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Abstract 

 
If we are to build a supercomputer with a speed of 1015 floating operations per 
second (1 PetaFLOPS), interconnect technology will need to be improved 
considerably over what it is today. In this report, we explore one possible 
interconnect design for such a network. The guiding principle in this design is the 
optimization of all components for the finiteness of the speed of light. 
 
To achieve a linear speedup in time over well-tested supercomputers of todays� 
designs will require scaling up of processor power and bandwidth and scaling 
down of latency. Latency scaling is the most challenging: it requires a 100 ns 
user-to-user latency for messages traveling the full diameter of the machine. To 
meet this constraint requires simultaneously minimizing wire length through 3D 
packaging, new low-latency electrical signaling mechanisms, extremely fast 
routers, and new network interfaces. In this report, we outline approaches and 
implementations that will meet the requirements when implemented as a system. 
No technology breakthroughs are required. 
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Nomenclature 

 
3D..�........................................................................................Three Dimensional 
ASCI..�............................. Advanced Simulation and Computing (the �I� is silent) 
ASIC..�.......................................................Application Specific Integrated Circuit 
CPU..�............................................................................. Central Processing Unit 
CRC..�.. ...................................................................... Cyclic Reduncancy Check 
DC..�.. ............................................................................................ Direct Current 
DIMMs..�.. ................................................................................... Memory Module 
DOE�.. ...............................................................................Department of Energy 
DRAM�...........................................................Dynamic Random Access Memory 
FLOPS..�.. .........................................................Floating Operations Per Second 
GFLOPS..�................................................... 109 Floating Operations per Second 
ITRS�.. .......................... International Technology Roadmap for Semiconductors 
MPI..�.........................................................................Message Passing Interface 
MPP..�.. .................................................................. Massively Parallel Processor 
NIC..�.. .............................................................. Network Interface Chip (or Card) 
PetaFLOPS..�.. .......................................... 1015 Floating Operations Per Second 
PIM�....................................................................................Processor In Memory 
RAM..�.. ........................................................................Random Access Memory 
SNL�.. .....................................................................Sandia National Laboratories 
SOC�.. ........................................................................................System On Chip 
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Introduction 
This paper proposes an architecture for a supercomputer interconnection 
network that will run nearly as fast as the speed of light will permit. As 
background, Moore�s law has caused transistor speed to increase exponentially 
over the last several decades yet the speed of light does not change. While 
speed of light delay contributes only around 1% in the main interconnect of 
today�s supercomputers, exponential increase in this proportion will make it rise 
to a critical issue in the next decade or two. Theoreticians[Perperata, Vitanyi] have 
explored supercomputer design in this realm (specifically networks), developing a 
theoretical foundation and concluding most sharply that a 3D mesh interconnect 
is the only way to go. 
 
This is a broader solution space than usual. Most work in this area looks at 
incremental changes to existing products. For example, serial communications 
links were designed into supercomputer networks years ago. Most work in 
supercomputer interconnect now seeks to upgrade serial links to the latest 
technology, such as Infiniband. Unfortunately, this approach rules out the 
possibility that serial links may not be the right choice if one were to start from 
scratch. In this paper, we will consider changing any component that would 
bound performance levels away from the limits dictated by the speed of light. 
 
This paper focuses on the network portion of a Petaflops supercomputer that 
might go into service in 2010. Sandia and the DOE community tend to build 
supercomputers from a large number of commodity components and at most a 
few custom ones. While small in number, the custom components have the 
longest lead times and involve the most Government intervention. This paper is 
studying interconnections network seven years in advance of a proposed 
deployment, with the expectation that the remaining components could be filled 
in later on from commodity parts with shorter lead times. 
 
This report specifically excludes considering the computational engines in a 
supercomputer (the issue is too controversial for now), but the network proposed 
could be used in the two principal designs under consideration: 
 

1. The left side of figure 1 shows a System On Chip (SOC) Processor In 
Memory (PIM) design. In this approach, a supercomputer would be 
constructed of one custom chip containing a processor and network 
interface. The supercomputer �node� would comprise this chip and 
some additional memory. To meet conventional balance requirements, 
the bandwidth to the external memory should be about the same as 
the bandwidth to each network interface. (The diagram is shown with 
six network interfaces for illustration.) Since I/O bandwidth is a limiting 
factor for chips in this technology node, the surface of the chip is 
shown as divided among the interfaces according to bandwidth. 
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2. The right side of figure 1 shows the more conventional discrete 
implementation of a Massively Parallel Processor (MPP) node. In this 
approach, a conventional microprocessor chip interfaces to a network 
chip and DRAM. To meet conventional balance requirements, the 
network interface chip�s interface to the microprocessor (and DRAM) 
should be about the same as the bandwidth to each network interface. 
This creates the same bandwidth and pin allocation as the SOC PIM 
approach. 

