

SAND REPORT

SAND2003-2954
Unlimited Release
Printed September 2003

A Network Architecture for Petaflops
Supercomputers

Erik P. DeBenedictis

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71305495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

2

 3

SAND2003-2954
Unlimited Release

Printed August 2003

A Network Architecture for Petaflops Supercomputers

Erik P. DeBenedictis
Scalable Computing Systems
Sandia National Laboratories

P.O. Box 5800
Albuquerque, New Mexico 87185-1110

Abstract

If we are to build a supercomputer with a speed of 1015 floating operations per
second (1 PetaFLOPS), interconnect technology will need to be improved
considerably over what it is today. In this report, we explore one possible
interconnect design for such a network. The guiding principle in this design is the
optimization of all components for the finiteness of the speed of light.

To achieve a linear speedup in time over well-tested supercomputers of todays�
designs will require scaling up of processor power and bandwidth and scaling
down of latency. Latency scaling is the most challenging: it requires a 100 ns
user-to-user latency for messages traveling the full diameter of the machine. To
meet this constraint requires simultaneously minimizing wire length through 3D
packaging, new low-latency electrical signaling mechanisms, extremely fast
routers, and new network interfaces. In this report, we outline approaches and
implementations that will meet the requirements when implemented as a system.
No technology breakthroughs are required.

 4

Intentionally Left Blank

 5

Contents

Introduction ...9
Primary Chip Design ...11
Strategies for Low Latency ...13
Physical Data Transmission..13
Node Design and 3D Packaging...13
Physical Size and Overall Latency..16
Serviceability...18
Electrical Issues ..18
Bit Encoding..20
Routing ...22
Router Chip Architecture...23
Virtual Channels..27
Protocol Engine and NIC ..28
Proposed Protocols and User Application Interface..29
Error Detection and Recovery...30
Deadlock Avoidance in the Event of Faults...32
Reliability Standard ...33
Conclusions ..33
References ...34
Distribution..35

 6

Figures

Figure 1 SOC vs. Discrete���...������������������� 10
Figure 2 ASIC Layout Assuming SOC PIM Implementation���.���.....� 12
Figure 3 Exemplary Layout of Interconnect Across the Chip���...����.. 13
Figure 4 Node Board for Three-Dimensional Packaging.��.�������.. 14
Figure 5 Three Dimensional Packaging��������.����.�..��.. 15
Figure 6 Mapping of 3D Mesh to Physical Structure����������.�.. 15
Figure 7a Water-Cooled (SOC PIM Option)��...������������.. 16
Figure 7b Air-cooled configuration�����...����������....��.. 17
Figure 7c Air-cooled configuration������������.....�����.... 17
Figure 8 Serviceability��...�����..����������������. 18
Figure 9 Dynamic Phase Alignment��.���������.����..��.. 19
Figure 11 Conventional Bit Encoding for DC Balance��...���.��..��.. 20
Figure 12 Bit Encoding for Low Latency while Retaining DC Balance��.....� 22
Figure 13 Router Layout for Fast Straight Ahead Routes..������..��.. 23
Figure 14 Detail of Straight-Ahead Logic��...��������..��..��.. 24
Figure 15 Three Traffic Lanes for Turn Logic��...�����..������. 25
Figure 16 Directional Interface��...�����������...���...��.. 25
Figure 17 Dimensions of Routing Lanes��...�����������..��.. 26
Figure 18 Multiplexing Virtual Channels on a Physical Channel���..�..�.. 27
Figure 19 Dual Virtual Channels and Protocol Handling��...����...��.. 27
Figure 20 Protocol Engine��.������������..�����..��.. 29
Figure 21 2-Hop Error Detection and Recovery��...��������.��.. 31

Tables

Table 1. Basic System Parameters���..��.�������������.. 11
Table 3. Application of Protocols to the Protocol Engine��������...�.. 29

 7

Nomenclature

3D..�..Three Dimensional
ASCI..�............................. Advanced Simulation and Computing (the �I� is silent)
ASIC..�...Application Specific Integrated Circuit
CPU..�... Central Processing Unit
CRC..�.. .. Cyclic Reduncancy Check
DC..�.. .. Direct Current
DIMMs..�.. ... Memory Module
DOE�.. ...Department of Energy
DRAM�...Dynamic Random Access Memory
FLOPS..�.. ...Floating Operations Per Second
GFLOPS..�... 109 Floating Operations per Second
ITRS�.. International Technology Roadmap for Semiconductors
MPI..�...Message Passing Interface
MPP..�.. .. Massively Parallel Processor
NIC..�.. .. Network Interface Chip (or Card)
PetaFLOPS..�.. .. 1015 Floating Operations Per Second
PIM�..Processor In Memory
RAM..�.. ..Random Access Memory
SNL�.. ...Sandia National Laboratories
SOC�.. ..System On Chip

 8

Intentionally Left Blank

 9

Introduction
This paper proposes an architecture for a supercomputer interconnection
network that will run nearly as fast as the speed of light will permit. As
background, Moore�s law has caused transistor speed to increase exponentially
over the last several decades yet the speed of light does not change. While
speed of light delay contributes only around 1% in the main interconnect of
today�s supercomputers, exponential increase in this proportion will make it rise
to a critical issue in the next decade or two. Theoreticians[Perperata, Vitanyi] have
explored supercomputer design in this realm (specifically networks), developing a
theoretical foundation and concluding most sharply that a 3D mesh interconnect
is the only way to go.

