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Abstract 

In a superposition of quantum states, a bit can be in both the states "0" and I' 1 I' at 
the same time. This feature of the quantum bit or qubit has no parallel in classical 
systems. Currently, quantum computers consisting of 4 to 7 qubits in a "quantum 
computing register" have been built. Innovative algorithms suited to quantum computing 
are now beginning to emerge, applicable to sorting and cryptanalysis, and other 
applications. A framework for overcoming slightly inaccurate quantum gate interactions 
and for causing quantum states to survive interactions with surrounding environment is 
emerging, called quantum error correction. Thus there is the potential for rapid advances 
in this field. 

Although quantum information processing can be applied to secure 
communication links (quantum cryptography) and to crack conventional cryptosystems, 
the first few computing applications will likely involve a "quantum computing 
accelerator" similar to a "floating point arithmetic accelerator'' interfaced to a 
conventional Von Neumann computer architecture. This research is to develop a roadmap 
for applying Sandia's capabilities to the solution of some of the problems associated with 
maintaining quantum information, and with getting data into and out of such a "quantum 
computing accelerator". 

We propose to focus this work on "quantum I/O technologies" by applying 
quantum optics on semiconductor nanostructures to leverage Sandia's expertise in 



semiconductor microelectronic/photonic fabrication techniques, as well as its expertise in 
information theory, processing, and algorithms. The work will be guided by 
understanding of practical requirements of computing and communication architectures. 
This effort will incorporate ongoing collaboration between 9000, 6000 and 1000 and 
between junior and senior personnel. Follow-on work to fabricate and evaluate 
appropriate experimental nano/microstructures will be proposed as a result of this work. 
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Summary 

Quantum Information Processing is expected to revolutionize the field of 
computing and communications. This field has demonstrated communications using 
"quantum entanglement", promising ''entirely secure communications'' (because 
interception of the communications will cause obvious changes in the message). 
Classically encrypted communications (which will continue to be required for any 
application, that must store ciphertext) will remain vulnerable to cryptanalysis. One of 
the first impacts in computing will start with certain classes of algorithms that include 
cryptanalytic key searches. In particular, quantum computing techniques may make the 
searching of much larger key spaces feasible, calling into question how long 
conventional cryptography will provide adequate protection for ''strategic secrets". 

Current work in quantum techniques for securing communications involves 
detecting whether any but the intended receiver has intercepted the encoded photons. 
The act of detecting the data also decrypts it. This quantum "photonic encryption'' can be 
applied to a communication line (at low data rates over distances not requiring 
regeneration) but not easily to data in storage or for applications that may access 
protected data multiple times. Classical encryption techniques will continue to be used 
for many applications because of the limitations of photonic encryption. Because of 
these limitations, improved protection techniques against quantum cryptanalysis will 
require longer key lengths and/or quantum encryption computations on data that can be 
transformed (in encrypted form) back into the electrical and/or optical domain for 
compatibility with storage and retrieval systems. This will require the development of 
efficient means of transferring data into and out of a quantum computing engine. This 
work is to perform a detailed assessment of these developments and to plot an 
appropriate direction for further Sandia work in this area. 

Utilizing quantum superposition, a quantum bit can be prepared so that it can be 
considered (in some contexts) to be simultaneously in both the "0" and 'I 1 " states. This 
feature of the quantum bit or qubit, has no parallel in classical systems whose bits have a 
definite state either "0" or "1". Currently, quantum computers consisting of 4 to 7 qubits 
in a "quantum computing register" have been built. Innovative algorithms suited to 
quantum computing are now beginning to emerge, applicable to sorting and 
cryptanalysis, and other applications. A framework for overcoming slightly inaccurate 
quantum gate interactions and for causing quantum states to survive interactions with 
surrounding environment is emerging, called quantum error correction. Thus, things are 
poised for rapid developments in this area. 

Quantum information processing can be applied to secure communication 
(quantum cryptography) and to crack conventional cryptosystems. The first few 
computing applications will likely involve a "quantum computing accelerator" similar to 
a "floating point arithmetic accelerator" interfaced to a conventional Von Neumann 
architecture. This research is to address some of the problems associated with 
maintaining quantum information, and getting data into and out of such a "quantum 
computing engine". 

We focussed this work on "quantum I/O technologies" by examining how to 
apply quantum optics on semiconductor nanostmctures to leverage Sandia's expertise in 
semiconductor microelectronic/photonic fabrication techniques, as well as its expertise in 
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information theory, processing, and algorithms. The study was guided by understanding 
of practical requirements of computing and communication architectures. This effort 
incorporated ongoing collaboration between 9000, 6000 and 1000 and between junior 
and senior personnel. Follow-on work to fabricate and evaluate appropriate experimental 
nano/microstructures will be proposed as a result of this work. 

Quantum photonic encryption is not expected to fully replace conventional 
cryptography because of the low throughput associated with engineering solutions to 
photon losses in optical fiber, and because the detection of an encoded photon results in 
its decryption into plaintext, so that such encrypted data cannot be stored or further 
processed in conventional systems. Quantum encrypting calculations (rather than 
photonic encoding) may eliminate this deficiency. 

While further research is likely to uncover new technologies that may support 
Quantum Computing implementations, the current efforts are focused on 1) Trapped 
Ions, 2 )  Nuclear Magnetic Resonance, 3) Cavity Quantum Electrodynamics, 4) Quantum 
Dots, and 5 )  Quantum Photon Interferometry. 

In the near term, progress will be made with Nuclear Magnetic Resonance 
(NMR), and later with Ion Traps; however, the most practical applications will likely 
come from approaches that take advantage of solid state technology such as Quantum 
Dots and Cavity QED. Although the solid state approaches are extremely challenging and 
progress has been slow, nevertheless the synergy with mature microelectronics 
technologies outweighs these liabilities. 

The initial stages of this LDRD surveyed recent developments in all of these 
technologies. Even though the solution of practical problems (that are at or beyond the 
state of the art for solution with conventional computing technology) will require 
Quantum Computing registers consisting of about 25 qubits, current efforts have 
produced Quantum Computing registers of only 4 to 7 qubits. Current thinking is that 
scaling Nuclear Magnetic Resonance techniques to large numbers of qubits will be 
difficult. Even though scaling Ion Traps to large numbers of qubits is feasible in 
principle, maintaining the quantum coherence of large numbers of Trapped Ions will be 
difficult. Cavity Quantum Electrodynamics is a newer experimental arena for Quantum 
Computation, and may be especially useful in coupling quantum states stored in different 
technologies. Since SNL has great expertise in semiconductor nanostructures, the 
follow-on work proposed will likely focus on evolving the Quantum Dot technology and 
Cavity Quantum Electrodynamics. 

The mathematics behind quantum information processing is relatively mature 
compared to the maturity of quantum computing devices. Algorithms for specific 
applications (in particular, for cryptanalysis) are well established, but the gulf between 
the QIP mathematics/algorithms and the engineering of physical devices that can support 
these computations is wide. This project developed synergy between information 
theorists and device physicists so that both Sandia communities can better understand the 
requirements and constraints associated with practical realizations of these applications. 
The lack of meaningful collaborations of this sort is a recognized weakness in the U.S. 
research program. One of Sandia’s strengths is the interdisciplinary skills found in a 
unified environment. This diversity can be easily tapped requiring only the deliberate 
coordination and focus to break down inherent colloquial barriers. This requirement is 
important since device engineering is not easily factored from application requirements 
and theoretical developments. As a result, this area is rich in opportunities for 
interdisciplinary interactions. From these interdisciplinary interactions, great creativity 
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and innovation may evolve. Availability of this technology is expected to enable 
computations that are otherwise impossible with a conventional classical approach. In 
addition, quantum information processing has the potential to impact areas other than 
computation and communication. In particular, co-lateral applications of these 
technologies promises to revolutionize aspects of other technologies such as metrology 
(due to surprising aspects of parametric photon down conversion), precision range 
finding, and simulation. No doubt, as quantum information processing is increasingly 
realized and becomes more widely appreciated, further surprising applications will result. 
New business and markets will be enabled, providing new components for the 
advancement of Sandia’s missions in nuclear weapons information security, covert 
communications, and sensor technologies. 

Research in this area involves high technical risk and high potential gain. Some 
estimate a 20 year development time before Quantum Computing techniques become 
viable, although Quantum Communication and Quantum Photonic Encryption have 
already been demonstrated. Therefore, there is also the risk of unforeseen rapid 
developments in this area. Unexpected early advances in this field could enable 
applications of great concern to national security. For these reasons, a small effort (such 
as this LDRD) to assess these developments, potential impacts, and to carefully plot a 
sensible thrust for Sandia research is prudent. 

In the near term, progress will be made with NMR, and later with Ion Traps; 
however, the most practical applications may come from approaches that take advantage 
of solid state technology such as Quantum Dots and the P/Si electron-nuclear coupled 
system. Although the solid state approaches are extremely challenging and progress has 
been slow, nevertheless the synergy with mature technologies outweighs these liabilities. 

As described above, the technologies being explored involve great technical risk, 
as there are issues of scalability and implementability and of maintaining quantum 
coherence of qubits long enough to perform meaningful processing with each identified 
technology. This project has taken a interdisciplinary “hard look” at recent work and 
emerging technologies to determine an appropriate research path with reasonable 
technical risk for Sandia’s efforts and to engage the appropriate collaborative partners. 

The research areas most suitable for Sandia research include (1) high speed and 
high power electronics for control of quantum computing operations, (2) Micro- 
Electromechanical Machines (MEMS) Cantilever Technology for measuring qubit spin 
states, (3) Photonic Lattice Technology for controlled qubit couplings (enhancing 
decoherence times with photonic lattices), (4) GaAs-based quantum devices 
incorporating high mobility 2-D electron gasses, and ( 5 )  Quantum Device technology 
utilizing coherent electron transport in “quantum wires”. The “systems” level studies 
include (6) efficient quantum error correction, (7) innovative quantum algorithms for a 
wide variety of applications, (8) decomposition of quantum algorithms so as to operate 
with fewer qubits (on smaller quantum computers), and (9) the advantages and 
limitations of computation of such algorithms using Hilbert Space Analog Computing 
rather than Quantum Computing. 