 
In our view, both the SOC PIM and discrete approaches are candidates for the 
2010 time frame (the SOC PIM probably yielding a more efficient design but with 
higher development costs). We will �hedge our bets� by proceeding in this report 
in a manner largely compatible with both approaches. However, we will use the 
SOC PIM for illustration. 
 
Other issues addressed in this report include: 
 

• A compact but serviceable 3D physical design compatible with both water 
and air cooling 

 

CPU 

I/O Bus 
 
 

Microprocessor 
 
 

Memory Bus 

DRAM 

DRAM 

DRAM 

-X +X 

-Y +Z 

+Y -Z 

-X +X 

-Y +Z 

+Y -Z 

System On Chip (SOC) 
Processor In Memory (PIM) 

Discrete Component Design 
Cluster/ASCI Red 

Figure 1: SOC vs. Discrete 
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• Dynamic Phase Alignment as a low latency alternative to clock 
synchronization 

 
• A DC balancing method with zero latency 

 
• Deadlock free routing 

 
• Router optimized to the most common route � straight ahead routing 

 
• A router design with three-lanes but with the performance of a full 

crossbar 
 

• Virtual channels and a generalized �protocol engine� for message 
processing in a couple clock cycles 

 
• Support for both shared memory and message passing communications 

semantics 
 

• Error detection and recovery capable of mitigating a failing router chip 
 
 
The assumed parameters for the Petaflops supercomputer are given in the table 
below: 
 
Physical Size 5� x 7� x 12� 
Nodes 10368 @ 100 Gflops 
Topology 3D mesh 27 x 16 x 24 
Clock rate 10 GHz 
External signaling rate 40 GHz 
Cross-machine latency 100 ns 
Link bandwidth @ 4 bytes/flop 400 GBytes/sec 
Wires per link per direction 160 
Interconnect pins/chip 1920 

Table 1: Basic System Parameters 
 

Primary Chip Design 
 
Each node will consist of a main Application Specific Integrated Circuit (ASIC) 
and extra memory. For a SOC PIM implementation, the approximate floor plan of 
the ASIC is shown in figure 2 and comprises a network interface around the 
periphery with a central section comprised of some number of microprocessor 
cores (µP) with associated memory. 
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The choice of 16 microprocessor cores was for illustration purposes only. A 
discrete implementation would not have microprocessors or RAM at all. 
 

Figure 3 shows the proposed placement of the interconnections to and from the 
ASIC. As justified below, the network topology will be a 3D mesh and therefore 
have six bidirectional links. Since the bandwidth of each interconnection link will 
be approximately equal to the memory bandwidth according to balance factors, 
the chip area to be divided into seven more-or-less equal sections. 
 
According to ITRS[ITRS] projections, the maximum pin count in 2010 will be 4009. 
If 2600 are available after a 33% reservation for power and ground, the number 
of pins in each group will be about 381. This design requires 360 pins per group. 
 

ASIC 2.1 cm x 2.1 cm 
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Figure 2: ASIC Layout Assuming SOC PIM 
Implementation 
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Strategies for Low Latency 

 
There are just a few degrees of freedom available to minimize latency: faster 
signals, shorter distances, less �hop� delay, fewer hops, and low overhead in the 
interface to user programs. We will address each of these in turn, starting with 
signal speed and propagation distance. 
 

Physical Data Transmission 
 
We will use electrical signal transmission. Free space optics is the technology 
closest to maturity that can get to within a few percent of the speed of light (c). 
However, our judgment is that free space optics will be quite expensive in the 
2010 timeframe, if it is even available. The next best options are waveguides 
(wires) and optical fibers, which have a propagation speed around .7c (.7 of the 
speed of light, c). Since .7c meets design goals and the technology is readily 
available, we propose to use it. 
 

Node Design and 3D Packaging 
 
The obvious way to reduce wire length is to use a physically compact design 
where signals travel a path approximating a straight line between source and 
destination. Three dimensional mesh networks meet the requirements and are 
proposed.  
 

DRAM 
Interface 

400 
GBytes/s 

Right Flowing X 
Links 400 GBytes/s

Left Flowing X Links 
400 GBytes/s 

Up Flowing Y Links 
400 GBytes/s 

Down Flowing Y 
Links 400 GBytes/s

Into Page 
Flowing Z 
Links 400 
GBytes/s 

Out of 
Page 

Flowing Z 
Links 400 
GBytes/s 

Figure 3: Example Layout of Interconnect Across 
the Chip 
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Three dimensional mesh networks have been proposed in the research 
community for some time, including the m-machine[Filo], Blue Gene[Denneau], etc. 
While these designs worked but in their time, it would not have been appropriate 
to develop them further because logic was still much slower than signal 
propagation. Since technology has progressed in the interim and the object of 
this paper is to explore low latency designs, we will investigate three-dimensional 
packaging. 
 