This is a broader solution space than usual. Most work in this area looks at
incremental changes to existing products. For example, serial communications
links were designed into supercomputer networks years ago. Most work in
supercomputer interconnect now seeks to upgrade serial links to the latest
technology, such as Infiniband. Unfortunately, this approach rules out the
possibility that serial links may not be the right choice if one were to start from
scratch. In this paper, we will consider changing any component that would
bound performance levels away from the limits dictated by the speed of light.

This paper focuses on the network portion of a Petaflops supercomputer that
might go into service in 2010. Sandia and the DOE community tend to build
supercomputers from a large number of commodity components and at most a
few custom ones. While small in number, the custom components have the
longest lead times and involve the most Government intervention. This paper is
studying interconnections network seven years in advance of a proposed
deployment, with the expectation that the remaining components could be filled
in later on from commodity parts with shorter lead times.

This report specifically excludes considering the computational engines in a
supercomputer (the issue is too controversial for now), but the network proposed
could be used in the two principal designs under consideration:

1. The left side of figure 1 shows a System On Chip (SOC) Processor In
Memory (PIM) design. In this approach, a supercomputer would be
constructed of one custom chip containing a processor and network
interface. The supercomputer �node� would comprise this chip and
some additional memory. To meet conventional balance requirements,
the bandwidth to the external memory should be about the same as
the bandwidth to each network interface. (The diagram is shown with
six network interfaces for illustration.) Since I/O bandwidth is a limiting
factor for chips in this technology node, the surface of the chip is
shown as divided among the interfaces according to bandwidth.

 10

2. The right side of figure 1 shows the more conventional discrete
implementation of a Massively Parallel Processor (MPP) node. In this
approach, a conventional microprocessor chip interfaces to a network
chip and DRAM. To meet conventional balance requirements, the
network interface chip�s interface to the microprocessor (and DRAM)
should be about the same as the bandwidth to each network interface.
This creates the same bandwidth and pin allocation as the SOC PIM
approach.

In our view, both the SOC PIM and discrete approaches are candidates for the
2010 time frame (the SOC PIM probably yielding a more efficient design but with
higher development costs). We will �hedge our bets� by proceeding in this report
in a manner largely compatible with both approaches. However, we will use the
SOC PIM for illustration.

Other issues addressed in this report include:

• A compact but serviceable 3D physical design compatible with both water
and air cooling

CPU

I/O Bus

Microprocessor

Memory Bus

DRAM

DRAM

DRAM

-X +X

-Y +Z

+Y -Z

-X +X

-Y +Z

+Y -Z

System On Chip (SOC)
Processor In Memory (PIM)

Discrete Component Design
Cluster/ASCI Red

Figure 1: SOC vs. Discrete

 11

• Dynamic Phase Alignment as a low latency alternative to clock
synchronization

• A DC balancing method with zero latency

• Deadlock free routing

• Router optimized to the most common route � straight ahead routing

• A router design with three-lanes but with the performance of a full

crossbar

• Virtual channels and a generalized �protocol engine� for message
processing in a couple clock cycles

• Support for both shared memory and message passing communications

semantics

• Error detection and recovery capable of mitigating a failing router chip

The assumed parameters for the Petaflops supercomputer are given in the table
below:

Physical Size 5� x 7� x 12�
Nodes 10368 @ 100 Gflops
Topology 3D mesh 27 x 16 x 24
Clock rate 10 GHz
External signaling rate 40 GHz
Cross-machine latency 100 ns
Link bandwidth @ 4 bytes/flop 400 GBytes/sec
Wires per link per direction 160
Interconnect pins/chip 1920

Table 1: Basic System Parameters

Primary Chip Design

Each node will consist of a main Application Specific Integrated Circuit (ASIC)
and extra memory. For a SOC PIM implementation, the approximate floor plan of
the ASIC is shown in figure 2 and comprises a network interface around the
periphery with a central section comprised of some number of microprocessor
cores (µP) with associated memory.

 12

The choice of 16 microprocessor cores was for illustration purposes only. A
discrete implementation would not have microprocessors or RAM at all.

Figure 3 shows the proposed placement of the interconnections to and from the
ASIC. As justified below, the network topology will be a 3D mesh and therefore
have six bidirectional links. Since the bandwidth of each interconnection link will
be approximately equal to the memory bandwidth according to balance factors,
the chip area to be divided into seven more-or-less equal sections.

According to ITRS[ITRS] projections, the maximum pin count in 2010 will be 4009.
If 2600 are available after a 33% reservation for power and ground, the number
of pins in each group will be about 381. This design requires 360 pins per group.

ASIC 2.1 cm x 2.1 cm

µP

RAM

µP

RAM

µP

RAM

µP

RAM

µP

RAM

µP

RAM

µP

RAM

µP

RAM

µP

RAM

µP

RAM

µP

RAM

µP

RAM

µP

RAM

µP

RAM

µP

RAM

µP

RAM

Network Logic

Three Routing Channels

Figure 2: ASIC Layout Assuming SOC PIM
Implementation

 13

Strategies for Low Latency

There are just a few degrees of freedom available to minimize latency: faster
signals, shorter distances, less �hop� delay, fewer hops, and low overhead in the
interface to user programs. We will address each of these in turn, starting with
signal speed and propagation distance.

