realizing the importance of this effect, he rapidly 
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developed his discharge tube to produce more radiation and obtained a “negative” of welded 
plates of zinc

1
.  

The practical implications of this ability to produce shadow images of items which were opaque 
to light and thus reveal their internal structure were clear. Further development was rapid and 
widespread. Experimental x-ray radiographs were soon produced in laboratories in Europe and 
the USA

1
. The ferment of scientific and engineering endeavor that followed the demonstration of 

these completely new phenomena carried over into the new century with research into 
electronics and atomic physics.  

The discovery of the neutron is credited to Chadwick. In 1932, he related and hypothesized on 
the work of Bothe, Becker, Curie and others and assumed that the penetrating radiation 
produced by bombarding beryllium with alpha particles was neither positively nor negatively 
charged. He called this radiation the neutron (from the Latin neuter meaning neither). He had 
identified a particle that, together with the proton, was one of the basic building blocks of 
matter.  

The application of the neutron to produce radiographs quickly followed its discovery. Kallman 
and Kuhn in Germany in 1935 used neutrons produced by an accelerator to make radiographs 
but the quality was poor due to the weak and ill-defined beam. This coupled with the complexity 
of the apparatus and the fact that hours of exposure were required did not lead to early 
exploitation as had happened with x-rays. Nevertheless, the methods and potential of the 
technique were clearly demonstrated. The publication of their work was delayed by World War 
II. It was not until 1948 that they revealed the thoroughness of their investigation by describing 
most of the basic techniques in use today.  

The development of nuclear reactors during and after the war increased the intensity of neutron 
fluxes available for experimental purposes by many orders of magnitude, but it was not until 
1956 that further work on neutron radiography was reported. The first use of a beam of neutrons 
from a reactor to produce a radiograph was by Thewlis and Derbyshire. They used a beam from 
the 6MW graphite reactor BEPO at Harwell to produce good quality images having specific non-
destructive testing applications such as voids in uranium and in “Boral”, a neutron shielding 
material fabricated from boron carbide and aluminum. Their radiograph showing the structure 
of a plant pointed to the usefulness of the technique in studying organic specimens. This is due 
to the high attenuation of neutrons by hydrogenous materials.  

The technique developed slowly for several years until problems associated with the radiography 
of radioactive materials encouraged its more active revival. Several researchers reported their 
work in the early 1960’s.  But it was principally the work of Berger

2 
of Argonne Laboratories in 

USA, followed by Barton
8
 at Birmingham University that led to its revival.  

In 1968, there were 46 reactor facilities, three accelerators and five isotopic sources in use or 
being built. The history of neutron radiography stretches back 65 years; although, it is only in 
the last 30 that it has come to the forefront as an accepted method of non-destructive testing. In 
the last 10 years, it has reached the stature of World Conferences

1
.  
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Fig. 1. Attenuation coefficient versus atomic number for all elements and for both thermal 
neutrons and x-rays. 

 

1.3. Fundamentals of Neutron Radiography 
Unlike the x-rays, which interact with the electron cloud, the neutron interaction is not 
characterized by a direct dependence on the atomic number of the object. There are practically 
no generalizations that can be made which relate neutron interaction characteristics to atomic 
mass or atomic number. Each interaction of a neutron with an isotope of a particular element is 
unique. Figure 1 depicts the relationship between the attenuation coefficient for neutrons and x-
rays versus element atomic number. As can be seen, the x-ray line is a smooth function with 
atomic number but the neutron attenuation coefficient has no discernible pattern.  

To produce a neutron radiograph a continuous supply of unbound neutrons is required and 
these must be directed onto the object to be radiographed. The object will scatter or absorb 
some of the radiation from the beam. The beam reaching the detector will have an intensity 
pattern representative of the structure of the object.  

Neutron radiography involves three principal components:  

• a suitable neutron beam 
• an object of radiographic interest 
• a device to record, either immediately or delayed by some time, the radiation intensity of 

the transmitted beam.  
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Fig. 2. Principal components of a schematic neutron radiography system.  

 

Figure 2 provides a graphical depiction of these three system components for the case of 
imaging a non-radioactive object. After passing through the object, the beam that remains 
enters a detector that registers the fraction of initial radiation (I0) intensity that has been 
transmitted by each point in the object. Any in-homogeneity in the object will show up as a 
change in radiation intensity reaching the detector.  

The intensity of radiation (I) passing through an object of thickness t is given by:  

ܫ  ൌ  ଴݁ିஊ೟௧          (1)ܫ

where Σt is the total macroscopic cross section of the object. If a void defect, of width d, is 
present; then the intensity will be  

ܫ  ൌ  ଴݁ିஊ೟ሺ௧ିௗሻ          (2)ܫ

If an inclusion is present as a defect, then the intensity will be  

ܫ  ൌ  ଴݁ିஊ೟ሺ௧ିௗሻିஊೌௗ         (3)ܫ

where Σa is the macroscopic cross section of the inclusion.  

This methodology [sometimes referred to as the simple exponential attenuation method 
(SEAM)] has been used successfully for numerous applications; however, when applied to highly 
scattering media (such as any low atomic number material) the scattering component of the 
neutron beam intensity exiting the sample is not adequately accounted for by SEAM. This tends 
to lead to decreased system resolution when these scattered neutrons are recorded at the image 
plane.  

For example, Fig. 3 shows a neutron radiograph of two cadmium strips. The holes in the 
cadmium strips range from 50 µm in diameter to 1100 µm in diameter. For this object, which 
has a very high neutron absorption cross section and a very low neutron scattering cross section, 
all of the holes (and the gaps between the holes) are clearly visible.  

Figure 4 shows a radiograph for a thick carbon composite structure. A 3175-µm diameter hole is 
present in the thick object. This hole is not visible in the radiograph even though it is much 
larger than the holes in the cadmium. The carbon fiber composite material has very low neutron 
absorption properties but reasonably high neutron scattering properties.  
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Fig. 3. Neutron radiograph of two cadmium strips displaying good image resolution for highly 
absorbing, low scattering materials. Each strip contains a number of different sized holes. The 

strips are supported on an aluminum plate. 

 

 

(a)     (b) 

Fig. 4. Image on the left (a) is a neutron radiograph of a thick carbon fiber composite object with 
a 1/8th inch hole present. Image on the right (b) shows the object and the hole.  
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1.4. Neutron Transport Theory and Inverse Problem 
A potential solution to the problem presented in the section above is proposed here. If the 
neutron-imaging camera was placed at some angle θ0 off the beam path as in Fig. 5, an image of 
the scattered neutron component from the surface of the sample in that direction could be 
acquired. It is proposed that if the scattered neutron component at a variety of angles around a 
sample can be measured, these scattered components could be used to aid in a better estimation 
of the source of neutron reactions in the sample. It is expected that this information would lead 
to a more accurate reconstruction of the surveyed object.  

It is important to note that these scattered neutron images are fundamentally different from the 
transmission images. The source of neutrons in these images is (to a first-order approximation) 
the inverse of the source of images in the transmission experiment. That is in the transmission 
images the source of neutrons is the initial input beam and the image is created by removal of 
neutrons from that beam. In the scattered neutron images, the source of neutrons is the 
neutrons that are removed from the initial beam by scattering and the image created shows that 
source.  

One of the more common tomographic techniques is the filtered back projection method
10,11 

. 
In this technique, the projection data can be considered as line integrals along the neutron 
beam lines. For highly scattering objects these line integrals become complicated because of 
the source of scattered neutrons along the integrals which is difficult to characterize with 
transmission images.  

 
 

 

Fig. 5. Idealized setup for capturing scattered neutron images.  

 

Suppose an object was imaged in which neutrons interacting in the sample could either 
scatter once in the sample, get absorbed in the sample, or travel uncollided through the 
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sample. Consider a sample such that the scattering rate in the object was higher than the 
absorption rate. In this instance, the transmission image would have a high degree of 
unsharpness due to the fact that the principle means of removal of neutrons from the beam 
is through scattering and depending on the angle of scatter, a high portion of these neutrons 
continue on through the object and interact in the detector in some location other than 
where they would interact if they continued uncollided. This leads to “fuzziness” of the 
resultant image. The scattered images measured, via a setup such as that shown in Fig.5, 
would record only the source of neutrons scattering along the line connecting the detector 
through the sample at an angle of θ0. This allows for the determination of the scattering 
rates throughout the sample. These scattering rates could then be used to determine the 
contribution of scattered neutrons to the detector. With this contribution known, the image 
resulting only from the neutrons removed from the beam due to absorption can be 
determined. This would decrease the unsharpness in the resultant image.  

In a realistic scenario, the transmitted image would consist of neutrons from the initial 
beam that passed through the object uncollided, had a single small angle scatter, or had 
multiple scatters. The scattered neutron image would consist of neutrons born from the 
scattering reactions in the sample from the initial beam and then passed uncollided through 
the sample or had additional scattering reactions in the sample. To properly simulate this 
effect the neutron radiation transport must be simulated through the sample accounting for 
all of the reaction rates in the sample. 

Thus, a forward model capable of calculating the detector responses (both transmitted 
image and scattered image) for the beam passing through a known object is needed. In 
addition to this forward model, an inverse model is needed in order to pass information 
from the measured images back through the forward model to influence the “guess” of the 
initial object structure (essentially the cross section sets defining the object). The forward 
model can then be repeated using the more accurate guess. These iterations would continue 
until the calculated image matched the measured image to within some tolerance (i.e., an 
objective function is minimized). This is the fundamental concept behind the model-based 
iterative imaging reconstruction (MOBIIR) schemes

12
. MOBIIR schemes mainly differ in 

their choice of forward model and how the spatial distributions of the optical properties of 
the medium are updated.  

Since a forward model is required, transport theory has to be introduced. The transport 
equation describes the movement of particles through a medium. It is an integro-differential 
equation with seven independent variables: space (3), direction (2), energy (1) and time (1). 
Therefore, only simple problems can be solved analytically and numerical methods must be 
applied to most problems of interest.  Due to the large number of unknowns (e.g., a problem 
discretized with 10N unknowns in each independent variable will have 107N unknowns) it is 
difficult to use direct numerical methods. Instead iterative schemes are employed to solve 
the transport equation.  

Successive approximations of this complicated equation lead to the diffusion equation that 
has the great advantage of illustrating many of the important features of the particles 
behavior in the matter without the complexity of the transport equation. Diffusion theory 
provides a strictly valid mathematical description of the particle flux only if the assumption 
made in its derivation is satisfied. Specifically, this implies that Fick’s law is valid. Fick’s law 
is valid under the following conditions:  
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• Absorption is much less likely than scattering. This is satisfied for most of the 
moderating materials that are usually found in a nuclear reactor. 

• There is a linear spatial variation of the particle distribution. This condition is 
satisfied a few mean free paths away from the boundary of large homogeneous media 
with relatively uniform source distributions. 

• All scattering is isotropic in the center of mass reference frame. Typically this is a 
good assumption for most of the heavy atomic mass nuclei.  

Diffusion theory has been widely used in tomography methods especially recently. A variety 
of optical methods based on MOBIIR schemes have been studied in the past

12-19
. While these 

studies have principally been in the area of low-energy x-ray medical imaging, they have led 
to a variety of creative methods and their general application can be extended to neutron 
imaging.  

The forward model used in all of these methods is based on diffusion theory. Many authors 
solved the diffusion forward model by adopting a finite element method. Interesting 
methods used include up-wind or Gibbs schemes to reach a solution for the diffusion 
equation

6
. The efficiency of these methods is due to the easy analytical expression of the 

diffusion equation that leads to an easy analytical expression of the updating algorithm. For 
example perturbation theory method, widely used to update the guessed properties, is easily 
applicable to a problem in which the forward calculation is obtained with diffusion theory, 
due to the relatively simple analytical expression for the flux.  

While accurate for some instances, for most problems of interest to neutron radiography, 
diffusion theory is insufficient for accurately describing the transport of neutrons through 
these objects

1
. Thus, this project will propose the use of a forward model based on neutron 

transport theory.  

1.5. Report Overview 
Section 2 introduces the development and implementation of the forward model based on 
neutron transport theory for predicting detector images from a thick highly scattering object. 
This methodology accurately and efficiently simulates the transport of neutrons through the 
object including at boundaries between highly scattering and highly absorbing regions. The 
accuracy of this method is crucial since uncertainties in the forward model propagate through 
the inverse model; however, computational speed is also crucial since in an iterative scheme, the 
forward model calculation may be used numerous times. Chapter II also contains the 
verification via MCNP of the validity of the code.  

Section 3 contains the development and implementation of the inverse model. This model 
allows for the analysis of radiographic images to reconstruct the most likely details of the object 
that minimizes an objective function based on the measured images. It makes use of the forward 
model for predictions of the detector response to a specific object definition. The chapter will 
also involve the implementation of this methodology including integration of the forward and 
inverse models. It includes mathematical and numerical verification of the gradient calculated 
by an adjoint formulation.  

Section 4 presents the result obtained from the reconstruction of different objects. These objects 
will range from highly scattering to moderately scattering and include defects of various sizes. 
The images used were obtained from both experimental data and from numerical simulations 
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using MCNP The reconstruction technique is therefore verified and some considerations are 
presented.  

Section 5 presents conclusions and contains final considerations and suggestions for future 
work.  
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2. FORWARD MODEL 

2.1. Background 
The transport equation is a linear form of the Boltzmann equation, developed one century ago 
for the study of the kinetic theory of gases

20
. It describes the evolution of a particle distribution 

function in an infinitesimally small 7 phase-space (time, space, energy, direction) volume. The 
analytical solution of this equation is confined to very highly idealized cases often concerning 
astronomic problems with semi-infinite mediums

21
. The solution of the equation for more 

common but complicated problems is obtained through the use of numerical approximations 
and computational calculations. The application of transport theory is associated with a wide 
variety of fields and research topic such as:  

• Nuclear Engineering  
o Reactor analysis

22 
 

o Shielding and dose calculation
23

 
• Rarefied gas dynamics  

o Sound propagation  
o Diffusion of molecules in gases  

• Other  
o Traffic flow  

The numerical solutions to the transport equation are divided into stochastic (Monte Carlo) and 
deterministic. The Monte Carlo method treats all the events that can occur to a particle in terms 
of probability functions. It tracks every particle from its “birth” until its “termination” (for many 
reasons such as absorption, leaking …) and makes the history of the particle

23
. By using a large 

number of histories it estimates the average particle behavior. This method is in general 
computationally more expensive than deterministic methods. The advantage is the possibility of 
simulating complex geometrical systems and physically complex histories.  

Deterministic methods solve the transport equation by discretization of the phase-space volume 
in order to reduce the transport equation to a set of simpler algebraic equation. The 
discretization into energy groups lead to a multi-group transport equation. The transport 
equation can be expressed as an integro-differential equation or as an integral equation. The 
choice of spatial and angular discretization depends on the form of the equation. The form used 
for this project is the steady-state, one-group integrodifferential form that involves an angular 
integral and a first-order spatial derivative. Other forms are described elsewhere

21,24
. Different 

angular discretizations can be applied to simplify the angular integral into a set of differential 
equations. We choose to treat the angular dependence with a discrete ordinate (Sn) method in 
this work.  

The Sn methods approximates the angular integral as a quadrature summation as will be 
presented in more detail later. The resulting set of equations is a system of partial 
differential equations in space that are spatially discretized to generate a set of algebraic 
equation.  

The method chosen for the spatial discretization is the Step Characteristic (SC) method. It 
has been developed first by Lathrop

25
. Like for every other characteristic method the SC 

method transforms the Sn equation into a one-dimensional equation by rotating the axis of 
the coordinate system along the direction of motion (the characteristic line). Given the value 
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of the angular flux at a point along the characteristic line and known source term the 
characteristic equation can be analytically solved for the angular flux everywhere along the 
line. This will be presented in more detail later in the chapter.  

Our choice for the forward model was the two dimensional SC method. In the decision many 
factors, other than accuracy and computational effort, were considered. The accuracy of this 
method for a typical neutron radiography problem is acceptable especially for an object with 
a scattering ratio less than unity. A small scattering ratio is also needed to have a relatively 
fast convergence. In addition, the SC is analytically simple. The resolving equations are 
normal exponential relations with the possibility to use them in the analytical process to 
update the cross sections. Accuracy and easy analytical expressions were the keys in the 
choice of the forward model. 

In this work, only two-dimensional cases were considered, for simplicity. Thus, the model 
has been developed for a two dimensional case. This will allow for proper testing of the 
algorithm for the update of the cross sections and will limit the computational time required 
to acquire results. It is expected that the step from two to three dimensions will be 
straightforward once the inverse model has been tested and optimized.  

2.2. Forward Model Description 
A forward model was mathematically derived and computationally implemented to solve a set of 
problems with common characteristics. The purpose of this model was to predict detector 
readings around a rectangular object placed into a neutron beam. The beam is not necessarily 
mono-directional and may consider the physical divergence that a real beam experiences when 
collimated. Also, the detectors can be collimated such that they only record radiation coming 
from a particular direction. The beam-object-detector situation is schematically represented in 
Fig. 6. 

In order to solve the problem described above, the computational and mathematical process was 
divided into three different parts. First, the beam and the spatial discretization of the object 
were defined. The object was divided into a set of spatial rectangular regions. Then the initial 
source of un-collided particles for every cell of the object was calculated.  

Due to the operation of the first step, the problem has become a fixed-source, zero-boundary 
condition problem. In the second step, this is solved using SC with Sn angular discretization. 
The solution will be represented by the average angular flux for each cell and the x- and y-
direction net-currents for every cell of the problem.  

With the solution reached in the second step, it is possible to calculate the scattering source of 
every cell and calculate its contribute to the detector readings. By adding this component to the 
uncollided radiation entering every detector, the reading is complete.  
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Fig. 6. Schematic of the problem.  

 

2.2.1 Spatial Discretization 

We begin with a graphical description of our approach to spatial discretization of an arbitrary 
rectangular Cartesian cell. The user inserts the dimension of the object in the x-y plane. The 
object is considered to be infinite and homogeneous in the third dimension. Then the number of 
regions in the x-and y-direction are inserted. The object is considered to be homogeneous over 
each region. For every region, the user specifies the number of cells in the x-direction and the 
number of cell in the y-direction. Cells that are into the same region are assumed to have the 
same initial optical properties. Figure 7 shows an object divided using the process described 
above. The object is divided into nine regions, three in the x-direction and three in the y-
direction. Every region is then divided into cells. In particular, Region 2 in the x-axis is divided 
into five cells. Region 2 in the y-axis is divided into two cells. Thus Region (2, 2) has ten total 
cells in it. The cells are constructed by intersecting the lines of every sub-division. In particular, 
this problem consists of a total of ninety cells. Cells in the same regions have the same initial 
optical properties.  The user introduces the optical properties per region. Every cell is denoted as 
unique with two indexes, i and j. In the example i goes from one to ten, j goes from one to 
nine and the cell is indicated as: cell (i,j). 
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Fig. 7. Spatial discretization.  

 

2.2.2 Uncollided Sources 

The first step of the process to predict the detector readings is to calculate the fixed source of un-
collided particles for every cell of the discretized object. First, the user inserts the properties of 
the beam window such as distances from the edges of the object and dimensions of the 
collimator.  

In general, it is easy to calculate the component of radiation coming from a point source to a 
certain point into a medium: 
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where R is the total distance between the source point and the investigated one, S is the source 
strength, Ω defines a particular direction and σt  is the total cross section of the medium. The 
above equation considers that the particle travels in a medium of constant total cross section. 
The formula can be easily generalized as follows:  

 ߶௨௡௖௢௟௟௜ௗ௘ௗ ൌ ܵሺΩሻ ଵ
ሺ௥ି௥ᇱሻమ

݁ିఈሺ௥ି௥ᇱሻ       (5) 

where α(r-r’) indicates the distance in mean free paths (MFP) between the point r and the point 
r’.  

In case, the source is a planar source the un-collided radiation incident in a point is simply the 
integral of Eq. (5) along the plane, performed by using the angular notation introduced in Fig. 8. 
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Fig. 8. Angular notation for the un-collided source calculation.  

 

In Fig. 8, θ is the azimuthal angle and γ is the polar angle. Therefore, for a planar source finite in 
x and y and infinite in the z direction, the integral for the un-collided radiation in the point is:  

 ߶௨௡௖௢௟௟௜ௗ௘ௗ ൌ ׬ ߛ݀
ഏ
మ
ିഏమ

׬ ,ߠሺܵ ߠ݀ ሻߛ ଵ
ሺ௥ି௥ᇲሻ

݁ିఈሺ௥ି௥ᇲሻఏ೘ೌೣ
ఏ೘೔೙

     (6) 

The angle θ, that together with r describes a point in the x and y plane, has a maximum and 
minimum value as boundaries of the integral, as shown in Fig. 6.  

The code in order to perform the integral of Eq. (6) uses a quadrature set for the two angular 
dependencies. The interval between θmin and θmax is divided, following the trapezoidal rule, in as 
many angles as the user decides. The same is valid for the interval in the polar direction. The 
integral is therefore approached as a quadrature summation. 

In order to calculate α, the distance in MFP between the source point and the investigated point, 
the code tracks back the particle along the line of conjunction recording the cell and the path 
that the particle goes trough. Every cell has its own total cross section and knowing the paths 
traveled in the cell the code can calculate the number of MFP traveled by the particle per cell 
that is simply the length of the path in cm multiplied by the total cross section.  

In order to make a precise calculation of the un-collided flux per cell, the quadrature integral is 
performed at different points into the same cell and the result is then obtained averaging the 
results at the points into the cell. The number of locations per cell is user defined and the 
coordinates and weights of these locations are calculated by a Gauss –Legendre discretization 
technique. The choice of this tecnique is reliable since a Gauss-Legendre discretization of order 
N is the only quadrature set able to perform exact integrals of polynomial of degree up to 2N-1. 
Fig. 9 shows the process for a small number of cells. The number of locations into the cell to 
calculate the un-collided flux is user defined; in Fig. 9 it is four.  

 



 
18 

 

 

Fig. 9. Process to calculate the uncollided flux per cell.  

 

By choosing an appropriate number of azimuthal and polar directions and a reasonable number 
of locations per cell, the code is able to perform an efficient and accurate calculation of the un-
collided flux per cell. The un-collided flux per cell is then used as a fixed source in the source 
iteration technique to solve the transport equation in the cell. The accuracy of the forward 
method is greatly enhanced using the un-collided sources as driven force in the source iteration 
scheme. The accuracy of this technique lies in the treatment of the boundary conditions that are 
not discretized by following the same angular discretization of the iteration scheme but using 
the above described integral approach. The problem, therefore, has become a zero boundary, 
fixed source problem. To solve it we choose to use a SC scheme with angular Sn discretization 
and first grade polynomial approximation for the scattering source.  

2.2.3 Step Characteristics Method 

Using a general quadrature set of order K for the angular discretization, the general equation, or 
angular transport equation, in direction k is:  

௞ߤ 
ఋటሺ௫,௬ሻ

ఋ௫
൅ ௞ߟ

ఋటሺ௫,௬ሻ
ఋ௬

൅ ,ݔ௧௢௧߰௞ሺߪ ሻݕ ൌ ,ݔ௞ሺݍ  ሻ     (7)ݕ

where ψ(x,y) is the angular flux at position (x,y), ψk(x,y) is the angular flux in direction k at 
position (x,y), σtot is the macroscopic total interaction cross section in the cell qk(x,y) is the 
source term in direction k at location (x,y), and μk and ηk are the cosine and sine of direction k 
with respect to the x-axis. Note that the total cross section (σtot) is the sum of the scattering cross 
section (σsca) and the absorption cross section (σabs). 

Considering the discretization presented in Fig. 7 if (x,y) are in cell (i,j) then: 

௞,௜,௝ݍ  ൌ ܵ௞,௜,௝ ൅ ௦௖௔ߪ ∑ ܽ௞ᇱ ௞ܲ௞ᇱ߰௞ᇲ,௜,௝
௄
௞ᇲୀଵ        (8) 
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Fig. 10. Cell for the transport equation integration.  

 

Equation (8) presents a piecewise constant source for the cell, where the probability to scatter in 
one direction is treated as generally dependent on the direction. This general dependence will be 
presented later in this section. To solve this equation a numerical method has to be applied and 
therefore a less complicate form has to be found. First, the equation is integrated over the cell 
shown in Fig. 10 as follows:  

     (9) 

Equation (9), with some integral properties, simplifies as follows:  

      (10) 

This is because the partial derivative in x, integrated between the x-cell range, gives the value of 
the flux (still a function of y) at xi+1/2 minus the value of the flux (still a function of y) at xi-1/2. 
The same is valid for the integral of the partial derivative in y. At this point, the integral in y and 
x are the average value of the flux along the right and left and the top and bottom edges of the 
cell:  

         (11) 

and 
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         (12) 

For completeness, to derive Eq. (10) also the average cell-interior flux is presented:  

       (13) 

In the derivation of Eq. (10), the cross section has been averaged along the cell. The assumption 
in this case is that the properties are homogeneous in the cell. The cross sections are therefore 
kept constant in the derivation of the discretized transport equation per cell:  

        (14) 

With these definitions Eq. (10) assumes its final form for the cell (i,j) and direction k: 

      (15) 

Eq. (15) represents the equation that has to be solved in order to describe the behavior of the 
neutrons inside the medium. It is an equation in terms of four surface fluxes and one average 
flux defined as shown in Fig. 11.  