Figure 4 shows the layout of a two-node circuit board. Each of the primary ASICs 
is paired with a group of DRAM DIMMs mounted underneath the circuit board. 
Each circuit board comprises two ASICs/memory pairs and an associated power 
conversion module. Circuit boards can be strung end-to-end to create linear 
structures (this method is similar to the Shish Kabob packaging of Blue Gene). 
 

 
Figure 5 illustrates the proposed 3D packaging method. The linear board 
structures in figure 4 are connected along their sides into a three dimensional 
mesh. The circuit boards will require connectors capable of connecting along 
their edges, similar to Intercon shuttle connectors (used in Cray T3E and X1). 
 

Main
ASIC

Power 
Module

DRAM 
DIMMS 

Mesh Interconnect

Figure 4: Node Board for Three-Dimensional Packaging 
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The interconnection network will be based on a 3D mesh mapped directly to the 
3D structure above. Figure 6 shows how the mesh interconnection wires flow 
between the primary ASICs to form the interconnection network. The key concept 
is to provide a structure where all intercommunications wires are of fixed length, 
thereby assuring fixed speed of light delays irrespective of the size of the 
machine. 
 

Figure 5: Three Dimensional Packaging 

X Dimension 
Wiring 

Z Dimension 
Wiring 

Y Dimension 
Wiring 

Figure 6: Mapping of 3D Mesh to Physical Structure 
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Physical Size and Overall Latency 
 
Figure 7a illustrates our view of a potential machine geometry that offers the best 
performance with workable technology. The structure of figure 5 would be 
implemented as 27 x 16 x 24 mesh (same as Red Storm, but 100 
GFLOPS/node) in a compact package of 5� x 7� x 12�. The linear structures of 
figure 4 would be 5� long and oriented in this dimension. The volume budget for 
each node would be 70 cubic inches, corresponding to a board size in figure 4 of 
3.5� x 10� with about 3.5� spacing between boards. To remove heat from such a 
structure would require water-cooling in the channels of the structure in figure 5. 
 

A target of 100 ns cross-machine latency should be feasible for the structure in 
figure 7a, with the latency budget illustrated in the figure. 
 
An air-cooled configuration is possible as well, as shown in figure 7b. The 
physical design would be quite different because air has much less heat capacity 
than water and because air-cooling presumes that people will be working in the 
coolant air. The candidate design shown has a room pressurized by cooling air 
with the structure of figure 5 protruding through the room�s wall. People working 
on the �cold� side would have access to the machine for servicing. 
 

12’

7’ 

5’

Cross the machine:
24 ns @ speed of light 
35 ns @ 70% 
100 ns latency target 

Figure 7a: Water-Cooled 
(SOC PIM option) 
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With a full-machine power dissipation of 1.5 MW, the configuration in figure 7b 
and 7c moving air at 20 fps would heat air from 70° F to 97° F (15° C). 
 

Figure 7c: Air-cooled Configuration 

Window to room with power 
supplies and heat exhaust. A 
pressure differential of about 2� 
H2O will supply sufficient airflow 
to cool the machine. 

Figure 7b: Air-cooled configuration 
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Serviceability 

 
To enable the computer to be serviced, the system will consist of field 
replaceable units that can be withdrawn from the system from one side, as 
illustrated in figure 8. 
 

 
Electrical Issues 

 
A review of existing supercomputer interconnects indicates that a major source of 
latency is repeated shifting of data between clock domains. In previous and 
existing designs, data is sent serially with the clock embedded in the data. To 
achieve higher bandwidth, many serial lines are run in parallel, but each serial 
line still carries its own clock. As far as we can tell, this is an artifact of the 
architectural history of supercomputers and not necessarily a good choice at this 
point in the technology. 
 

Figure 8: Serviceability 
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We propose to use a timing approach called �dynamic phase alignment� and 
illustrated in figure 9. The entire Petaflops supercomputer will have a single 
global clock. This clock will be distributed to all boards using an especially 
engineered low-jitter distribution network. We will assume this clock to be 
distributed at 10 GHz. Thus, every chip will be guaranteed to have a clock of 
exactly the same frequency as every other chip, but of random phase 
relationship and with various sources of superimposed jitter and drift. 