Physical Data Transmission

We will use electrical signal transmission. Free space optics is the technology
closest to maturity that can get to within a few percent of the speed of light (c).
However, our judgment is that free space optics will be quite expensive in the
2010 timeframe, if it is even available. The next best options are waveguides
(wires) and optical fibers, which have a propagation speed around .7c (.7 of the
speed of light, c). Since .7c meets design goals and the technology is readily
available, we propose to use it.

Node Design and 3D Packaging

The obvious way to reduce wire length is to use a physically compact design
where signals travel a path approximating a straight line between source and
destination. Three dimensional mesh networks meet the requirements and are
proposed.

DRAM
Interface

400
GBytes/s

Right Flowing X
Links 400 GBytes/s

Left Flowing X Links
400 GBytes/s

Up Flowing Y Links
400 GBytes/s

Down Flowing Y
Links 400 GBytes/s

Into Page
Flowing Z
Links 400
GBytes/s

Out of
Page

Flowing Z
Links 400
GBytes/s

Figure 3: Example Layout of Interconnect Across
the Chip

 14

Three dimensional mesh networks have been proposed in the research
community for some time, including the m-machine[Filo], Blue Gene[Denneau], etc.
While these designs worked but in their time, it would not have been appropriate
to develop them further because logic was still much slower than signal
propagation. Since technology has progressed in the interim and the object of
this paper is to explore low latency designs, we will investigate three-dimensional
packaging.

Figure 4 shows the layout of a two-node circuit board. Each of the primary ASICs
is paired with a group of DRAM DIMMs mounted underneath the circuit board.
Each circuit board comprises two ASICs/memory pairs and an associated power
conversion module. Circuit boards can be strung end-to-end to create linear
structures (this method is similar to the Shish Kabob packaging of Blue Gene).

Figure 5 illustrates the proposed 3D packaging method. The linear board
structures in figure 4 are connected along their sides into a three dimensional
mesh. The circuit boards will require connectors capable of connecting along
their edges, similar to Intercon shuttle connectors (used in Cray T3E and X1).

Main
ASIC

Power
Module

DRAM
DIMMS

Mesh Interconnect

Figure 4: Node Board for Three-Dimensional Packaging

 15

The interconnection network will be based on a 3D mesh mapped directly to the
3D structure above. Figure 6 shows how the mesh interconnection wires flow
between the primary ASICs to form the interconnection network. The key concept
is to provide a structure where all intercommunications wires are of fixed length,
thereby assuring fixed speed of light delays irrespective of the size of the
machine.

Figure 5: Three Dimensional Packaging

X Dimension
Wiring

Z Dimension
Wiring

Y Dimension
Wiring

Figure 6: Mapping of 3D Mesh to Physical Structure

 16

Physical Size and Overall Latency

Figure 7a illustrates our view of a potential machine geometry that offers the best
performance with workable technology. The structure of figure 5 would be
implemented as 27 x 16 x 24 mesh (same as Red Storm, but 100
GFLOPS/node) in a compact package of 5� x 7� x 12�. The linear structures of
figure 4 would be 5� long and oriented in this dimension. The volume budget for
each node would be 70 cubic inches, corresponding to a board size in figure 4 of
3.5� x 10� with about 3.5� spacing between boards. To remove heat from such a
structure would require water-cooling in the channels of the structure in figure 5.

A target of 100 ns cross-machine latency should be feasible for the structure in
figure 7a, with the latency budget illustrated in the figure.

An air-cooled configuration is possible as well, as shown in figure 7b. The
physical design would be quite different because air has much less heat capacity
than water and because air-cooling presumes that people will be working in the
coolant air. The candidate design shown has a room pressurized by cooling air
with the structure of figure 5 protruding through the room�s wall. People working
on the �cold� side would have access to the machine for servicing.

12’

7’

5’

Cross the machine:
24 ns @ speed of light
35 ns @ 70%
100 ns latency target

Figure 7a: Water-Cooled
(SOC PIM option)

 17

With a full-machine power dissipation of 1.5 MW, the configuration in figure 7b
and 7c moving air at 20 fps would heat air from 70° F to 97° F (15° C).

Figure 7c: Air-cooled Configuration

Window to room with power
supplies and heat exhaust. A
pressure differential of about 2�
H2O will supply sufficient airflow
to cool the machine.

Figure 7b: Air-cooled configuration

 18

Serviceability

To enable the computer to be serviced, the system will consist of field
replaceable units that can be withdrawn from the system from one side, as
illustrated in figure 8.

Electrical Issues

A review of existing supercomputer interconnects indicates that a major source of
latency is repeated shifting of data between clock domains. In previous and
existing designs, data is sent serially with the clock embedded in the data. To
achieve higher bandwidth, many serial lines are run in parallel, but each serial
line still carries its own clock. As far as we can tell, this is an artifact of the
architectural history of supercomputers and not necessarily a good choice at this
point in the technology.

Figure 8: Serviceability

 19

We propose to use a timing approach called �dynamic phase alignment� and
illustrated in figure 9. The entire Petaflops supercomputer will have a single
global clock. This clock will be distributed to all boards using an especially
engineered low-jitter distribution network. We will assume this clock to be
distributed at 10 GHz. Thus, every chip will be guaranteed to have a clock of
exactly the same frequency as every other chip, but of random phase
relationship and with various sources of superimposed jitter and drift.

All communications links associated with the network will go through a
programmable delay line before being clocked into a standard flip-flop. To first
approximation, the delay lines will be set statically to the phase difference
between the clock entering the chip and the phase of the external data signal.
This could be accomplished with a delay line tapped at a couple dozen locations
and selected with a multiplexer.