We conclude that even though mathematical descriptions of “computationally 
complete” sets of quantum gates are fairly mature, full understanding of these 
mathematical models yet remain counter-intuitive to most practitioners. Further, 
progress in this area is limited (1) by lack of physical devices with which to realize 
Quantum Computing, (2) by lack of control structures through which to supervise 
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quantum operations, and (3) by lack of algorithms for which great gain in efficiency over 
classical algorithms can be demonstrated. 

As more mathematicians, cryptographers, systems engineers, and device 
physicists and engineers interact regarding these issues, the strange interworkings of 
“quantum information processing” will become more intuitive, and progress will be made 
on algorithms and on quantum gate devices. It is recommended that an ongoing seminar 
series on advances in Quantum Computing be conducted to keep Sandia’s device 
physicists and information theorists abreast of multi-disciplinary developments in this 
area. 

In particular, Hilbert Space Analog Computing may be an area of rich 
productivity. Computing in a Hilbert Space is a superset of Quantum Computing, and is 
realizable (to the level of a few “Hilbert bits”) in conventional microelectronics andor in 
current programmable logic devices. By attempting to implement quantum-like 
algorithms in a Hilbert Space Computer, great insights may be gained into the 
architectures suitable for Quantum Computing and into the design of algorithms that may 
prove more efficient than classical algorithms. 

... 
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Nomenc la t u re 

3DES 

AES 

AND 

bit 

CNOT 

css 
DES 

dissipative 

entanglement 
GHz 
Gray Code 

Hermitian 

HSC 
I/O 
LFSR 

MEMS 
NMR 
MHz 
Nonlinear-FSR 
NOP 

NP-complete 

QC 
QECC 
qubit 

reversible 

RSA 

Serpent 

Triple DES. Design in 1999 by NIST to replace the vulnerable DES as 
computers advanced in development. 
Advanced Encryption Standard. Based on Rijndael algorithm. Is a 
Federal Information Processing Standard FIPS- 197. 
AND binary boolean operation. The result is true if and only if both 
arguments are true. 
Leo Szilard invented the concept of a bit of information 1929. Smallest 
measure of classical information. 
Controlled-NOT gate. An important (perhaps single most useful) 2-qubit 
gate. Allows for reversible quantum NOT operation. 
Calderbank-Shor-Steane quantum codes for correcting large qubit errors 
Data Encryption Standard. Federal Information Processing Standard 
FIPS-46-3. Originally developed as Lucifer by IBM in early 1970s. 
a process having a loss of energy in the form of heat and severe 
constraints associated with its recovery 
nonlocal quantum information distinct from classical information 
Giga-Hertz, 109 Hz 
encoding of numbers where adjacent numbers differ by 1 in a single 
digit 
Type of operator defined by equating the operator with its adjoint 
(see Unitary) 
Hilbert Space Computing 
Input/Output 
Linear Feedback Shift Register. Important method in digital 
pseudorandom bit sequence generation. 
MicroElectroMechanical Systems 
Nuclear Magnetic Resonance 
Mega-Hertz, 106 Hz 
Nonlinear Feedback Shift Register. See LFSR 
No Operation. A computer operation usually taking a single cycle 
without further effect. 
A problem that is NP (verifiable in nondeterministic polynomial time) 
and NP-hard (other problems can be translated to the referred problem) 
Quantum Computer 
Quantum Error Correction Code 
Quantum BIT, a two-state quantum mechanical system that encodes the 
basic information unit of a quantum computer. (see bit) 
different operational definitions for logic and thermodynamics but 
intimately related 
Encryption algorithm invented in 1978 by Ron Rivest, Adi Shamir, and 
Leonard Aldeman 
128-bit block cipher candidate for AES developed by Ross Anderson, 
Eli Biham, and Lars Knudsen. 
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syndrome 

THz Tera-Hertz, 10 12 Hz 
Unitary 

XOR 

In the context of errors, the result of an operation on data indicating 
errors if any exist 

Type of operator defined by equating the operator inverse with its 
adjoint (see Hermitian) 
Exclusive OR binary boolean operation. The result is true if and only if 
one of its arguments is true. 
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Quantum Computing Accelerator I/O 

Introduction 

Generally quantum information processing’ and specifically quantum computing2 
have enjoyed a substantial increase in attention starting in the early 1980s that extends to 
the present time. Although much has happened in this recent period, it should not be 
surprising that the seeds of this new discipline predate this period. In fact, one might be 
surprised at how long it has taken for the present level of interest to occur. For the 
interested reader, a brief set of historical highlights is given in Appendix B. 

At a fundamental level, it has become clear that an information theory based on 
quantum principles extends and completes classical information theory. The present 
theory includes quantum generalizations of classical notions regarding information 
sources, channels, and codes, but, more importantly, the theory distinguishes between 
two complimentary and quantifiable kinds of information: classical information and 
quantum entanglement. Classical information can be copied freely, but can only be 
transmitted forward in time and strictly within the forward light cone. Entanglement, by 
contrast, cannot be copied and is thought to be nonlocal. 

A quantum state of qubits is represented by a complex unit vector in a 2N - 
dimensional Hilbert space. This Hilbert space is defined as a tensor product with factors 
representing each of the N qubits composed of 2-dimensional Hilbert spaces describing 
individual qubits. The exponential dimensionality of this space distinguishes Hilbert 
Space Computing (HSC, a superset of QC) from classical computers, whose state is 
described by a number of parameters that grows only linearly with the size of the system. 
This is because classical systems, whether digital or analog, can be completely described 
by separately describing the state of each part. By contrast to both classical and classical 
HSC, the vast majority of quantum states are entangled, admitting no such similar 
description. The ability to preserve and manipulate entangled states is the distinguishing 
feature of quantum computers, and this ability is responsible for the power and the 
difficult synthesis of QCs. 

Another distinguishing feature of an isolated quantum system is its evolution 
characteristics. These systems evolve so as to preserve superpositions and 
distinguishability. Mathematically, these transformations are unitary-that is , linear and 
inner-product-conserving. Such transformations are the Hilbert-space equivalent of rigid 
rotation in Euclidean space. Unitary evolution and superposition are the central 
principles of quantum mechanics that have significant consequences. One important 
consequence comes from the fact that unitary transformations are inherently reversible. 
It has been concluded that most computation operations can be done reversibly; however, 
there are important exceptions such as erasure. As a result, QC schema often resort to the 
incorporation of ancilla bits and to running backwards so as to “uncompute.” 



Concept of Quantum Computing I/O 

The architecture of a quantum computer will be very different from a 
conventional computer. Even though some similarities will exist, Le., multi-qubit 
registers will be required to input data and measurement of similar registers will be 
required to output the result of computations, the evolution of data contained in these 
registers will be under the control of quantum logical gate operations that bear little 
resemblance to classical logic gates. In addition, as these qubits interact with the 
environment, their quantum states will become “noisy”, requiring extensive quantum 
error correction “circuitry” to maintain the fidelity of the computation. The evolution of 
quantum states that represent a quantum calculation, the error correction thereof, and the 
introduction of “ancilla” bits required to enable quantum operations, all will require the 
supervision of “quantum gate control hardware” that will be programmed and sequenced 
by conventional computer systems. The technology with which the qubits are 
implemented must be able to easily initialize the state of the qubits, to measure the 
resultant quantum states, and to convert to conventional binary digital representation, as 
well as to “entangle” the quantum states of other qubits. 

The Church-Turing conjecture states that Quantum Computing algorithms 
perform at least as well as classical algorithms (and for some problems far better).3,435 Is 
this provably true? Time will tell, but most quantum computing experts expect quantum 
computing machines to eventually perform the equivalent of any Yuring” algorithm 
efficiently, and some quantum algorithms represent considerable gain in efficiency for 
certain problems over classical techniques. Even though any classical application could 
theoretically be adapted for computation on a quantum computing platform, algorithms 
for quantum computation with high gains in efficiency have been developed for only a 
few applications. 

Groverk search algorithm represents a gain from O(N) to O(dN).6 Shorts factoring 
algorithm represents even greater gain in efficiency over classical  algorithm^.^ In spite of 
this, the first quantum computing machines will be very specialized, taking advantage of 
the problem solving efficiency gains for certain applications only. These specialized 
processors will be operated by interfacing to classical computers for input and output of 
problems, and for changing of parameters pertaining to the quantum computations. How 
will this Input/Output between classical and quantum computers be accomplished? The 
function of these specialized engines will resemble the function of specialized “hardware 
accelerators’’ for general purpose computers such as for Fast Fourier Transforms and 
other math “co-processors,” but will utilize a technology that does not resemble our 
current digital electronics. For these reasons, the first few quantum computing engines 
will be very specialized, adapted for the solution of narrow classes of problems. These 
quantum computing engines will be interfaced as an “ancillary processor” to a classical 
computer (and will have its quantum gate computations controlled/supervised by a 
classical computer), much like specialized electronic hardware for acceleration of Fast 
Fourier Transforms or Floating Point calculations have been interfaced to general 
purpose computers. 

There are several technologies that can conceivably be used for quantum 
computation. Some of these may lend themselves to electronic interface more easily than 
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others. Regardless of technology and interface technique, there are certain parameters to 
be communicated into a quantum engine in order to process a given algorithm, and there 
are quantum superpositions to be prepared and ultimately measured in order to identify 
the solution or solution space. 

