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Abstract 

This project covers three distinct features of thin film fracture and deformation in which 
the current experimental technique of nanoindentation demonstrates limitations. The first feature 
is film fracture, which can be generated either by nanoindentation or bulge testing thin films. 
Examples of both tests will be shown, in particular oxide films on metallic or semiconductor 
substrates. Nanoindentations were made into oxide films on aluminum and titanium substrates 
for two cases; one where the metal was a bulk (effectively single crystal) material and the other 
where the metal was a 1 pm thick film grown on a silica or silicon substrate. In both cases 
indentation was used to produce discontinuous loading curves, which indicate film fracture after 
plastic deformation of the metal. The oxides on bulk metals fractures occurred at reproducible 
loads, and the tensile stress in the films at fracture were approximately 10 and 15 GPa for the 
aluminum and titanium oxides respectively. Similarly, bulge tests of piezoelectric oxide films 
have been carried out and demonstrate film fracture at stresses of only 100's of MPa, suggesting 
the importance of defects and film thickness in evaluating film strength. 

The second feature of concern is film adhesion. Several qualitative and quantitative tests 
exist today that measure the adhesion properties of thin films. A relatively new technique that 
uses stressed overlayers to measure adhesion has been proposed and extensively studied. 
Delamination of thin films manifests itself in the form of either telephone cord or straight 
buckles. The buckles are used to calculate the interfacial fracture toughness of the film-substrate 
system. Nanoindentation can be utilized if more energy is needed to initiate buckling of the film 
system. 

Finally, deformation in metallic systems can lead to non-linear deformation due to 
"bursts" of dislocation activity during nanoindentation. An experimental study to examine the 
structure of dislocations around indentations has been carried out to demonstrate the 
effectiveness in evaluating cross slip and dislocation behavior around nanoindentation 
impressions in bulk engineering alloys. 
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Thin Film Fracture via Nanoindentation 

1.1 Introduction to indentation fracture 

With the increasing technological focus on the fields of microelectromechanical systems 

(MEMS) and microelectronic circuits, the need to characterize the material systems that 

comprise these devices becomes critical. Thin layers of soft metal must be sufficiently 

passivated and protected by hard surface layers to ensure device reliability and conductive 

integrity for lengthy periods of time. These protective, wear resistant coatings create either a 

hard-soft-hard material system, or in simpler cases consist of a hard film on a soft substrate. 

Several previous studies involving the three-layer type of system are related to its ability 

to aid in studies of film adhesion. In this case, the hard top layer is a thin coating of a material 

such as tungsten or tantalum nitride that serves as a compressively stressed overlayer that 

triggers bucking and delamination in the underlying soft film. [I] However, placing hard films 

upon softer substrates does open the possibility to induce through thickness fracture in the 

overlying film. 

Nanoindentation has been widely used to probe the mechanical response of a material by 

sensing penetration as low as 0.2 nm. Many studies have been carried out to understand the 

mechanical behavior of a coated system. For a metal coated with a hard and stiff surface film, 

such as A12O3 on A1 and Ti02 on Ti, nanoindentation results show the presence of a yield point, 

which is characterized as a sudden discontinuity during loading. [2,3] The observation of plastic 

deformation prior to yielding excludes the possibility that the yielding is controlled by rapid 

dislocation nucleation and multiplication. Some experimental and numerical works have 

demonstrated that at yield point the surface hard film undergoes a through-thickness fracture 

arising from a maximum tensile stress around the contact edgeJ4.51 Several analytical models, 

such as plate bending model and drumhead solution ,[6,7] have been proposed to describe the 

deformation behavior of a hard film - soft substrate system. 

For this study, several model systems were selected for their ease of production and their 

similarities in hardness and modulus ratio to an increasingly important microelectronic material 

system: silicon nitride passivated copper on silicon. The main difficulties in characterizing these 

multilayers lie in separating their properties from each other while testing an extremely small 

volume of material. Both monotonic and continuous stiffness testing will be used to examine the 

onset of film fracture using nanoindentation. 



1.2 Experimental methods for indentation fracture 

Two nanoindentation systems were used in this study. The first consists of a Hysitron 

Triboscope, which is coupled with a Park Autoprobe scanning probe microscope for surface 

imaging. The indentations in this system were made using either a Berkovich diamond tip with a 

tip radius of approximately 1.5 pm or a 90" cube corner tip with a radius of approximately 100 

nm. All indentations with the Hysitron system were made using monotonic loading. The 

second system was a Nanoinstruments Nanoindenter 11, and used a Berkovich Accutip with a 

nominal root radius of 50 nm for the indenter tip. The samples were tested using the continuous 

stiffness method (CSM) in which an AC signal at 45 Hz is overlaid on the typical monotonic 

loading function. Displacement amplitudes in the CSM were varied from 3 to 9 nm to study the 

effect of cyclic stress accumulation on the hard oxide layers. 

Two basic sets of films were chosen for this study, oxide films on bulk metallic 

substrates, and oxide films on thin metallic films. Oxide films on metals were grown using 

either anodic polarization (titanium) or thermal oxidation (aluminum). The bulk titanium sample 

was grade I1 titanium with a primarily a grain structure formed after vacuum annealing. The 

sample was ground to 600 grit, and electropolished in a mixture of 60% H2S04,25% HF and 

15% glycerin at approximately 30 V. The anodic titanium oxide grown on bulk was tested by in- 

situ nanoindentation during electrochemical film growth in a solution of 0.1 M HzS04. An oxide 

film with a film thickness of 120 nm was grown on titanium by step polarization. The detailed 

experimental setup can be found elsewhere.[8] 

Ex-situ testing using both the Hysitron and Nanoinstruments systems was also carried out 

on thermal aluminum oxide on bulk aluminum, and the anodic titanium oxide on titanium films. 

The aluminum specimen was cut from an 1100 series aluminum ingot, ground to 1200 grit, then 

mechanically polished 0.05 pm. After that, the aluminum was heated in a furnace at 4 2 5 ' ~  for 

36 minutes to grow an oxide film of approximately l00nm thick . [9] 

The aluminum and titanium films used in this study were grown by DC magnetron 

sputtering. A 1 pm titanium film was grown on a silica glass slide, while a 1 pm aluminum film 

was deposited on a silicon substrate. The titanium film was then anodized in 0.1M H2S04 with a 

6.4 V step polarization versus a AgJAgCI electrode to obtain a 60 nm titanium dioxide layer [8]. 

The aluminum film was thermally oxidized[9]to obtain 60 nm of alumina. Both resulting films 



were analyzed using a Digital Instruments atomic force microscope (AFM) in contact mode, and 

were found to have an RMS roughness on the order of 40 nm. 

1.3 Results of indentation fracture 

Monotonic loading of oxide films on bulk metals 

The indentation of a hard film on a deforming substrate material will be approximated by 

the spherical loading of a hard elastic plate on a soft yielding foundation. Under contact pressure, 

the plate undergoes elastic deformation until brittle fracture. The substrate is displaced plastically 

at relatively large loads. The deformed region of the oxide film is simplified as an axisymmetric 

circular plate with a clamped edge. The clamped edge is defined as the outer boundary of the 

plastic zone, c, in the substrate. This is shown schematically in Figure 1.1 as a cross section of 

an indentation of a hard film on soft substrate. To first order, the size of the plastic zone 

developed within the substrate can be estimated by Kramer [lo] 

where c is the plastic zone radius, P, is the load carried by the substrate, and af is the flow stress 

of the substrate. 