The proposed adjustment range of the delay line is given by the equation below.
The factors are: (a) The adjustment range will have to be at least one clock
period to accommodate the random phase relationship between the data signal
and the global clock as it appears on the chip. (b) An additional range will be

f

Exactly f but with
arbitrary phase, jitter,
and drift

Internal
Logic

Delay lines
programmable up to 1
clock period, adjusted

< 1KHz

Chip Boundary

Global Clock

External
Signals

Wire delay

Clock period ⎡ ⎤ Delay =

Delay

Delay

Delay

Figure 9: Dynamic Phase Alignment

 20

needed to accommodate differing wire lengths for bits in data busses. (3)
Additional range to accommodate periodic adjustment to jitter.

Trange = Tclk + T∆wire + Tjitter + Tmargin
where
Trange is the adjustment range
Tclk is the system clock period (100 ps)
T∆wire is the transit time difference in data wires
Tjitter is other sources of jitter
Tmargin is a timing margin

This form of clock latency adjustment will add at most one clock period to
whatever the delay is in the wire.

Completely static settings of the delay lines are unlikely to work at the highest
frequencies due to jitter. Specifically, the relative phase between the clock and
data at any chip will vary due to factors like:

1. Jitter caused by power supply noise

2. Drift caused by cables expanding and contracting due to temperature

or changes in dielectric constant in transmission lines causing changes
in propagation velocity

3. Intersymbol jitter on data lines (clock distribution does not have this

jitter because there are no symbols)

Jitter and drift in sources 1 & 2 could be accommodated by logic that adjusts the
delay lines by monitoring the placement of transitions at a relatively slow rate
(<1KHz). Jitter source 3 will need to be minimized, but may define the limits of
this method.

Bit Encoding

Figure 11 shows the conventional method of assuring constant DC levels on high
speed lines.

The conventional method has unnecessary latency. Specifically, the method is
designed with a 10-bit DC-balanced code word transmitted serially over each

10 bit
shift
register

8 bit
parallel
register

Look at first bit
after 11 clock

cycles

10-8
Converter

Figure 11: Conventional Bit Encoding for DC Balance

 21

data line. The code words are shifted into a register over a period of 10 clocks,
after which the code word in translated in parallel to a non-DC-balanced byte.
The entire process has a latency of 11 clock cycles between the time the first bit
arrives on the wire and when the logic can make its first decision based on its
contents.

We propose a method with significantly lower latency. The idea behind bit
encoding for DC balance is to pick code words with the same number of 1s and
0s. There is no particular reason why the first, second, third, or any particular bit,
needs to be constrained to achieve this balance. We therefore propose to use a
code word where the first bit of each serial stream is a plain data bit. This shifts
the DC balance constraint to the second and later bits.

We also propose a method where the router can alter data in the message while
still retaining DC balance. To avoid routing tables, each message will contain the
routing path (source based routing). However, each router will need to know
where it is in the route. While there are several ways to do this, we propose that
each message have a 7-bit field containing the �state� of the message along the
route. As the message flows through each router, this field gets altered.
However, this will change the DC balance of each bit line switched. To
compensate, we propose that the state field be immediately followed by its
complement. The router is therefore free to modify the state field as it chooses as
long as it takes responsibility for injecting the complement in the subsequent bits.

The proposed packet format is shown below. The interconnect consists of 80 bit
parallel busses, thus defining the packet width. The 80 bits comprising the first bit
on each signal contain as the information necessary to route the packet, as well
as some data. The route is defined by up to six segments each of up to 16
�hops.� Dirn and Distn give the direction and distance of the n�th hop. To enable to
router to know how far through the route a message has gotten, a state field is
included comprised of an indication of which of the routes (Route<0:2>) is
currently being traversed and how many �hops� down the route the message had
already traveled as it entered the router (HowFar<3:6>). The state field is
followed by its complement.

 22

The intent of this format is to enable logic to make a fast routing decision after
looking at only the first bit of a packet.

Routing

We propose to use a routing schema based on the �turn model�[Glass] and which is
very similar to the ASCI Red system at Sandia [Mattson]. We propose non-adaptive
routes in three dimensions based on a three-dimensional turn model, but
compatible with XYZ dimension-ordered routing.

Experience indicates that dimension-ordered routing works very well in terms of
minimal path and load balance. Therefore we propose to use XYZ dimension-
ordered routing where this route is available.

Faults will make dimension-ordered routing infeasible for messages �near� the
fault. To permit the machine to keep operating with only localized performance
degradation, some other static route compatible with a three-dimensional turn
model strategy will be used instead. For this approach to work, XYZ dimension-
ordered routing must be a legitimate subset of the turn model strategy.

! Dir0 <7:9> Dist0 <10:13>

! Dir1 <14:16> Dist1 <17:20>

! Dir2 <21:23> Dist2 <24:27>

! Dir3 <28:30> Dist3 <31:34>

! Dir4 <35:37> Dist4 <38:41>

! Dir5 <42:44> Dist5 <45:48>

! Route <0:2> HowFar <3:6> ~(Route <0:2> HowFar <0:3>) "

! Etc. <49:79>

DC-
Balancing
Payload

Checksum

First bit Last bit

Figure 12: Bit Encoding for Low Latency while retaining DC Balance

 23

Router Chip Architecture

We propose to lay out the router to provide best performance for the most
common case, filling in the rest of the design in a second stage. Most of the time
messages will go through the router in a straight line, changing direction only a
few times in an entire route. The router design in figure 13 has a fast and direct
pathway for messages continuing straight ahead.