What are the operations that must be provided to perform input to a quantum 
computer, take output from a quantum computer, and/or to "steer," "adapt," or "select" 
quantum operations or algorithms? The following may be considered necessary if not 
sufficient: (1) a robust representation of quantum information, (2) preparation a fiducial 
initial state register, (3) addition of a set of states to a qubit superposition, (4) subtraction 
of a set of states from a qubit superposition, ( 5 )  the ability to perform a universal family 
of unitary transformations, (6) configuration of quantum gates to control "quantum 
evolution" of qubits for specific operations, and (7) "measurement" of a q-register and 
output of its contents to a classical computer.8 

Fundamentals of Quantum Computation 

The four fundamentals of Quantum Computing are (a) State, (b) Operations, (c) 
Measurement, and (d) Composite States.8 

State 

In classical computing, information is stored in binary strings. In the case of a 
classical computer with n bit registers, the contents of each register would be one of the 
possible 2" strings. So, information storage in classical computing is discrete. However, 
in quantum computing information is stored in a continuum. An n bit quantum register 
would store a unit vector in a Hilbert space of dimension 2". Abstractly, the standard 
basis for this Hilbert space is denoted as 100 ... 0) , 100 ... 1) ,. . ., 11 l... 1) . 

The state of a n-bit quantum register is an arbitrary superposition (linear 
combination) of the basis vectors. For example, a one bit quantum register would contain 
a unit vector represented as u10) + bll), where a,b are complex numbers such that 

a2 + b2 = 1. So, in order to describe the contents of a n bit quantum register one would 
require 2" complex numbers. This exponential storage capacity of quantum systems is 
the root of the potential power of a quantum computing. In classical computing one can 
manipulate only n bits at a time with a single operation on a n bit register. However, a 
single quantum operation can simultaneously manipulate the 2" complex numbers 
specifling the state of a y1 qubit register. 

Operations 

The allowable operations on a quantum state are unitary transformations. An 
interesting consequence of this constraint is that QC is reversible. That is to say, in 
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principle all the information required to run the computation forward is sufficient to also 
run the computation backward. It should also be noted that operations are not allowed to 
be a function of the state. The laws of quantum mechanics impose these constraints. At 
the risk of redundancy, in quantum mechanics all processes are reversible, and an 
operation on a quantum state must lead to another valid state. So operations in quantum 
computing require Linear Algebra' as opposed to Boolean Algebra required in classical 
computing. 

If 1 vl,) is the state at time t, , then one could generate a state I ty2) by applying a 

linear operator U,, at time t , .  Since we have the constraint that U,, is a unitary 
transformation (y, 1 1 ~ ~ )  = (w, I U'ldJ,21yl)  = 1 .  Herein, we use (VI to denote the 

adjoint of Ity) and u' to denote the adjoint of U . 

Measurement 

Measurements in quantum computing are fundamentally different from 
measurements in classical computing. The differences are that (a) the outcome of a 
measurement is intrinsically probabilistic and (b) the outcome of the measurement affects 
the state of the system. If the state of a quantum register is unknown and a non-trivial 
superposition of the basis states, then one can never discover the superposition using a 
single quantum measurement. 

There are two equivalent ways of describing quantum measurements. One is 
through a set of measurement operators {Ad,,,}, and the other is through projections onto 
the eigenspace of a Hermitian operator called the observable. We now describe the first 
method and for simplicity, assume that the system is non-degenerate. 

Suppose we are measuring a quantum state Iw) using {M,,,}. The set {M,,,} is 
required to satis@ the completeness equation 

m 

The measurement outcome can be any of the m values, with the probability of the m th 
outcome being (tylM,,,'M,,,lw). If the outcome of the measurement is m , then the state 
after the measurement 
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Projective Measurements 

Another, equivalent, method of describing measurements is through projections 
onto the eigenspace of a Hermitian operator H .  Since H is Hermitian, it is 
diagonalizable with its eigenvectors being orthogonal. Suppose 

where V, are the eigenmatrices corresponding to eigenvalues Am of H.  The 
eignematrices satisfy the following properties: V,V, = q,, , and V,' = V,  . 

The measurement of Ity) with Hcould lead to one of the eigenvalues with the 

probability of measuring A, being ~ ~ V m ~ t y ) ~ ~ *  = (tylV,lty). If the outcome of the 

measurement is A,, then the state after the measurement is 

It can be shown using the above framework that one can only distinguish orthogonal 
quantum states using simultaneous measurement. 

Supposing that A, is the outcome of a measurement for the observable H ,  
further repeated measurements result in the same outcome A,. Therefore, the initial state 
has been transformed into I vm) by the first measurement. This phenomenon is called the 
collapse of the wave function. Although, one could in principle be in a state that is a 
superposition of )In-the-room) and (Outside - -  the room), it is the continuous 
interaction with the environment that results in effectively measuring and collapsing the 
state into one or the other possibility. 

Composite States 

If Iw,) is the state of one quantum register and ( y 2 )  is the state of another, then 

the state of the two registers is given by their tensor product Ivi)C31wz). In general 
several notations are in vogue to represent tensor products such as 1 vi)l v2), I v/,ty/,) . 



Quantum Algorithms 
In principle, a quantum computer can efficiently simulate a classical computer. In 

practice, however, if the classical and quantum algorithms have the same time 
complexity, one would prefer the classical algorithm. The reason for this preference is 
that classical computers by their very nature are more robust and have faster operation 
execution times. The question remains whether there are problems for which a quantum 
computer is exponentially faster than a classical computer. Currently, there are a few 
examples where a quantum computer is faster than a classical computer. The algorithms 
all have the property that if implemented they would need to interface with a classical 
computer. We list the examples below. 

Deutsch Algorithm 
Problem: We are given a function f : {0, l} H {0, l} and we would like to find out 

and 1, whereas the Deutsch algorithm solves this problem with a single call to f . The 
algorithm assumes that there is a quantum black box Q, that can evaluate the function 
f . In general f might be a complex function implemented on a classical computer and 
Q, would need to interface with it.” 

if f is a constant function. On a classical computer we would need to evaluate f at 0 I 

Grover’s Search Algorithm 
Problem’ : We are given a set S = {sl , s2 ,... sN 1, and a function f : S H {0,1} . The 

function f is such that there is a unique element in S , which is mapped to 1. The object 
is to find the element that is mapped to 1. Classically this requires O ( N )  operations in 

the worst case, whereas Grover’s Search Algorithm achieves this with O(*) 
operations. 

The algorithm assumes that there is a quantum black box Q, for computing f . 
The black box essentially implements the mapping Isz, b)  H I s,, b 0 f (  s,)) where b is a 
single qubit. If this search algorithm were to be implemented for practical applications 
such as database searches, then clearly Q, would need to interface with a classical 
computer. 

Shor’s Factoring Algorithm 
Problem7: We are required to find all the factors of a given number N .  The 

fastest classical algorithm currently is the number field sieve12, which takes 
q e x p ( 2 ( l o g ~ ) ”  3(1~g 1 0 g ~ ) * ’ ~  operations. 

Shor’s algorithm divides the problem of factorization into two phases. The first 
phase runs on a quantum computer and computes a fraction $ where r is the order of a 
random number mod N and c is an arbitrary constant. The second phase involves 
computing r from using a partial fraction expansion on a classical computer and using I 
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the order r to find a factor of N . The algorithm in total takes O((10gN)l'~) operations 
to factor N . 

Shor's Discrete Log Algorithm 

the last two algorithms aren't. 
algorithm exists for factoring or for finding discrete logarithms. 
algorithms, on the other hand, are provably polynomial time algorithms.' 

Although the first two algorithms are provably faster than classical algorithms, 
But it is generally believed that no polynomial time 

The Quantum 

Quantum Error Correction 

A quantum computer will invariably interact with the environment in 
unpredictable and technologically unavoidable ways. These interactions lead to what is 
known as decoherence. Essentially qubits will accumulate errors caused by 
environmental interactions. In addition to decoherence, the inevitability and importance 
of imperfect quantum gate implementation has been recognized. In order for the 
quantum computer to work successfully, we need to combat both the storage and gate 
errors. For some time it was thought that the no cloning constraint prevented the 
possibility of quantum error correction theorem. l 3  However, in 1995 Peter Shor proposed 
a scheme that cleverly avoided the cloning issue, and, subsequently, quantum error 
correction as discipline matured at a rapid pace. 

There is an essential difference between classical algebraic coding and quantum 
coding with respect to the class of errors. In classical algebraic coding, errors are 
discrete (alphabet flips), whereas in quantum coding errors are continuous in nature. The 
theory of Quantum Error Correcting coding describes how qubits can be efficiently 
encoded, so that the quantum information can be recovered even after the encoded bits 
accumulate errors. The theory of fault-tolerant c~mputation'~ describes how equivalent 
gate implementations on encoded bits can be made so that a computation can be 
successfully executed, even with gate errors. In the next few sections, we will describe a 
framework for an error correction and describe a few classes of quantum error correcting 
codes and bounds for error correcting codes. 

Framework for Error Correction 
Consider a single qubit I ty) = a1 0) + bl 1) that interacts with the environment. The 

interaction transforms I y) to one of the following possibilities 

444 = .lO>+bJ1), 

Xlw) = all> +do, 
rl vl) = .lo> - bl1L 

zlv) = all> 4 0 ) .  
and 



where { I , X , Y , Z }  are the single qubit Pauli operators. In the above list the first item 
corresponds to no error, the second item corresponds to a bit error, the third item 
corresponds to a phase error and the last item corresponds to a bit and a phase error. 

The goal of error correction is to guard against the last three items and consists of 
three steps: encoding, measuring, and correcting. The first step is to encode the single 
qubit into multiple qubits. This leads to the information being stored across multiple 
qubits. This nonlocal storage caused by entanglement is recognized as one of the most 
important and distinguishing features of quantum information processing, and error 
correction is a good example of its power. As to the nature of decoherence error, it is 
often assumed that these errors are local - that is they impact each bit in the collection in 
an independent manner. The second step involves performing a collective measurement 
on the multiple bits to determine the nature of the error without actually discovering the 
exact error. The key observation, made by Shor, is that the exact error does not need to 
be discovered in order for useful error correction to be applied. In fact, knowledge of 
exact error must be avoided. Once the nature of the error is determined, a corrective step 
using a set of operations specifically chosen and applied to reverse the suspected error 
can be accomplished. 

Let C be the set of error operators we wish to correct using a Quantum Error 
Correcting Code (QECC) C . Then C must have the following property 

for all error operators E,, , E, in C and for all code words i, j in C . Here rub is a real 
number dependent on E,, E,, and 4, is the Kronecker delta function. It can also be 
shown15 that the above condition is sufficient for error correction. 

We will try to explain why eq. (1) is necessary and sufficient for quantum error 
correction. Since we can only distinguish orthogonal states using quantum measurement, 
we require that error operators acting on different code words map them into orthogonal 
vectors. This explains the presence of 4]. The constant r,, is more subtle to explain. 
Our initial reaction would be that it must be Sa,, . In this case, different operators acting 
on the same code word map it into orthogonal vectors. Although this condition is 
certainly sufficient for error correction, it is not necessary since we are only interested in 
correcting the error. 

Quantum Error Correcting Codes 

Preliminaries 
In this document we will restrict ourselves to Quantum codes that are binary. A 

(n,  k ,  d )  binary code, where k I n, is a 2k element subset of a 2” dimensional space. 
The 2k elements that make the code are called code words. The code can be represented 
using bits and hence is called a binary code. The parameter n represents the number of 
bits (code length) in each code word and k represents the number of data bits being 
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encoded. The so called distance parameter ddetermines the robustness of the code to 
errors. 

We will first explain the (n, k , d )  terminology by means of a simple classical 
binary code. Consider the classical binary repetition code (00.1 1} that is a subset of 
{00,01,10,11}. In this case n = 2 and k = 1,  since there are 22 two bit words and 2' of 
them are code words. In classical binary codes d represents the minimum number of bit 
flips one needs to make on an arbitrary codeword to generate another codeword, which in 
the example is 2 . If our (n, k , d )  code is required to correct t bit flip errors, then we 
need t I d - t - I ,  Le. the distance from the corrupted codeword to the actual codeword 
must be at least one less than the distance from the corrupted codeword to another 

codeword. It follows that an (n ,  k, d )  code is capable of correcting Id; - '1 bit flip errors. 

2-1 In our example the (2,1,2) code can correct 1 y I = 0 errors, which is obvious by 
L L . 1  

looking at the code. So in fact we have shown that we need at least three bits to correct a 
bit flip error! 

Classical coding theory unlike Quantum coding theory is quite old and there are 
several references varying in breadth and depth. The Handbook ofcoding Theory14 is an 
exhausting tome on this subject. 

In quantum coding, although the notions of n and k extend in a straightforward 
manner from classical coding, the notion of distance d is slightly different. Whereas 
there are only bit flip errors in classical coding, there are bit flip, phase flip and bit and 
phase flip errors in quantum coding. The distance d ,  in quantum coding is defined in 
terms of the weight of Pauli operators. The weight of a Pauli operator is the number of 
bits of a codeword that it affects in a non-trivial manner. For example the Pauli operator 
Z,Xz has a weight of two. The distance d of a QECC is defined as the minimum weight 
of a Pauli operator that can convert one codeword to another. 

Now we give an example of a (9,1,3) QECC which was discovered by Peter Shor. 
The code has two code words 

1 15) = -(IOOO) +I1 11))" T/Z  

In order to show the distance is 3 ,  note that the code words are tensor product of three 
identical clusters and one requires a weight 1 linear operator to convert the cluster 

1 1 -((I 000) + 1 I 1 I)) to - (1 000) - I 1 1 1)) or vice versa. Jz J7 

When does coding help? 
In general, consider a (n,  k , d )  code. It takes k data qubits and maps into n code 

qubits. Let E be the probability that one qubit undergoes an error within one coherence 
time and assume that errors in different bits are independent. If there were no coding 
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then the block of k qubits would be corrupted with probability k E + U ( E * ) .  With error 
coding the probability that the block would be corrupted is 

[; + I) Ed+] (1 - E y d - l  + 

So, error coding is useful only if 

[a + Ij I d + l  (1 - &)n-d-l + q E d + 2 )  &E+ o(r2).  

This imposes an upper bound on E .  For example, if one evaluates the robustness of the 
(7,1,3) Steane code'6 along the above lines, then one obtains the constraint 

1 
[ j & 2  -< 1 - E-<  -. Jz 

So, for coding to be useful, we require that the probability of a qubit error to be below a 
threshold. 

CSS Codes 
There is a subclass of classical binary codes called classical binary linear codes 

that have the property that modulo 2 addition of any two words in the code results in 
another codeword. Binary linear codes have several useful properties that can be 
exploited to design fast encoding and decoding algorithms. The Calderbank-Shor-Steane 
(CSS)'6,'7 codes are built from classical binary linear codes. The construction is given as 
follows. 

Let i~ {1,2} and C, be a (n,k,d,) code with a n-k ,  x n  parity matrix 4. We 
also assume that C, is a proper subcode of C,. The subcode C, defines a equivalence 
relation on C, , given by the following. Two code words u,v E C, are considered to be 
equivalent if there exists a w E C,, such that u + w = v . The subcode C, divides C, into 
2kl-k2 equivalence classes. The CSS code is constructed by selecting a codeword for 

1 
each equivalence class using - Z I v  + w) . 4F V€C, 

The process of error correction is done in the following manner. We first 
consider bit flip errors. Note that each CSS codeword is a superposition of code words in 
C,. Hence, we can perform a parity check using the parity check matrix H,  of C, to 

correct up to 1"; - '1 bit flip errors. To correct phase errors we make the following key 

observation: phase errors in the standard basis are transformed into bit flip errors in the 
Hadamard basis. The following illustrates this point. 
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Let Iw) be an n qubit standard basis state and let H be the Hadamard rotation. 
Let e be an arbitrary binary vector and let E,' denote phase flips at all bits where e is 
one. Similarly let Ete  denote bit flips at all bits where e is one. The Hadamard rotation 

of a phase flipped standard basis vector Iy) is given by 

The bit flip of a Hadamard rotated standard basis vector ( y) is given by 

The last equation is obtained by changing the summation index and using 2e = O(mod2). 
From equations (2) and (3) we obtain that phase flip errors in the standard basis are 
transformed into bit errors in the Hadamard basis. 

When we apply the Hadamard transformation to the CSS code words we obtain a 
superposition of code words in the dual code to C,. We can then use the generator 
matrix G, for C, to detect bit flip errors in the rotated basis. So, in effect, we can correct 

[?]phase errors, where di is the distance of the dual code to C, . 

The 7-qubit Steane Code 
The simplest of the CSS codes is the 7-qubit (7,1,3) code discovered by Andrew 

Steane.16 In this case C, is the (7,4,3) Hamming code and C, is the (7,3,4) subcode 
containing only the even code words of C, . It so happens that the dual code to C, is C, . 
So we can use the parity check matrix of C, to correct both bit and phase errors. The 
code is described as follows 

1 15) = - (looooooo) + 10001 1 11) +lo 1 100 1 1) +I 01 11 100) + I101010 1) +I101 10 I O )  + I  1 1001 lo) + II 10100 1)) 4i 
1 

li) = (ji 11 1 11 1) +I 1 1 10000) +I io01 loo) + ~ I O O O O I  I) +10ioioio)  +lo loo 101) + 1001 1001) + looioi io)) 

To perform the error correction we augment the 7 qubit code with 6 ancilla bits, 3 of 
which are for bit errors and the remaining 3 for phase errors. That is we perform the 
operation 
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where H denotes the Hamming matrix and H denotes the Hadamard operator. We then 
measure the ancilla bits to correct bit flip or phase errors, if there are any. This code will 
correct a single bit flip or a phase flip or a single bit flip and a phase flip error. 

Stabilizer Codes 
Stabilizer codes are constructed using the group property of Pauli Operators. 

Recall that the Pauli operators are I ,X,  Y,  Z .  The n -fold tensor product of Pauli 
operators also forms a group r, of order 2.4" . r, has the following properties: 
each M E  r, is unitary, Le., M i  = MI. M' = fl 'd M E r,. Furthermore, M' = I ,  if 
the number of " Y s" in M is even and M 2  = - I ,  if the number of " Y s" in A4 is odd. 
M N  = fNM for all M, N E r, . 

Let S denote an Abelian subgroup (a commutating subgroup) of I?, . Then the 
stabilizer code C, associated with S is the simultaneous eigenspace of all elements in S 

with eigenvalue 1. Mathematically Iw) E C, iff M 1 ~ )  =iw). The group S is called 

the stabilizer of the code, since it acts like the identity transformation on the code C, . 
The group S is characterized by a set of independent matrices called 

generators. The generators have the property that every element in S can be expressed 
as a product of the generators and no generator can be expressed as a product of other 
elements of the group. It can be shown15 that if the number of generators is n - k , then 
the number of code words in C, is 2 k .  In other words, the number of generators of S 
determines the number of bits encoded by C, . 

Error correction is done by measuring the generators on the possibly corrupted 
code words. Let G, ....,Gfl-k be the generators of S .  Suppose a code word Iw) is acted 

on by an error operator E, ; then it is detectable if it anti-commutes with some generator 
G I .  In this case one can detect the error by measuring G I ,  since 

G,E Iw) = -E,G, Iw) = -E,lw). To perform error correction, one first measures the 
received code word with all the generators. Let A,...,A,n-k be the collection of the 
measurements called the syndrome. Assume the error operator satisfies the necessary 
conditions for error correction, i.e., it belongs to the set X that satisfies eq. (1). 

applying E', on the received word. Suppose the syndrome is not unique, i.e., E, and Eb 

result in the same syndrome, then E,'E, E S . So one can perform error correction by 

applying Elb on the received word. 

If an error operator E, results in a unique syndrome, then one can correct it by 

Concatenated Codes 
Concatenated coding is the process of increasing code distances by repeating the 

encoding process multiple times. Although this process leads to code distances increasing 
geometrically, it also results in code lengths increasing geometrically. We now illustrate 
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this process. Consider a (n ,k ,d)  QECC. It takes k qubits and encodes it into n code 
qubits. Suppose we take each of the n code qubits and re-encode them using the 
(n ,k ,d)  QECC. We now have a code that takes k qubits and encodes it into n2 code 
qubits. But we have also increased the distance to d 2 ,  since we now require d error 
operators of weight d to convert one code word to another. If we repeat this process m 
times, then we obtain a (n",k,d") code. 

Quantum Error Code Bounds 
The field of error code bounds involves finding relationships between n ,  k ,  d ,  

i.e., the length of the code, the number of code words and distance between code words. 
Intuitively if one wants greater number of code words in a given code length, then one 
has to trade off the distance of the code. In the following subsections we quantify this 
notion. 

Quantum Hamming Bound 
Consider a (n,k,d) QECC that can correct up to t errors (bit flips, phase flips, 

both) which is non-degenerate. A non-degenerate code satisfies equation eq. (2) with 
r,, = dllh, i.e., distinct errors result in orthogonal vectors. 

Note that a qubit error can be a bit flip, phase flip or a combination of both, and 
so, if a codeword has j < t errors, then it can result in 3' possible orthogonal vectors. 

So a single codeword with j errors can generate 3' orthogonal error vectors. (3 
Therefore, the total number of orthogonal error vectors in the code is 

the error vectors as well as the code words must be accommodated in the original 
subspace of dimension 2", from which follows the Hamming bound. 
2 k 2 1 ; )  + 2k 5 2' w 2k) 3' I 2n-k where t = 1, d-1 J . 

J=I J = o  

A QECC satisfying the Hamming bound with equality is called a perfect code. 
Consider the case of a QECC that can correct a single error. Substituting t = 1 in the 
Hamming bound we obtain that 3n + 1 I 2"-k . If, furthermore, we require that the code 
contain only two code words, Le., k = 1 ,  then we have 3n + 1 I 2" / 2.  The smallest n 
that satisfies the above inequality is 5 ,  implying that we can do better than the 7-qubit 
Steane code described earlier. 

Note that the quantum Hamming bound is only valid for non-degenerate codes. 
However, as of yet, no degenerate code that violates the Quantum Hamming bound has 
been discovered. 
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A Perfect Code 
Recall that a perfect code is one that satisfies the Quantum Hamming bound with 

equality. We now describe a (5,1,3) perfect stabilizer code. The stabilizers of the code 
are 4 = X Z Z I  

M2 = IXZZX 
Mi = XIXZZ 
M4 =zxIxz 

One can check that each Pauli operator of weight 1 or 2 anti-commutes with at least one 
of the generators. So the distance of the code is at least 3 .  In other words one can correct 
a Pauli operator of weight 1, i.e., a single error. 

Fault Tolerant Computation 
So far we have outlined how to use error correcting codes to make bits more 

robust to decoherence. However, this is only a partial solution to the problem of 
operating a quantum computer in an error prone environment. Since our data bits are 
encoded now, we must have a method of processing encoded bits in a manner as to be 
equivalent to the processing of data bits. In other words, we need to determine how to 
implement the fundamental gates on encoded bits, so that the output is consistent. For 
example, suppose Iw) is a data qubit and a certain computation requires implementing 

XI w)  . If we have encoded Iw) as I v) using a QECC, then we would like to produce an 

operation x such that x I v) is the QECC encoding of X l w ) .  In order to perform a 
generic computation in a robust manner, one must have equivalent robust 
implementations of a set of universal gates. Note that even the gates might have inherent 
errors and one must have a mechanism to combat both the gate errors as well as storage 
errors. The process of encoding clearly involves gate operations, and the process of error 
correcting involves measurement that might be error prone as well. This process of 
building a robust universal set of gates is fault-tolerant computation. 

At first glance, this problem might seem to be insurmountable. We need to encode 
bits to protect them from errors, but the process of encoding might introduce errors. 
Furthermore, we need to measure and correct errors based on the measurements, but the 
process of measurement in itself is error prone. So, as a result, one might perform an 
erroneous correction due to an error in the measurement process. However, it can be 
shown that if the storage, gate, measurement errors of the underlying technology 
implementing the QC are statistically independent and below a certain threshold, then 
one can perform arbitrarily long computations with arbitrary small probability of error. 
Now classical computers do not encounter this issue of fault-tolerant computation, since 
the underlying technology is extremely reliable. However, Von Neumann" considered 
the same problem for classical computers and, under the assumption that transfer of bits 
from one gate to another was reliable, came up with a fault-tolerant computer. Gad9 has 
further improved the solution by removing the assumption of perfect transfer of bits. 

Clearly, the fault-tolerant implementation of the fundamental gates is a fiinction 
of the QECC used in encoding the data bits. Now, the QECC selected to perform the 
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encoding is a function of the computational complexity of the algorithm being 
implemented, i.e. the size of the problem being processed on the QC. So a generic QC 
may achieve fault tolerance in two ways. One might estimate the largest problem that 
can be computed on it and select a QECC and a fault-tolerant implementation of a 
universal set of gates in hardware. A second approach might be to have a mechanism to 
select a QECC and produce corresponding fault-tolerant implementations of a universal 
set of gates as a function of the size of the problem. While the former approach is a lot 
simpler, the latter has the advantage of being more efficient. 

Fault-tolerant computation also introduces a tradeoff into the process of selecting 
a QECC. It might be the case that there are two different QECCs C, , C, with the same 
distance. However C, uses fewer bits to perform the encoding than C,. If it were just 
the matter of storing bits clearly, C, would be preferred over C,. But consider the 
scenario where the fault-tolerant implementation of a universal set of gates for C, 
involves fewer gates than for C, . In this case one might choose C, over C, . 

Device Technology 

Quantum computing hardware development is clearly in its infancy. However, 
significant advances have occurred. Arguably the most difficult part of designing and 
building quantum computing hardware is getting two qubits to interact with one another. 
In this regard, Table 1 itemizes the state of the art in the development of a few 
prototypical systems for quantum computation. Further advances are expected, but 
problems and even significant limitations have been anticipated. The scale of existing 
hardware most likely will have to increase by many orders of magnitude before truly 
interesting calculations can be attempted. This scale increase must be achieved for both 
qubit storage and gate applications. It is likely, if quantum computers are to be practical, 
new ideas about the construction of quantum hardware will be required. 

Many possible physical implementations of a quantum computer have been 
proposed. The essential ingredients of such an implementation are a series of quantum 
mechanical two-state systems that encode the qubits of the quantum computer, a means 
of applying field pulses that control the couplings between the two states of each qubit 
and between neighboring qubits, and the ability to perform a quantum mechanical 
measurement of the state of a qubit. Leading proposals for the physical implementation 
of a quantum computer are based on nuclear magnetic resonance (NMR), ion traps, 
Josephson junctions, optical cavities, quantum dots, quantum wires, and impurities in 
semiconductors. 

An important property of a physical implementation of a quantum computer is the 
difference in energy between the two states of a qubit. This determines a fundamental 
frequency for the qubit representation. Typical fundamental frequencies range from 
values measured in MHz for a representation based on nuclear spins, to GHz for 
electronic spins, to optical frequencies for electronic transitions. This fundamental 
frequency gives the carrier frequency of the field pulses used to manipulate the qubits, 
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and it typically gives an upper bound on the rate at which gates can be performed on the 
quantum computer. The energy difference associated with the fundamental frequency 
can also be converted to a characteristic temperature. The temperature of the qubits must 
be less than this value in order to prepare a pure state for use in quantum computation. 
Typical characteristic temperatures range from a few milli-Kelvin (for nuclear spins) to a 
few Kelvin (for electronic spins) to thousands of Kelvin (for electronic transitions). 

SYSTEM 
Tramed ions 

ACHIEVEMENT REFERENCES 
4-aubit entanglement 20.2 1 

1 
Table 1. State of the art of some prototypical quantum computing 
systems. 

Cavity QED 2-qubit entanglement 22,23 
NMR 7-a ubi t oPeration 24.25 

Another important property of a physical representation of a quantum computer is 
the coherence time. In general terms, the coherence time is the time over which an 
arbitrary superposition of the states of the quantum computer can be maintained. At 
minimum, sustained computation requires that one cycle of the error correction algorithm 
can be run within the coherence time. A detailed definition of the coherence time tends 
to be complicated and system dependent since there can be several different mechanisms 
that can degrade different aspects of coherence. However, upper bounds on the 
coherence time can be obtained by considering specific mechanisms. For example, 
spontaneous emission of electromagnetic radiation is one mechanism that destroys 
coherence. In 3-dimensional free space, the spontaneous emission rate scales as the cube 
of the fundamental frequency due to the density of states of photon modes, and typical 
spontaneous emission lifetime ranges from microseconds for optical transitions to 
millions of years for nuclear spins. In practice, mechanisms other than spontaneous 
emission dominate decoherence for systems with small fundamental frequencies, and as a 
result real coherence times for nuclear spin systems are typically measured in seconds. 

Nevertheless, quantum computer implementations based on nuclear spins (NMR 
and ion traps) naturally have relatively long coherence times, and, largely as a result, the 
greatest progress toward quantum computation has been reported within these paradigms. 
However, both of these approaches are believed to have serious limitations that may 
prevent scaling of the number of qubits needed to perform practical calculations. These 
limitations arise because the characteristic temperature associated with a nuclear spin 
representation is small compared to temperatures that practically can be maintained in the 
laboratory. NMR and ion trap based quantum computers have taken two different 
approaches to overcoming this difficulty. In the case of NMR, researchers have worked 
with an ensemble of systems in a mixed state and used the “effective pure state” approach 
to separate the signal from a single component of the mixed state. This approach has 
been successful for small numbers of qubits, but the resulting output signal strength 
decays exponentially with the number of qubits used in the computation. In the case of 
ion traps, special laser cooling techniques have been used to initially cool the qubits to 
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below their characteristic temperature. This demanding technique depends on the 
extreme thermal isolation achieved in an ion trap, cannot be maintained during the 
computation, and becomes increasingly difficult as the number of trapped ions is 
increased. 

These limitations of NMR and ion trap based approaches suggest that quantum 
computer implementations where the characteristic temperature can be maintained 
practically in the laboratory may ultimately be more fruitful. In addition, Sandia's 
institutional expertise overlaps most strongly with implementations of a quantum 
computer based on quantum dots or wires and impurities in semiconductors, that 
principally represent qubits as electronic spins or electronic states. Since these 
approaches are based on solid-state technology, it is hoped that the same technologies 
responsible for the remarkable scaling of integrated circuits over the last thirty years can 
be applied to scale a quantum computer to an adequate number of qubits. However, the 
fundamental frequencies of these solid-state implementations are high and their natural 
coherence times are quite short (see Table 2) representing a significant control/interface 
challenge. It needs to be emphasized that the values presented in this table are not 
intrinsic, can vary considerably even within a system class, and are subject to 
technological context (a constantly moving target). These short coherence times are 
largely compensated by the correspondingly high speeds (GHz to THz) at which quantum 
gate operations can, in principle, be performed. However, applying well-controlled field 
pulses at these high speeds is likely to put extreme demands on the input electronics 
controlling the pulses. Furthermore, depending on how well losses can be controlled in 
the implementation, a considerable amount of power will likely be needed to create the 
strong fields that enable these rapid gate operations. Sandia's expertise in high speed, 
high power electronics may allow us to make a major contribution to the specialized 
input electronics of any future solid-state implementation of a quantum computer. 

Electron spin 
Electron quantum dot 
Nuclear stin 

System 
Electrons in GaAs 
Electrons in Au 
Trapped ions 10- 
ODtical microcavitv 10- 10- 10 

lo - '  10-3 1 o4 
I O "  I 0" 1 o5 
I O "  1 o4 I O '  

11 I I1 

Table 2. Comparison of characteristics times for several quantum 

The minimum time to execute a gate operation is Z, = - . 

The coherence time, zC, is subject to improvement with technological 
advance. 

Fl 

AE 
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Suggestions for Future Work 

The following Sandia technologies are likely to have applications in quantum 
computing, and these potential applications should be considered when planning further 
research involving these technologies. 

High Speed Electronics for Quantum Computer Input 

The above discussion of device technology suggested that Sandia should focus on 
quantum computer technologies with large fundamental frequencies. However, applying 
well-controlled field pulses at these high speeds is likely to put extreme demands on the 
input electronics controlling the pulses. Furthermore, depending on how well losses can 
be controlled in the implementation, a considerable amount of power may be needed to 
create the strong fields that enable these rapid gate operations. Furthermore, it will be 
necessary to interface the resulting electronic system to a classical digital computer that 
will generate the series of gate operations needed in order to perform quantum 
calculations. Sandia’s expertise in high speed, high power electronics may allow us to 
make a major contribution to the specialized input electronics of any future solid-state 
implementation of a quantum computer. 

MEMS Cantilever Technology for Quantum Computer Output 

One of the biggest challenges in implementing a practical quantum computer is 
performing quantum measurements on the qubits in order to determine the output of the 
device. This is especially challenging for several proposed implementations, which 
otherwise seem promising, where the qubit is encoded using spin. Techniques to measure 
the state of a single spin reliably have not previously been developed. One very 
interesting proposed approach to single spin measurement is the further development of 
Magnetic Resonance Force Microscopy (MFRM) technique. In this approach, a resonant 
cantilever is coupled to the spin via the interaction between the magnetic moment of the 
spin and a magnetic field created by a small magnetic particle mounted on the cantilever. 
A series of pi-pulses are used to flip the spin at the resonant frequency driving the 
oscillations of the cantilever. These oscillations can be detected optically, and the initial 
state of the spin can be determined from the phase of the oscillations. It is believed that 
over the next several years this approach can be refined to the point where a single 
electron spin can be measured. 

Sandia’s expertise in the production of cantilever devices with integrated optical 
readout using MEMS technology makes this a particularly suitable area of research for 
Sandia. The proposed work would differ from previous Sandia cantilever desi ns in that 
it would require the development of very high compliance cantilevers?’ Sandia’s 
expertise in the production of nanoscale magnetic clusters might also be applicable to this 
endeavor. 
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Photonic Lattice Technology for Controlled Qu bit Couplings 

It may be possible to suppress spontaneous emission from qubits represented 
using impurities or quantum dots by enclosing the qubit within a photonic lattice with a 
photonic bandgap at the fundamental frequency of the representation. This could 
significantly enhance the coherence times of such a qubit representation and greatly 
simplify the development of a quantum computer based on such technology. 
Furthermore, photonic lattices with engineered defects might allow efficient and 
controlled coupling between a qubit and a propagating photon modes. Difficulties in 
obtaining such a coupling are currently the chief bottleneck in quantum computer 
implementations based on cavity quantum electrodynamics. 

GaAs-based Quantum Computer Technology 

Sandia is a world leader in producing GaAs-based devices incorporating ultrahigh 
mobility 2-D electron gasses. Gates can be added to these structures to create quantum 
wires, quantum dots, and quantum point contacts from the original 2-D electron gas. 
The extreme mobility of these systems allows electrons to propagate long distances 
without loosing coherence. In principle, this should allow an electronic analog of an 
optical quantum computer based on the two-rail representation of qubits. However, the 
Coulomb blockade effect allows a strong interaction between single electrons, and thus 
the main drawback of an optical approach (weak interactions between photons) is 
avoided. 

Coherent Electron Transport in Quantum Wires 

The possibility of realizing a universal set of quantum logic gates using solid-state 
coherent electron transport in quantum wires has been reported.28 The basic technique 
couples two quantum wires with a carefully designed potential barrier allowing for 
controlled interactions. Numerical analysis has demonstrated the possibility of 
implementing a one-qubit rotation operation using a coupling barrier and a two-qubit 
CNOT gate using coulomb interaction. What is remarkable about these possibilities is 
that they can be realized with a relatively mature technology that is inherently integrable 
with conventional electronics. This method of quantum computing may be particularly 
of interest to Sandia since the required development would largely leverage leading 
capabilities already in place at these labs. 
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Next Steps far Quantum Computing Input Output 

It looks like real-time error-correction will be necessary for quantum computing 
to work. Each error-bit corrected must begin life as a known value (say 0), and, through 
a series of state manipulations, be mapped into an error bit. The error bit must be read, 
so as to remove it from the system, without disturbing the rest of the computation. 

It's important to do physical experiments to confirm that these steps are possible. 
There isn't a lot of doubt about the possibility of adding new bits to a computation. This 
is one natural way to begin a quantum computation, introducing new bits into the 
entanglement one at a time. We need to confirm that this can be done in the middle of a 
computation. 

It should also be possible to read out a qubit, collapsing just that portion of the 
entanglement, leaving the remaining state unmolested. But this deserves experimental 
confirmation. 

Quantum operations above the gate level must be conducted with reversible 
Computation. This is not a physical requirement, but a practical one: each bit computed 
must be written into a new quantum place, another dimension in the state space. This 
will exhaust our limited "memory" available. The fix is to "uncompute" the bit when we 
are done with it, avoiding the cost of erasure. 

It's conceivable that temporary bits can be supplied as extra Os in the state space. 
They would be used for a while, then uncomputed back to 0, and read out to re-fix their 
0-ness for the next use. 

The next obvious algorithm steps are small binary or gray-code counters, and a 
short LFSR-style shift register. Subsequent to these steps, a nonlinear-FSR could be 
developed offering a wider choice of periods. These are one-to-one devices with no 
information loss. The challenge is to get them to run as many steps as possible before the 
states decay, and augmenting the number of steps with error correction. Following this, a 
very simple 2- or 3-bit adder, with the sum copied elsewhere and then uncomputed in the 
original bits, will confirm the basic ideas of reversible computation being usable in this 
environment. Doing actual quantum arithmetic will require many instances of this 
addition system. 

What can we expect to do with small numbers of quantum bits? 

We need to explore whether the search algorithms can be subdivided into smaller 
problems that can be tackled with smaller quantum computers. There's no problem 
dividing (say) a DES key search into pieces on classical computers, but it's not obvious 
that the same approach will work in the quantum arena. We can divide up the key space 
by fixing some of the key bits and letting others be entangled state pairs but then we must 
carry out an encryption, which, by the nature of the encryption algorithm, will entangle 
all the bits of the plaintext state. It appears that a key-search engine will need a minimum 
of bits equal to the block-size, 64 bits for DES, 128 for AES, plus the number of key-bits 
being searched (as many as possible, up to 56 for DES and 128-256 for AES), plus a 
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small number of temporary bits. The win-factor, the amount of gain over a conventional 
computer key search, would be 1/2 the number of quantum key bits. 

Appendix A contains the details of a DES encryption with a quantum computera. 
A DES encryption can be done with 123 qubits, and 42000 gate operations. One gate 
operation does the C language equivalent of Z A= (X&Y), i.e. Z is complemented if both 
X and Y are 1. This algorithm incorporates no overhead for error-correction. It also 
includes 56 qubits of key for searching. 