Load Through-thickness 
I pack 

Figure 1.1. Schematic cross section of deformation profile of a hard film - soft substrate 
system under indentation. 



The load vs. displacement for an elastic plate prior to its fracture has been described by 

Timeshenko,[l I ]  and will be used to approximate a clamped elastic plate of radius c, which can 

then be related to the terms in equation (1) by 

where both plate bending and large-displacement stretching effects are included. P, is the load 

applied to the plate, 6 is the deflection depth, hf is the plate thickness, E is the elastic modulus 

of the plate, and vf is the Poisson ratio of the plate. 

The load and depth relationship of a monolithic material indented with a self similar 

indenter can be described by a power law relationship [12] 

P = K6" (3) 

This form of the loading is somewhat empirical for this modeling, and a more complex form 

could be used, but in this case was chosen for ease of use. By superposition of the plate 

deflection solution and substrate yielding solution, the resultant relationship of the total load, P, 

and depth for the coated system is 

Only two empirical constants are present in this model, K and n. Note, the first term in equation 

(4) is the load being carried by the substrate, while the term in brackets is being carried by the 

deflecting film. 

Figure 1.2 shows a load - depth curve of an indentation into thermally grown aluminum 

oxide. The "yield point" observed allows separation between the substrate deformation and the 

combined film system. Assuming that the film can no longer support any pressure after the brittle 

fracture at yield point, nor can the remaining broken film outside the circular fracture have any 

functional support for the indenter as the film crack happens at a location far from the actual 

contact region, the loading segment after yielding can be regarded to only represent the plastic 

deformation of the substrate. Therefore, by fitting the portion of the loading curve after the yield 
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Figure 1.2. Indentation into thermally oxidized aluminum with a 100 nm thick sur face 

oxide film Equation (3) is demonstrated for the loading beyond the initial yield point. 

point to extract K and n the substrate deformation can be described. Using these values, smaller 

indentations which clearly demonstrate the yield point (as shown in Figure 1.3) can be fit to 

equation (4), with only the flow stress of the substrate as a fitting parameter. The flow stress can 

be verified by making larger indentations, and checking the validity of equation (1). The fit to 

equation (4) for the same aluminum oxide film on aluminum is shown in Figure 1.3. 
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Figure 1.3. A load-depth curve for an aluminum oxide on aluminum at a lower peak load, 
showing the fit of the model in equation (4) with experimental data. 



To verify that plastic deformation occurs prior to the yield point in these systems, indentations 

to loads lower than that cause an excursion in the loading curve were performed; a typical result 

is shown in figure 1.4. As plastic deformation does occur prior to the yield point it seems 

reasonable to ascribe the yield point in these experiments to film fracture, rather than dislocation 

nucleation. 

Figure 1.4. 
deformation 
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Depth (nm) 

Monotonic indentations into titanium oxide on bulk titanium metal. Plastic 
is present prior to the large yield point. Several small loading discontinuities 
(at approximately 100 pN) are likely due to surface roughness. 

As the model fits the experimental data well, we have chosen to utilize the plate bending 

and stretching approach to determine the stress at fracture. Numerical simulations have shown 

that that the radial tensile stress around the contact edge is responsible for the film through- 

thickness cracking for a hard film - soft substrate composite [4]. Accordingly, the strength of 

the film prior to its fracture can be roughly estimated as summation of the radial stresses of both 

the plate bending and membrane solution [ l l ]  



where a, and p, are empirical constants given by [ l  11 related to plate bending and mid-plane 

stretching effects, respectively. The value of a, is 0.357 and that of j, is 2.198. The depth and 

plastic zone size are evaluated at the "yield point", using the fitting of equation (4) to extract the 

portion of the load carried by the substrate (and hence the size of the plastic zone). 

For thin oxide films grown on bulk metals, the results of the stress at film fracture are 

shown in Table 1. For the titanium oxide, the elastic modulus is about 300 GPa [13] , and 

41 1GPa was used as the elastic modulus of aluminum oxide. These stresses are substantial, but 

are on the order of those expected for the fracture strength of a ceramic material ranges from 

Ell00 to E110. Previous studies [I41 on aluminum oxides showed fracture strengths on bulk 

metal substrates grown anodically to be about an order of magnitude lower, but these were based 

on multiple fractures in bulk tensile specimens, and the authors suggest that their strain 

concentrations of a factor of three will likely be present at the film fracture sites, making the 

current measurements within a factor of three to these previous data. 

Table 1. Applied tensile stress at fracture for indentation induced film fracture in titanium 
and aluminum oxides. 

Monotonic and Cvclic Loading of oxide films on sputtered films 

In the case of indentations on bulk materials, the scale of the indentation is small enough 

that the substrate is effectively a single crystal over the scale of the indentation, as the plastic 

zone radius is on the order of 100's of nm. Smaller grained films, such as those that are formed 

during sputtering metallic films, will not behave in a similar manner. Figure 1.5 shows the load 

depth curves of indentations into the titanium oxide I titanium I silica glass system using 

monotonic loading. In this case no excursion in the load depth curve is present. However, when 

tested using cyclic loading using the CSM, yield points were observed in these films. Cycling at 

a displacement amplitude of 9 nm on this film generated load depth curves such as the one 

Material System 

A1203IA1 
TizO/Ti 

Oxide Film Thickness (nm) 

100 
120 

Applied Radial Tensile 
Stress (GPa) 

9.8 
15 



shown in Figure 1.6. An excursion in the load depth curve is clearly present at approximately 

350 pN. 

A series of indentations into the oxide films on sputtered metal films were made by 

varying the amplitude of displacement from 9 to 3 nm. The load at which an excursion in the 

load depth curve occurred was found to depend on the amplitude of the oscillation, as shown in 

Table 2. As the oscillation rate was 45 Hz, it is possible to determine the number of cycles 

(albeit at increasing mean loads) prior to the excursion. Figure 1.7 demonstrates this 

relationship for the titanium film. The decreasing amplitudes lead to increased numbers of 

cycles prior to an excursion. 

U 1" ZU 30 40 50 60 70 80 
Depth (om) 

4 C 

0 
Depth (nm) 

Figure 1.5. Load - depth curve of monotonically loaded sample into titanium oxide on 
titanium on glass. Note the inset figure, which shows no excursion in the load depth curve 

at low loads. 



Depth (nm) 

Figure 1.6. Load - depth curve of cyclically loaded sample (at 45 Hz and an amplitude of 9 
nm) into titanium oxide on titanium on glass. Note the inset figure, which shows the 

presence of an excursion in the load depth curve at low loads. 

+ Aluminum 
0 Titanium 

2 
0 20 40 60 80 

Number of Cycles Until Excursion 

Figure 1.7. Relationship between the amplitude of cycling and the number of cycles until 
an excursion was observed. In all cases the cycling frequency of 45 Hz was superimposed 

upon a monotonic loading rate of 300 pN/s. 



Table 2. Load at film fracture for the oxide I metal / glass systems tested using the CSM 

An effort was made to identity the mechanism responsible for this behavior in the oxide 

films on sputtered films. AFM images of the indentations after the yield point, as shown in 

Figure 1.8, do not show any significant cracking around the indentation. This is in direct 

contrast to previous studies of titanium oxide on titanium, which showed cracks around an 

indentation at a circumference approximately equal to the expected plastic zone size [2]. 

Figure 1.8. AFM image of residual impression of indentations into titanium oxide I 

titanium / glass. 