The router chip will have physically compact cut-through logic to handle data
flows in each of the 6 directions (only 4 directions shown above). For example,
the cut-through block highlighted in the diagram above handles messages
arriving from the left and continuing to the right. The purpose of each such cut-
through block will be to make a one-cycle decision as to whether an incoming
message can be �cut through� to the output link right away or routed to more turn
and queuing logic elsewhere on the chip. This should be feasible in a short time
because the only information needed will be the first address field and a flag
indicating that the output buffer is currently available.

 Turn
Logic

This logic block
optimized for

messages
flowing right
with no turns

Figure 13: 2D Router Layout for Fast Straight Ahead Routes

Router Chip

 24

Figure 14 illustrates the cut through logic in detail. In one setting, the incoming
network connection is �cut through� to the network output connection. In the other
setting, the turn and queuing logic is supplying data to the network and the
incoming network data has to be routed elsewhere for storage. This calls for a 2
× 2 switching element.

We propose an internal router design that improves on the common designs
widely studied in the literature. It is widely assumed that a wormhole router must
include an internal crossbar switch data between input and output ports � and
that the logical complexity and time cost of this crossbar is substantial[Chien].
However, figure 15 shows a better way. This diagram shows the data paths
necessary to implement dimension-ordered routing as an abstract 2D layout.
One can see all the connections needed, and these are far fewer than a
crossbar. The diagram shows the six external connections and connections to
the local processor at the center. The circular arrows at the outer boundary are
the cut through logic as described in figure 13. The interconnections within the
hexagonal shapes implement the �turns� used in XYZ dimension-ordered routing:
XYZ dimension-ordered routing only implements the turns X " Y, X " Z, Y " Z,
and any dimension to and from the local processor.

Network
In

Network
Out

Crossbar

To turn and queuing
logic

From turn and queuing
logic

Figure 14: Detail of Straight Ahead Logic

 25

Figure 16 illustrates the routing logic corresponding to one channel of the circular
placement illustrated above. According to figure 15, three data pathways circling
the chip will be sufficient if they can carry data in either direction and can be
�broken� at various points. The three routing lanes in the diagram below have
these properties based on the settings of the switches and other configuration
parameters.

-X +X

+Z

-Z

+Y

-Y

 Local
Processor

Figure 15: Three Traffic Lanes for Turn Logic

Output Queues

Input Queues

Recovery
RAM

 Local
Processor

Routing Lanes
1 2 3

Routing Lanes
1 2 3

Figure 16: Directional Interface

 26

• Incoming data goes to an input queue and subsequently to the output
queue, any of the routing lanes, or to the local processor.

• Data from the local processor, any routing lane, or an input queue can go

to the output queue.

• Data is stored in the recovery RAM just before it is put on an output wire.

To demonstrate that wiring overhead is manageable, figure 17 illustrates the
wiring channels and chip size to scale. According to the ITRS 2002 update,
global wiring will pack on a 205 nanometer (nm) pitch in the 45 nm technology
node. If the 80 bit data pathways running externally at 4x clock are passed
across the chip at a 1x clock rate, there will be 320 conductors occupying a
channel 205 × 320 = 65,600 nm in width. No more than three channels will be
needed across the circumference of the chip, or just short of 200,000 nm or 200
µm or .2 mm. The scale diagram below shows a 1 cm x 1 cm chip with three
channels of .2 mm around the edge. According to the 2002 ITRS, repeaters
should be installed every 54 µm for optimal propagation speed. This would
correspond to about 200 repeaters across each chip edge, for a delay of about
400τ (τ is the characteristic RC time delay for a minimum size gate) or .6 ns. As
can be seen in the figure, there is plenty of space left for the processor.

XYZ routing is not sufficient in the presence of faults. We therefore propose to
create linkages between the pathways shown above to permit arbitrary routing
patterns, but with a speed penalty due to the sharing of internal busses.

200 repeaters at 54 µm intervals � .6 ns delay

Scale diagram shows a 1 cm x 1 cm
die with three 320 conductor routing

channels around the edge

Figure 17: Dimensions of Routing Lanes

 27

Virtual Channels

Virtual channels are an esoteric but well-studied concept in networking. We will
first explain the concept and then propose some general principles for their use
in this machine.

Figure 18 illustrates the virtual channel concept. The �wormhole� data
communications in a supercomputer include a flow control that makes the
channel like a garden hose. To be specific, data available to flow through a
channel can become blocked when the receiver is unable to handle the data �
similarly to a garden hose with the nozzle shut off. In this case, the data waits
until the receiver turns on the flow.

However, a physical channel can contain two or more virtual channels. In this
case, each of the virtual channels has independent flow control. This means one
channel can be blocked while the other is not, and so forth.

Figure 19 is a simplified illustration of how virtual channels can support this
design, including the concept of deadlock and protocol handling.

Figure 19 illustrates the flow of messages between three nodes, shown as
horizontal regions designated as 0, 1, and 2. Messages flow between nodes via
the diagonal communications channels and buffers in the direction of the arrows.