For the factoring and discrete log problems, its not known if the problem can be 
subdivided at all. These problems depend on finding periodicities in a virtual array of 
numbers. Possibly some kind of heterodyning could be used to shift the frequencies of 
the virtual period. Again, quantum arithmetic on full sized numbers is required, even if 
the number of quantum parallelism bits is small. It's worth noting that an algorithm for 
solving the problem "Does N have a divisor between A and B?" is thought to be NP- 
~ o m p l e t e ~ ' ~ ~ ,  so the benefits of solving this problem would stretch beyond cryptography. 

Hilbert Space Analog Computing 

As a final note, there have been speculative reports of possible advantages of 
Hilbert Space Computing (HSC) over QC.30 Both QC and HSC store information 
physically in a way that can be represented abstractly by a complex unit vector (or, more 
properly, a ray since an overall phase factor does not have physical meaning) in a 2N - 
dimensional Hilbert space. This Hilbert space is defined as a tensor product with factors 
representing each of the N qubits composed of 2-dimensional Hilbert spaces describing 
individual qubits. The exponential dimensionality of this space distinguishes HSC and 
QC (as a subset of HSC) from classical analog computers, whose state is described by a 
number of parameters that grows only linearly with the size of the system. QC contrasts 
with classical HSC due to the important quantum attribute often referred to as 
entanglement. HSC advocates suggest that classical physical examples requiring Hilbert 
space description exist and hence have this exponential property inherent to these spaces. 

Suggested QC characteristics such as gate number scaling with qubit number, 
serial and statistical output porting, no-cloning constraint, decoherence, and low- 
temperature constraints are often touted as significant road blocks that might be avoided 
with some examples of HSC. Claims have been made that HSC has advantages 
regarding the size, complexity and speed of hardware. Also touted are the advantages in 
parallel output, copying of data, the irrelevance of decoherence, and the potential to 
operate at elevated temperatures. 

It is not clear to us at present whether any or all of these claims are valid. Also 
not clear are the specific ramifications to computing with nonlocal entanglement inherent 
in QC and presumably not in HSC. Nevertheless, it is tempting to speculate that 
decoherence is a major roadblock in QC and that there may be some advantage in 
developing HSC. 

a Developed by Rich Schroeppel 
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Conclusion 

We conclude that even though mathematical descriptions of “computationally 
complete” sets of quantum gates are fairly mature, full understanding of these 
mathematical models yet remains counter-intuitive to most practitioners. Further, 
progress in this area is limited (1) by lack of physical devices with which to realize 
Quantum Computing, (2) by lack of control structures through which to supervise 
quantum operations, and (3) by lack of algorithms for which great gain in efficiency over 
classical algorithms can be demonstrated. 

As more mathematicians, cryptographers, systems engineers, and device 
physicists and engineers interact regarding these issues, the strange inter-workings of 
“quantum information processing” will become more intuitive, and progress will be made 
on algorithms and on quantum gate devices. It is recommended that an ongoing seminar 
series on advances in Quantum Computing be conducted to keep Sandia’s device 
physicists and information theorists abreast of multi-disciplinary developments in this 
area. 

In particular, Hilbert Space Analog Computing may be an area of rich 
productivity. Computing in a Hilbert Space is a superset of Quantum Computing, and is 
realizable (to the level of a few “Hilbert bits”) in conventional microelectronics and/or in 
current programmable logic devices. By attempting to implement quantum-like 
algorithms in a Hilbert Space Computer, great insights may be gained into the 
architectures suitable for Quantum Computing and into the design of algorithms that may 
prove more efficient than classical algorithms. 
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Appendix A 

Computing the DES Block Cipher with a Quandm Computer 

Abstract 

computer, using 27264 gate operations. 
We describe how to compute the DES block cipher with a 123-qubit quantum 

Introduction 
The DES cipher was released in 1975. It was a great achievement for its time, 

cramming a lot of functionality into one chip. The original specification required 
hardware implementation explicitly forbidding a software implementation. 

DES is a block cipher. The block size is 64 bits, and the key size is 56 bits. The 
user supplies his 56-bit key, and a 64-bit (8 byte) block of data (the plaintext). The DES 
function returns another 64-bit block, of encrypted data (the ciphertext). The decryption 
function takes the same 56-bit key, and the 64-bit ciphertext, and returns the original 64- 
bit plaintext data. 

We assume all operations are perfect and that no errors occur. The algorithm 
presented below uses two standard types of quantum gates. The two kinds of gates used 
are represented in the C language. For the first gate, X A= Y, the bit Y is XORed into the 
bit X. X is complemented if Y is 1. For the second gate, X A= (Y&Z), the bit X is 
complemented if Y and Z are both 1. (Also included: Y&-Z, and -Y&-Z.) Both of 
these operations are reversible: doing either a second time undoes the effect of the first 
time. Both operations have been demonstrated in NMR  system^.^^'^' 

The algorithm implements DES with 123 qubits and 27264 gate operations. 
Presumably this would be a subroutine in a Grover's Algorithm search for a DES key. 64 
of the qubits are used to represent the plaintext and its intermediate values (middletext) as 
it is transformed into the ciphertext. (Usually, one known plaintext-ciphertext pair is 
required to determine a DES key.) 56 of the qubits specify the key, and are read-only, 
not changed during the algorithm execution. 3 of the qubits are temporary values, and 
they do the bulk of the computing. 

Smaller implementations, which use fewer qubits, can search portions of the 
keyspace. In this case, some of the key bits are fixed, and no longer need qubits. The 
minimum number of qubits is 69, for searching a 2-bit portion of the keyspace. 

The DES Algorithm 
The DES encryption function consists of an initial permutation, 16 key-controlled 

rounds, and a final permutation. The initial and final permutations simply rearrange the 
bits of the plaintext and ciphertext. They seem to exist for historical reasons related to 
clocking the data onto the chip. Cryptographically speaking, they are NOPs, so we'll 
assume that whatever control computer is operating the quantum machine also applies the 
initial and final permutations to our plaintext and ciphertext. 
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We assume we are given a particular 64-bit plaintext value to work with, and need 
to encrypt it with a 56-bit key. We assume that we have 64 qubits available to hold the 
plaintext and its successor values as it is modified during the encryption. The plaintext 
qubits are initialized to the known plaintext value. We assume the key is given as an 
additional 56 qubits. The key is prepared as 56 entangled bits, so it simultaneously takes 
on all 256 possible key values. In addition, we need three temporary qubits, called simply 
A, B, C. They are initialized to 0. 

The Round Function 
Each round of the encryption uses 48 of the 56 key bits. The details of which bits 

are used don't matter for this paper, so the lists are omitted. One important point to note 
is that the values of the key bits are not changed during the algorithm. (This is different 
in modern ciphers like AES, where key bits are changed during the algorithm; this 
complicates searching portions of keyspace for these ciphers.) 

DES uses the Feistel construction. The 64-bit plaintext is divided into two 32-bit 
halves, called the left and right halves. In each round, a 32-bit hash is derived from one 
of the 32-bit halves and 48 of the 56 key bits. The hash is XORed into the other half. 
The left half is modified in odd rounds, and the right half is modified in even rounds. 
Since one half is unmodified in each round, the round operation is reversible, which is 
how the cipher is decrypted. 

Sboxes 
Computing the hash is the heart of the encryption, and takes most of the work. 

The 32-bit half is divided into 8 nibbles of 4 bits each. Two other bits are borrowed from 
adjacent nibbles to make a 6-bit quantity, the extended nibble. This is XORed with 6 key 
bits, giving an index into a table called an Sbox. The Sbox has 64 entries, each a 4-bit 
value. There are 8 different Sboxes, used for the 8 extended nibbles. The total output of 
the 8 Sboxes is 32 bits. Before being XORed into the other half, these 32 output bits are 
rearranged in a specific pattern called Permutation P, whose purpose is to make sure that 
the influence of each Sbox output is spread around in the targeted half. Our 
implementation cost is unaffected by the details of Permutation P. 
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Table 3. Sboxl values: the 2 borrowed bits select one of the 4 rows, and the 
4-bit nibble selects one of the 16 columns. The value is a 4-bit number. 
The 4 bits are XORed into 4 bits of the target half. 

The results of the first extended nibble, the output of Sboxl, are XORed into left half bits 
L9, L17, L23, and L31. 

One property of our scheme is that the Sbox values don't explicitly appear in the 
quantum state, and no extra qubits are required for them. Instead, the actions of the 
control computer implicitly define the Sboxes for the quantum engine. 

Sbox Lookups 
Our plan is to compute each of the 8 Sboxes in turn. The output bits of the Sbox 

are XORed into the target Half as they are computed. To compute an individual Sbox, 
our algorithm marches through each cell of the Sbox, asking "is this the active cell?", 
and, if so, XORing the cell value into the appropriate bits of the target Half. 

The marching works by considering each possible combination of values for the 
six bits of the extended nibble. There are 64 combinations. We start with 11 11 11, and 
use a gray-code path, modifying one bit position at a time, while covering all the cells. 
We use a simple trick. The six bits are considered as two groups of three bits, and we 
walk each group through all 8 possible combinations. 

We describe Round 1, Sboxl as an example. First, six bits of key are XORed into 
six bits of the right half. We call the result bits HIJKLM. They occupy six qubits in the 
right half. IJKL correspond to the first nibble; H and M are borrowed bits to make up the 
extended nibble. These six bits will select a value from Sboxl. We will walk through all 
possible combinations of the six bits, and for each value we will XOR the appropriate 
bits (from 0 to 4) into the target half. 