 
All communications links associated with the network will go through a 
programmable delay line before being clocked into a standard flip-flop. To first 
approximation, the delay lines will be set statically to the phase difference 
between the clock entering the chip and the phase of the external data signal. 
This could be accomplished with a delay line tapped at a couple dozen locations 
and selected with a multiplexer. 
 
The proposed adjustment range of the delay line is given by the equation below. 
The factors are: (a) The adjustment range will have to be at least one clock 
period to accommodate the random phase relationship between the data signal 
and the global clock as it appears on the chip. (b) An additional range will be 

f 

Exactly f but with 
arbitrary phase, jitter, 
and drift 

Internal 
Logic 

Delay lines 
programmable up to 1 
clock period, adjusted 

< 1KHz 

Chip Boundary

Global Clock

External 
Signals 

Wire delay 

Clock period ⎡ ⎤ Delay = 

Delay 

Delay 

Delay 

Figure 9: Dynamic Phase Alignment 
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needed to accommodate differing wire lengths for bits in data busses. (3) 
Additional range to accommodate periodic adjustment to jitter. 

Trange = Tclk + T∆wire + Tjitter + Tmargin 
where 
Trange is the adjustment range 
Tclk is the system clock period (100 ps) 
T∆wire is the transit time difference in data wires 
Tjitter is other sources of jitter 
Tmargin is a timing margin 

This form of clock latency adjustment will add at most one clock period to 
whatever the delay is in the wire. 
 
Completely static settings of the delay lines are unlikely to work at the highest 
frequencies due to jitter. Specifically, the relative phase between the clock and 
data at any chip will vary due to factors like: 
 

1. Jitter caused by power supply noise 
 
2. Drift caused by cables expanding and contracting due to temperature 

or changes in dielectric constant in transmission lines causing changes 
in propagation velocity 

 
3. Intersymbol jitter on data lines (clock distribution does not have this 

jitter because there are no symbols) 
 

Jitter and drift in sources 1 & 2 could be accommodated by logic that adjusts the 
delay lines by monitoring the placement of transitions at a relatively slow rate 
(<1KHz). Jitter source 3 will need to be minimized, but may define the limits of 
this method. 
 

Bit Encoding 
 
Figure 11 shows the conventional method of assuring constant DC levels on high 
speed lines. 

The conventional method has unnecessary latency. Specifically, the method is 
designed with a 10-bit DC-balanced code word transmitted serially over each 

10 bit 
shift 
register 

8 bit 
parallel 
register 

Look at first bit 
after 11 clock 

cycles 

10-8 
Converter 

Figure 11: Conventional Bit Encoding for DC Balance 
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data line. The code words are shifted into a register over a period of 10 clocks, 
after which the code word in translated in parallel to a non-DC-balanced byte. 
The entire process has a latency of 11 clock cycles between the time the first bit 
arrives on the wire and when the logic can make its first decision based on its 
contents. 
 
We propose a method with significantly lower latency. The idea behind bit 
encoding for DC balance is to pick code words with the same number of 1s and 
0s. There is no particular reason why the first, second, third, or any particular bit, 
needs to be constrained to achieve this balance. We therefore propose to use a 
code word where the first bit of each serial stream is a plain data bit. This shifts 
the DC balance constraint to the second and later bits. 
 
We also propose a method where the router can alter data in the message while 
still retaining DC balance. To avoid routing tables, each message will contain the 
routing path (source based routing). However, each router will need to know 
where it is in the route. While there are several ways to do this, we propose that 
each message have a 7-bit field containing the �state� of the message along the 
route. As the message flows through each router, this field gets altered. 
However, this will change the DC balance of each bit line switched. To 
compensate, we propose that the state field be immediately followed by its 
complement. The router is therefore free to modify the state field as it chooses as 
long as it takes responsibility for injecting the complement in the subsequent bits. 
 
The proposed packet format is shown below. The interconnect consists of 80 bit 
parallel busses, thus defining the packet width. The 80 bits comprising the first bit 
on each signal contain as the information necessary to route the packet, as well 
as some data. The route is defined by up to six segments each of up to 16 
�hops.� Dirn and Distn give the direction and distance of the n�th hop. To enable to 
router to know how far through the route a message has gotten, a state field is 
included comprised of an indication of which of the routes (Route<0:2>) is 
currently being traversed and how many �hops� down the route the message had 
already traveled as it entered the router (HowFar<3:6>). The state field is 
followed by its complement. 
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The intent of this format is to enable logic to make a fast routing decision after 
looking at only the first bit of a packet. 
 