Figure 18: Multiplexing Virtual Channels on a
Physical Channel

Protocol
Engine

Protocol
Engine

Protocol
Engine

Node
0

Node
1

Node
2

Figure 19: Dual Virtual Channels and Protocol
Handling

 28

Deadlock could occur if there were a circular dependency in the data flows
between buffers, such as the one illustrated by the wavy line (including the !
symbol on the illegal pathway that would be required to complete the cycle). We
have drawn the diagram where all diagonal buffers point rightward. The rightward
motion assures that figure 19 is an acyclic graph and as a result, a machine built
this way would never incur deadlock.

The proposed network for this machine will not have deadlock-enabling cycles
due to the nature of the turns permitted in table 2. Thus one could in principle
draw a diagram like figure 19 for this machine. However, the diagram would have
over a quarter million buffers and would not be practical to draw.

To assure proper operation at speed, we propose special support in the network
for the protocols that underlie the operation of supercomputers, such as shared
memory and message passing. Both these protocols have a step where a
message is received (either a shared memory address or a message data
packet) and is followed immediately with a response (memory data return or data
acknowledgement). Without virtual channels, the immediate response creates a
leftward flowing buffer dependency, a cycle, and the possibility of deadlock.

The virtual channel in figure 19 permits efficient protocol handling while avoiding
deadlock. The strategy is to put the initial messages in each pair on one virtual
channel and the response messages on the other virtual channel. As one can
see from figure 19, the entire flow of the request through the first virtual network,
the generation of the response, and the flow of the response through the second
virtual network creates leftward flowing buffer dependencies through the entire
diagram.

We are therefore proposing two sets of virtual channels for requests and
responses in a request-response protocol. This design is well known for
distributed shared memory systems and there is extensive information on its
performance. However, this approach is not widely used in message-based
systems.

Protocol Engine and NIC

To meet speed requirements while maintaining sufficient functionality, the
network interface will need substantial improvement over those in common use
today. Today�s distributed shared memory systems (such as X1) are engineered
for low latency and may serve as a model in this respect. However, today�s
software stacks for MPI, Portals, and other message passing protocols have
functionality enhancements that permit them to scale to enormous sizes. We
therefore propose to merge these two approaches into a protocol engine that can
achieve both low latency and broad functionality.

 29

The architecture of the protocol engine in figure 20 is followed by table 3 showing
how the interface can be applied to various communications protocols.[DeBenedictis]
The protocol engine is a hardware device operating at the clock rate of the main
CPU chip. Unlike a CPU, the protocol engine operates on incoming messages,
updating the state of protocols based on a protocol state transition table, and
transmitting output messages. The protocol engine can also read and write the
main memory for successive bytes of long messages, etc. and interface to user
programs in other ways.

The protocol engine can be applied to many common communications
paradigms by applying the protocol state and transition tables properly. This is
illustrated in the table below.

 Transaction State Transitions User Interface
Shared
memory

Read/write State of a page Cache coherence
protocol (or non
coherent memory
access)

Read/write
memory; map
pages

Portals Remote get/put Message buffer
with protocol
state

Successive receipt
of data packets
and periodic
acknowledgements

Interrupts and
MPI calls

Collectives Global sum,
etc.

~50 bytes of
neighbor
topology +
intermediate
sums

Input and output
of constituent
messages, relay to
parent, multicast
of results

System calls

Table 3: Application of Protocols to the Protocol Engine

Protocol State
Memory

Protocol
Transition
Definitions
(fast RAM)

Current
State

New State

Network Input
Message

Network
Output

Message
Linked List of

Protocols Needing
Output Main Memory

Figure 20: Protocol Engine

 30

Proposed Protocols and User Application Interface

The design of the network interface is beyond the scope of this report. However,
the type of protocol engine described above should be able to support all of the
widely-used communications paradigms, including:

1. MPI support: A variety of primitives to send/receive a message to a
remote buffer pool in a sufficient set of variants to support MPI�s
synchronization modes.

2. Shared Memory: Read and write remote memory with optional coherence.
Will use two virtual channels for address and reply.

3. Collectives: Hardware-based protocols to synchronize over a subset of the
machine directly in the network fabric.

4. Locks and semaphores.
5. Multiphase commit.
6. The functions above to be operable with a programmable channel capable

of sequencing a number of operations on sequential, strided, or indirect
addresses. This programmable channel is to be fast enough to drive the
network at full speed and without incurring latency beyond what is
necessary for access to the channel command structure (in other words,
this is not to be a microprocessor).

7. A programmable NIC for higher-level operations, such as boundary
exchange support, TCP/IP, etc.

Error Detection and Recovery

An ASCI-size supercomputer must continue to run even when a chip fails. The
number of parts is large enough that some part will fail often � every few days to
every week or so. The degree of failure tolerance generally accepted by ASCI is
for the application actually using the failing component to abort, but for the overall
supercomputer and all other applications to continue running. In addition, the
supercomputer should support hot swapping of components so that the failed
component can be replaced and the machine returned to fully operational status.

We propose an improved method of achieving high reliability, including tolerance
of hard and soft errors. The two methods that serve as the base for our
improvements are:

1. Most systems today have end-to-end error detection with
retransmission for recovery. While this method is proven, the
resulting protocols are error prone and introduce overhead that cuts
performance even in the absence of faults.

2. Many systems today also employ a local error detection and
recovery. However, a local method is vulnerable to hard failure of a
router chip. In a local method, router chips store messages in
internal memories. Hard failure of a router chip causes loss of some
messages in transit.