A1 system 
Load at Fracture (pN) 

435 
97 
76 

Oscillation Amplitude (nm) 

3 
6 
9 

However, there are two significant differences in the current system. First, the surface 

roughness of the oxide on sputtered films is significantly greater than that of the oxide films on 

the bulk metallic substrate. Secondly, in the titanium system the load at excursion was 

substantial (more than 1 mN), and so indentation to points slightly beyond the yield point can be 

easily found using AFM. The indentations in the cyclic loading study show excursions in the 

Ti System 
Load at Fracture (pN) 

309 
9 1 
74 



100 pN regime. Indentations to loads just past this excursion were extremely difficult to find 

using AFM after removing the sample from the Nanoindenter U. The images of indentations in 

Figure 1.8 are after loads of 10 mN. Therefore, there are two possible explanations for the lack 

of observed cracks (discounting the possibility that there were never through thickness cracks in 

these samples as they have behaved very similar to those which have previously shown 

circumferential cracks around indentations). The first is that they have been obscured by the 

subsequent indentation, while the second is that the roughness of the surface means they have 

followed in the "valleys" of the rough surfaces. It seems more likely that the first option is 

indeed operational. The expected plastic zone size at the yield point is 400 nm (based on curve 

fitting data similar to figure 1.7 to extract the load carried by the substrate), which would be well 

inside the current visible residual impression. 

The observation of loading discontinuities only occurring during cyclic loading, and in 

fact occurring at higher loads as the amplitude decreases (but shows no discontinuity during 

monotonic loading) suggest a possible mechanism for film fracture in this system. No 

excursions in loading during monotonic loading does not mean the film does not crack (see Bahr 

et a1 1998[15] for AFM images of cracks in oxide films on tungsten with no loading excursions), 

it only means that the crack was not over driven. As indentation proceeds, if a crack is present in 

the oxide film it is possible to have continued crack growth without a discontinuity during 

loading. However, when no cracks exist in the film it seems likely that the initiation of a crack 

would be more difficult than the propagation of the crack. Therefore, when the critical stress 

required for fracture initiation is reached, the crack rapidly grows through the oxide, leading to 

the sudden discontinuity in the loading curve. 

There are two differences in the sets of materials tested in this study (bulk and thin film 

substrates for oxide growth). The first is the grain size of the deforming material, and the second 

is the constraint of the substrate on the deformation of the film. Addressing the grain size first, 

it would be expected that the thin film materials are much stronger than their bulk counterparts. 

This would mean a significantly smaller plastic zone around the indenter, and therefore less load 

carried by the film deformation (and less stress in the film). The model of an elastically 

stretching membrane on a plastically deforming substrate breaks down as the deformation in the 

substrate decreases, and it could be expected many small fractures, rather than one critical 

fracture, would occur. However, cyclic CSM testing may increase the amount of plastic 



deformation in the substrate (analogous to fatigue), which would in turn increase the load carried 

by the film and subsequently reach a critical value for film fracture. The second issue, the 

constraint of the substrate, has been addressed by other studies [16] . For instance focused ion 

beam cross sections of indentation demonstrate reduced deformation in the presence of a 

substrate [17] over a bulk material. This also would suggest the soft film between a hard film 

and hard substrate cannot reach a large enough plastic zone at a given film displacement to 

achieve a rapid fracture through the thickness of the film 

1.4 Conclusions of indentation fracture 

Film fracture in hard film I soft substrate systems as well as hard film I soft film I hard 

substrate systems has been generated via nanoindentation. The fracture strength of anodic 

titanium oxide on titanium is approximately 15 GPa, and the strength of a thermal aluminum 

oxide is approximately 10 GPa. These strengths are for a thin film on a bulk metal, and modeled 

as the elastic deformation of a hard film on a plastically deforming substrate. However, when 

similar oxides are grown on sputtered metallic films on hard substrates, the differences in metal 

grain size and the constraint of the substrate change the deformation pattern which allows for 

hard film 1 soft substrate film fracture. In the multilayer film systems, monotonic loading did not 

generate an isolated rapid fracture event. Instead, cyclic loading using the CSM method caused 

film fracture. This is suggested to be caused by increased plasticity in the metal film with the 

cycling of the indentation, allowing the conditions of a stretched and bent membrane over a 

plastically deforming substrate to be achieved. Future use of nanoindentation for film fracture 

methods in multilayer systems will require underlying films which are able to deform 

significantly while the hard overlayer is elastically stretched for the model presented here to be 

appropriate to calculate film fracture stresses. 
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Thin Film Adhesion 

2.1 Adhesion of thin films 

The adhesion of thin films is an important property for performance and reliability of 

many thin film microelectronics. Failure of these devices can occur if the thin films delaminate 

from one another. In order to ensure that the device will not fail, it is important to know the 

amount of energy it takes for the films to delaminate, or the interfacial fracture toughness (I-( Yj). 

This value, also called the practical work of adhesion, takes into account the thermodynamic 

work of adhesion between the materials at the interface and the energy dissipated by the film and 

substrate [I]. The energy dissipated includes inelastic contributions from ligament bridging, 

plasticity at the interfacial crack tip and friction between the tip and film [2]. 

The practical work of adhesion can be determined qualitatively or quantitatively 

depending on the test method [3]. Different methods to calculate the adhesion energy, or 

interfacial fracture toughness, have been developed. Some methods use a microprobe to scratch 

[4-71 or indent [8-121 the surface. Scratch testing continuously measures the force and 

displacement of the microprobe, generally a diamond tip, to generate an interfacial crack and 

spalling. Nanoindentation can be used to either induce spontaneous buckling of the film or to 

create indentation blisters, depending on the residual stress of the film. Four point bend and 

sandwich specimens test a macroscopic sample that incorporates a thin film into its structure 

[13]. The thin film is usually incorporated using diffusion bonding which can alter the film's 

microstructure and interface properties, and as a result do not test the as-deposited state of films. 

Another adhesion test method is the stressed overlayer, or superlayer, method [14-151. The 

stressed overlayer method uses a highly compressively stressed film of a refractory metal that is 

deposited over a film system of interest to drive film delamination. If the overlayer has enough 

strain energy then it can cause spontaneous buckling to occur in the underlying film system in 

the form of telephone cord or straight buckles. If the stressed overlayer does not have enough 

energy to cause spontaneous buckling then nanoindentation can be used to add additional elastic 

strain energy and induce buckling of the films in the form of indentation blisters. The 

dimensions of the buckles and blisters are used in mechanics based models to calculated 

adhesion energy [I 1, 161. All of these techniques have been used to successfully calculate the 

interfacial fracture toughness of several film systems [6-15, 17-18]. 



There are ways to increase the adhesion energy of thin films. Many researchers have 

studied the effects of annealing films, such as copper, to increase the interfacial fracture 

toughness [19-201. Others have examined the effect surface roughness can have on the 

interfacial fracture toughness of a system [21]. Tymiak et al. [22] studied the role of plasticity as 

a possible mechanism for increasing the interfacial fracture toughness and others [23-251 have 

studied interface chemistry effects. Finally, the addition of thin (less than 50 nm) layers to 

promote adhesion [17, 261 has been demonstrated. Typical adhesion layer materials include 

copper, chromium, and titanium. These metals exhibit high oxidation activities, which tend to 

promote adhesion to oxide substrates. 