Routing 
 
We propose to use a routing schema based on the �turn model�[Glass] and which is 
very similar to the ASCI Red system at Sandia [Mattson]. We propose non-adaptive 
routes in three dimensions based on a three-dimensional turn model, but 
compatible with XYZ dimension-ordered routing. 
 
Experience indicates that dimension-ordered routing works very well in terms of 
minimal path and load balance. Therefore we propose to use XYZ dimension-
ordered routing where this route is available. 
 
Faults will make dimension-ordered routing infeasible for messages �near� the 
fault. To permit the machine to keep operating with only localized performance 
degradation, some other static route compatible with a three-dimensional turn 
model strategy will be used instead. For this approach to work, XYZ dimension-
ordered routing must be a legitimate subset of the turn model strategy. 
 

! Dir0 <7:9> Dist0 <10:13> 

! Dir1 <14:16> Dist1 <17:20> 

! Dir2 <21:23> Dist2 <24:27> 

! Dir3 <28:30> Dist3 <31:34> 

! Dir4 <35:37> Dist4 <38:41> 

! Dir5 <42:44> Dist5 <45:48> 

! Route <0:2> HowFar <3:6> ~(Route <0:2> HowFar <0:3>) "

! Etc. <49:79> 

DC-
Balancing 
Payload 

Checksum

First bit Last bit 

Figure 12: Bit Encoding for Low Latency while retaining DC Balance 
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Router Chip Architecture 
 
We propose to lay out the router to provide best performance for the most 
common case, filling in the rest of the design in a second stage. Most of the time 
messages will go through the router in a straight line, changing direction only a 
few times in an entire route. The router design in figure 13 has a fast and direct 
pathway for messages continuing straight ahead. 
 

 
 
The router chip will have physically compact cut-through logic to handle data 
flows in each of the 6 directions (only 4 directions shown above). For example, 
the cut-through block highlighted in the diagram above handles messages 
arriving from the left and continuing to the right. The purpose of each such cut-
through block will be to make a one-cycle decision as to whether an incoming 
message can be �cut through� to the output link right away or routed to more turn 
and queuing logic elsewhere on the chip. This should be feasible in a short time 
because the only information needed will be the first address field and a flag 
indicating that the output buffer is currently available. 
 

 Turn 
Logic

This logic block 
optimized for 

messages 
flowing right 
with no turns 

Figure 13: 2D Router Layout for Fast Straight Ahead Routes 

Router Chip 
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Figure 14 illustrates the cut through logic in detail. In one setting, the incoming 
network connection is �cut through� to the network output connection. In the other 
setting, the turn and queuing logic is supplying data to the network and the 
incoming network data has to be routed elsewhere for storage. This calls for a 2 
× 2 switching element. 
 

We propose an internal router design that improves on the common designs 
widely studied in the literature. It is widely assumed that a wormhole router must 
include an internal crossbar switch data between input and output ports � and 
that the logical complexity and time cost of this crossbar is substantial[Chien]. 
However, figure 15 shows a better way. This diagram shows the data paths 
necessary to implement dimension-ordered routing as an abstract 2D layout. 
One can see all the connections needed, and these are far fewer than a 
crossbar. The diagram shows the six external connections and connections to 
the local processor at the center. The circular arrows at the outer boundary are 
the cut through logic as described in figure 13. The interconnections within the 
hexagonal shapes implement the �turns� used in XYZ dimension-ordered routing: 
XYZ dimension-ordered routing only implements the turns X " Y, X " Z, Y " Z, 
and any dimension to and from the local processor. 
 

Network
In

Network
Out

Crossbar

To turn and queuing 
logic 

From turn and queuing 
logic 

Figure 14: Detail of Straight Ahead Logic 
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Figure 16 illustrates the routing logic corresponding to one channel of the circular 
placement illustrated above. According to figure 15, three data pathways circling 
the chip will be sufficient if they can carry data in either direction and can be 
�broken� at various points. The three routing lanes in the diagram below have 
these properties based on the settings of the switches and other configuration 
parameters. 
 

-X +X

+Z

-Z 

+Y 

-Y

 Local 
Processor 

Figure 15: Three Traffic Lanes for Turn Logic 

Output Queues 

Input Queues 

Recovery 
RAM 

 Local 
Processor 

Routing Lanes 
1          2          3 

Routing Lanes 
1          2          3 

Figure 16: Directional Interface 
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• Incoming data goes to an input queue and subsequently to the output 
queue, any of the routing lanes, or to the local processor. 

 
• Data from the local processor, any routing lane, or an input queue can go 

to the output queue. 
 

• Data is stored in the recovery RAM just before it is put on an output wire. 
 