Assuming that the intensity and the direction of the incoming flux are known, for example from 
the right bottom of the cell (mathematically µk> 0, ηk> 0 and, ψ i-1/2,j, ψi,j-1/2 are known), Eq. (15) 
contains three unknowns.  In order to reach a solution of the system, two more independents 
equations must be found. It is important to note that at this point, the derivation contains only 
the assumptions inherent to the neutron transport equation [i.e. neutrons do not interact with 
other neutrons and no external forces (gravity, electromagnetic forces…) do not interact on the 
neutrons] and the assumption of constant cross sections over a cell. These assumptions are 
generally excellent for all problems of interest to this technique. To complete the derivation 
though, two additional equations need to be introduced to allow for a well-posed problem. The 
introduction of these two equations is the primary source of uncertainty in this derivation.  

 

 

Fig. 11. Angular fluxes per cell representation.  
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Fig. 12. Plot for the characteristic assumption.  

 

The SC scheme has its own closure equations. An assumption made in the derivation of the 
Boltzmann equation is that the particles travel in straight lines between collisions. These 
straight lines are characteristics of Eq. (16) which can be written as:  

          (16) 

where S is the source term in the considered direction, s is the distance shown in Fig. 12 and the 
derivative is along the direction of motion. Integrating Eq. (16) over a domain D with boundary 
∂D, gives:  

        (17) 

where ψ0 is the flux on the boundary, s is the distance from the boundary to the point in which 
ψ is evaluated and s’ is the point in which the source S is evaluated. Physically, if there is a 
domain D with boundary ∂D (see Fig. 12), the angular flux, at any point r into the domain with a 
certain direction Ω is due to the summation of two contributions: 

• the un-collided flux from some known point on the boundary with the same direction 
and   

• the contribution from the source between r and the known point in the investigated 
direction.  

For example, in the general case the angular flux at r with direction Ω will be:  

     (18) 

This was obtained from Fig. 12, omitting energy and time dependencies. This solution is correct 
in the case of a homogeneous domain but it can easily be derived also in the case of a non-
homogeneous domain using the concept of optical distance. The above solution can be 
mathematically derived from the transport equation with known total source by using an 
integrating factor. Therefore this procedure can be used to differentiate the angular flux into the 
cell. 
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Fig. 13. Derivation of the edge fluxes. 

 

In the case presented in Fig. 13:   

      (19) 

Note that k indicates one particular angle discretization and in this case the one corresponding 
to the direction Ω.  

Looking at all the possible directions of the angular discretization, it is possible to derive Eq.(19) 
for all the cases. The SC method derives the necessary closure equations in each quadrant by 
assuming that the source is constant over the cell and that the incident fluxes are constant over 
their respective edges. 

2.2.4 Derivation of the Governing Equations 

For clarity, the equations in a specific case are derived and then generalized. Assuming the 
direction k of the incident flux is well known, Fig. 14 will aid in the derivation of the governing 
equations. The cell has been divided in regions useful in the integration procedure.  

 

 

Fig. 14. Cell variables for governing equation derivation.  
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By definition, see Eq. (19), it can be derived:  

      (20) 

     (21) 

Eqs. (20) and (21) have been derived by using the closure assumption given by the SC scheme. 
The source and cross sections have been kept constant in the cell and the integrals have become 
functions only of geometric parameters.  

Eqs. (11) and (12) define the average edge flux:  

        (22) 

that becomes in the case of Fig. 14:  

     (23) 

The first integral in Eq. (23) does not depend directly on ya since Eq. (20) does not depend on 
ya. Its solution will therefore be straightforward:  

      (24) 

The second integral is instead more complicate and the result is: 

     (25) 

Combining Eqs. (24) and (25), the solution for the case introduced in Fig. 14 is obtained: 
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    (26) 

In Eq. (26) the parameter h can be substituted, by geometrical consideration, as follows: 

         (27) 

Rearranging the final form is obtained:  

      (28) 

This final form is the solution for the angular flux at the right edge of the cell given an incident 
beam coming from the left and bottom edge in direction k. The same relation can be derived for 
all the angular fluxes with all the different boundary condition applied (different direction k). 

The generalized result is presented:  

   (29) 

and 

   (30) 

The closure equations depend on the quadrant and direction of interest (Ωk):  

         (31) 

and 

         (32) 
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The constants used in the closure equations are defined as:  

        (33) 

and 

         (34) 

and 

         (35) 

From the balance equation, Eq. (15), the cell-interior angular flux is:  

     (36) 

The discretized cell-interior angular flux is related to the scalar flux and currents as given by the 
discrete ordinates approximation:  

          (37) 

         (38) 

         (39) 

The scattering cross section is considered linearly anisotropic. The scattering source, therefore, 
as defined in Eq. (8), is also linearly anisotropic and it can be calculated for every direction k 
from the scalar flux and the currents. Remembering the presence of the un-collided flux and 
currents per cell, these flux and currents will constitute fixed terms for the source:  

     (40) 

where g is called the anisotropic factor. g varies between 0 and 0.333 defining a scattering 
source more and more forward peaked. When g equals 0 the scattering source is isotropic.  

Knowing the boundary conditions at the edges of the medium and using Eqs. (29) and (30), it is 
possible to find all the fluxes of the cells by iteratively sweeping through the medium. At the first 
iteration, the source will consist only of un-collided particles. The new sources created during 
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the sweeping process will be the sources of once-collided particle. Sweeping again through the 
object will solve for the once collided particles and create the source of the twice-collided 
particles. And so on until convergence, that is until the next source is within some ε of the 
previous one. The order of sweeping in the case of cell-centered spatial mesh and a know 
boundary conditions direction is presented in Fig. 15

24
. 

Lathrop
25

 enumerated a list of desirable properties of a differencing scheme:  

• it should be accurate in the sense that it has a small truncation error 
• it should be simple (which we interpret to mean that it should involve a small number of 

numerical operations and should involve unknowns from within a single mesh cell) 
• it should produce positive fluxes if the source and boundary fluxes are positive.  

To this list, he added the requirements that 

• the scheme has to be conservative, in the sense that a well defined relation exists among 
flows into and out of the cell and sources and absorptions in the cell and  

• the scheme should be easily generalizable to all geometries
25

. 

 

 

Fig. 15. Order of sweeping cell-centered spatial mesh for µk>0, ηk>0.  

 

Since the definition in Eqs. (11), (12) and (13) satisfy Eq. (15), the SC scheme is conservative. 
Given positive incoming fluxes and source, the out-going fluxes [due to Eqs. (29) and (30)] are 
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also positive. The truncation error, however, is something less than a second order error. It is 
possible to show that the relations of Eqs. (29) and (30) have first order truncation error which 
depends on σΔx/μ, σΔy/η and their ratio. The error is largest for large σΔx/μ and σΔy/η or 
when their ratio is near zero. The relations approach second order accuracy for small σΔx/μ and 
σΔy/η and when their ratio is near unity. The scheme is also difficult to generalize; there are not 
many geometries, beyond Cartesian, in which it is easy to integrate along the characteristics.  

The main difficulty in using the SC scheme is its tendency to spread the beam along the object. A 
perfect forward beam will be transformed into a more spread beam due to the averaging of the 
flux along the edges of a cell.  

The problem of interesting has the best geometry to develop the simple SC method since it has 
good boundary conditions treatment and highly angular-dependent fluxes. All the equations are 
easy exponential relations and are suitable for a further analytical analysis (as will be developed 
in Section 3).  

At this point, the problem is solved in terms of average flux and net currents in x and y per every 
cell. With this information the second step is finished and the detector readings can be 
calculated. The detector reading will be constructed taking into account the un-collided 
radiation coming directly from the beam window and the collided radiation. The collided 
component of the detector will be simply the outgoing current at the edge correspondent to the 
detector. The details about the calculation of the detector readings are presented in the next 
sections after some notes about the angular quadrature set.  

2.2.5 Level Symmetric Quadrature Set 

In the derivation of the solution for the angular fluxes in the previous sections, one angle is 
needed to specify the angular distribution. The one used in this process is shown in Fig. 16. In 
multidimensional problems, two angular coordinates are required to specify the direction of 
neutron travel (Ω. If x1, x2 and x3 are orthogonal spatial coordinates, µ, η, and ξ are the direction 
cosines of Ω with respect to these coordinates as indicated in Fig. 16.  

 

 

Fig. 16. Angular coordinate system. 

 

Only two of the direction cosines may be specified independently, however, since Ω is a unit 
vector

23
.  Hence they must satisfy:  
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          (41) 

In three-dimensional problems ψ(x,y,Ω) must be determined over all eight octants of the unit 
sphere swept out by Ω. In two-dimensional geometries, the mirror symmetry of ψ(x,y,Ω) 
reduces the number of octants over which the angular dependence of ψ(x,y,Ω) must be 
determined to four.  

The purpose of introducing a quadrature set for the direction Ω, is to calculate, in the transport 
equation, the following operator:  

        (42) 

where pm is the point weight and Ωm are the “discrete ordinates.”  A “quadrature set” specifies 
the discrete ordinates at which the function is evaluated as well as the weight associated with 
each ordinate. 

The quadrature points or “ordinates” in a level symmetric set are arranged on the principal 
octant in a triangular fashion on N/2 levels. Each level has N/2-n+1 points, where n=1…N/2. With 
this arrangement, there are N(N+2)/8 directions in the unit octant.  

Each quadrature point represents a direction in the unit sphere specified by three direction 
cosines: 

         (43) 

Furthermore, the set of direction cosines obeys the relation
26-28

:  

         (44) 

with the constant C given by  

          (45) 

In addition to the ordinates, the weights in each octant must be determined. The normalization 
relation is: 

          (46) 

More details about the fundamental equations and properties of the level symmetric quadrature 
set can be easily found in the literature

24
.  

2.2.6 Detector Reading 

The last step of the forward method is the detector readings. The calculation of the detector 
responses is almost identical to the calculation of the initial un-collided sources except for the 
addition of the collided component. The detector readings consist of two components: the un-
collided radiation and the collided radiation. The detector readings are given by:  
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 P(detector)=Punc(detector)+Pcoll(detector)      (47) 

where P indicates “prediction”.  

The un-collided particles are those that come directly from the beam window to the detector 
without undergoing a collision event, see Fig. 17. The calculation of this component is similar to 
that used for the un-collided sources:  

• the detector is divided in points whose location into the detector and interval weights are 
calculated by using a Gauss-Legendre quadrature set  

• for every point the un-collided current is calculated by performing an integral similar to 
the one of Eq. (6), again finding the interval for the θ angle, see Fig. (12)  

• the reading of the detector is obtained averaging the readings of its points  

The integral for the calculation of the un-collided radiation, performed as a quadrature 
summation is:  

     (48) 

where: 

• the first summation in r averages the detector point readings indicating with R the 
number of points per detector  

• the second and third summations perform the integral along the two angles of the beam, 
coming from the window, decreased by the attenuation factor (in the exponent ds is the 
distance between beam window and detector point); POL and AZ are the maximum 
numbers of polar and azimuthal angles  

• the angle to multiply with is µ or η. If the current along the x-axis is needed the 
multiplication will be with µ, otherwise with η.  

The number of points per detector, and angles for the quadrature integral are user-defined. 
Again by using a reasonable number of these parameters leads to an efficient calculation of the 
uncollided radiation in the detectors.  

The collided component is simply the current out of the cell-edge corresponding to the detector. 
An important requirement is that the detector is placed corresponding to the edge of a cell or 
multiple cells such that it is clear which cells edges constitutes the detector reading. The two 
components are summed together to have the total prediction. Fig. 17 presents this process 
graphically.  
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Fig. 17. Detector reading calculation.  

 

2.3. Implementation and Computational Verification 
The code was tested using different techniques and different testing problems. During the 
coding process every part of the code was tested against analytical simple calculations. At the 
end, when the coding was finished it was completely tested against MCNP results.  

2.3.1 FORTRAN Coding 

The code has been developed in Fortran 90 on a Microsoft Windows workstation with a 3.20 
GHz Pentium 4 processor. Three input files are used for the forward model:  

• input file for the geometry of the beam and collimator that indicates the order of the 
angular quadrature set and the number of each parameter used for the un-collided 
source calculation  

• input file for the geometry of the problem. Dimension of the object, number of regions 
and cells per region  

• input file for the cross sections per region.  

The output of the code is contained on different files containing:  

• summary of the problem  
• scalar flux per cell  
• current in x and y direction per cell flux  
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2.3.2 MCNP Decks 

Two test objects were explicitly simulated using MCNP-5. One object was homogeneous. The 
other object was heterogeneous. The MCNP object has been discretized using a lattice 
subroutine such that the flux into the object can be compared with that calculated by the code. 
Fig. 18 presents a visual image of the heterogeneous test object showing with all the geometrical 
properties of the beam and the object.  

2.3.3 Homogeneous Test Object 

The object investigated is placed into a neutron beam collimated by using a slightly divergent 
collimator. In both MCNP and the code the fluxes inside the object (in the cell of each spatial 
discretization) were calculated. The object consisted of natural carbon with a 10 cm by 10 cm 
square area. The beam was symmetric about the centerline of the object and the beam window 
was 2 cm wide. The collimator was 3 cm long and with an exit window 4 cm wide. For this object 
no detectors were around the object. The testing and verification was performed to assure 
accuracy in the scalar flux in the object cells. The spatial discretization used in MCNP consisted 
of 20 by 20 uniformly distributed square cells. In the code to reach we used a grid of 200 by 200 
cells. Post-calculation, groups of 10 by 10 cells were collapsed to calculate the averaged flux 
which could then be compared with MCNP. In MCNP, reflective boundary conditions in the 
third dimension were used to construct a real two dimensional problem. A summary of the 
properties and the result of the comparison is shown in Table I.  

The fluxes were compared at three different positions inside the object: at the entry (first 
row of cells), at the centerline, and at the exit. The g factor, which measures the anisotropic 
nature of the scattering, was varied between 0 and 0.07 to determine its affect on the result. 
The results are presented in Figs. 18-20. The plots present in the abscissa the cell number 
and in ordinate the strength of the sources inside that cell, with respect to the g factor. 

With a g factor equal to 0.07, the MCNP result and the code calculation agree within 2% 
everywhere. These results demonstrate that the forward model can accurately calculate flux 
values that agree with MCNP simulations. To ensure code verification and code reliability a 
heterogeneous object test was performed as well.  
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TABLE I Summary of the homogeneous case test problem  
Object Dimensions    

x length  10  cm  

y length  10  cm  

   

Collimator Dimensions    

Beam window length  2  cm  

Collimator window length  3  cm  

Distance beam window object  4  cm  

Distance collimator window object  1  cm  

   

CODE DISCRETIZATION   

Discretization Forward Problem   

# x cell  200   

# y cell  200   

Order quadrature set (n of Sn)  8   

# polar direction  20   

   

Discretization for Unc. Sources    

# points per cell  1   

# azimuthal angles  20   

# polar angles  20   

   

Optical Properties   

Scattering cross section  0.538678  cm-1  

Absorption cross section  0.000382  cm-1 

Total cross section  0.53906  cm-1 

g factor variable  

   

MCNP INPUT    

# lattice cells  20 by 20   

# particles  108   
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Fig. 18. Comparison of scalar fluxes for the bottom cells using different values for g.  

 

 

Fig. 19. Comparison of the scalar fluxes for the center cells using different values for g.  

 

 

Fig. 20. Comparison of the scalar fluxes for the top cells using different values for g.  
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2.3.4 Heterogeneous Test Object 

The heterogeneous object was similar to the previous object except for the inclusion of a 1 cm by 
1.5 cm boron defect. This defect was placed 1 cm away from the top and right edges. All the 
variables related with the beam remained the same. Fig. 21 shows a graphical depiction of the 
object. A summary of the optical properties of the object is listed in Table II.  

The results of the comparison are presented in Figs. 22-25. The plots present in abscissa the cell 
number and ordinate the strength of the source. As in the homogeneous case, the data is 
collected at different location throughout the object: entry (first row of cells), object centerline 
and exit (last row of cells). In addition, for the heterogeneous case, a plot is taken also at the 
centerline of the boron defect (Fig. 24).  

The MCNP and code calculation agree within 5% along the top edge of the object. This level of 
accuracy is sufficient for the purpose of this study. Together with the homogeneous test, the 
heterogeneous test shows accurate calculations for the code. The forward code appears to be 
correctly implemented and verified.  

 

 

 

 

Fig. 21. Heterogeneous test object. 
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TABLE II Properties of the heterogeneous case  

Object Dimensions    

x length  10  cm  
y length  10  cm  
   

Collimator Dimensions    

Beam window length  2  cm  
Collimator window length  3  cm  
Distance beam window object  4  cm  
Distance collimator window object  1  cm  
   

CODE DISCRETIZATION    

Discretization Forward Problem    

# x cell  200   

# y cell  200   

Order quadrature set (n of Sn)  8   

# polar direction  20   

   

Discretization for Unc. Sources    

# points per cell  1   

# azimuthal angles  20   

# polar angles  20   

   

Optical Properties Background    

Scattering cross section  0.538678  cm-1 

Absorption cross section  0.000382  cm-1 

Total cross section  0.53906  cm-1 

g factor 0.07   

   

Optical Properties Intrusion    

Scattering cross section  0.293788  cm-1 

Absorption cross section  525.7772  cm-1  

Total cross section  526.071  cm-1  

g factor 0.07   

   

MCNP INPUT    

# lattice cells  20 by 20   

# particles  108  
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Fig. 22. Comparison between MCNP and code scalar fluxes for cell at the bottom part of the 
object. 

 

 

 

 

Fig. 23. Comparison between MCNP and code scalar fluxes for the cells at the center of the 
object. 
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Fig. 24. Comparison between MCNP and code scalar fluxes for the cells at the boron defect 
centerline. 

 

 

 

 

Fig. 25. Comparison between MCNP and code scalar fluxes for the cells at the top part of the 
object. 
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3. INVERSE MODEL 
The focus of this section is to present the scheme to solve the inverse problem and therefore 
determine the optical properties distribution for the object given a measurement of transmitted 
and scattered image. Given the measurements performed on the surface of the object and the 
predicted measurements calculated by using the forward method presented in the previous 
chapter, the scheme has to be able to reconstruct the cross sectional image of the optical 
properties of the media investigated. The imaging problem is treated as an optimization 
problem, in which an objective function is minimized. The objective function has been 
calculated as a normalized-squared error between predicted and measured data.  

The inverse model makes use of the conjugate gradient scheme for the minimization and it finds 
the gradient of the objective function with respect to all optical properties. This gradient is the 
major step of the updating scheme and its calculation is performed using an adjoint 
differentiation algorithm that allows for an efficient and accurate calculation.  

The complete code, consisting of both forward and inverse model, will be referred as TNTs 
(Tomography Neutron Transport using Scattering).  

3.1. Perturbation Methods 

The majority of available reconstruction algorithms are based on perturbation methods
29-34

. The 
limited application of this scheme comes from its main assumption that the variations between 
the optical properties of the medium to reconstruct and those used as an initial guess in the 
forward model are small. These methods are also computationally expensive because they 
involve the inversion of full ill-conditioned Jacobian matrixes

7
.  

Perturbation theory is the study of the effects of small disturbances in the mathematical model 
of a physical system. Assuming that the optical properties of the unknown object are a small 
perturbation of an estimated distribution it is possible to reconstruct the object by using a 
perturbation model. Experimental measurement are taken along the boundary of the 
investigated medium and compared with the prediction given by a forward method that makes 
use of the estimated distribution. If ξe, the estimated distribution of optical properties, is close to 
ξr, the real distribution, a Taylor series for the measurements (M) at the boundary locations can 
be performed: 

     (49) 

where f represents the forward model and J and H are the Jacobian and the Hessian of the 
forward scheme. All the underlined quantities are vectors. If Mexp is the vector of the measured 
data, then the difference between experimental values and predicted values [f(ξe)] is defined as 
follows:  

     (50) 

where Δξ=(ξr-ξe). 

If the second-order term on the right hand side of Eq. (50) is neglected, the dependence between 
the differences in the measurements is linearly related to the difference in the properties and Δξ 
can easily be found: 
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     (51) 

Knowing the starting estimated distribution ξe and Mexp-f(ξe) leads to the calculation of Δξ by the 
inversion of a full ill-conditioned Jacobian matrix. The approach is usually generalized to an 
iterative method that at every step evaluates a new Jacobian matrix and a new Δξ. A 
regularization term is often used to reduce to a more diagonally dominant matrix the ill-
conditioned J matrix

7
. Although such matrixes can be efficiently constructed the method 

becomes intractable as the size of the problem domain increases.  

3.2. Gradient-Based Iterative Scheme 
Another approach is to regard the problem as the optimization of an objective function 
representing the sum-squared difference between measured and predicted detector readings. In 
Section II, a forward method for the calculation of detector readings was introduced. The 
predicted measurements are function of the optical properties of the entire object:  

      (52) 

Under the assumption of a maximum-likelihood approach to the solution for the inverse 
problem, the objective function is defined as:  

      (53) 

where m indicates the total number of measurements performed along the domain. From Eq. 
(53) it is clear that the objective function depends on every optical property of the object. In 
particular, in the case of a discretized domain such as the one used in the solution of the forward 
problem, E depends on the properties of every cell:  

      (54) 

where I and J to indicate the total number of cells in the x and y direction. The problem 
therefore can be referred as an optimization of the multidimensional function called the 
objective function.  

There are different methods to approach the solution of this problem. The classical 
unconstrained multivariable optimization is usually approached with Newton-type iterative 
algorithms that have better results in terms of accuracy and number of iteration than the 
steepest descent method

36
. However, it is generally very difficult to calculate the Hessian of the 

function. 

In the method of steepest descent, see Figs. 26 and 27, f(x) is evaluated at a certain point x(0). 
The method slides down to the bottom of the paraboloid as shown in Fig. 27.  A series of x(1), 
x(2), x(3),… are taken until the problem is close enough to the solution xf 

. In taking the step, the 
steepest descent method chooses the direction in which f decreases most rapidly which is the 
direction opposite to the gradient f’(x). Indicating with ri 

 the residual, which in terms of matrix 
multiplication is nothing but how far the problem is from the solution, it can be shown that ri=-
f’(xi) and 

          (55) 
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Fig. 26. Contours of a perfect quadratic form (with minimum in (2,-2)). Each ellipsoidal has 
constant f(x).  

 

 

 

Fig. 27. Method of steepest descent: (a) starting at x(0)=(-2,2), the method steps in the direction 
of –f’, (b) Intersection between these two surfaces, (c) The bottom point of the parabola is the 
target of the line search, and (d) The gradient at the bottom point is orthogonal to the gradient 

at the previous step (see Fig. 28).  

 
A line search is the procedure that chooses α to minimize f along the line. On the line search f is 
minimized where the gradient is orthogonal to the search line (see Figs. 28 and 29). A variety of 
line search methods can be used, either utilizing gradient information, such as the secant 
method, or using only function evaluations such as the quadratic fit method. Often an exact line 
search is too computationally expensive due to the large number of function derivative 
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computations. Experience shows that exact line search, minimizing the objective function as 
accurate as possible, is not necessary for Newton’s methods. Typically, a full step is taken (α=1) 
and if f(xi+1)>f(xi), then we back-track towards xi. Quadratic interpolations are available and 
inexact line search methods such as Armijo’s Rule define the bounds for acceptable step lengths 
which guarantee convergence. For conjugate gradient or steepest descent methods the precision 
in the line search is instead vital. 

In developing TNTs Brent’s method was used
37

. An interval that brackets the minimum is given 
as input, then Brent’s method approaches the minimum by choosing at each step between 
quadratic fit and golden search. 

 

 

Fig. 28. The gradient f' is shown at different locations along the search line. On the search line f 
is minimized where the gradient is orthogonal to the search line 

 

 

Fig. 29. Here the steepest descent starts at (-2,2) and converges at (2,-2).  
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The method of the conjugate gradient (CG) is slightly different from the steepest descent. At 
every step instead of moving along a direction orthogonal to the previous one the CG moves 
along an A-orthogonal direction (A is the matrix that defines the quadratic dependence of the 
function with respect to all the variables). From a more understandable point of view, the CG 
method tries to minimize the residual instead of the objective function itself. In order to do that, 
the new direction in every iteration is calculated with a linear interpolation between the old 
direction and the new gradient. The coefficient of this interpolation (β) varies with the method 
chosen to couple the CG scheme. The interesting property of CG is that it finds at every step the 
best solution within the bounds of where it is been allowed to explore. The best property, 
though, is that the CG can be used not only to find the minimum point of a quadratic form, but 
to minimize any continuous function f(x) for which the gradient f’ can be computed. 

Under the assumption of an effective calculation of the gradient of the objective function E(σx) 
(where x can indicate total, scattering or g factor), the choice for the minimization has been the 
non-linear conjugate-gradient method coupled with the Polack-Ribiere method or with the 
Fletcher-Reeves formula

38
. The algorithm for this is given by: 

 

Algorithm 1: Non linear conjugate-gradient method 

Choose an initial set of variables σx1 

Set the initial search direction h1=r1. Define r1=-׏E(σx1) 

Set iteration counter j=0 

Repeat 

Find αj that minimizes E(σxj+αjhj) 

σxj+1=σxj+αminhj 

rj+1=-׏E(σxj+1) 

hj+1=rj+1+βjhj 

j=j+1 

Until ||׏E(σxj)||<ε 

 

In nonlinear CG, the residual is always set to the negative of the gradient rj=-׏E(σxj). The search 
directions are computed by Gram-Schmidt

39
 conjugation of the residuals as with linear CG. 

Performing a line search along this search direction is much more difficult than in the linear 
case.  

In linear CG, there are several equivalent expressions for the value of β. In nonlinear CG, these 
different expressions are no longer equivalent; researchers are still investigating the best choice. 
Two choices are the Fletcher-Reeves formula, which is used in linear CG for its ease of 
computation, and the Polak-Ribiere formula:  
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      (56) 

The Fletcher-Reeves method converges if the starting point is sufficiently close to the desired 
minimum. The Polak-Ribiere method can, in rare cases, cycle infinitely without converging. 
However, Polak-Ribiere often converges much more quickly. Fortunately, convergence of the 
Polak-Ribiere method can be guaranteed by choosing β=max(0,βPR). Using this value is 
equivalent to restarting CG if βPR<0. To restart CG is to forget the past search directions, and 
start a new CG in the direction of steepest descent. Fig. 30 shows the path followed by the 
Polack-Ribiere CG to find the minimum of the functions. As can be seen, the directions are not 
orthogonal with the previous ones.  

 

 

Fig. 30. Convergence path of the Polack Ribiere path for a function with many local minima and 
maxima.  

 

Application of the Conjugate-gradient for the optimization of an objective function is used in a 
great variety of situations: engineering design, non-linear regression, and lately neural net 
training. For the purpose of optical tomography, the optimization of the objective function by 
CG is very reliable, under the assumption of a possible gradient calculation.  

3.3. Gradient Calculation 
The gradient of the objective function represents the most challenging part of the entire process. 
Eq. (53) expresses the objective function in terms of the optical properties of the medium but 
the dependences are more complicated and directly related to the forward process. In order to 
understand the effect of each cross section on the objective function, the forward problem has to 
be analyzed step by step.  

In Section 2, it was shown how the detector readings consist of two contributions, one due to 
particles that pass uncollided through the medium and one due to the particles that undergo 
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scattering events in the medium before reaching the detectors. The objective function can 
therefore be expressed in a more precise way as:  

        (57) 

This different way to express the objective function underlines another important concept. Both 
the uncollided and collided processes involve as fundamental a variable the total cross section. It 
is the total cross section only that determines the probability for a particle to pass through a 
medium without collisions. The streaming process itself used in the forward model to calculate 
the fluxes on the surfaces of the cell is affected only by the total cross section. It is therefore 
more convenient to think of the objective function as dependent on scattering cross section and 
total cross section, and anisotropy factor.  

The best way to investigate the dependence of the function on the above optical properties it is 
by analyzing the two prediction components separately: uncollided gradient and collided 
gradient calculation.  

3.3.1 Uncollided Gradient Calculation 

Uncollided radiation passes through the medium without collision. The forward model 
calculates this component by performing a numerical integral along the beam window to 
calculate the radiation arriving at one detector point. Multiple contributes from multiple points 
into the same detector are summed together with respect to the corresponding weights (see 
Section 2). If a particular point of a detector is taken into consideration it is clearly 
understandable that the total cross section of all the cells between beam window and detector 
point affect the result. In Fig. 31 these cells are marked with “x”.  

 

 

Fig. 31. Detector point and beam window connection. The cells that come into play in the 
detector reading calculation are indicated with an “x”.  
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TNTs is able to calculate the effect of each cross section on the uncollided component of the 
radiation for each point of each detector. From Section 2, the derivative of this component over 
the total cross section is easy to calculate and the result is:  

    (58) 

where all the variables have been introduced previously.  

The total derivative of the uncollided prediction in one detector as a function of a cell total cross 
section is then:  

      (59) 

It is therefore straightforward to calculate the derivative of the objective function over the total 
cross section of a cell due to the uncollided component. From Eq. (57), applying the chain rule 
gives: 

    (60) 

TNTs applies Eq. (60) at all the cells and constructs a matrix of contributions of the single cell 
cross section to the objective function due to un-collided radiation. The uncollided part is easy to 
analyze and easy to compute. All the calculations were made along the normal forward process 
after the convergence of the solution without inserting further steps or iterations.  

3.3.2 Collided Gradient Calculation 

The analytical expression of the collided component of the gradient is also straightforward. The 
implementation into a computational code though is less immediate and represents an 
interesting application of an adjoint formulation. In the collided part the radiation passes 
through different steps before it reaches the detectors. In Section 2, the general solution concept 
was outlined: uncollided source for all cells are constructed, then these sources represent the 
driving force for the step-characteristic source iteration scheme that iteratively constructs the 
sources per cell of all collided particles. The total cross section and the scattering cross sections 
appear in all of these steps.  

The scattering cross section comes into play only in the construction of the sources per cell since 
the strength of a scattering-source depends directly on the value of the scattering cross section 
(see Section 2). The total cross section, instead, affects all the streaming processes including the 
one used for the creation of the un-collided sources per cell. It is easier to understand this by 
looking at the grid in Fig. 32.   
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Fig. 32. Spatially discretized medium for forward and gradient calculations.  

 

Assuming that the only changing properties is the scattering cross section in cell (2,2), let’s 
follow the steps of the forward method to see how this change affects the objective function. An 
important note is that the change of the scattering cross section has to be done keeping the total 
cross section constant.  

• Uncollided source calculation: the source in cell (2,2) changes its strength because the 
scattering cross section determines linearly the strength of the source. Note that the 
streaming part of this first process is not affected by the change of the scattering cross 
section since depends only on the total cross section of the cells that the particle go 
through. The sources in all the other cells remain unchanged.  

• The change in the source at the first iteration changes the fluxes at the edges of the cell 
itself. It is intuitive to understand that each iteration will transfer the changes of these 
fluxes throughout the problem, affecting all the fluxes and sources in all the other cells. It 
is important to note that keeping constant all the total cross sections in the medium 
leads to un-changed streaming processes. The fluxes therefore will change throughout 
the iterations only because of the effect of the fluxes in cell (2,2). It is therefore necessary 
to understand how this “information” travels into the problem between fluxes and 
sources. 

• The fluxes obtained at the end of the iterative scheme together with the uncollided 
radiation construct the objective function. Again the un-collided radiation is not affected 
by the change of the scattering cross section in cell (2,2) since it depends only on the 
total cross sections in the medium.  

It is clear, from this first approximate analysis, that the relation between objective function and 
total cross section is more complicated. Again following the steps of the forward scheme it is 
possible to understand better how this happens [the changing cross section is the one of cell 
(2,2)]:  

• The streaming process between the beam window and the cell itself is now affected. A 
change in the total cross section causes the un-collided flux and current in the cell to 
change. Therefore, the un-collided source is changed in its strength. But in this case not 
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only the source in cell (2,2) is changed. All the cell in which the un-collided source is 
constructed by particles streaming through cell (2,2) are affected. In Fig. 32 these cells 
are the ones of the first row. In general, all the uncollided sources of cells above the cell 
taken into consideration are affected by the total cross section of this cell. 

• At the first iteration then the un-collided source in cell (2,2) creates the edge fluxes. The 
effect of the cross section is therefore passed to the edges of the cell itself. Different from 
the scattering case, at the first iteration all the sources affected by the total cross section 
of cell (2,2) pass the information to their edges. Each iteration will spread the effect of 
the total cross section from all the affected cells to the entire medium. The streaming 
process is un-changed in all the cell but the one taken into consideration, cell (2,2). In 
this cell at each iteration also the streaming term affects the fluxes and the source. 

• At the convergence of the forward model both the component of the objective functions 
bring information about the change in the total cross section of cell (2,2).  

The effect of a change in the total cross section is clearly more complicate than the effect due to a 
change in the scattering property. Let’s try to write this in an approximate mathematical way; 
indicating with (m,n) the cells at the edge used as detector reading and (i,j) the generic problem 
cell: 

      (61) 

where J indicates the current calculated at the outer surface of the cell (that is the current that 
contributes to the detector reading calculation). The same can be written for the total cross 
section:  

     (62) 

The uncollided component was presented in the previous section. It is vital now to express in a 
better way the dependence of the current in one cell with respect to the cross sections of another 
cell. This is the core of the adjoint calculation. As seen before, the contributions to the cross 
sections are different, but in both cases, the information of every single cell is transmitted to the 
outer boundary of the problem through the edge fluxes. It is possible to conceive of a mammoth 
chain rule that brings information from a single cell to the outer boundary. It is easy to draw 
numerous different paths that a particle can follow from a cell to the boundaries traveling across 
consecutive surfaces and sources. In general these paths are infinite because mathematically 
there is always a residual radiation that scatters without being absorbed; but this residual will be 
negligible after a certain number of collisions. 
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Fig. 33. Simple 2 by 1 cells problem to introduce the gradient adjoint calculation. 

 

The best way to take into consideration the passage of information from a cell to an adjacent cell 
is by constructing a matrix with the derivative of the flux in one cell over the flux in another cell 
as its components. A two cell problem is taken into consideration to introduce the matrix and its 
properties. Fig. 33 illustrates this and in particular defines the symbol of the fluxes at the edges 
and the average flux per cell. With this configuration it is possible to derive the chain rule to 
understand how a cross section affects the fluxes, but it is also possible to derive the chain rule 
to relate a flux with all the adjacent ones. The matrix for the flux derivatives is shown in Fig. 34.  

Only fluxes of the same cell are directly related, and the average flux per cell only depends on the 
edge fluxes of the cell and on itself. With these considerations some terms in the matrix are zero 
as shown in Fig. 35.  

 

 

Fig. 34. Matrix of flux over flux derivatives. 
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Fig. 35. Simplified matrix with dependencies between edge and average fluxes. 

 

Another important consideration that has not been introduced previously is about the direction 
k in which all these relations are derived. Every element of the matrix in Fig. 35 is in reality a K 
by K matrix where K represents the number of directions that the Sn angular discretization 
scheme is using. Every derivative is therefore taken as follow:  

          (63) 

where not only the cells of reference are changing but also the directions of each flux. This leads 
to a more complicated expression for the final form of the matrix but it is still straightforward to 
derive.   

The matrix, that by itself simply shows the dependence between all the fluxes with respect to all 
the other fluxes of their cell, is a very powerful tool in the gradient calculation. It will be shown 
in detail later how the multiplication of the matrix by itself n times leads to an interesting result. 
It will represent how every flux changes as a function of all the fluxes that are n-steps away from 
it. A step is consider as a forward iteration or better it can be seen as a path that “connects” 
adjacent surface fluxes or surface fluxes with average fluxes. Every multiplication of the matrix 
by itself n times will gather all the n-step paths from every investigated flux and therefore, 
multiplying the matrix infinite times corresponds to finding all the infinite paths that a particle 
can undergo to reach a point.  
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The matrix introduced before will be referred from now on as matrix A with all the 
characteristics and all the hidden features explained previously. It is possible now to proceed 
with the analysis of the gradient expressed in Eqs. (61) and (62). We will introduce the vector v 
which contains the derivative of the objective function with respect to all the surface and average 
fluxes of the problem. It is easy to note that this derivative will be non-zero only when it is with 
respect to fluxes of surfaces that correspond to detector position and to directions that 
contribute to the detector responses:  

    (64) 

Multiplying v and A together n times gives a vector of derivatives of the objective function over 
fluxes n steps away from the detectors position. The tools presented so far are general and they 
don’t depend on anything other than the geometry of the problem and the properties of the 
medium. The properties, in particular, have been considered constants in the derivation of the 
matrix and the vector. All the derivatives have been taken with respect to fluxes only and not 
cross sections. To close the chain rule, we need to insert the derivative of every flux with respect 
to the cross sections of each cell. As seen before this will be easier for the scattering dependence 
since the fluxes of a cell depend only on the scattering property of their cell; it will be more 
complicate for the total cross section since the average flux of every cell depends, in general, on 
the total cross section of all the cells in the problem. A new matrix to contain all these 
derivatives must therefore be constructed. It will be called matrix B and will have many zeros in 
the scattering case and few in the total cross section case. The multiplication of matrix B with An 
and vector v will represent therefore the derivative of the objective function over the cross 
section of a cell due to particles that from the cell reach the detectors position in n steps.  

Finally, the gradient of the objective function over the scattering and total cross section can be 
represented as:  

         (65) 

         (66) 

The maximum value of n is the one that makes the product converge. Thinking in term of steps, 
the maximum n will be exactly equal to the number of iterations of the forward problem. 

Let’s see in more detail for the case introduced in Fig. 33 what A
n
v will give [considering only 

one detector on the vertical surface (1,3)]:  

          (67) 
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      (68) 

and the same is true for n>2.  

Eq.(67), derived for n=0, is the derivative of the objective function due to fluxes 0 steps away 
from the detector, Eq.(68) instead is the derivative with respect to fluxes that are 1 step away 
from the detector. This has been derived by simply multiplying the matrix and the vector and 
eliminating all the terms that are zero because of angular considerations. For example:  

         (69) 

since the directions in which ψ(2,1) affects ψ(1,2) are different from the directions in which 
ψ(1,2) affects ψ(1,3). Clearly in Eq. (67) and (68) the chain rule it’s in term of steps from the 
detector position (where the objective function is calculated) and it can be derived by inspection 
without too much effort, at least for small n where all the paths can be easily listed. The 
complicated calculation of the gradient is therefore reduced to a matrixes multiplication and 
summation. The main task is therefore the construction of these matrixes.  

It’s interesting to note that the size of the domain doesn’t affect the construction of the matrixes. 
The chain rule, obviously longer for finer meshes problems, is carried out correctly by the 
multiplication of A with v as many times as necessary to consider all the particle paths that 
contribute to the objective function. A single cell problem will be presented to derive the 
components of the matrixes.  

3.3.3 Matrixes Components 

To simplify the derivation the presented one-cell problem will consider an incident flux in 
direction k incident on bottom and left surfaces, as in Fig. 36.  

 

 

Fig. 36. One-cell problem for the derivation of the matrixes components.  
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To write the equation for a single cell problem we consider a cell-by-cell discretization of the 
discrete ordinate transport equation. This can be called closed linear one-cell functional 
method.  Given such a method from Section 2, and the problem defined in Fig. 36, the following 
equation for all the exiting angular fluxes from one cell can be written:  

  (70) 

or 

         (71) 

where we have defined:  

• ψks,out = vector of outgoing angular fluxes from the cell (all outgoing surfaces for direction 
k)  

• ψks,out = vector of incoming angular fluxes to the cell (incoming surfaces for direction k)  
• Q = vector of total source-rate densities in the cell (isotropic)  
• Aks՚s = transmission matrix for the cell for direction k (each element depends on cell size 

and total cross section)  
• Aks՚v = volume-to-surface matrix for the cell for direction k (each element depends on 

cell size and total cross section)  

We have assumed isotropic scattering for simplicity, but this can be readily extended to 
anisotropic scattering. Eq. (70) will be used for the derivative calculation. Eq. (71) has been 
introduced to be used later.  

A similar equation for the cell-averaged flux can be written:  

  (72) 

or 

         (73) 

where: 

• ψks,out = vector of cell-interior angular fluxes (direction k) 
• Bks՚s = surface-to-volume matrix for the cell for direction k 
• Bks՚v = volume-to-volume matrix for the cell for direction k 

Integrating Eq.(73) gives an equation for the cell-interior scalar flux:  
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       (74) 

where φ is the vector of cell-interior scalar fluxes and D is volume-to-volume matrix for the cell 
(direction integral of Bks՚v ). Note, from Section 2, that Q depends on φ:  

          (75) 

From Eq. (22), it is possible to derive:  

      (76) 

         (77) 

   (78) 

or 

       (79) 

where all the quantities and variables are evaluated in cell (i,j).  

In the case of a multi-cell problem, the derivatives are calculated as shown in Eqs. (77) and (79) 
paying attention to the dependence of the uncollided sources of a cell on the total cross section 
of another cell: 
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       (80) 

    (81) 

Equations (80) and (81) consider all the dependencies of a flux on the cross sections of other 
cells. They constitute the building equations for the construction of matrixes Bsca and Btot.  

Using the same constitutive equations [Eqs. (70) and (71)] it is possible to derive the 
components for the construction of matrix A. First, we consider the derivative of the surface 
fluxes over the cell-averaged flux:  

      (82) 

or 

       (83) 

Then we consider the derivative of the surface fluxes over the other surface fluxes of its cell:  

         (84) 

         (85) 

and 

         (86) 

         (87) 

Now we consider the cell-averaged derivatives. These are acquired from Eq. (72). The derivative 
of the cell-averaged flux over the surface fluxes is:  
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      (88) 

      (89) 

or 

          (90) 

The derivative of the cell-averaged flux over itself is:  

    (91) 

or 

        (92) 

Equations (88), (89) and (91) are the components of the A matrix. Angular consideration has to 
be done in the construction of every block in matrix A. 

To complete the calculation of the tools for the adjoint calculation only the vector v need to be 
explicitly expressed:  

   (93) 

   (94) 

          (95) 

Again it should be noted that the derivative of the objective function over the angular flux of a 
cell is different from zero only if the surface is a detector surface and if the direction is the 
outgoing direction. Thus, all the components of the matrixes and the vector have been 
mathematically derived. It is necessary to verify the correctness of these relations.  
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3.3.4 Mathematical Verification 

It is possible, for the simple case of the one-cell problem, to derive the gradient of the objective 
function both analytically and with the adjoint method. If the adjoint model is correct the result 
should be the same or at least approximately the same for a large n where n is the number of 
time the matrix A is multiplied by itself.  

Consider a one-cell problem, the one of Fig. 36, with known incident fluxes and known fixed 
source S, where S is a function of the total cross section of the cell.  The goal is to know how the 
total and scattering cross sections in the cell affect the outgoing fluxes.  That is:  

        (96) 

From Eq. (71) we acquire:  

    (97) 

and 

    (98) 

Since this is a one-cell problem, we have neglected the cell indexes. We will now solve for the 
scalar flux. Equations (74) and (75) give:  

       (99) 

which implies that  

       (100) 

Note the following:  
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• D is the sum of the volume-to-volume B matrices, which contain the total cross section 
and cell dimensions but not the scattering cross section.  

• The surface-to-volume B matrices also do not contain the scattering cross section, but 
they do contain the total cross section and cell dimensions.  

An important consideration for the computational application can be shown, before to directly 
calculate the derivative of the scalar flux in Eq. (100) with respect to the cross sections of the 
problem. The source iteration applied to the one-cell problem would generate the following 
solution:  

       (101) 

   (102) 

Continuing this, it can be found that  

  (103) 

and 

    (104) 

If σsD has spectral radius less than unity, then:  

        (105) 

and 

         (106) 

Note also that σsD is the iteration matrix in this problem. As long as σs < σt, σsD will have 
spectral radius less than unity. Therefore it can be concluded that Eqs. (105) and (106) hold for 
the problem, and that, as a result, Eqs. (100) and (104) are equivalent.  

Plugging Eq. (104) in Eq. (71) to obtain an expression for the exiting angular flux leads to:  

   (107) 
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This important result is shown to note how the final angular flux is totally dependent on the 
converged solution for the scalar flux. This leads to an important computational application: the 
gradient of the objective function can be calculated at the end of the forward process making use 
of the converged solution. This fact, not at all intuitive, shows that the iteration scheme during 
its process of solving the problem generates un-converged fluxes and currents that don’t add 
information to the gradient evaluation. From the computational point of view the gradient 
calculation can be performed at the last iteration of the forward model. The result of this 
investigation doesn’t agree with the methodology used in other computed tomography papers35, 
where the gradient is calculated in a different way along the forward iterative process.  

Starting with Eq. (100):  

      (108) 

It is necessary to take the derivative of the inverse matrix in this expression. If D were just a 
constant (which it is for methods like SC that use only one scalar-flux unknown per cell), then it 
would be  

        (109) 

It can be shown that it is also correct when D is a matrix. Using the previous result Eq. (105):  

    (110) 

This agrees with differentiating the other form for the inverse:  

     (111) 

Therefore, plugging Eq. (111) into Eq. (108) gives the important result: 

    (112) 

The same exists for the derivative of the scalar flux with respect to the total cross section: 

    (113) 
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which implies that:  

   (114) 

Substituting Eqs. (112) and (114) respectively into Eqs. (97) and (98):  

     (115) 

and 

    (116) 

The last two equations are the analytical solution for the calculation of the derivative of the 
exiting fluxes with respect to the cross sections in the one-cell problem. The adjoint calculation 
introduced in the previous section needs to give the same result in order to be tested, at least for 
this simple case.  

First is the calculation of the derivative of the fluxes over the scattering cross section. Recall that 
in the adjoint method: 

         (117) 

where the matrix A in Eq.(117) is not to be confused with the transmission matrix introduced for 
the closed linear one-cell functional method.  

Performing this multiplication for n less and equal to two leads to:  
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   (118) 

that is:  

   (119) 

and using our previous results:  

   (120) 

The result is in perfect accordance with the analytical result obtained in Eq. (115). We can do the 
same for the scattering derivative:  

   (121) 

that is: 

   (122) 

And simplifying again:  
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  (123) 

Equation (123) is essentially the same as the analytical results of Eq. (116). To find the gradient, 
we simply multiply the results by the vector v. The adjoint model gives the correct interpretation 
of the gradient of the objective function with respect to the cross sections in the discretized 
domain according to the analytical result for the one-cell problem.  

3.4. FORTRAN Coding 
TNTs has been developed in Fortran 90 on a Microsoft Windows workstation with a 3.20 GHz 
Pentium 4 processor. It uses the results of the forward model and the experimental data, 
inserted by the user as input, to calculate the gradient. All the variables, such as cross sections 
and geometric measures, are passed from the forward model to the inverse model as common 
variables.  

3.5. Numerical Verification 
 
Another possibility to verify the gradient calculation is by calculating it numerically for a simple 
problem. By definition, the gradient of a one variable function can be approximated as follows: 

        (124) 

where ε is an infinitesimally small constant. This means that by changing slightly one cross 
section and leaving all the others un-changed and using Eq. (124) leads to the calculation of the 
gradient of the objective function with respect to the changed property:  

       (125) 

The gradient calculated numerically for all the cells of the domain can be therefore compared 
with the one obtained by using the adjoint formulation to give an estimation of the reliability of 
TNTs.   

A test with a two by two cell homogeneous object is presented. The optical properties were 0.9 
cm-1 and 1.2 cm-1

 
for scattering and total cross section, respectively. One by one every cross 

section has been changed adding 0.001 cm-1
 
to its value and the gradient has been calculated. It 

is important to note that when the scattering cross section has been changed also the absorption 
in the cell has been changed to keep the total cross section constant.  
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Tables III and IV contain the scattering gradients for the 2x2 problem from the numerical 
results and from TNTs result, respectively. The percent error between the numerical and TNTs 
results is shown in Table V. Tables VI and VII contain the total cross section gradient calculated 
numerically and by TNTs respectively. The percent error of the total cross section gradient is 
presented in Table VIII.  

 

TABLE III Numerical result for the scattering gradient  

 

 

TABLE IV TNTs (adjoint calculation) results for the scattering gradient  

 

 

TABLE V Percent error in scattering gradients  

 

 

TABLE VI Numerical results for the total cross section gradient  

 

 

TABLE VII TNTs results for the total cross section gradient  

 

 

TABLE VIII Percent error in total cross section gradient  

 
 

The difference between the numerical and TNTs calculated values is negligible. The error 
assuming the numerical result is exact is less than 0.02%. This verification shows the 
effectiveness of the adjoint formulation in the gradient calculation.  
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3.6. Reconstruction 
In this section, we will verify that the derived method can reconstruct an object. The geometric 
properties of the object and the collimator in question are shown in Fig. 37. A summary of these 
properties is given in Table IX.  

 

 

Fig. 37. View of the object and the collimator for the reconstruction verification of the process.  
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TABLE IX Geometric, discretization and optical parameters of the object  
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The object designed for the reconstruction was optically thick. Due to its properties it was 
around 7 mean free paths long and 7 mean free paths wide. Less than 0.1% of the initial 
radiation was transmitted radiation in the detectors. A tomographic technique applied to this 
object to attempt its reconstruction would have found the task hard to accomplish. Most of the 
radiation reached the detectors after multiple scattering that would have decrease the resolution 
of a radiographic image. The problem is therefore interesting to solve with the gradient based 
computed tomography introduced. The optical distribution of the real object is shown in Figs. 
38 and 39.  

 

 

Fig. 38. Scattering cross section distribution of the real object.  

 

 

Fig. 39. Total cross section distribution of the real object.  

 

The object has been discretized with a 20 by 20 grid. The number of unknown variables were 
therefore 800, since the reconstruction was made by using only scattering and total cross 
section. There were 60 detector measurements that were simply the result given by the forward 
model with as input the real object. To attempt the reconstruction the initial guess for the 
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optical properties was equal to the properties of the background object, the part without the 
intrusion. The results after 300 iterations (almost 7 hours) are shown in Figs. 40 and 41. 

 

 

Fig. 40. Scattering distribution of the reconstructed object.  

 

 

Fig. 41. Total cross section distribution of the reconstructed object.  

 

Both the optical distribution for the reconstructed object show the presence of a different object 
inside the homogeneous one used as initial guess. The green part in Fig. 40 and Fig. 41 is more 
absorbing and less scattering than the background medium. In particular the scattering cross 
section at the center of the green spot of Fig. 40 is around 1.5 cm-1 instead of the real 0.5 cm-1 
and the absorption cross section is around 0.8 cm-1 instead of 2.0 cm-1.  

The intrusion is well detected in its position, but the shape tends to be less representative of the 
real object. Due to the poor discretization (only 400 cells) the reconstructed area is “bounded” to 
the edge of the object were the detectors are placed. Since the process steps back from the 
boundaries of the object to reconstruct the optical distribution it is reasonable that the 
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reconstructed area, in case of few cell between the defect and the detector, is bounded to the 
boundaries. The process changes the cell properties in the right direction, and it presents an 
intrusion in the right position which is more absorbing and less scattering than the surrounding 
medium. The objective function decreased three order of magnitude from it’s initial value 
showing a correct behavior of the inverse model.  

The result presented corresponds to that using the conjugate gradient (CG) scheme 
minimization technique. The same result was calculated with steepest descent (SD) scheme for 
comparison.  In particular, the final optical distributions were the same for both methods but, as 
it was expected, the CG took considerably less iteration to converge to the solution. A plot of the 
objective function with respect to number of iteration obtained with both methods is shown in 
Fig. 42.  

 

 

Fig. 42. Objective function with respect to iteration number for CG and S.  

 

In the analysis of the above problem other important features were investigated. In particular 
nothing in the literature has been found regarding the shape of the line along which TNTs finds 
the minimum for the step α. 

3.7. Line Search, Negativity and Gradient Perpendicularity 
The method to use for the line search, such the step α to minimize the line could be found 
efficiently required knowledge of the shape of the line. In particular, since the objective function 
has in general more than one minimum it could also be that the line along the negative gradient 
contains more local minima. In order to verify that at the first iteration of the problem presented 
above, the line f(α)=E(σ-α׏E(σ)) has been calculated for different values of α. These results are 
shown in Fig. 43. 
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Fig. 43. Objective function with respect to alpha.  

 

The behavior showed in Fig. 43 is interesting. Not only is there only one minimum but the shape 
of the function is essentially that of a second order polynomial. A polynomial fitted through the 
points of the function has an R

2
 of 0.9992. A cubic has an R

2
 equal to 1.  

Since this result seems due to the particular homogeneous guess of the first iteration, a plot of 
the same function starting from a completely heterogeneous object (every cell different from the 
others) is presented in Fig. 44.  

 

 

Fig. 44. Objective function with respect to alpha for an heterogeneous object.  
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At α>53, one cross section would turn negative therefore TNTs stops. If there is a minimum 
point of the line before TNTs encounters the alpha that makes negative a cross section, a new 
gradient is calculated at the minimum point, otherwise the gradient is calculated in the point 
with the maximum alpha that assures positivity of all the optical properties. In the case of Fig. 
44, there is a minimum around α=50. Again there is the same behavior as before even with a 
more complex initial guess.   

There are two important considerations that can be made around the example presented above:  

• during the line search, cross sections can become negative 
• the function of alpha seems to be a smooth function with only one minimum (it cannot 

be elevated as general rule without further investigation) 

When a cross section turns negative before a minimum can be found, TNTs comes back to the 
maximum α to assure the positivity of all the optical properties and calculates a new gradient. It 
moves therefore along another direction until a global minimum for the objective function is 
found.  

For the minimization of a function without any knowledge about its gradient many algorithms 
have been developed. A golden section search is designed to handle, in effect, the worst possible 
case of function minimization

37
. But, if the function is nicely parabolic near the minimum, then 

the parabola fitted through any three points ought to reach in a single leap the minimum or at 
least a point very close to it. But a method that uses only parabolic fittings is not likely to 
succeed in practice. The task is to use a scheme which relies on sure-but-slow technique, like 
golden section search, when the function is not cooperative and switches over to a parabolic fit 
when the function allows. A method with this capability is the Brent’s method that is up to the 
task in all particulars. In the worst possible case, where the parabolic steps are useless, the 
method will approximately alternate between parabolic steps and golden sections, converging in 
due course by virtue of the latter

8
. 

When a minimum is found the gradient calculated at that location (that particular α) should be 
perpendicular to the previous gradient. For the gradients calculated by TNTs the dot product of 
the two gradients at the alpha for the minimum is around 0.01, proving a good perpendicularity 
of the directions. 
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4. RECONSTRUCTION RESULTS 
This section presents the result of different object reconstructions. The reliability of TNTs and 
its algorithm was tested using data obtained with MCNP-5 and from experimental 
measurements of simple test objects. The MCNP results are considered equivalent to 
experimental results since many successful benchmarks have been done for the performance of 
MCNP in similar problems. All objects simulated and reconstructed were essentially two-
dimensional objects (infinite in the z-direction). All reconstruction were done using one neutron 
group. The simulations used a monoenergetic thermal neutron beam and the experiments used 
the predominately thermal neutron beam available at the TAMU NSC.  

4.1. MCNP Decks 
Some objects reconstructed by TNTs were explicitly simulated using MCNP. The MCNP 
simulation contained:  

• planar source finite in x and y directions and infinite along the z-axis to simulate the 
beam window introduced in TNTs  (see Section 2) 

• object, finite in x and y directions and infinite along the z-axis, with different material 
properties in it 

• detectors around the edges of the object  

In order to have an infinite homogeneous third direction, so that the problem can be assumed 
two-dimensional, the MCNP model contains reflecting planes perpendicular to the z-directions. 
The rectangular beam and the divergent collimator are shown in Fig. 45. A spherical source is 
placed behind the collimator. The source energy is 1E-6 MeV and the spatial distribution 
follows a power law of order 1 centered at the origin of the sphere (the power law is the right 
distribution to make the beam at the window isotropic as it is in TNTs). The radius of the 
source is larger enough to cover the entire beam window. The materials for the object that 
we chose to use are carbon, boron, hydrogen and nitrogen because of their constant cross 
sections around energies close to the one chosen for the source. This choice was made 
because TNTs is not a multi-group code and it uses constant cross sections without 
knowledge about the neutron energy. 

 

 

Fig. 45. MCNP design.  
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The particles incident to the collimator are stopped and only those that enter the beam 
window can reach the object. The collimator is divergent as is the one inserted in the input 
file for TNTs. The objective is to have a beam coming from the beam window with the same 
spatial and angular distribution as the beam in TNTs. The particles out of the collimator 
encounter the object or the reflective planes so that the third infinite and homogeneous 
direction is created. 

 

 

Fig 46. xy view of the MCNP layout. 

 

 

Fig. 47. xz view of the MCNP layout. 
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The three outer surfaces of the object as shown in Fig. 46 are used to tally the detector 
readings. The MCNP tally used is a surface current tally. There are 20 detectors, equally 
spaced, on each side for a total of sixty measurements. Figures 47 and Fig. 46 show the 
geometrical layout for the problem considered.  

The importance “0” cells shown in Fig. 46 and Fig. 47 represent the collimator. In MCNP 
importance “0” defines a cell in which particles are not tracked. Therefore, the particles 
entering these cells are “terminated”. Only the particle entering the beam window can reach 
the object as shown in all the pictures. These particles are counted, using a surface current 
tally, in order to normalize the results on the effective number of particle that form the 
beam. 

4.2. MCNP Calculations 
To run the cases a parallel version (PVM) of MCNP was used.  This helped to reduce the 
computational time and to increase the particle number for better statistics. The cases were run 
on a LINUX cluster consisting of 21 nodes. Each node had a single 3.2 GHz INTEL Pentium 4 
processor.  

4.3. Results from MCNP Simulated Objects 
Five different objects were simulated in MCNP. The results from these simulations were 
inputted as “measured” images to TNTs and a distribution of optical properties was 
reconstructed. A description of each of the objects and the results of the reconstructions are 
given below.  

4.3.1 Reconstruction I 

The first object reconstructed is shown in Fig. 48. The properties of the object are presented in 
Table X. They have been chosen so that the problem is approximately seven MFP thick.  

The measurements along the three non-lightened edges were interpolated to calculate the 
values for the “experimental” TNTs input. TNTs, in fact, uses a 40 by 40 grid with a total of 
120 measurements. A summary of the problem is presented in Table XI.  

By performing the reconstruction of the object only changing the scattering and total cross 
sections, the task is represented by the minimization of a function of 3200 variables having 
120 measurements. Even if TNTs changes scattering and total cross sections, the results are 
presented in terms of scattering and absorption distribution. This is because it is easier to 
understand the property of the object and of the extraneous body in terms of these cross 
sections. 

The result of the reconstructed scattering distribution is shown in Fig. 49.  
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Fig. 48. Object used in first reconstruction process.  

 

 

TABLE X Properties of the investigated object  
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TABLE XI TNTs discretization and optical properties  

 
 

 

 

 

Fig. 49. Scattering Cross Section from First Object Reconstruction. (a) Image of the scattering 
property of the real object. (b) Image of the scattering property of the reconstructed object.  
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The reconstructed scattering distribution presents interesting properties:  

• the intrusion has been identified  
• the location of the intrusion is slightly different from the real one, in particular is 

correct the distance from the right edge but is slightly off the distance from the top 
edge  

• the scattering cross section in the center of the intrusion is around 0.4 cm-1 
that is far 

from the real one (0.021 cm-1) but represents a change in the cross section equal to 
32% of the initial value in the right direction  

For the absorption cross section reconstruction the result is presented in Fig. 50.  

 

 

Fig. 50. Absorption Cross Section from First Object Reconstruction. (a) Image of the absorption 
property of the real object. (b) Image of the absorption property of the reconstructed object.  

 

The reconstructed absorption properties present interesting properties:  

• the intrusion has been identified  
• the location of the intrusion is slightly different from the real one, in particular is 

correct the distance from the right edge but is slightly off the distance from the top 
edge  

• the absorption cross section in the center of the intrusion is around 0.997E-3 cm-1 

that is far from the real one (1.11 cm-1) but represents a change in the cross section 
equal to 16% of the initial value in the right direction  

A more absorbing and less scattering intrusion has therefore been found with this method. 
It is important to notice that these results have been obtained lightening only one edge of 
the object.  

In the minimization process, for the reconstruction of the optical distribution of the object, 
the objective function dropped by almost two orders of magnitude reaching a stable value. 
The norm of the gradient, initially of the order 10

-7
, determined the criterion to stop the 

process when it reached order 10
-12 

. The final distribution was almost completely reached 
within the first 10 iterations. After that the process changed slightly the properties until 
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convergence of the gradient. The time required to reach a reasonable distribution like the 
one presented above is between 1 and 3 hours.  

4.3.2 Reconstruction II 

The second object tested is shown in Fig. 51. Its optical properties are summarized in Table XII. 
The object has an extraneous body in it that is a tenth of the width of the object itself. The input 
files for TNTs are summarized in Table XIII. The reconstructions for both the properties are 
presented in Figs. 52 and 53.  

 

 

 

Fig. 51. Second reconstruction object and beam properties. 
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TABLE XII Optical properties of second reconstruction object  

 
 

TABLE XIII TNTs discretization parameters and optical properties  
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Fig. 52. Scattering Cross Section from Second Object Reconstruction. (a) Image of the scattering 
property of the real object. (b) Image of the scattering property of the reconstructed object.  

 

 

Fig. 53. Absorption Cross Section from Second Object Reconstruction. (a) Image of the 
absorption property of the real object. (b) Image of the absorption property of the reconstructed 

object.  

 

There are common considerations that can be made on both the reconstructions:  

• the extraneous object is detected  
• again, as in the previous section, the distance from the top is slightly off but the one 

from the right edge is correct  
• the properties of the reconstructed object and its dimension are not close to those of 

the real object but still the process moved the cross section in the right direction, to 
create an area less scattering and more absorbing  

The process and algorithms were able to detect the extraneous body and to locate it almost 
precisely into the object. Even if the properties were not the ones of the real object, still 
TNTs was able to find a less scattering and more absorbing area that corresponds to the 
intrusion material.  
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4.3.3 Reconstruction III 

A similar object to the previous one was reconstructed in which the intrusion material has a 
scattering cross section comparable to the scattering cross section of the background 
medium. The properties of this material are shown in Table XIV.  

 

TABLE XIV Property distribution  

 
 

 

TABLE XV Discretization and optical properties for TNTs input file  
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In particular the scattering cross section is comparable numerically in both the materials. In the 
previous section there was at least an order of magnitude difference between the scattering cross 
sections of the two materials. In this simulation they are within a factor of 3. The experimental 
data for this reconstruction have been calculated directly from TNTs and not from MCNP as in 
the other reconstructions. The process used the input properties shown in Table XV. The 
results are shown in Figs. 54 and 55. 

 

 

Fig. 54. Scattering Cross Section from Third Object Reconstruction. (a) Image of the scattering 
property of the real object. (b) Image of the scattering property of the reconstructed object.  

 

 

Fig. 55. Absorption Cross Section from Third Object Reconstruction. (a) Image of the absorption 
property of the real object. (b) Image of the absorption property of the reconstructed object.  

 

It is very interesting to notice that even if the geometric measures of the extraneous body into 
the object are the same of the previous reconstruction the results are different. The comparison 
of Fig. 54b and Fig. 55b with Fig. 52b and Fig. 53b underlines the difference in the 
reconstruction due to the change in the optical properties. In particular, when the scattering 
cross section of the extraneous object is comparable in order with the scattering cross section of 
the background object the extraneous body is not well defined in the reconstruction. In Fig. 54b 
and Fig. 55b, the area where the process changed the properties is bounded to the boundary 
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edge like if the scattering events throughout the entire object covered the effect of the absorption 
of the extraneous body. The scattering still present in the intrusion (only a factor of 3 less than 
in the background) increases the “noise” in the detectors. In other words, especially for the 
detection of little objects, it seems that the process to reconstruct properly relies more on the 
“lack” of scattering sources than on the importance of the absorption in the extraneous body 
cells. In particular in the II reconstruction the low value of the scattering cross sections in the 
extraneous body led to “zero source” in its cells. The effect on the detection on this edge was 
more important than in this case where the body is still as scattering as the background and 
strongly absorbing. Also in this case the reconstruction started a little lower on the y-axis in 
comparison with the real position of the extraneous object.  

4.3.4 Reconstruction IV 

The next reconstruction involves the presence of two extraneous bodies into the background 
object as shown in Fig. 56. The properties of the object and the defect are listed in Table XVI. 
Again the experimental results were obtained by using MCNP. TNTs had the initial guess for the 
material and the discretization parameters presented in Table XVII. The process reached a 
converged solution in 5 iterations (almost an hour of computational time) dropping the 
objective function of one order of magnitude from 10

-6 
to 10

-7
. The results obtained are presented 

in Fig. 57 and Fig. 58. 

 

 

Fig. 56. Third reconstruction object and beam properties.  
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TABLE XVI Optical properties of materials for reconstruction  

 
 

 

TABLE XVII Discretization parameters and optical properties for the initial guess  
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Fig. 57. Scattering Cross Section from Fourth Object Reconstruction. (a) Image of the scattering 
property of the real object. (b) Image of the scattering property of the reconstructed object.  

 

 

Fig. 58. Absorption Cross Section from Fourth Object Reconstruction. (a) Image of the 
absorption property of the real object. (b) Image of the absorption property of the reconstructed 

object.  

 

It is clear from intuition and from the images that the reconstruction of an object with two 
extraneous bodies is more difficult to obtain. In both the reconstructions, the body closer to the 
left edge has been detected, but the one closer to the right edge is not well defined. Even if not 
well defined it is visible the presence of “something” else that affect the shape of the 
reconstructed area. At first sight it seems incorrect that the body closer to two edges (the top and 
right edge) is the one that is less defined in the converged image for the optical distribution. The 
other body, the one closer to the left edge, is though also closer to the lightened edge. The 
calculation of the gradient as introduced in Chapter III showed how the gradient is in part 
function of the scalar flux of the cell. Due to its position the extraneous body on the left is in an 
area with higher scalar flux. Its gradient is therefore larger than the gradient of the body on the 
right. It seems that the process tends to minimize the objective function by looking at every 
moment at the spot with higher gradient because it is the one that affects the objective function 
the most; then after that spot has been moved enough toward the direction of the minimum for 
the objective function the process looks for other possible spots to adjust. This is the reason why 
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there is an effect of the presence of the second body, the one closer to the right edge; but this 
body is not well defined because by the time that the process tries to change that area the 
property already changed have brought the objective function to a minimum (local minima).  

4.3.5 Reconstruction V 

To prove this supposition a new object is considered with a different geometric disposition for 
the two bodies in order to make one predominant, in terms of the gradient, over the other. The 
size of the bodies is also changed but it is the same for both of them. The body closer to the left 
edge has been moved closer to the bottom edge, so that it will be into a higher flux region. The 
other body has been increased in size so that its effect on the detection measurements will be 
more consistent (Fig. 59). The properties are shown in Table XVIII. The discretization 
parameters for the forward and inverse model are the same used in all the previous examples 
and again the initial guess for the properties are the ones of the background object as shown in 
Table XIX. The real optical property distribution and the reconstruction results are shown in 
Fig. 60 and Fig. 61.  

 

 

 

Fig. 59. Beam and object geometric properties.  
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TABLE XVIII Background and extraneous object optical properties  

 
 

 

TABLE XIX TNTs discretization parameters and initial guess  
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Fig. 60. Scattering Cross Section from Fifth Object Reconstruction. (a) Image of the scattering 
property of the real object. (b) Image of the scattering property of the reconstructed object.  

 

 

Fig. 61. Absorption Cross Section from Fifth Object Reconstruction. (a) Image of the absorption 
property of the real object. (b) Image of the absorption property of the reconstructed object.  

 

As expected the body closer to the bottom edge, the lightened one, has a predominant gradient 
over the other extraneous body. It is so predominant that the algorithm fails in the 
reconstruction of the optical distribution of the entire object. This simulation seems to confirm 
the consideration that the process reconstructs before the spot with the higher gradient and then 
the other spots in order of gradient. The algorithm was successful in the reconstruction of one 
object and it fails in the reconstruction of the other. 

4.4. Results from Measured Images 
The results from the simulated MCNP data was very promising, especially considering the 
ability of TNTs to reconstruct the complete image without rotating the object. However, the 
results from the fifth object reconstructed showed that as the object becomes more 
heterogeneous, there is a definite need to illuminate the object from multiple sides. To test the 
ability of TNTs to reconstruct and actual object, an object with properties essentially identical to 
those used in Reconstruction V was created. This object consisted of a high density polyethylene 
slab with two boron nitride intrusions similar to those shown in Fig. 59. The object was 
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illuminated on the bottom (using the thermal neutron beam at the TAMU NSC and images 
collected on the other three sides. The object was then rotated 90o and illuminated again with 
images collected on the other three sides. The object was then rotated again by 90o and 
illuminated again with images collected on the other three sides. The real optical property 
distribution and the reconstruction results are shown in Figs. 62 and Fig. 63. The use of 
illumination from three sides instead of one has significantly increased the capability of the 
system in identifying the location of the intrusions as well as their properties. While the system 
still has some difficulties in properly reconstructing the interior of the object, it is expected that 
if more images were taken this limitation would diminish. Also, it should be noted that the 
optical thickness of this object would make any existing tomographic technique essentially 
unable to provide any useful reconstruction.  

 

   

       (a)       (b) 

Fig. 62. Scattering Cross Section from Object Reconstruction. (a) Image of the scattering 
property of the real object. (b) Image of the scattering property of the reconstructed object.  

 

   

       (a)       (b) 

Fig. 63. Absorption Cross Section from Object Reconstruction. (a) Image of the absorption 
property of the real object. (b) Image of the absorption property of the reconstructed object.  
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5. CONCLUSIONS 
An image reconstruction algorithm and code for optical tomography were developed based on a 
neutron transport inverse problem. This algorithm does not require small perturbations or 
advanced knowledge of a reference medium for successful execution. TNTs consists of three 
components:  

• A forward model used to predict the detector readings along the surfaces of the object 
assuming a certain distribution of optical properties. The forward model is based on a SC 
scheme for the solution of the neutron transport equation with level symmetric 
discretization for the angular dependence, zero boundary condition and uncollided 
sources per cell.  

• An analysis scheme in which an objective function, defined as the sum of the squared 
difference between predicted responses and experimental measurements, is defined. The 
objective function is minimized in order to find the expected optical distribution of the 
real object.  

• An updating scheme, which iteratively changes the optical properties of the medium 
based on the gradient of the objective function over every optical property. The gradient 
is calculated with an adjoint calculation.  

This work constitutes the first effort to use a forward model based on transport theory rather 
than diffusion or radiative transfer applied to tomography reconstruction. The forward model 
has been successfully tested against numerical results obtained with MCNP and from 
experimental measurements showing excellent agreements. This forward model is more 
accurate than the models based on diffusion or on radiative transfer in most applications. The 
generality in the definition of the incoming radiation beam allows TNTs to be used in a great 
variety of physical situation.  

The main accomplishment was the calculation of the gradient of the objective function with 
respect to the optical properties of the medium for the transport-based forward model. A 
mathematical proof, via sensitivity equation, was presented to show the effectiveness of the 
adjoint calculation. The adjoint calculation was performed in a different manner than was done 
previously by other authors and was tested numerically to prove its reliability. The adjoint 
calculation, fundamental for this application, should be considered for further future study. The 
adjoint calculation is capable of finding the gradient quickly in comparison to other techniques 
such as finite-difference methods or perturbation theory. It can be used in a variety of other 
application such as homogenization of the cross section in reactor analysis. 

The reconstructions of several objects illuminated from only one side were successful. In the 
case of single intrusion TNTs was always able to detect the intrusion. However the predicted 
position was slightly different from the real position. It could locate the defect precisely along 
the x-axis, but less precisely along the y-axis. The reason of this behavior can be related to the 
fact that SC tends to “move” more forward the particle with respect to the real solution (MCNP 
in our case). This is a direct effect of the averaging of the angular flux along the edge of a single 
cell. In the case of the double body object TNTs was able to reconstruct partially the optical 
distribution. The most important defect, in terms of gradient, was correctly located and 
reconstructed. Difficulties were discovered in the location and reconstruction of the second 
defect. Nevertheless, the results are exceptional considering they were obtained by lightening 
the object from only one side. 
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TNTs was also used to perform reconstructions for objects illuminated from three sides. 
Significant improvements in the reconstruction were shown; however, TNTs still tends to locate 
the intrusion closer to the surface in the reconstruction than it is in the actual object.  

There are many possibilities for improvement of the current technique and algorithm including: 

• The construction of matrix A and vector v (see Section 3) is performed by storing all the 
blocks involved in the calculation of the gradient.  This is a memory and time consuming 
process. Since the only matrix dependent on the forward solution through the angular 
fluxes is matrix B, the operation involving matrix A and vector v should be substitute 
with functions. Instead of storing all of the information, a function, calculating the same 
information, can be called whenever necessary. This saves memory and computational 
time and will allow the process to use a finer grid for the discretization of the domain  

• TNTs should be modified to include a full 3-dimensional, time-dependent, and energy 
discretized forward model to assure generality and to increase the capability of the 
updating scheme 

The method developed here has great potential for significantly advancing the state of 
tomographic neutron radiography. This method can greatly aid in the surveying of thick, highly-
scattering objects. With the addition of the upgrades mentioned above it is expected that this 
methodology will find application in many fields 
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