As mentioned before, thin films are being used in microelectronic devices as well as in 

MEMS (micro-electrical mechanical systems) and NEMS (nano-electrical mechanical systems) 

devices. Platinum is of interest because it is commonly used as the bottom electrode material for 

piezoelectric MEMS devices [27-291 and is imperative that it has high adhesion with the 

substrate (SOz). Platinum has trouble adhering well to any substrate and therefore an interlayer 

of titanium or zirconium is often used to promote adhesion [29]. In order to extract the 

interfacial fracture toughness of the Pt-SiOz interface a tungsten stressed overlayer and a 

tungsten stressed overlayer coupled with nanoindenation have been utilized and the test methods 

compared to a single platinum film. Finally, the effect of a titanium interlayer on the adhesion 

has been examined using a tungsten stressed overlayer and nanoindentation only, as the 

additional elastic strains from the indentation process were required to cause delamination at the 

Ti-SiOz interface. 

2.2 Adhesion testing methods and materials 

Platinum films and platinudtitanium films were deposited on SiOz (glass microscope 

slides) using DC magnetron sputtering. A 300 nm stressed overlayer of tungsten was deposited 

onto one 280 nm platinum film also using DC magnetron sputtering. The stress in the first 

tungsten overlayer was measured using wafer curvature and Stoney's equation, and had a 

compressive stress of 30 MPa. A second tungsten overlayer was deposited onto the 

platinudtitanium film (175 n d 1 2  nm) with a compressive residual stress of 2.1 GPa and a 

thickness of 450 nm. Table I summarizes the samples tested. An array of indentations were 

made into the WlPt film system and the W/Pt/Ti film system with loads varying between 25 mN 



to 550 mN using a NanoInstruments Nanoindenter U with a 1 p n  tip radius, 90" degree conical 

diamond tip. An atomic force microscope (AFM) was used to image and measure the buckles 

and blisters. A minimum of 15 buckles were measured on each sample. The dimensions of the 

buckles and blisters were used to calculate the interfacial fracture toughness using the adhesion 

mechanics of Hutchinson and Suo [16]. 

I Table I: Summary of Samples Tested 
Stressed Base Film Interlaver 

Overlayer & & -  
& sputtering sputtering sputtering Adhesion Test 

pressure pressure pressure Substrate Method 

Pt/Si02 None Pt None Si02 Spontaneous 
8mTorr buckles I 

WIPt/Si02 W Pt None Si02 Spontaneous 
2.9 mTorr 14 mTorr buckles 

WIPUSi02 W Pt None Si02 Indentation induced 
2.9 mTorr 14 mTorr blisters 

WIPVWSi02 W Pt Ti Si02 Indentation induced 
3.6 mTorr 11 mTorr 1.6 mTorr blisters 



2.3 Adhesion results and discussion 

One Dimensional Buckles 

One platinum film spontaneously buckled in the form of telephone cord and straight 

buckles soon after deposition was complete, as shown in Figure 2.1. The tungstenlplatinum film 

formed spontaneous telephone cord buckles in one region after the stressed overlayer was 

deposited as illustrated in Figure 2.2. 

Figure 2.1: Straight and telephone Figure 2.2: Spontaneous buckles formed 
cord buckles formed on the on the platinum film with the addition of a 
nlatin~im film. tungsten stressed overlayer in the form of 

telephone cord buckles. 

These buckles can be modeled as a one-dimensional buckle if the midpoint position of 

the telephone cord is chosen as the region to measure (Figure 2.3). The dimensions of the 

spontaneous buckles were measured with AFM and used to calculate the stresses that arose 

during the buckling process. The critical buckling stress, 4, and the driving stress, ad,  of the 

film [16] depend on the film thickness, h, and the radius of the buckle, b, and the height of the 

buckle,S (Figure 2.4). In this model the critical buckling stress, 6, and driving stress, o d ,  are 

given by 



Figure 23: Example of how spontaneous telephone cord buckles were measured. 

Figure 2.4: Schematic of the cross-section of a spontaneous buckle. 

where ,d equals 2 and cl is 314 [16]. The critical buckling stress is the stress needed for film 

buckling to occur while the driving stress aids in the propagation of the delamination. The 

mixed mode interfacial fracture toughness, f l  Y) for spontaneous buckles is calculated using 

The !17' for the Pt f l m  and the W/Pt film are 1.7 and 2.1 ~/m', respectively. The phase angle of 

loading, 'k: is found using 



where w is 52.1" [30] and &&. Equation 4 is valid for all @ /% ratios less than 7.6. The 

value for w was obtained through numerical means by Suo and Hutchinson [30] as well as 

Thouless, Evans, Ashby, and Hutchinson [31]. After od /ob reaches 7.6 in the one dimensional 

buckle the phase angle is approximately equal to -90" due to the large amount of shear forces 

present. The phase angle of loading can also be determined graphically using an analysis by 

Hutchinson and Suo and uses the stress ratio (adob) of the film [16]. Due to the large amount of 

shear forces present and the high stress ratio, the platinum film had phase angle of loading of - 

90". The phase angle of the WPt  film system was calculated to be -85" when the stressed 

overlayer buckles were used. A summary of the results can be found in Table 11. 

Table 11: Summary of Interfacial Fracture 

Method 

Pt/SiOz 
1.7 -90 0.4 Buckles 

W/Pt/SiOz 
SOL Buckles 2.1 -85 0.6 

Wmt/SiOz 
SOL Blisters 0.4 -57.5 0.2 

I W P U T ~ ~ S ~ O ~  
SOL Blisters 2.0 -64.1 1 .O 

Axisymetric Indentation Induced Delaminution 

All the blisters that formed on the W P t  film with nanoindentation were relatively 

circular in shape and the indents at the higher loads (greater than 200 mN) almost initiated 

spontaneous buckling, as seen in Figure 2.5. Similarly, the same type of blisters can be observed 

for the W/Pt/Ti indentation experiments in Figure 6. AFM of delaminated regions show that the 

Pt-Si02 interface and the Ti-Si02 interface are location of the fracture. This can be seen in 

Figure 7b, where a cross-section across the delaminated region shows platinum and tungsten 

steps equal to the thicknesses of these films. 



Figure 2.5: Regular shaped 
blisters formed on the W/Pt 
f i b .  The higher indent 
loads formed incipient 
telephone cord buckles. 

Figure 6: Large blisters 
formed on the WIPtlTi 
film when indentation 
experiments were 
performed. At higher 
loads cracking of the f i i  
around the indent 
occurred along with 
complete film 
delamination. 



Figure 2.7: a) AFM image of edge of delaminated region of the W/Pt/SiOa film system. b) 
Cross-section of AFM height image in (a). The step heights correspond to the thicknesses 

of the tungsten and platinum films. 

The load-depth curves from the indentation experiments were examined to determine the 

volume of the indent and to aid in the modeling of the adhesion mechanics. It must be noted that 

all of the indents went through the film thickness and well into the substrate for W/Pt film and 

W/Pt/Ti film. As such, the volume of the indent that contributes to delamination is more difficult 

to determine once the indent has gone through the film thickness. Kriese et al. [8] has 

commented that the calculation of the volume of the indent using the tip geometry and the 

inelastic penetration depth is a reasonable procedure but can be a large source of error. For this 

reason the indentation blisters are modeled as a circular blisters using the Hutchinson and Suo 

model [16] and the volume of the film displaced by the indenter tip is ignored. Instead, by 



measuring the height and dimensions of the blister the effective driving stress (the stress which 

caused that shape blister) can be determined. Excursions, or pop-in events, which would be 

indicative of delamination at the interface followed by through thickness film fracture, did not 

occur at any time during the indentation tests for the WPt  film but did occur for the WPtlTi film 

during the loading of the indenter, as shown in Figure 2.8. Therefore, WPt film is modeled after 

an unpinned circular blister due to the absence of excursions and the WPtlTi film is modeled as 

a pinned circular blister because of the excursion present in the load versus displacement curve. 

An unpinned blister forms after the indenter tip has been removed and a pinned blister forms 

while the indenter tip is still in contact with the film (Figure 2.9). 

Figure 2.8: Load-depth curves for the WlPt and W/Pt/Ti film systems. The W/Pt/Ti system 
has an excursion during the loading that indicates interfacial fracture during loading. 



Figure 2.9: Schematic of an unpinned circular blister (left) and a pinned circular blister 
(right). 

The critical buckling stress and driving stress for indentation blisters were calculated 

using equations 1 and 2 where, but now is 14.68 for an unpinned blister and 42.67 if the 

blister is pinned in the center (Figure 2.9) and c, = 0.2473(1 +v)+ 0.223l(l -v2) .  I( can be 

calculated using 

where ~2=[1+0.9021(1-v)].'. The largest circular shaped blisters without radial cracks on the 

W/Pt and WIPt/Ti films where chosen to calculate the interfacial fracture toughness of these 

samples, as a previous study showed a size dependence of indentation blisters on the calculation 

of interfacial fracture toughness [32]. Blisters of this size were large enough so that there was no 

interaction from the indenter tip or added plasticity effects. The interfacial fracture toughness, 

'ly, was calculated to be 0.4 J/m2 for the W/Pt film and 2.0 J/m2 for the W/Pt/Ti film system. 

All of the calculated values correlate well with one another, and are given in Table 11. 

The term Y is again the phase angle of loading and is calculated using -52.1" and 

c=6/h in [I 61 

tanY = 
cos w + 0.2486(1+ vks in  w 

-sin w + 0.24860 + v)tcos w 

Equation 6 is valid for stress ratios (odob) less than two. When the stress ratio is greater than 

two, then 

hAN . 
cosw+- ,EM sin w 

tanY = 
hAN 

-sinw+- %EM cos W 



h M  
where wis 52.1' and - 

JEM 
,taken from Figure 64b from Hutchinson and Suo [16], must be 

used to calculate the phase angle of loading. This combination allows for the determination the 

phase angle for any elastic mismatch. The phase angles of loading were calculated to be -54.5" 

for the WPt  film system and -64.1' for the WPt/Ti film system when indention blisters and the 

stressed overlayers were used. 

The practical work of adhesion also depends on the mode mixity, or phase angle of 

loading, !E When the phase angle of loading is 0°, then the fracture toughness is determined 

entirely from normal forces and is called the mode I fracture toughness. When the crack is under 

of pure shear, the phase angle of loading is B O O  resulting in mode II fracture. Knowing Yand 

the I-( lu, allows for the approximation of the mode I fracture toughness (17) using 

r, = r ( ~ ) / [ i + t a n ~ { ( i - ~ ) ~ } J  

where 1 is a material parameter close to 0.3. The mode I fracture toughness is thought of as the 
(8) 

practical work of adhesion because it takes into account not only the true work of adhesion but 

also the energy dissipated by the film and substrate. It also helps define the fundamental fracture 

process. The value obtained using equation (8) is an empirical relationship derived from fracture 

mechanics [16]. 

Using the calculated phase angles of loading and equation (a), the opening mode 

interfacial fracture toughness was determined from indentation to be 0.2 J/m2 for the platinum 

interface and 1.0 Um2for the titanium interface. This result indicates that titanium increases the 

interfacial fracture toughness of Pt to SiOz by a factor of approximately five. 

The standard deviations of the interfacial fracture toughness values are not reported in 

Table I1 due to the large difference in the number of measurements taken for each film system. 

Spontaneous buckles are more prevalent and therefore more buckles can be measured. On the 

other hand, only a few indentation blisters achieve the ideal size and shape that can be used in 

the adhesion models. For example, in the case of the WPt/Ti film system, only four of 24 

indents created an ideal indentation blister and were used in the analysis, whereas over 15 

buckles from the platinum and W/Pt films were used for the one dimensional cases. The total 

range of q4V) calculated for the W/Pt indents was 0.33 to 0.47 J/m2 and for the W/Pt/Ti indents 

was 1.7 to 2.4 J/m2. 



The results for the spontaneous buckles and indentation blisters compared well with the 

analytical models of Hutchinson and Suo [16] and Moon et al [33] as shown in Figure 2.10. The 

phase angle of loading is plotted against the stress ratio for the spontaneous platinum buckles 

induced by the stressed overlayer and the indentation blisters of the W P t  and W/Pt/Ti films. 

The experimental values correspond very well with the model, indicating that the stressed 

overlayer method and the stressed overlayer method coupled with nanoindentation are valid 

techniques to use to quantitatively determine the interfacial fracture toughness of thin film 

systems. Indentation blisters generally give a lower bound of the interfacial fracture toughness 

and the spontaneous buckles generally give an upper bound. 

1 , 

pinned . . . . . . . . . Unplnned 
A WIPY~ bllsters 
o WIP~ spontaneous 

, , 

, 9 :.. 

Figure 10: Illustration 
of how the spontaneous 
buckles and indentation 
blisters follow the 
models of Hutchinson 
and Suo [16] and Moon 
et a1 [33]. 
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2.4 Thin film adhesion conclusions 

The interfacial fracture toughness values of the platinum-Si02 interface and the titanium- 

SiOz interface have been calculated using both the stressed overlayer method and 

nanoindentation. Mixed mode adhesion energies, determined from indentation testing, of 0.4 

J/m2 have been calculated for the platinum-Si02 interface and 2.0 J/m2 for the titanium-SiOz 

interface. The mode I interfacial fracture toughness, which is considered the practical work of 



adhesion, was calculated to be 0.2 ~/m'  for platinum and 1.0 ~ l m ~  for titanium, for indentation 

induced blisters. It has also been shown that the stressed overlayer method is a valid technique 

to use to quantify the adhesion of thin ductile film interfaces and can be used alone to create 

spontaneous buckles or in conjunction with nanoindentation to create indentation blisters. 
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Bulge Testing for Film Fracture 

3.1 Bulge testing to fracture 

The study of residual stresses in thin films and membranes has become increasingly 

important in the emerging field of MEMS and high aspect ratio structures because of their effect 

on system fatigue and fracture. By characterizing and lowering the residual stress within the 

system, the membrane performance and reliability can be optimized [ l a ] .  Interest in both 

freestanding [19,20,21] and substrate supported films [22] has promoted the use of a variety of 

testing methods to effectively measure the residual stress. A nondestructive technique that has 

become popular within the last decade is bulge testing, a method of testing free standing films 

that is not affected by defects and flaws at the sample edges [ 3 ] .  The popularity of bulge testing 

is due to several factors including the ability to measure the residual stress in both single films 

and composite membranes as well as the variety of film material systems that can be tested, such 

as ceramics, polymers and metals [1,23]. This method can accurately determine the stresses 

within micromachined geometric shapes, including round, square, and rectangular membranes. 

To extrapolate stresses from bulge testing data using developed models [ 3 ] ,  accurate material 

properties such as the elastic modulus and the Poisson's ratio must be known. Although 

Poisson's ratio does not vary significantly from bulk materials to thin films, it is important to 

determine the elastic modulus in textured thin film structures. In Pb(Zr,Til.,)O~ (X:I-X PZT) 

films, the modulus has been reported to range from 54 to 112 GPa [24,25] Coupled with 

nanoindentation to verify the Young's modulus of the film, the bulge testing method is both 

accurate and expedient for micromachined structures. 

One MEMS device which contains a PZT membrane is the P3 microengine, which 

utilizes a composite flexing membrane to generate power by converting mechanical energy to 

electrical energy [26] .  Two versions of membrane generator prototypes have been processed. 

The standard membrane generator processing uses wet etching to create square Si support 

membranes in Si wafers, after which layers of silicon dioxide, TiIPt, PZT, and Au are deposited 

[27] .  Another version, which can potentially provide high aspect ratio devices, uses deep 

reactive ion etching to create circular membranes with layers of silicon oxide, TiPt PZT and Au 

over the Si membrane. Characterization and control of the residual stress and processing- 

structure-property relationships of the PZT is required to optimize both performance and 

reliability. During operation, these membranes will deform to strains between 0.05 and 0.25% 



over several billion cycles. Additionally, to obtain the highest coupling coefficient and electrical 

output over a given pressure range, no residual stress should be within the membrane when 

fabrication is complete. 

The present study was preformed to characterize the residual stress currently in both of 

the microengine versions and to quantify the effects of these stresses in each layer with respect to 

fracture, resonance frequency and electrical properties. 

3.2 Bulge testing methods and materials 

The PZT films deposited on square membranes (fabricated by wet chemical anisotropic 

etching) utilized for nanoidentation and bulge testing were composed of 300 nm Au/6 nm TiWll 

pm PZTI 175 nm Pt/ 12 nm Ti1 1.3 pm Si (where Si is the underlying substrate) and had a side 

length of 3 mm. Round membranes (formed by deep reactive ion etching) ranged from 1 to 4 

mm in diameter and consisted of stacks of lOOnm Aul 1 pm PZTI 120 nm Pt/ 40 nm Ti/ 1 pm 

Si02. Fabrication procedures of the square and round membranes utilized in this research were 

previously described [28,29]. Crystallization of the PZT on the square membranes occurred in a 

furnace at 700°C for 10 min. The PZT on the round membranes was crystallized in air for 60 sec 

at 700°C using a rapid thermal annealing (RTA) furnace. During processing, wafer curvature 

was monitored with profilometery using a Tencor FLX-2908. The fabrication of the square 

membranes used to show the effect of residual stress on the strain was outlined in previous work 

[30]. A compressively stressed tungsten layer was sputtered onto the pit side of a square 3 mm 

40:60 PZT membrane after all other fabrication was completed. This layer was deposited at 2.2 

mTorr with 0.35 A. The W layer was thinned using hydrogen peroxide until the residual stress 

wras lowered past the critical buckling criteria. 

The Young's modulus values were determined with a Nanoinstmments Nano Indenter I1 

utilizing the continuous stiffness method (CSM) with an AC oscillation of 45 Hz. Indentations 

were made using a Berkovich Accutip with a nominal root radius of 50 nm. Film thicknesses 

were determined by either profilometry during fabrication or by cross sectioning the membranes 

and imaging in a LEO 982 field emission scanning electron microscope (FESEM). 

Residual stresses of each membrane were found using pressure-deflection tests and the 

stress of the PZT was confirmed with x-ray diffraction using a Philips X'Pert MRD Four-Circle 



X-ray Diffactometer. During testing, the angle in the plane of the sample between the fixed 

direction and the projection of the normal diffracting plane, 4, was set to 0 and y ranged from - 

40" to 40" over a 2 0  range of 53 to 58". 

3.3 Bulge testing results 

By deforming thin films on small scales using nanoindentation, material properties can 

easily be measured [31]. Equation 1 shows that the initial unloading stiffness is proportional to 

the reduced modulus E, and the square root of the contact area A. 

(1) 

During indentation, the contact stiffness, S, was continuously measured by overlaying a 

sinusoidal signal of 45 Hz on the load driving the indenter. By analyzing the mechanical 

response of the system and incorporating equation 1, the elastic modulus of the material can be 

measured continuously as the tip penetrates into the sample. The elastic modulus extracted from 

continuous stiffness measurements of the PZT are shown in figure 3.1. Values of the PZT 

modulus were found by extrapolating the initial linear region of the curve to 0 contact depth, h,. 

The PZT films that used rapid thermal annealing of the sol-gel PZT had a modulus of 

approximately 70 GPa. Both films fabricated using conventional annealing, the 40:60 and 52:48 

PZT, showed a modulus of approximately 80 GPa. As the contact depth increases, the modulus 

values increase towards 160 MPa, the reduced modulus of the Si substrate. These tests were able 

to determine the modulus while staying in a relatively low strain region, unlike those previously 

reported by Bahr et al. [32]. 
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Figure 3.1: CSM nanoindentation of PZT showing the elastic modulus of the various PZT 
films. The rapid thermal annealed films have a modulus of 70 GPa, conventionally 

annealed films are 80 GPa. 

The stress of the composite membranes was found using static pressure deflection. The 

relationship between the residual stress, membrane properties and pressure-deflection has been 

shown to be highly predictable [33,34]. Bonnette et al. showed that the pressure, P, was a 

function of the deflection W,, biaxial modulus of the membrane E g ,  membrane thickness t ,  half of 

the membrane side length a, the residual stress 00, and two unitless constants, cl and cz as 

shown in equation 2. 

Assuming the Poisson's ratio of the membrane is 0.25, cl=3.40 and c2=1.81 for square 

membranes and cl=3.40 and c2=2.51 for the circular membranes [35] .  The biaxial modulus of 

composite membrane E, is the weighted average of the individual layers as shown in equation 3 

[36] where t, is the substrate thickness and t~ the total thickness of the membrane. 



Using the thickness values from profilometry and FESEM analysis and the PZT modulus 

determined by nanoindentation, the biaxial moduli of the RTA and conventional annealed 

membranes were calculated. The pressure deflection curves for the conventionally annealed 

membranes are shown in figure 3.2. Fitting the pressure deflection data to equation 2 showed 

that the stresses vary for both PZT composition and annealing methods. Furnace annealed 52:48 

and 40:60 PZT had composite residual tensile stresses of 151 MPa and 101 MPa respectively. 

RTA annealed 52:48 PZT had a composite residual tensile stress of 154 and 172 MPa. 

- 
0 10 20 30 40 50 
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Figure 3.2: Pressure deflection of membranes containing 52:48 and 40:60 PZT films that 
were conventionally annealed. The membrane residual stress, a, increases as the PZT 

chemistry changes from 40:60 to 5248 as indicated by the increased slope. 

The wafer curvature was used to calculate residual stresses using Stoney's equation, 

where the radius of curvature R, initial substrate radius curvature, Ro, substrate thickness T, film 

thickness t, substrate's elastic modulus E and Poisson's ratio v yield the magnitude and direction 

of the residual stress a [37]. 

6 =  (R- R )  [L](') ( 1 )  6t 



Analysis of wafer curvature measurements showed that the layers with the highest stress 

within the piezoelectric stack were both the Pt bottom electrode after annealing and the PZT. 

The Pt in the RTA membranes had residual stress of approximately 800 MPa, while the Pt in the 

conventionally annealed membranes had was around 700 MPa in the tensile direction. These 

stresses are similar to those seen in the literature; Zakar et al. reported a Pt residual stress of 858 

MPa [12] after annealing the Pt bottom electrode at 700°C and Spierings et al. reported after 

annealing at 500°C the stress of Pt electrode is approximately 1 GPa [38]. At these stresses, 

plastic flow in the Pt electrodes has been observed [16], which can complicate the stress 

measurements in other layers. 

To quantitatively determine the stress of an individual layer, x-ray diffraction was 

utilized. This method was used to determine the stress of the PZT since profilometry 

measurements showed a large stress within this layer. In addition, the PZT comprised a large 

portion of the effective membrane residual stress due to its thickness. Using this test, the 

residual stress was examined by measuring the change in planar spacing within the PZT crystals. 

The residual stress was calculated using equation 5 where the residual stress from a chosen 

direction of the interplanar spacings, 09, is a function of the initial interplanar spacing, do, the 

angle between the normal of the sample y, and the measured interplanar spacing d. This method 

assumes that the angle between the normal of the sample and the normal of the diffracting plane 

is 0. 

Results from this test are shown in figure 3.3 where the stress in the conventionally annealed 

52:48 PZT is higher, 400 MPa, than the conventionally annealed 40:60 PZT, 190 MPa. These 

stresses are smaller than those calculated for thermal mismatch of the PZT and substrate at room 

temperature. This stress relaxation has been noted in other works [39]. 



Figure 3.3: The slope of the plot Ad vs. sinZW is proportional to the stress of the PZT films. 

The variation of residual stress affects many aspects of generator performance including 

compliance, strain at failure and resonance frequency. The applied strain at failure depends upon 

the amplitude of residual stress, as shown in figure 3.4, where increasing the magnitude of the 

residual stress decreased the strain at failure of the membranes. This decrease can be 

rationalized with the theory of a maximum sum of the residual and applied strains to failure. 

Since the total stress of the membrane is a weighted average, the residual stress of the 

composite membrane can be controlled through management of the individual layer stresses. By 

adding a compressive W layer to the tensile membrane generator, the total composite stress was 

lowered, as shown in figure 3.5. This additional layer resulted in an increased compliance of 7% 

and a decrease in resonance frequency from 23 to 18 kHz. These results show the stress can now 

be controlled by selective usage of compressive layers to balance the highly tensile piezoelectric 

and electrode thin films. 
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Figure 3.4: There is a strong dependence the applied strain at failure (%) on the residual 
stress of the membrane. The strain produced is a function of both the applied and residual 

stresses. 
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Figure 3.5: The compliance of a microgenerator increases with the decrease of the residual 
stress. By adding a compressive W underlayer to the tensile microgenerator, the stresses 

act against each other. 



3.4 Bulge testing conclusions 

Nanoindentation coupled with the continuous stiffness method allowed for accurate and 

consistent measurement of the elastic modulus of different compositions and processing 

variations in 1 pm thick PZT films. Conventionally annealed 52:48 PZT and 40:60 PZT had an 

elastic modulus of approximately 80 GPa while the RTA annealed 52:48 PZT had a modulus of 

70 GPa. These moduli were used to then determine the membrane stress with bulge testing, x-ray 

diffraction and profilometery experiments. Composite membranes with 1 pm 52:48 PZT had an 

effective tensile residual stress of 151 MPa reflecting the PZT's high residual stress of 400 MPa. 

The slowly annealed 40:60 PZT had an effective stress of 101 MPa and PZT film stress of 190 

MPa. Residual stresses of the composite membranes were shown to affect the membrane 

compliance, strain at failure and resonance frequency. In order to counterbalance the membrane 

tensile stress, a compressively stresses W underlayer was introduced to the membrane. The 

membrane compliance increased by 7% with the addition of a compressive W underlayer, with a 

decreasing effective residual stress. This decrease of residual stress resulted in a decrease of 

resonance frequency from 23 kHz to 18 kHz. These results have shown that the multilayer 

composite membrane stresses can be tailored to minimize total membrane stress and optimize 

properties for applications in high aspect ratio structures. 
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Deformation Around Indentations: Dislocation Patterns 

4.1 Deformation around indentations: Dislocation Structures 

The importance of imaging and examining indentations after they are made is often 

underestimated. While there certainly is valuable data contained in load depth curves, there is 

also much information contained in the plastically deformed region around the indentation [40]. 

Specifically, information about the dislocation mechanisms responsible for deformation can be 

obtained by examining atomic force microscopy (AFM) images of the slip steps which develop 

on the surface. 

Several studies have been performed on the structure of residual impressions in the 

literature. Kadijk et a1 [41] has performed indentations in MnZn ferrite single crystals using 

spherical tips and identified slip systems responsible for the patterns which resulted in the 

residual depression. Using a combination or controlled etch pitting, chemo mechanical polishing 

and AFM, Gaillard et al [42] has described dislocation structures beneath indentations in MgO 

single crystals. This paper will extend these ideas to a method for identify slip systems in FCC 

polycrystalline engineering alloys. Other work has been performed on BCC materials to identify 

changes in surface topography with crystal orientation [43] as well as TEM images of the sub- 

surface dislocation structure [44]. 

The FCC crystal structure contains only four unique slip planes. Chang et al [45] 

describes a method for determining the surface orientation of a particular grain in an FCC 

material by measuring the angles of the slip step lines on the surface around indentations and 

calculating the orientation from the combination of angles. With current availability of 

orientation imaging microscopy (OM), it is possible to do a similar process in reverse and use 

the known orientation of a grain to determine the slip plane responsible for each slip step. Each 

slip plane can be indexed with respect to a reference direction taken from the OIM. 

This paper will present an investigation and analysis of the slip step pattern formed 

around indentations in FCC materials. In addition to identifying the slip systems in these 

polycrystalline alloys, the character of the slip behavior (wavy versus planar glide) will be 

demonstrated. This technique should prove useful for correlating indentation hardness values 

with more macroscopic stress - strain data. 



4.2 Deformation testing methods and materials 

Ni200, a 99.5% commercially pure Ni alloy, and an austenitic stainless steel were 

selected as FCC alloys with very different stacking fault energies (SFE). The stainless steel used 

is a nitrogen strengthened alloy containing 19.1% Cr (by weight), 6.9% Ni, 9.5% Mn, 0.034 C, 

0.51 Si and 0.26% N with the balance being Fe. This alloy is commonly referred to simply as 

21-6-9 in reference to its nominal compositions of Cr, Ni, and Mn, respectively. Both specimens 

were annealed at 1200OC for 5 hours and water quenched to produce a large, equiaxed grain 

structure, with many grains in each specimen measuring up to one millimeter in diameter. OIM 

grain maps were produced for each sample using a Camscan SEM with a TSL O M  system to 

reveal the exact orientation of each grain examined. Vickers indentations of 10 to 50 gram loads 

were placed in grains of various orientations. The indentations were placed away from 

boundaries in the large grains allowing the local region to be considered as a single crystal. The 

indentations were imaged using a Park Autoprobe CP AFM in contact mode. Most AFM images 

shown in this paper are deflection images. As opposed to topography images which map surface 

height, deflection images map changes in slope. This will accentuate fine details such as slip 

steps. Additional OIM analysis was conducted to verify the indentations were made in the 

intended grains. 

4.3 Results of dislocation structures around indentations 

There are two observations which are noted from the AFM images of slip steps around 

indentations. The first is the character of individual slip steps and the second is the overall 

pattern produced by all of the slip steps. The character of the slip steps (a qualitative description 

of the planar nature of the resulting deformation surrounding the impression) reveals information 

about the slip mode of the specific material. Figure 4.1 demonstrates the different slip modes 

present in Ni and 21-6-9 stainless steel. The slip steps in the 21-6-9 are thinner and straighter 

than those in the Ni. This suggests that planar slip is present in the 21-6-9 and wavy slip in the 

Ni. These results were predicted based on the stacking fault energy (SFE) of the two metals. 

Meyers and Chawla [46] report the SFE of Ni to be 128mJlm2 whereas the SFE for 21-6-9 has 

been reported by Schramm [47] to be between 41 and 65 mJlm2. Exact values of SFE are 

difficult to obtain and often vary with the testing method, however the SFE of Ni is inarguably 

higher than that of 21-6-9. 



Figure 4.1 Indentations in (110) type grains of Ni (a and c) and 21-6-9 stainless steel (b and 
d) demonstrate different slip modes are apparent from the thicker and wavier slip lines in 
the Ni and the thin, straight slip lines in the stainless steel while retaining similar overall 

patterns. Enlarged regions of each image from (a) and (b) are shown in (c) and (d) 
respectively. 

The second observation from post indentation AFM images is the overall slip step 

pattern. The slip steps form a pattern on the surface surrounding the impression which varies 

with the crystal orientation of the surface in which the indentation was made. These patterns are 



very repeatable for indentations within the same grain or different grains with the same or similar 

orientation. Figure 4.2 shows typical slip step patterns in 21-6-9 for orientations close to (001), 

(01 1)  and ( 1  11). Slip patterns from similar grain orientations in different materials also remain 

similar. Figure 4.1 shows the slip patterns for grains close to (1 10) type orientations in both Ni 

and 21-6-9. While the character of the steps is different, the overall patterns are relatively 

unchanged between the two. 45' axial rotations of the Vickers indenter tip did not significantly 

affect the overall pattern in any of the grains tested, however localized changes were evident near 

the comers of the indentation. Some details of these patterns are expected to change with 

different tip shapes, however, since they are constrained to the available slip planes the basic 

pattern will not be significantly affected. 

The slip step patterns can be used to better understand the dislocation mechanisms taking 

place beneath the surface. The two indentations shown in Figure 4.3 are from grains close to 

(001) in 21-6-9 and Ni. Examination of the slip step patterns reveals similar phenomena 

occurring in both materials. It is important to keep in mind that slip steps are the result of 

dislocations emerging at the free surface, so they will appear along the line direction which 

corresponds with the intersection of the slip plane and the surface plane. For a perfect (001 ) 

type grain, there will be two line directions possible for slip steps. Both the ( 1  11) and (1 l i)  slip 

planes will intersect the (001) surface along the [ l i ~ ]  directions and the ( i l l )  and ( l i l )  slip 

planes will both intersect the (001) surface along [110]. This orientation is very symmetrical and 

each of the four {ill] planes has the same orientation with respect to the axis of indentation. 

Therefore, the resolved shear stress should be equal for all four slip planes and equal amounts of 

slip would be expected for each slip plane. 

A grain with an orientation of (015) in Ni and (0i3) in 21-6-9 was selected for a detailed 

analysis of (001) type grain orientations in each material. Both grains were larger than lmm in 

diameter allowing many indentations to be placed in each grain. Representative indentations 

from each are shown in Figure 4.3. Because these are not exactly (001) there will be four unique 

lines of intersection with the surface rather than two. Measuring the angle between each slip line 

and the reference direction provided by OIM allows each slip step to be attributed to a specific 

corresponding slip plane. What was found that only two of the four slip planes are responsible 

for most of the slip steps visible on the surface. 



Figure 4.2 Slip steps around indentations form patterns which are dependant on 
the surface orientation of the grain in which the indentation was made. Shown 
are AFM images of slip step patterns around indentations in (100) (a) (110) (b) 

and (111) (c) type grains in 21-6-9 stainless steel. 



Figure 4 3  Indentations in (001) type grains of Ni200 (a) and 21-6-9 stainless steel (b) reveal 
similar slip step patterns. Slip planes are identified in (a) to show that most of the slip steps visible 

on the surface result from only two of the four possible slip planes. A similar analysis is not 
labeled on the (0i3 ) grain in 21-6-9 (b) for clarity. The enlarged regions show the faint traces of a 

second set of slip steps forming at 19.9 to the primary slip steps. 



Four lobes of pile up can be observed around each of the indentations in Figure 3. Two 

of these lobes for each indentation consist of many closely spaced slip steps producing lobes 

with a higher pile up height. The other two lobes, which are opposite the indentation of each of 

the other two, consist of larger, coarsely spaced slip steps and produce much lower pile up 

heights. The slip steps in each opposing set of pile up lobes are parallel indicating that the same 

slip plane is responsible for all. In both the nickel and the stainless steel, a few slip steps are 

visible that are not quite parallel. These steps are noted by arrows in Figure 4.3 and the deviation 

from parallel perfectly matches the deviation expected for each grain orientation. In the case of 

the (015) nickel grain, this difference is 11.5 degrees and for the (013) stainless steel it is 19.5 

degrees. The presence of these steps greatly increase the confidence that the parallel steps are in 

fact due to the same parallel set slip planes. 

In addition, deflection mode AFM images accentuate features of different slope, so it can 

be seen that for each pair of pile up lobes (one with fine step spacing and the other, opposite of 

the indentation, and with coarse spacing) all the steps emerge from the surface with the same 

step orientation. Figure 4.4 shows a schematic cross section along the line AB from Figure 

4.3(a). This figure demonstrates the parallel orientation of the slip planes responsible for the slip 

steps on either side of the indentation as well as the difference in pile-up heights and the 

orientation of the steps. Figures 4.4(b) and (c) are actual cross sections taken from the 

indentation shown in figure 4.3(a). 



Figure 4.4 (a)This schematic representation of the cross-section AB from Fig. 3 (a) shows 
that the slip steps are not symmetrical on either side of the indentation. When moving 

from A towards B, all the steps are stepping "up." In addition, the steps all appear to be 
resulting from parallel slip planes beneath the surface. The relative difference in pile-up 
height between the two sides is also represented. Segments from both sides of the actual 

AFM cross section are shown in (b) and (c). 



4.4 Dislocation pattern conclusions 

Indentation testing, combined with AFM and OM, can be used to the identify slip planes 

on which dislocations emerge at the free surface around indentations. Patterns of slip steps form 

around indentations which are very predictable and repeatable. For the FCC materials tested, 

these patterns appear to be dependant mostly on the crystal orientation. Stacking fault energy 

and slip mode affects the planarity of any given step. 

The slip step patterns around each indentation were extremely repeatable within a single 

grain and within multiple grains of similar orientation. The patterns also remained very similar 

for grains of the same orientation in the Ni and the stainless steel. Indentations with the tip 

rotated by 45 degrees resulted in minor changes near the comers of the tip where the local strain 

field changes, but the overall pattern remained unchanged 

Changes in the slip mode, which is affected by the stacking fault energy, can easily be 

observed in the character of the slip steps. Slip steps in the stainless steel are very fine and 

straight whereas those in the nickel are broader and curved. These properties reflect the 

expectations for planar and wavy glide, respectively. 
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