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Grant Number: DE-FG26-01-NT41279 

Annual Progress Report for the Period September 28, 2003 to September 27, 2004 
 

ABSTRACT 
 
 
The University of North Dakota (UND) Chemical Engineering Department in conjunction with 
the UND Energy & Environmental Research Center (EERC) have initiated a program to 
thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) 
effects experienced by a variety of refractory materials during both normal operation and thermal 
cycling under slagging coal gasification conditions.  The goal of this work is to devise a 
mechanism of refractory loss under these conditions.   
 
The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized 
to simulate refractory/slag interactions under dynamic conditions that more realistically simulate 
the environment in a slagging coal gasifier than any of the static tests used previously by 
refractory manufacturers and researchers. Shakedown testing of the CADCAF has been 
comleted.  Samples of slag and refractory from the Tampa Electric Polk Power Station have been 
obtained for testing in the CADCAF.  The slag has been dried and sieved to the size needed for 
our flowing slag corrosion tests.  Screening tests are in currently in progress.  Detailed analysis 
of corrosion rates from the first tests is in progress. 
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DYNAMIC TESTING OF GASIFIER REFRACTORY 
 
EXECUTIVE SUMMARY 

 
As DOE continues to advance new power systems, materials issues are often pivotal in 
determining the ultimate efficiency that can be reached in the system. Refractory performance in 
slagging gasification represents one of these issues.  The University of North Dakota (UND) 
Chemical Engineering Department in conjunction with the UND Energy & Environmental 
Research Center (EERC) have initiated a program to thoroughly examine the combined chemical 
(reaction and phase change) and physical (erosion) effects experienced by a variety of refractory 
materials during both normal operation and thermal cycling under slagging coal gasification 
conditions.  The goal of this work is to devise a mechanism of refractory loss under these 
conditions.   
 
The focus of the proposed work is to test the corrosion resistance of commercially available 
refractories to flowing coal slag, and propose the mechanisms of corrosion for the conditions 
studied. Corrosion is the degradation of material surfaces or grain boundaries by chemical 
reactions with melts, liquids, or gases, causing loss of material and consequently a decrease in 
strength of the structure. In order to develop methods of reducing corrosion, the microstructure 
that is attacked must be identified along with the mechanism and rates of attack. Once these are 
identified, methods for reducing corrosion rates can be developed. 
 
The work will take advantage of equipment and experimental techniques developed at the EERC 
under funding from several DOE programs.  The controlled-atmospheric dynamic corrodent 
application furnace (CADCAF) will be utilized to simulate refractory/slag interactions under 
dynamic conditions that more realistically simulate the environment in a slagging coal gasifier 
than any of the static tests used previously by refractory manufacturers and researchers.  
 
The CADCAF was designed and construction was initiated under previous DOE funding. During 
the first two years of the current project, efforts focused on finalizing construction of the 
CADCAF.  These final efforts focused primarily on issues related to sealing the CADCAF 
system, and dealing with a variety of safety related issues.  Shakedown and screening testing 
verified operation of the system under reducing conditions.  
 
Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained 
for testing in the CADCAF.  Screening testing is in progress.  Detailed analysis of the corrosion 
products will be performed during the next program year. 
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DYNAMIC TESTING OF GASIFIER REFRACTORY 
 
INTRODUCTION 

 
The recent events in California provide a strong impetus to the Vision 21 program being 

developed by DOE.  While the rolling blackouts can be attributed primarily to shortsightedness 

in California’s deregulation policy, evidence of the shrinking power reserves, and the need to 

build new electricity generation plants, is apparent. Coal gasification integrated into the energy 

cycle of a power plant is one of the more promising technologies that is capable of meeting the 

demand for new generating capacity while addressing the strong environmental concerns that 

have been delaying the construction of new power plants. 