 31

We propose a two-hop error detection and recovery method as illustrated in
figure 21. In this method, each router chip (labeled �self�) retains a copy of all
transmitted messages (messages are green; copies are red) until the message
has been successfully received two hops away � its neighbor�s neighbor.

Figure 21 illustrates the Eastbound output of a router. Outgoing traffic from this
output goes to the neighbor on the right, after which it is either consumed by the
neighbor or relayed to one of five neighbor�s neighbors (North, Up, East, South,
or Down � but not back to the West via a 180° turn).

Copies of all Eastbound outgoing traffic is first stored in the East Recovery
Memory until it has been successfully received by one of the neighbor�s
neighbors. The message deletion mechanism involves two acknowledgement
messages: a regular �ack� message indicating that the message has been
successfully received by the neighbor and a �ack2� message routed one
additional hop upstream indicating that the message has been successfully
received by the neighbor�s neighbor.

However, data consumed by a neighbor is retained only until the neighbor
acknowledges receipt of the data (not illustrated).

East Recovery
Memory

East

South Down

North

Self

Neighbor�s
Neighbor East

Neighbor�s
Neighbor Up

Neighbor�s
Neighbor
North

Neighbor�s
Neighbor
South

Neighbor�s
Neighbor
Down

Ack Ack2

Outgoing traffic
Neighbor

Message

Message
Copy Saved
for Resend

Up

Input
Buffer

Output
Buffer

Figure 21: 2-Hop Error Detection and Recovery

 32

Adding recovery memory substantially increases the amount of memory in the
router, but saves more memory elsewhere. Without recovery memory, each of
the 6 directions plus the processor interface will require Bi + Bo message spaces,
where Bi and Bo are the number of message spaces in the input and output
buffers. This totals 7(Bi + Bo). Ignoring wire delay, each recovery memory must
be sized at (6 Bi + 5 Bo) messages (one extra Bi for data destined to be
consumed by the neighboring processor). For the 6 recovery memories in each
buffer, this becomes an additional 36 Bi + 30 Bo If Bi = Bo, this increases buffer
requirements by 66/14 ≈ 4.7. However, this figure ignores wire delay: Each
recovery memory should have additional capacity equal to 12 times the
information that would be stored on a link when viewed as a delay line. This
figure is hard to estimate at this stage, but would not be prohibitive.

While the recovery memory approach substantially increases storage
requirements in the router, it saves memory elsewhere. Without the recovery
memory, fault recovery would have to come about through a different
mechanism. Typically, this involves the sending processor keeping a copy of the
data in its memory until it has been assured the data has arrived at the final
destination. These memories are often enormous to accommodate odd data
patterns and network congestion. Memory is no longer needed for end-to-end
data acknowledgement and retransmission.

We anticipate that the recovery memory would be used to mitigate transient data
loss, but this is beyond the scope of this document.

Deadlock Avoidance in Event of Faults

To achieve the lowest latency, we propose a method where data packets are
routed immediately upon receipt and before the error detection codes have been
validated. If an error occurs in an address or control field, the packet may be sent
to the wrong destination. To prevent deadlock, we propose each router have a
changeable list of allowable �turns� derived from the �turn model� of routing. A
message requesting an unallowed turn will be discarded. This prevents deadlock.

The �turn model� is a mathematical treatment of message routing. In this
treatment, the routing designer creates a set of allowable turns (such as east-to-
north, north-to-west, etc.) that obey a set of mathematical properties. The turn
model then guarantees no deadlocks as long as all messages follow allowable
turns.

We propose to use this method for fault mitigation. While the system will
generate routes for messages that obey the allowable turns (and are also follow
the shortest path and avoid hotspots), the routing information could become
corrupted and the message could attempt to make an illegal turn. To prevent this,
the hardware will perform a second, on-the-fly, routing check and discard any
route before it can make a wrong turn.

 33

Error recovery method:

1. System detects malfunction
2. System goes into a diagnostic mode where user programs are

halted and the real time clock stops incrementing (so user
programs really and truly will not know they were halted).

3. System reconfigures, aborting jobs that can�t continue.
4. In-transit messages move from the �recovery� RAM to output

queues. May need to identify duplicated messages.
Reliability Standard

For hard failure of one chip, the system will continue to run, although an
application with state on the failing chip will abort. Failed chips will be
deconfigured from the system for hot swap replacement in FRUs (that may
contain multiple nodes). A system with failed nodes is permitted to have
degraded communications performance.

For hard failure of up to 10 chips: same as above for 99% of failure patterns.

For hard failure of one link: System and all applications continue running.
Communications performance may degrade.

For hard failure of up to 10 links: same as above for 99% of failure patterns.

Soft errors: System can be engineered with tolerance for all single bit soft errors
on memory and flip flops (but not logic). Probability of unmitigated multiple bit soft
errors to be sufficiently low that there will be less than 1 undetected error in 5
year lifespan of machine. Soft error rate to be computed based on Los Alamos
altitude.

Conclusions

We have outlined a strategy to achieve 100 ns user-to-user latency at Petaflops
scale, with sufficient bandwidth to balance CPU rates. The strategy uses a three-
dimensional packaging structure that maps the signal flow within the network to
the three-dimensional structure of the machine room. As a consequence, latency
in this network is within a constant factor of optimal as determined by the speed
of light. We also proposed a packaging and cooling structure for the network and
associated computational elements that would be sufficient at very large scales.