Marching Through the Cells of Sboxl 
We begin with the temporary bits A, B, C all in the 0 state. We will compute the 

AND of the bits HIJ and place it in bit C. We complement bit A if bits H and I are 1, 
A"= H&I. Then we complement bit C if bits A and J are 1, C "= A&J. After these 
operations, C = H&I&J. So C will be in the 1 state 1/8 of the time, and in the 0 state 718 
of the time. (Or, in our quantum entangled world, C is 1/8 1 and 7/8 0.) We need to reset 
A to 0, so we "uncompute" it by again XORing in H&I. A "= H&I. Next we similarly 
compute the AND of KLM in bit B, again using A as a temporary. We don't need to 
restore A to 0 just yet. If all of HIJKLM are 1, then bits B and C are also 1. The Sbox 
value is 13 (in the lower right corner of the table), binary 1101. So we should XOR 3 1 
bits into particular bit positions in the left half, positions L9, L17, and L3 1. (We could 
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also XOR a 0 into bit L23, but there's no need.) We execute the gate operations L11 A= 

B&C, L25 A= B&C, and L14 A= B&C. This does 1/64 of the work for Sboxl, one cell of 
the table. 

We move on to another cell for the Sbox by adjusting bit B. We execute B A= 

K&L. Most of the time this does nothing, but if K and L are both 1, then B is 
complemented. After the operation, B will be 1 if KLM = 110. This corresponds to row 
3 in the last column of the Sbox, with value 0. So we have no bits to XOR into our target 
for this cell. 

We move on to another cell by XORing K&-M into B. Now B is 1 when KLM = 
100. This selects the next-to-rightmost entry in row 3 of the Sbox, with value 5, binary 
0101. We XOR a 1 into bits L17 and L31 ofthe left half. L17 A= B&C, L31 "=B&C. 

We move to another cell of the Sbox by XORing B A= K&-L. Now B is 1 when 
KLM = 10 1, which selects the 6 (binary 0 1 10) in the bottom row of the Sbox; we XOR 1 
into L17 and L23. And so it goes. We continue conditionally complementing B, walking 
through all 8 combinations of the bits KLM. 

Changing Qubit C 
After the 7th XOR step, B has been through all 8 possible KLM combinations. 

We execute C A= H&I to move to a new HIJ value, HIJ=l 10. We walk B back through 
the 8 KLM values in reverse, then move to another new HIJ value and so on. (This is 
just a Gray code for the 64 combinations of HIJKLM.) 

Counting the Gate Operations 
Overall, we will need 63 steps for the 64 values. Each Sbox cell has an average 

of 2 bits, so we'll need 128 XORs on left half bits. So our walk through the Sbox needs 
191 gate operations, plus 5 to compute initial settings for B and C, and 5 more to un- 
compute them and restore A, B, C to 0. We need 6 XORs of key bits into right half bits 
for the Sbox selection, and 6 more to undo the key bit XORs and restore the right half 
values. So our total cost for one Sbox is 213 gate operations. All 8 Sboxes will cost 
1704 gate operations. 16 rounds will come to 27264 gate operations. 

If more qubits are available to hold temporary values, the number of gate 
operations can be reduced somewhat. 

Searching Partial Key Spaces 
If we are searching a portion of the key space, some of the key bits are assumed 

to have fixed given values. These bits won't need to have qubits in our "circuit", so we 
can use fewer than 123 qubits. In the extreme case that we are fixing 54 of the key bits, 
and only quantum searching 2 key bits, we need only 69 qubits total - 64 for the 
middletext state (left and right halves), 2 for the quantum portion of the key, and the three 
temporary bits A, B, C. A small reduction in the number of gate operations is possible. 
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cipher blocksize 
kev size 

64 bits 
56 bits 

temporary bits 
total aubits needed 

3 bits 
123 aubits 

one Sbox cell 
one Sbox 

Table 4. Summary of requirements for quantum DES. 

Average 3 gate operations 
2 13 gate oDerations 

one cipher round 
full 16 round ciDher 

1704 gate operations 
27264 gate oDerations I 

AES Prospects 
The AES Sbox has 256 values (8 input bits, and 8 output bits), so the average 

work is 4 XORs x 256 gray code steps. 16 bytes per round gives 16384 gateopdround or 
163840 for ten rounds, plus 25% for key-related Sbox operations, 204800. We'll need a 
few temporary values, maybe 8 or 16, for a total of about 270 qubits. A few more gate 
operations for the Mix Column step, and the round key xors. (We might do better on the 
Sbox by using subfields.) One major cost is uncomputing the inputs to the Sbox, which 
potentially doubles the number of gate operations to roughly 400000. The gray-code 
walk through the Sbox will need some work, since the number of input variables is 8 

DISCRIPTION QUBIT 
REOUIREMENT 
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GATE 
OPERATIONS 

two-key version 
three-key version 

243 163584 
3 63 245376 



rather than 6. We might do it as 5+3, with the bottom level 3-variable walk being the 
same, and the 5-variable walk being more complicated, but only every eighth step, so the 
complexity is amortized. 

Because AES (and Serpent) change the key during the algorithm execution, 
searching partial key spaces with some of the key bits fixed doesn't seem to reduce the 
total number of qubits needed. 

Serpent 
Serpent is easier, since the Sboxes are smaller, only 4 bits for the input and 

output. We will still need 128 bits for the middletext, and will need 256 bits for the 
intermediate key, and a few bits for temporary storage. 
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Appendix B 

QIP History 

1926 Born interpretation of the collapse of the wave function 
1929 Leo Szilard anticipated Bennet(l982) and invented the concept of a bit of 

inform at i on. 
1932-1 936 Church-Turing conjecture 
1935 Erwin Schrodinger proposes, a now famous, illustration of quantum 

superposition often referred to as Schrodinger’s cat. 
1935 Einstein, Podolsky, and N. Rosen, (EPR) publish what they thought might 

be a fatal flaw of quantum mechanics - nonlocal  interaction^.^^ 
1949 John Tukey introduced the term “bit” see (Szilard,l929) associated 

entropy A S  = k ln(2) with acquisition of 1 bit. 
1950s John Von Neumann CC whoisy components 31 can use redundancy to 

work reliably. 
1952 G.C. Wick introduces super selection rules.33 
1955 Anderson, et al., point out that nuclear spins can be used for storing 

information .34 

1961 Landauer’s principle: Landauer’s principle: erasure of information is 
necessarily a dissipative process 31 

1964 John Bell shows that the predicitions of quantum mechanics cannot be 
reproduced by any local hidden variable theory 35 

1973 Charles Bennet: any computation can be performed using only reversible 
steps in principal no dissipation (no power) required 

1980 The study of quantum information as a coherent discipline begins to 
emerge. 

1980s That quantum mechanics is computationally difficult leads Feynman to 
speculate that a quantum computer should be able to perform certain 
tasks beyond the reach of a conceivable classical computer. 

1982 A. Aspect, A. Dailbard, and G. Roger give experimental verification of non- 
locality in quantum  mechanic^.^^ 

1982 Benioff first to explicitly point out that a quantum system can perform 
computation 

1982 Bennet reconciliation of Maxwell’s demon with the second law of 
Thermodynamics. 

1982 No cloning principle anticipated by Wooters, Zurek, and Dieks 
1982 Paul Benioff and R Feynman represent two different points of view on 

QC3’ 
1982 Feynman points out the value of quantum computer for quantum 

simulation emphasizing quantum information storage capacity. 
1983 RSA algorithm patented by MIT and exclusively licensed to RSA Security 

Incorporated. 
1985 David Deutsch empasized that quantum computers can best realize their 

computational potential by exploiting massive quantum parallelism 373 

3 7 3  

13,31,37 

3739 
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1991 
1993 

1993 

1994 

1994 
1995 

1995 

1995 
1995 
1996 
1996 
1997 

1997 
1997 

2000 
2001 
2002 
2003 

2003 

David Deutsch coined “quantum parallelism” (Feynman’s idea made more 
exp~icit)~’ 
R. Landauer discusses the implications from information being physical4’ 
Bernstein and Vazirani demonstrated that even if NP-complete problems 
could be solved a classical computer would still not be able to simulate a 
quantum com pu ter efficien t ~ y . ~ ’  
Don Page reports that the average entropy of a subsystem is usually very 
close to S N - 2 -  . 
Daniel Simon exhibited the first example of a uantum algorithm that 
efficiently solves an interesting hard problem. 
Peter Shor factoring Algorithm7 
Peter Shor proposes first example of quantum error correction.44 No- 
cloning theorem does not prevent the development of viable quantum 
error correction schemes. 
lgnacio Cirac and Peter Zoller suggest Ion trap QC2’ showed that the 
quantum XOR (or controlled not) gateIx,y) + Ix,yO x) , can be 
implemented in an ion trap with altogether 5 laser pulses. 
Ion trap XOR demonstrated experimentally by NlST 
Pellizzari, Gardiner, Cirac, and Zoller suggest Cavity QED QC.46 
Grover publishes a clever method of searching an unsorted 
Number field sieve developed by Pollard was used to factor RSA-1 30.31 
Bennet et al. obtain the result that Grover’s algorithm is optimal; no 
quantum algorithm can solve the database search problem faster than 

Jeff Kimble’s group at Caltech persue Cavity QED4’ 
Gershenfeld and Chuang and indpendently Cory, Fahmy, and Havel, 
pointed out that NMR provides a useful implementation of quantum 
com pu tat ion. 50 
RSA algorithm, patented by MIT, is released to the public domain. 
Ferry et.al. first to propose classical physical systems for HSC 
O’uchi et. al. first to build a classical physical HSC 
H.M. Wiseman and J.A. Vaccaro reassess traditional entanglement 
measures with regard to super selection rules.53 
F. Verstraete and J.I. Cirac discuss limitations of bipartite operations 
caused by super selection rules.54 

( N + I )  42 

1 3  

p 2  -48 

30,51 

30,52 

i 

- 
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