As DOE continues to advance new power systems, materials issues are often pivotal in 

determining the ultimate efficiency that can be reached in the system. A specific example is the 

need for refractories able to withstand both oxidizing and reducing environments, with high 

temperature strength, and the ability to resist corrosion by flowing slag and rapid thermal 

cycling.  The University of North Dakota (UND) Chemical Engineering Department in 

conjunction with the UND Energy & Environmental Research Center (EERC) has undertaken a 

study to thoroughly examine the combined chemical (reaction and phase change) and physical 

(erosion) effects experienced by a variety of refractory materials during both normal operation 

and thermal cycling under slagging coal gasification conditions.  The goal of this work is to 

devise a mechanism of refractory loss under these conditions.   

The work takes advantage of equipment and experimental techniques developed at the 

EERC under funding from several  DOE programs.  The controlled-atmospheric dynamic 

corrodent application furnace (CADCAF) will be utilized to simulate refractory/slag interactions 
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under dynamic conditions that more realistically simulate the environment in a slagging coal 

gasifier than any of the static tests used previously by refractory manufacturers and researchers.  

The CADCAF, along with advanced analytical techniques, provide the team with unique tools to 

evaluate the refractory problems facing the gasifier-based advanced power systems being 

developed under Vision 21.  

Problem Definition 

Corrosion is defined for this work as the degradation of material surfaces or grain 

boundaries by chemical reactions with melts, liquids, or gases, causing loss of material and 

consequently a decrease in strength of the structure. In order to develop methods of reducing 

corrosion, the microstructure that is attacked must be identified along with the mechanism and 

rates of attack. Once these are identified, methods for reducing corrosion rates can be developed. 

Refractory corrosion is of concern in gasification systems for several reasons.  Gasifiers, 

especially those that remove the ash in the form of a molten slag, operate at high temperatures 

over 1400C.  At these high temperatures, chemical equilibria can become favorable for the 

interaction/reaction of the ash material from the fuel with the refractory, and the liquid state of 

the slag assures rapid reaction.  The reduced species that are typically present in gasifier slags 

are typically more corrosive than their oxidized forms, and cause the slag to become liquid at 

lower temperatures than typically seen in combustion systems.  To complicate matters, a 

commercial gasification system can experience sudden changes in temperature, subjecting the 

refractory material to thermal shock, and can switch from reducing to oxidizing as a result of 

process upsets. 

The fact that the slag is liquid not only causes high reaction rates with the refractory 
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because of the rapid transport of slag corrodents to the refractory surface, but also leads to the 

penetration of the slag into the refractory, even those that are nonporous, setting up the potential 

for chemical reactions below the surface of the material.  These reactions can result in the 

dissolution of the refractory material, in particular, the cement below the surface.  Often of more 

importance though, is the crystallization of secondary species, often with higher specific 

volumes than the original material, which leads to expansion and bursting of the refractory. 

The physical properties of the slag in a coal gasification system are functions of the 

characteristics of the fuel being utilized.  One concern is the viscosity of the slag at operating 

temperatures in the gasifier.  Slags of low viscosity will flow more easily and more readily 

penetrate the refractory material. In addition, a low viscosity material that readily flows will 

continually and rapidly remove any corrosion products formed at the surface of the refractory, 

and replace them with fresh slag.  Therefore, rather than coming to an equilibrium, the 

continuously running slag continues to reestablish the chemical driving force required for rapid 

and severe corrosion. A second expectation with low viscosity slags is the formation of relatively 

thin layers of slag.   While a thick slag may be able to “insulate”the refractory from the gas phase 

species, with a thin layer of slag the gaseous environment in the gasifier is able to participate in 

the chemical reactions between the refractory and the slag.   

The reactivity of the ash with the refractory, and the proper selection of refractory 

material will also be impacted by the chemical composition of the ash.  On a broad sense, 

differences in reactivity can be expected between a basic and an acidic ash.  Other more subtle 

differences will manifest themselves as the both the elemental and mineral composition vary 

within these two broad classifications. 

 
 4 



Experimental data for modeling refractory materials in coal gasification systems is scant. 

 While some limited work has been performed at high temperature slagging combustion 

conditions, much of the limited research performed for slagging gasifiers is proprietary.  

Information obtained from the DOE programs such as Combustion 2000 can and should be 

utilized as a starting point for developing experimental methods and proposing mechanisms for 

refractory corrosion in gasification systems.  

Fortunately, the high temperatures under investigation add some simplification to the 

understanding of ash/refractory interactions.  While ash is typically a very nonhomogeneous 

material, the molten slag that is formed at the expected temperatures in the gasifier will be 

homogeneous.  In addition, due to the high temperatures, it is expected that the system will be at 

thermodynamic equilibrium. This implies that existing thermochemical equilibrium models such 

as the Facility for Chemical Analysis of Thermodynamics, or FACT code, could be utilized to 

model behavior in the gasifier.  While FACT and other models may be a part of the tools used to 

investigate the problem, they are often limited in their use because the current thermodynamic 

data bases do not include all of the species required to adequately model the complex system that 

exists in the gasifier.  However, knowing that the system is homogenous and at equilibrium does 

allow the use of other analytical methods, such as heated stage x-ray diffraction to help define 

the system.  

EXPERIMENTAL 

The focus of the work is to test the corrosion resistance of commercially available 

refractories to flowing coal slag, and propose the mechanisms of corrosion for the conditions 

studied. The focus will then shift to improving the corrosion resistance of the near surface of the 
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grains and bond phase between grains, since bonding phases normally have a lower melting 

point and lower corrosion resistance than does the bulk of the material. Other tests may focus on 

the use of slag additives to decrease the corrosivity of the slag itself.  

Approach 

The primary tool that will be used to simulate the interaction of the ash generated slag 

and refractory is the controlled-atmosphere dynamic corrodent application furnace (CADCAF).  

It was designed to simulate conditions of dynamic corrosion on the vertical wall of a 

refractory-lined coal gasifier or glass or steel industry furnace, under controlled atmospheric 

conditions.  The CADCAF, shown schematically in Figure 1 has the capability of testing two 

refractory test blocks simultaneously, up to a maximum of 1600oC. Two corrodent injector feed 

ports and a single view port are located on the removable portion of the top of the furnace.  

Corrodents may consist of any granular material such as coal or steel slag, or glass cullet. An 

exit port for the spent corrodent material is located at the bottom of the furnace. The molten 

spent corrodent material will exit the furnace through a heated ceramic tube into a removable 

refractory lined catch pot and be available for post-test analysis. 

The powder feeder is a precise low-rate volumetric feeder with full hopper agitation 

made of 316 stainless steel material.  The feeder needs to be gas tight to several inches of water 

to allow the system to be completely sealed to prevent the reactive gases to escape or oxygen to 

enter the system [current work is focused on sealing of the system].  For any given test, a 

preselected gas mixture will be introduced through a gas inlet valve located on the side of the  
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Figure 1.  Schematic of the inside of the CADCAF with refractory blocks in place.

corrodent hopper.  The gas will mix with the corrodent material, then enter the furnace through 

the feed injectors.  It exits the system through a gas outlet vent located on one side of the slag 

catch pot, then exhausted through the fume hood.  

Results from these dynamic experiments will be evaluated using several techniques to 

analyze the combined impacts of ash chemistry and refractory composition on refractory wear. 

Exposed refractory samples will be evaluated to determine the penetration depth and surface 

recession as a first estimate of the refractories resistance to attack.  Scanning electron 

microscopy (SEM) will be used to determine if the primary attack was against the cement 

material or the aggregate.  The SEM will be used to map the chemical composition of the 

exposed slag as a function of depth.  These maps will help determine the penetration of various 

ash components into the refractory and/or the leaching of materials from the refractory.  

Selective penetration or leaching of specific elements will be important in understanding the 
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mechanisms of refractory attack.  

Another analytical tool that will be used in this study is heated-stage x-ray diffraction 

(XRD).  Samples of slag prior to exposure to the refractory, and of the material after exposure 

(containing corrosion products), will be analyzed.  The heated-stage XRD allows the user to 

identify the temperature at which various crystalline phases will form from the glass phase.  

Identification of the type of crystalline material that may be formed and under what conditions it 

forms will provide valuable insights into understanding methods by which additives to the slag 

or the refractory can help reduce corrosion rates. 

The effect of process variables on surface recession of the refractories be investigated 

using the CADCAF.  For example, small changes in temperature can significantly effect the 

viscosity of the flowing slag.  These experiments will help evaluate the impact of slag viscosity 

on the mechanisms of refractory wear.  Secondary effects of temperature that will also be 

considered is the crystallization of certain species from the slag as the temperature is reduced, 

and changes in the kinetics and chemical equilibrium with temperature variations. 

CADCAF tests will be performed with both acidic and basic coal ashes. Under testing 

performed for Combustion 2000, basic slags were found to be more corrosive to certain 

refractories than acidic slags.  With castable alumina refractories, the basic slags penetrated the 

refractory and formed secondary crystallization products that expanded and caused the refractory 

to burst.  Therefore, the ash materials chosen for testing will include at least two bituminous and 

two low-rank (subbituminous or lignitic) coals.  Selection of test materials(coals) will be made to 

compliment DOE’s existing data base.    

Another approach that will be used to both help elucidate mechanisms and to assist in the 
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development of more corrosion resistant refractories is to investigate a variety of refractory 

compositions.  Phase diagrams will be utilized to identify stable high-melting material that could 

modify the bonding phase of the refractory.  Mechanisms of reducing corrosion to be 

investigated include the formation of corrosion-resistant surface layers and increased sintering to 

raise strength and seal pores to reduce slag penetration. 

Slag additives will be investigated as methods of altering the chemical and/or physical 

properties of the slag.  Results of experiments under combustion conditions indicate that the 

flowing slag becomes significantly less corrosive as the slag dissolves some of the refractory.  

This may be due to changes in the slag viscosity or by changing the chemical composition of the 

slag so that it becomes saturated with the chemical species found in the refractory.  As the 

saturation point is approached, dissolution rates would be expected to decrease markedly. 

Thermal shock is can also play a critical role in refractory wear.  The potential impact of 

thermal cycling will be evaluated using two different approaches.  The first makes use of the 

penetration and compositional data obtain during CADCAF tests performed at a constant 

temperature.  The intent is to determine the type and amount of slag penetration and reaction that 

has occurred with a given slag/refractory composition.  Using this information and data 

generated from the heated XRD experiments, the potential to form crystallization products on 

cooling that will expand and cause the refractory to burst will be evaluated.  A second technique 

will be to cycle the temperature of the CADCAF, allowing the refractory to freeze and remelt 

over several cycles and comparing these results to those obtained from the standard tests 

performed under constant temperature. 
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Scope Of Work  

  The primary objective of this work is to perform well defined experiments that  provide 

insight and understanding into the performance of refractory materials under slagging 

gasification conditions that will lead to the development of mechanisms of refractory loss under 

gasification conditions.  This objective will be met by simulating ash/refractory interactions 

using a bench-scale test apparatus, followed by analysis of the corroded refractory and slag using 

advanced analytical techniques.  

Task 1 - Selection of Materials for Initial Screening 
 
 Initial tests will be performed using two coal ashes and five different refractory materials. 

 Ash from a bituminous and a low-rank coal will be selected to allow a comparison between an 

acidic and basic ash.  These test coals will be selected in conjunction with DOE to compliment 

existing information from Combustion 2000 and other programs.  Refractories will be chosen in 

conjunction with refractory companies to represent the best commercially available materials.   

Task 2 - Broad Brush Screening CADCAF Tests 
 
Ten tests will be performed using the CADCAF - 2 ashes with 5 different refractories.  

Test durations are expected to be between 50 and 100 hours.  Following each test, the refractory 

blocks will be analyzed macroscopically and microscopically using the SEM to measure ash 

penetration and refractory wear.  Elemental mapping will be performed of the refractory material 

to determine which elements penetrated into the refractory and to what depth.  The slag collected 

during the tests will be analyzed for bulk composition and with heated-stage XRD to evaluate 

the glass and crystalline phases present in the slag.  In addition, the heated-stage XRD will be 

used to determine the crystallization behavior of the slag and indicate possible additives that can 
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be used to reduce the corrosivity of the slag.  Viscosity versus temperature measurements will 

also be employed to suggest appropriate additives and critical slag temperatures that affect the 

corrosivity of the slag.  These analytical techniques will be used to analyze samples generated 

from some or all experimental work performed during this program (Tasks 1-5).  

 Task 3 - Directed CADCAF Testing  

Results from Task 2 are expected to give an indication of slag/refractory combinations 

that exhibit different levels of refractory wear, penetration, and crystallization. Some preliminary 

hypotheses will be made based on Task 2 results.  Starting from these hypotheses, additional 

tests (up to 10) will be planned to help prove, disprove, and/or expand on the preliminary 

findings.  These tests are likely to include different ash and refractory types and/or additives 

which will be carefully selected to help pinpoint corrosion mechanisms.   

The same analytical techniques outlined in Task 2 will be used to analyze the samples 

generated in Task 3.  Based on Task 3 results, revised hypotheses of corrosion mechanisms and 

ways of reducing or preventing corrosion will be developed. 

 Task 4 - Thermal Shock  

Testing during Task 4 will investigate the effect of temperature cycling on refractory 

materials.  The first series of corrosion tests to be performed will be isothermal at two or three 

different temperatures to investigate the indirect impacts of temperature on refractory wear.  

These will include impacts of slag viscosity, crystallization, and possibly reaction kinetics. 

The CADCAF will also be operated in a non isothermal mode to investigate thermal 

shock.  In this mode, the CADCAF will be operated at a high temperature for a preset period of 

time and allowed to cool to the point where the slag freezes.  The CADCAF will be reheated to 
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the point of a flowing slag, held at that temperature for a preset period of time, and again cooled. 

 This will be repeated for 5 cycles.  Two experiments will be performed with a basic and acidic 

coal ash.  The analysis of these samples will focus on differences between these samples and 

those generated from the standard isothermal tests.   

This type of thermal shock experimentation has not been previously performed, so it is 

expected that some development work will be required. Ash and refractory types will be selected 

based on results from the previous tasks. 

 Task 5 - Development of Mechanisms  

The primary objective of the work is to develop an understanding of ash/refractory 

interactions that will lead to the development of mechanisms that describe the interactions of 

slag (coal-ash) and refractory.  Although listed as the last task, the development of mechanisms 

will be a consistent theme throughout this project.  Mechanisms will be hypothesized early in the 

program, and will be utilized to direct the testing during the program.  The proposed mechanism 

will be constantly updated as new data is generated. Likewise, the latest hypothesis will be used 

to determine the next series of tests. At the end of the Task 5, final mechanisms that describe the 

behavior noted during the program will be proposed.  Additional experimental work will be 

performed as required to verify assumptions.   

Throughout the test program, the project team will maintain constant communication 

with refractory vendors to ensure refractory materials being investigated represent commercial 

and experimental formulations that are realistic for commercial application.  This direct 

communication will also promote timely dissemination of results.  Results from the program will 

also be presented at the annual DOE Contractor’s Review Meeting. 

 
 12 



 Deliverables 

This program was originally designed for a doctoral student or two master’s students, 

with additional work for an undergraduate student.  It was assumed that the doctoral/master’s 

student would spend a significant portion of the first year becoming familiar with the project and 

performing a detailed review of the literature.  It was also expected that the final construction 

and shakedown activities would be completed prior to the start of this project.  Therefore, the 

first year’s experimental work was planned accordingly.   However, since the CADCAF was not 

operational at the start of the current project, considerable time has been spent addressing the 

sealing and safety issues discussed previously.  This has set the project approximately one year 

behind schedule. 

Current plans are to complete the screening test and begin the directed CADCAF testing 

early in the third year and focus on thermal shock testing, mechanism development and 

thesis/dissertation preparation during the remainder of the third year. Limited experimentation 

will occur during the third year when required to substantiate assumptions.  Revised project 

milestones are listed in Table 1. 

RESULTS AND DISCUSSION 

Task 1 - Selection of Materials for Initial Screening [on-going] 

 The objectives of the current project were discussed with plant personnel at the Tampa 

Electric Polk Power Station.  Samples of slag and refractory were requested for testing in the 

CADCAF. A 55 gallon drum of gasifier slag along with several refractory bricks of the type that 

they use in the gasifier have been received.  The slag has been dried and sieved to the size 

needed for our flowing slag corrosion tests.  As  will be discussed later, preliminary testing with  
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Table 1.  Project Milestones 

 
Activity 

 
Months from Contract Award 

 
Selection of Materials for Testing 

 
6 

 
Literature Review and Screening Tests 

 
(12)* 38 

 
Contractor’s Review Meeting 

 
12 

 
Directed CADCAF Testing 

 
(21) 40 

 
Thermal Shock Tests 

 
(24) 42 

 
Contractor’s Review Meeting 

 
24 

 
Mechanism Development  

 
44 

 
Peer Review Meeting 

 
44 

 
Final Project Report 

 
48 

* Original schedule 

this sample showed the slag was made up of two distinct phases, one melting at around 1400°C 

and the second phase at a much higher temperature.  This caused difficulties in performing the 

tests.  Therefore, a second sample received from TECO as a part of a different project is being 

utilized for the program.  

Tampa Electric personnel have also requested that we test bricks of refractory made by 

Salazar and Sons which they are contemplating using in the gasifier.  Paul Salazar visited UND 

to discuss the testing and provided a sample brick, sized to our specifications, of a vibratable 
 
 14 



SiC/Al2O3 material that Salazar and Sons is proposing for the Polk gasifier.   

Refractory block analysis 

Commercial refractory bricks are being used for testing. Since these bricks were already 

formed, they required machining to form flow channels and slag wells to represent the actual 

flow along the walls of a gasifier. Figure 2 presents one of the samples used for testing. 

 Figure 2.  Refractory sample showing slag well and flow channel 

The porosity of refractory samples is one of the core factors in their degradation. Slag can 

penetrate by capillary action and lead to formation of the spinel phase.  A fully dense refractory 

would have very high corrosion resistance.  However, porosity cannot be eliminated due to the 

thermal gradient and differential thermal expansion encountered. Refractories are also designed 

to provide thermal insulation which requires a certain porosity for the bricks. Most commercial 

refractory bricks are produced by sintering chrome particles resulting in approximately 80-85% 

dense material.   Refractory samples were analyzed using a modified ASTM C20 standard for 

measuring apparent porosity.  Values are reported in Table 2. 
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Table 2: Data from refractory sample porosity testing 
Dimensions Volume Dry wt. Wet wt. Porosity 

mm cc g G % 
20.7x15.83x14.8 4.9 16.15 16.54 8.1 
20.55x19x18.1 7.1 27.76 28.43 9.6 
18.8x16.6x15.75 4.9 17.45 17.78 6.8 
21.13x18.59x14.25 5.6 21.66 22.23 10.1 
19.53x17.8x16.7 5.8 22.78 23.48 12.0 
22.7x13.5x13.3 4.1 15.33 15.66 8.6 

 

The porosity of the samples was found to increase with chrome content (Figure 3). Increased 

chrome content leads to better resistance to corrosion while increased porosity leads to poorer 

corrosion resistance.  It will be interesting to observe the combined effect of increasing porosity 

and chrome on the corrosion resistance of the samples. Detailed XRF analysis and SEM analysis 

of the refractory samples are available.  

 

Chrome - Porosity

0

20

40

60

80

100

1 3 6 2 4 5

sample no.

ch
ro

m
e

0

2

4

6

8

10

12

po
ro

si
ty

 %

Chrome
porosity %

Figure 3: Relation between chrome content and porosity of samples 
 

Task 2 - Broad Brush Screening CADCAF Tests [on-going] 

Design Changes 
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The CADCAF was designed and construction was initiated under previous DOE funding. 

 All of the major components had been purchased, manufactured, and installed under the 

previous program.  Since the start of the current project, efforts have focused on finalizing 

construction of the CADCAF.  These final efforts focused primarily on issues related to sealing 

the CADCAF system, and dealing with a variety of safety related issues.  The sealing problem 

turned out to be more difficult than originally envisioned.  Initially, it was thought that the 

primary leakage was through the lid of the crucible in the test chamber.  As testing continued, it 

was determined that although leakage through the lid may have been a major source of leakage, 

leakage through the porous refractory material (crucible walls) was also a problem.  Efforts 

undertaken to correct these problems were summarized in the previous annual report to provide 

guidance to others who may encounter similar problems. 

 The original purpose of developing the CADCAF was to study slag-refractory interaction 

under reducing conditions. Thus, a reducing gas flow system is the core of the project. Ideally, to 

simulate the environment in slagging gasifiers, the exact composition of flue gas should be used 

for testing. However, due to safety, health hazard concerns, cost, and complexity, hydrogen is 

being used to simulate the reducing environment.  Iron is present in coal in substantial amounts 

and is affected by the reducing conditions. Hence, it is considered as a reference point in 

defining the oxygen concentrations within the furnace crucible. The reducing gas is a mixture of 

2% hydrogen and balance nitrogen. Whether an atmosphere is reducing to iron or not, depends 

on the ratio of water vapor pressure to hydrogen pressure in that atmosphere. At atmospheric 

pressures, this ratio is simply the ratio of volume fractions of the component gases in the 

mixture.  
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 Let us consider a typical reduction reaction occurring in the furnace atmosphere. 

FeO + H2 → Fe + H2O. 

For this reaction, the equilibrium constant is the ratio 
2

2

H

OH

p
p

K =  

This constant is a function of temperature. The variation is represented graphically in Figure 4. 
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Figure 4.  Ratio of H2O/H2 partial pressures to temperature  

 
At a temperature of 1500°C, the ratio is 1.045. This means that atmospheres with H2O/H2 ratios 

up to 1.045 are reducing. An important point worth noting is that the water formed is entirely 

due to the reaction between hydrogen and oxygen that may be present in the gas. Hence, the 

water-to-hydrogen ratio is in effect oxygen-to-hydrogen ratio. This has been the logic behind 

maintaining the reducing atmosphere in the CADCAF. 
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A classical feedback control system which ensures that 2% hydrogen in nitrogen gas mixture 



enters the CADCAF was added to the system. To ensure that the crucible is filled with this 

reducing gas mixture, the crucible is sealed using high temperature alumina based sealants. A 

major hurdle in creating a positive pressure within the alumina crucible is its porosity. Extensive 

pressure drop across the chamber required a glaze material that will seal the pores and retain the 

gas mixture within the crucible. A limiting factor in material selection for this purpose is the 

high operating temperature (1500+°C). The glaze coating used on the crucible is a commercially 

available refractory coating grade RX-36. It has a glazing temperature of 1480°C and a 

maximum operating temperature of 1950°C. An SEM analysis of the sample revealed that the 

major contents were calcium aluminosilicates.  At temperatures above 1500°C; however, the 

glaze coating does not form as desired. Hence, the CADCAF operating range is kept under that 

value. This was possible as it is still above the fluid temperature of the ash (1400°C).  
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 With this information in mind, the furnace temperature was set to 1490°C. However, 

during a trial run it was found that the slag did not melt at that temperature. Further investigation 

showed that the temperature at the actual slag –refractory interaction point was approximately 

170°C lower than the set point. After better insulating the crucible, the temperature drop of 

170°C was reduced to approximately 75°C . Although some loss can be attributed to the 

insulating properties of the crucible and cooling effect of fresh gas flowing into the system, it 

was seen that most of the heat was lost through the water-cooled slag injectors. There was a huge 

temperature drop in the short distance between the exit tip of the slag (380°C) injector and the 

surface of the refractory sample (1380°C).  Two options were available as a remedy. Firstly, the 

distance between these two points was increased by pulling up the slag injection port by a couple 

of inches. After running a 20 hour test under these conditions, it was seen that the gradient was 



still to high to melt the slag that was in contact with the sample, but not the one that was 

collected above this molten layer. It was concluded that further insulation and modification in 

design would be required to reduce the heat sink effect caused by the injector ports. To reduce 

the heat sink effect caused by the water-cooled injectors, a donut shaped piece of insulation was 

used at the bottom of the slag injector assembly and the injector tubes were pulled upwards away 

from the crucible. The modified design allowed slag to flow through the orifice while 

simultaneously providing good thermal insulation. A rough schematic of the modification is 

shown below in Figure 5.  This modification reduced the heat loss from the injector port cooling 

system to an acceptable level.  
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 A is shown in Table 3.  Preliminary tests 



conducted with this slag showed that the slag did not melt completely at the specified test 

temperature of 1500°C. Initially it was assumed that this was due to the cooling effect of the 

water-cooled slag injectors. Design modifications were made to nullify their heat sink effect as is 

discussed in the previous section. Although this increased the temperature at the slag-refractory 

interaction point, the slag still did not melt completely. A fusion test was repeated on slag A. 

During the test, it was observed that the sample swelled to almost three times its initial size 

before softening and melting. This information, coupled with the presence of a trickle of liquid 

on the refractory sample suggests the presence of a two-phase system of the slag at 1450°C.  

Table 3.  XRF analysis of slag samples A and B 
Oxides Weight  % 

 Slag A Slag B 
SiO2 50.0 50.2 
Al2O3 17.6 17.5 
Fe2O3 16.0 12.3 
TiO2 0.9 0.9 
P2O5 0.7 0.3 
CaO 2.6 5.2 
MgO 1.8 1.6 
Na2O 1.9 5.2 
K2O 2.5 2.1 
NiO 1.2 0.5 
V2O5 4.7 4.4 
SO3 - - 

 

 The two phases as present on the refractory sample are shown in Figure 6.  The bright 

orange spots are iron oxide and green patches are that of chrome oxide surfaces exposed to slag. 

Most of the solid retained in the slag well was in the form of sintered powder particles. The 

second phase of the slag, which had a melting temperature below 1490°C trickled down the 

sample as expectecd. This can be seen in the Figure 7.  An SEM analysis of the deposit along 
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this flow line revealed that the composition is same as that of the refractory brick. The liquid 

medium that carried the refractory particles is not found in the analysis, indicating no 

slag/refractory interaction for this short test. 

Figure 6.  Slag well after 20 hour test with Slag A showing presence of two distinct phases 

 A new slag, one with a single amorphous phase was selected for further testing. Slag B 

was available and had composition almost similar to Slag A. The composition of Slag B as 

indicated by XRF analysis is also given in Table 3.  From Table 3 we can see that Slag B has 

higher amounts of fluxing agent oxides such as calcium and sodium oxide. It was expected that 

this slag would form a free flowing viscous liquid phase at the test temperature of 1400°C. A 

simple melting test under oxidizing conditions confirmed this. Equal amounts of Slag B (1gram) 

were melted in a furnace at 1500°C and it was seen that Slag B formed a homogenous glass as 

expected. A detailed ash fusion test was then conducted on the slag samples to get accurate 

temperature values that may be used to set the test temperature. The results from the tests are 

given in Table 4. 
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Figure 7.  Picture of slag well after 20 hours of testing with Slag A showing little interaction 
between the slag and refractory. 
 
 

Table 4: Ash Fusion Test Data for Slag Samples under Reducing & Oxidizing Conditions 

 Slag A Slag B 

 Oxidizing Reducing Oxidizing Reducing 

Initial 2323 2249 2228 2173 

Softening 2341 2375 2269 2210 

Hemispherical 2568 2649 2511 2245 

Fluid 2653 2701 2613 2497 

*All values in degree F 

 

Current Status 
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• The porosity in the crucible has been eliminated allowing reducing conditions at gasifier 

operating temperatures. 

• Refractory samples have been machined to desired specifications and relevant chemical and 

physical properties characterized. 

• Final design modifications on the CADCAF have been completed and flowing slag has been 

achieved at temperatures and gas compositions that allow evaluation of refractory corrosion 

under gasification conditions. 

• The first tests have been successfully completed.  Analysis of the material is currently 

underway. 

CONCLUSIONS 

Corrosion tests are currently in progress.  There are no firm conclusions at this time.   
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