To demonstrate that wiring overhead is manageable, figure 17 illustrates the 
wiring channels and chip size to scale. According to the ITRS 2002 update, 
global wiring will pack on a 205 nanometer (nm) pitch in the 45 nm technology 
node. If the 80 bit data pathways running externally at 4x clock are passed 
across the chip at a 1x clock rate, there will be 320 conductors occupying a 
channel 205 × 320 = 65,600 nm in width. No more than three channels will be 
needed across the circumference of the chip, or just short of 200,000 nm or 200 
µm or .2 mm. The scale diagram below shows a 1 cm x 1 cm chip with three 
channels of .2 mm around the edge. According to the 2002 ITRS, repeaters 
should be installed every 54 µm for optimal propagation speed. This would 
correspond to about 200 repeaters across each chip edge, for a delay of about 
400τ (τ is the characteristic RC time delay for a minimum size gate) or .6 ns. As 
can be seen in the figure, there is plenty of space left for the processor. 
 
 
 

XYZ routing is not sufficient in the presence of faults. We therefore propose to 
create linkages between the pathways shown above to permit arbitrary routing 
patterns, but with a speed penalty due to the sharing of internal busses. 

 

200 repeaters at 54 µm intervals � .6 ns delay 

Scale diagram shows a 1 cm x 1 cm 
die with three 320 conductor routing 

channels around the edge 

Figure 17: Dimensions of Routing Lanes 
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Virtual Channels 
 
Virtual channels are an esoteric but well-studied concept in networking. We will 
first explain the concept and then propose some general principles for their use 
in this machine. 
 
Figure 18 illustrates the virtual channel concept. The �wormhole� data 
communications in a supercomputer include a flow control that makes the 
channel like a garden hose. To be specific, data available to flow through a 
channel can become blocked when the receiver is unable to handle the data � 
similarly to a garden hose with the nozzle shut off. In this case, the data waits 
until the receiver turns on the flow. 

However, a physical channel can contain two or more virtual channels. In this 
case, each of the virtual channels has independent flow control. This means one 
channel can be blocked while the other is not, and so forth. 
 
Figure 19 is a simplified illustration of how virtual channels can support this 
design, including the concept of deadlock and protocol handling. 
 

Figure 19 illustrates the flow of messages between three nodes, shown as 
horizontal regions designated as 0, 1, and 2. Messages flow between nodes via 
the diagonal communications channels and buffers in the direction of the arrows. 

Figure 18: Multiplexing Virtual Channels on a 
Physical Channel 

Protocol 
Engine 

Protocol 
Engine 

Protocol 
Engine 

Node 
0 

Node 
1 

Node 
2 

Figure 19: Dual Virtual Channels and Protocol 
Handling 
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Deadlock could occur if there were a circular dependency in the data flows 
between buffers, such as the one illustrated by the wavy line (including the ! 
symbol on the illegal pathway that would be required to complete the cycle). We 
have drawn the diagram where all diagonal buffers point rightward. The rightward 
motion assures that figure 19 is an acyclic graph and as a result, a machine built 
this way would never incur deadlock. 
 
The proposed network for this machine will not have deadlock-enabling cycles 
due to the nature of the turns permitted in table 2. Thus one could in principle 
draw a diagram like figure 19 for this machine. However, the diagram would have 
over a quarter million buffers and would not be practical to draw. 
 
To assure proper operation at speed, we propose special support in the network 
for the protocols that underlie the operation of supercomputers, such as shared 
memory and message passing. Both these protocols have a step where a 
message is received (either a shared memory address or a message data 
packet) and is followed immediately with a response (memory data return or data 
acknowledgement). Without virtual channels, the immediate response creates a 
leftward flowing buffer dependency, a cycle, and the possibility of deadlock. 
 
The virtual channel in figure 19 permits efficient protocol handling while avoiding 
deadlock. The strategy is to put the initial messages in each pair on one virtual 
channel and the response messages on the other virtual channel. As one can 
see from figure 19, the entire flow of the request through the first virtual network, 
the generation of the response, and the flow of the response through the second 
virtual network creates leftward flowing buffer dependencies through the entire 
diagram. 
 
We are therefore proposing two sets of virtual channels for requests and 
responses in a request-response protocol. This design is well known for 
distributed shared memory systems and there is extensive information on its 
performance. However, this approach is not widely used in message-based 
systems. 
 

Protocol Engine and NIC 
 
To meet speed requirements while maintaining sufficient functionality, the 
network interface will need substantial improvement over those in common use 
today. Today�s distributed shared memory systems (such as X1) are engineered 
for low latency and may serve as a model in this respect. However, today�s 
software stacks for MPI, Portals, and other message passing protocols have 
functionality enhancements that permit them to scale to enormous sizes. We 
therefore propose to merge these two approaches into a protocol engine that can 
achieve both low latency and broad functionality. 
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The architecture of the protocol engine in figure 20 is followed by table 3 showing 
how the interface can be applied to various communications protocols.[DeBenedictis] 
The protocol engine is a hardware device operating at the clock rate of the main 
CPU chip. Unlike a CPU, the protocol engine operates on incoming messages, 
updating the state of protocols based on a protocol state transition table, and 
transmitting output messages. The protocol engine can also read and write the 
main memory for successive bytes of long messages, etc. and interface to user 
programs in other ways. 
 

The protocol engine can be applied to many common communications 
paradigms by applying the protocol state and transition tables properly. This is 
illustrated in the table below. 
 
 Transaction State Transitions User Interface 
Shared 
memory 

Read/write State of a page Cache coherence 
protocol (or non 
coherent memory 
access) 

Read/write 
memory; map 
pages 

Portals Remote get/put Message buffer 
with protocol 
state 

Successive receipt 
of data packets 
and periodic 
acknowledgements 

Interrupts and 
MPI calls 

Collectives Global sum, 
etc. 

~50 bytes of  
neighbor 
topology + 
intermediate 
sums 

Input and output 
of constituent 
messages, relay to 
parent, multicast 
of results 

System calls 

Table 3: Application of Protocols to the Protocol Engine 
 
 

Protocol State 
Memory 

Protocol 
Transition 
Definitions
(fast RAM) 

Current 
State 

New State 

Network Input 
Message 

Network
Output

Message
Linked List of 

Protocols Needing 
Output Main Memory

Figure 20: Protocol Engine 
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Proposed Protocols and User Application Interface 

The design of the network interface is beyond the scope of this report. However, 
the type of protocol engine described above should be able to support all of the 
widely-used communications paradigms, including: 
 

1. MPI support: A variety of primitives to send/receive a message to a 
remote buffer pool in a sufficient set of variants to support MPI�s 
synchronization modes. 

2. Shared Memory: Read and write remote memory with optional coherence. 
Will use two virtual channels for address and reply. 

3. Collectives: Hardware-based protocols to synchronize over a subset of the 
machine directly in the network fabric. 

4. Locks and semaphores. 
5. Multiphase commit. 
6. The functions above to be operable with a programmable channel capable 

of sequencing a number of operations on sequential, strided, or indirect 
addresses. This programmable channel is to be fast enough to drive the 
network at full speed and without incurring latency beyond what is 
necessary for access to the channel command structure (in other words, 
this is not to be a microprocessor). 

7. A programmable NIC for higher-level operations, such as boundary 
exchange support, TCP/IP, etc. 

Error Detection and Recovery 

An ASCI-size supercomputer must continue to run even when a chip fails. The 
number of parts is large enough that some part will fail often � every few days to 
every week or so. The degree of failure tolerance generally accepted by ASCI is 
for the application actually using the failing component to abort, but for the overall 
supercomputer and all other applications to continue running. In addition, the 
supercomputer should support hot swapping of components so that the failed 
component can be replaced and the machine returned to fully operational status. 
 
We propose an improved method of achieving high reliability, including tolerance 
of hard and soft errors. The two methods that serve as the base for our 
improvements are: 
 

1. Most systems today have end-to-end error detection with 
retransmission for recovery. While this method is proven, the 
resulting protocols are error prone and introduce overhead that cuts 
performance even in the absence of faults. 

2. Many systems today also employ a local error detection and 
recovery.  However, a local method is vulnerable to hard failure of a 
router chip. In a local method, router chips store messages in 
internal memories. Hard failure of a router chip causes loss of some 
messages in transit. 
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We propose a two-hop error detection and recovery method as illustrated in 
figure 21. In this method, each router chip (labeled �self�) retains a copy of all 
transmitted messages (messages are green; copies are red) until the message 
has been successfully received two hops away � its neighbor�s neighbor. 
 

Figure 21 illustrates the Eastbound output of a router. Outgoing traffic from this 
output goes to the neighbor on the right, after which it is either consumed by the 
neighbor or relayed to one of five neighbor�s neighbors (North, Up, East, South, 
or Down � but not back to the West via a 180° turn). 
 
Copies of all Eastbound outgoing traffic is first stored in the East Recovery 
Memory until it has been successfully received by one of the neighbor�s 
neighbors. The message deletion mechanism involves two acknowledgement 
messages: a regular �ack� message indicating that the message has been 
successfully received by the neighbor and a �ack2� message routed one 
additional hop upstream indicating that the message has been successfully 
received by the neighbor�s neighbor. 
 
However, data consumed by a neighbor is retained only until the neighbor 
acknowledges receipt of the data (not illustrated). 
 

East Recovery 
Memory 
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South Down 

North 
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Neighbor�s 
Neighbor East

Neighbor�s 
Neighbor Up 
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Neighbor�s 
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Ack Ack2 
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Message 
Copy Saved 
for Resend 

Up 

Input 
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Output 
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Figure 21: 2-Hop Error Detection and Recovery 
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Adding recovery memory substantially increases the amount of memory in the 
router, but saves more memory elsewhere. Without recovery memory, each of 
the 6 directions plus the processor interface will require Bi + Bo message spaces, 
where Bi and Bo are the number of message spaces in the input and output 
buffers. This totals 7(Bi + Bo). Ignoring wire delay, each recovery memory must 
be sized at (6 Bi + 5 Bo) messages (one extra Bi for data destined to be 
consumed by the neighboring processor). For the 6 recovery memories in each 
buffer, this becomes an additional 36 Bi + 30 Bo If Bi = Bo, this increases buffer 
requirements by 66/14 ≈ 4.7. However, this figure ignores wire delay: Each 
recovery memory should have additional capacity equal to 12 times the 
information that would be stored on a link when viewed as a delay line. This 
figure is hard to estimate at this stage, but would not be prohibitive. 
 
While the recovery memory approach substantially increases storage 
requirements in the router, it saves memory elsewhere. Without the recovery 
memory, fault recovery would have to come about through a different 
mechanism. Typically, this involves the sending processor keeping a copy of the 
data in its memory until it has been assured the data has arrived at the final 
destination. These memories are often enormous to accommodate odd data 
patterns and network congestion. Memory is no longer needed for end-to-end 
data acknowledgement and retransmission. 
 
We anticipate that the recovery memory would be used to mitigate transient data 
loss, but this is beyond the scope of this document. 
 

Deadlock Avoidance in Event of Faults 
 
To achieve the lowest latency, we propose a method where data packets are 
routed immediately upon receipt and before the error detection codes have been 
validated. If an error occurs in an address or control field, the packet may be sent 
to the wrong destination. To prevent deadlock, we propose each router have a 
changeable list of allowable �turns� derived from the �turn model� of routing. A 
message requesting an unallowed turn will be discarded. This prevents deadlock. 
 
The �turn model� is a mathematical treatment of message routing. In this 
treatment, the routing designer creates a set of allowable turns (such as east-to-
north, north-to-west, etc.) that obey a set of mathematical properties. The turn 
model then guarantees no deadlocks as long as all messages follow allowable 
turns. 
 
We propose to use this method for fault mitigation. While the system will 
generate routes for messages that obey the allowable turns (and are also follow 
the shortest path and avoid hotspots), the routing information could become 
corrupted and the message could attempt to make an illegal turn. To prevent this, 
the hardware will perform a second, on-the-fly, routing check and discard any 
route before it can make a wrong turn. 
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Error recovery method: 
 

1. System detects malfunction 
2. System goes into a diagnostic mode where user programs are 

halted and the real time clock stops incrementing (so user 
programs really and truly will not know they were halted). 

3. System reconfigures, aborting jobs that can�t continue. 
4. In-transit messages move from the �recovery� RAM to output 

queues. May need to identify duplicated messages. 
Reliability Standard 

 
For hard failure of one chip, the system will continue to run, although an 
application with state on the failing chip will abort. Failed chips will be 
deconfigured from the system for hot swap replacement in FRUs (that may 
contain multiple nodes). A system with failed nodes is permitted to have 
degraded communications performance. 
 
For hard failure of up to 10 chips: same as above for 99% of failure patterns. 
 
For hard failure of one link: System and all applications continue running. 
Communications performance may degrade. 
 
For hard failure of up to 10 links: same as above for 99% of failure patterns. 
 
Soft errors: System can be engineered with tolerance for all single bit soft errors 
on memory and flip flops (but not logic). Probability of unmitigated multiple bit soft 
errors to be sufficiently low that there will be less than 1 undetected error in 5 
year lifespan of machine. Soft error rate to be computed based on Los Alamos 
altitude. 
 

Conclusions 
 
We have outlined a strategy to achieve 100 ns user-to-user latency at Petaflops 
scale, with sufficient bandwidth to balance CPU rates. The strategy uses a three-
dimensional packaging structure that maps the signal flow within the network to 
the three-dimensional structure of the machine room. As a consequence, latency 
in this network is within a constant factor of optimal as determined by the speed 
of light. We also proposed a packaging and cooling structure for the network and 
associated computational elements that would be sufficient at very large scales. 
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