 34

References
1. Chien, Andrew A, �A Cost and Speed Model for k-ary n-cube Wormhole

Routers,� IEEE Transactions on Parallel and Distributed Systems, vol. 9, no.
2, pp. 150-162, February, 1998.

2. Denneau, Monty, et. al., �Blue Gene, A Vision for Protein Sciences Using a

Petaflops Supercomputer,� IBM Systems Journal, vol. 40, no. 1, pp. 310-327,
2001.

3. M. Fillo et al., "The M-Machine Multicomputer," Proc. 28th Ann. Int'l Symp.

Microarchitecture, IEEE CS Press, Los Alamitos, Calif., 1995, pp. 104-114.

4. DeBenedictis, E., �A Multiprocessor Using Protocol-Based Programming

Primitives,� International Journal of Parallel Programming, Vol 16, No. 1,
February, 1987, pp 53-84.

5. Glass, Christopher J and Ni, Lionel M., �The Turn Model for adaptive routing,�

in Proceedings of 19th Annual International Symposium on Computer
Architecture, 1992, pp. 278-287.

6. International Technology Roadmap for Semiconductors, http://public.itrs.net.

7. Mattson, Timothy G., �An Overview of the Intel TFLOPS Supercomputer,�

Intel Technology Journal, 1st Quarter 1998.

8. Preparata, Franco, P. and Bilardi, Gianfranco, �Horizons of Parallel

Computation,� Technical report number CS-93-20, Department of Computer
Science, Brown University, May 1993 (meshes are the way to go).

9. Vitanyi, P. M. B., �Locality, communications, and interconnect length in

multicomputers,� SIAM J. on Computing, 17, 4 (1988), 659-672. (mesh-
connected architectures may be the ultimate solution for interconnecting the
extremely large computer complexes of the future)

 35

Distribution:
1 MS 9037 J. C. Berry, 8945 1 MS 0818 P. Yarrington, 9230
1 9019 S. C. Carpenter, 8945 1 0819 R. M. Summers, 9231
1 9012 J. A. Friesen, 8963 1 0820 P. F. Chavez, 9232
1 9012 S. C. Gray, 8949 1 0316 S. S. Dosanjh, 9233
1 9011 B. V. Hess, 8941 1 0316 J. B. Aidun, 9235
1 9915 M. L. Koszykowski, 8961 1 0813 R. M. Cahoon, 9311
1 9019 B. A. Maxwell, 8945 1 0801 F. W. Mason, 9320
1 9012 P. E. Nielan, 8964 1 0806 C. Jones, 9322
1 9217 S. W. Thomas, 8962 1 0822 C. Pavlakos, 9326
1 0824 A. C. Ratzel, 9110 1 0807 J. P. Noe, 9328
1 0847 H. S. Morgan, 9120 1 0805 W.D. Swartz, 9329
1 0824 J. L. Moya, 9130 1 0812 M. R. Sjulin, 9330
1 0835 J. M. McGlaun, 9140 1 0813 A. Maese, 9333
1 0833 B. J. Hunter, 9103 1 0812 M. J. Benson, 9334
1 0834 M. R. Prarie, 9112 1 0809 G. E. Connor, 9335
1 0555 M. S. Garrett, 9122 1 0806 L. Stans, 9336
1 0821 L. A. Gritzo, 9132 1 1110 R. B. Brightwell, 9224
1 0835 E. A. Boucheron, 9141 1 1110 R. E. Riesen, 9223
1 0826 S. N. Kempka, 9113 1 1110 K. D. Underwood, 9223
1 0893 J. Pott, 9123 1 1110 E. P. DeBenedictis, 9223
1 1183 M. W. Pilch, 9133 1 0321 W. Camp, 9200
1 0835 K. F. Alvin, 9142 1 0841 T. Bickel, 9100
1 0834 J. E. Johannes, 9114 1 9003 K. Washington, 8900
1 0847 J. M. Redmond, 9124 1 0801 A. Hale, 9300
1 1135 S. R. Heffelfinger, 9134 1 0139 M. Vahle, 9900
1 0826 J. D. Zepper, 9143 1 0134 Ron Detry, 9700
1 0825 B. Hassan, 9115
1 0557 T. J. Baca, 9125 1 9018 Central Technical Files,
1 0836 E. S. Hertel, Jr., 9116 8945-1
1 0847 R. A. May, 9126
1 0836 R. O. Griffith, 9117 2 0899 Technical Library, 9616
1 0847 J. Jung, 9127
1 0321 P. R. Graham, 9208
1 0318 J. E. Nelson, 9209
1 0847 S. A. Mitchell, 9211
1 0310 M. D. Rintoul, 9212
1 1110 D. E. Womble, 9214
1 1111 B. A. Hendrickson, 9215
1 0310 R. W. Leland, 9220
1 1110 N. D. Pundit, 9223
1 1110 D. W. Doerfler, 9224
1 0847 T. D. Blacker, 9226
1 0822 P. Heermann, 9227

	Abstract
	Contents
	Figures
	Tables
	Nomenclature
	Introduction
	Primary Chip Design
	Strategies for Low Latency
	Physical Data Transmission
	Node Design and 3D Packaging
	Physical Size and Overall Latency
	Serviceability
	Electrical Issues
	Bit Encoding
	Routing
	Router Chip Architecture
	Virtual Channels
	Protocol Engine and NIC
	Proposed Protocols and User Application Interface
	Error Detection and Recovery
	Deadlock Avoidance in Event of Faults
	Reliability Standard
	Conclusions
	References
	Distribution:

