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Abstract

The development of tools for complex dynamic security systems is not a straight forward
engineering task but, rather, a scientific task where discovery of new scientific principles
and math is necessary. For years, scientists have observed complex behavior but have had
difficulty understanding it. Prominent examples include: insect colony organization, the
stock market, molecular interactions, fractals, and emergent behavior. Engineering such
systems will be an even greater challenge. This report explores four tools for engineered
complex dynamic security systems: Partially Observable Markov Decision Process, Perco-
lation Theory, Graph Theory, and Exergy/Entropy Theory. Additionally, enabling hardware
technology for next generation security systems are described: a 100 node wireless sensor
network, unmanned ground vehicle and unmanned aerial vehicle.
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3.9 van der Pol responses - 3D Hamiltonian, phase plane plot (top), and exergy-
rate and exergy plots (bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Matlab/Simulink modeling environment - representative exergy/entropy con-
trol scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Physical Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Wireless sensor network hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9



5.3 Wireless sensor network radio hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Sensor node communication topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 WSN Graphic interface through Umbra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 TDMA communication diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 UGV Hagar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 UGV target and mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Mapping of RVR facility with IMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1 UAV Mark 1 aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 UAV equipped with ground surveillance video . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 Display of UAV ground control station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.1 Heterogeneous remote security systems scenario . . . . . . . . . . . . . . . . . . . . . 92

10



List of Figures

1 THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Sandia security project space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 System consisting of large number of inexpensive sensor nodes . . . . . . . . . . 16

4 Complexity definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Paintball gun on tripod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1 Target trajectories and sensor selection of CSP (left) and CO-rollout (right). 33

1.2 Comparison of policies and number of sensors. . . . . . . . . . . . . . . . . . . . . . . 34

1.3 Tradeoff between tracking error and sensor usage for CO-rollout 1 (left)
and CO-rollout 2 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.4 Umbra interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Percolation Phase Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Graph Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Random ring lattice graph G =C(n,k) with n = 20, k = 4, for p = 0,0.1,0.5,1 41

2.4 Initial Broadcast by One Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Second Round of Transmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Third Round of Transmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7 Fourth Round of Transmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Fifth Round of Transmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.9 Sixth Round of Transmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.10 Seventh Round of Transmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.11 Eighth Round of Transmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.12 223 of 900 Nodes that Transmit the Broadcast Message . . . . . . . . . . . . . . . . 44

8



List of Tables

2.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Duffing oscillator/Coulomb friction model and PID control system numer-
ical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 van der Pol model numerical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

11



12



Introduction

On July 19, 2004 Philip Heermann convened a meeting to announce the winners of the
LDRD proposal request: “Design Tools for Complex Dynamic Security Systems.” Ap-
proximately fifteen staff members, who had submitted proposals, were invited to attend
and most where present. While a combined proposal by Kenneth Groom and Raymond
Byrne was selected as the winner, Mr. Heermann communicated that the technical review
committee liked elements of other proposals and wished them to be combined in some way.

The proposals for the call were in fact quite diverse. The almost certain reason for this is the
vague definition of the word “complexity.” One author on the subject says “I can’t define
what it is but I know it when I see it.” To assist the principle investigators (PIs), a precise
definition of “complexity” was provided: “A complex system is a large scale distributed
system with many networked components, each with many states, and many coupled states
between components. They have non-linear, often unknown dynamics/states. And they
require attention to multiple disciplines.” Further, the desired attributes of an engineered
complex system was given as: “stable, self organizing, adaptive and/or learning.”

The technical goal of the LDRD was given as: ”Develop the core competencies needed
to design and deploy complex physical systems that are robust, limited in behavior and
not brittle.” To ground the LDRD in reality, the application area of Physical Security was
provided. Mr. Heermann and other management felt that achieving this technical goal
rested on three pillars: Theory (the main output of the LDRD), Modeling & Simulation,
and Physical Experiments (See Figure 1). Finally, teaming with other organizations and
activities was considered by management to be very important to the project’s success.

Figure 1. THEORY
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The development of tools for complex dynamic security systems is not a straight forward
engineering task but, rather, a scientific task where discovery of new scientific principles
and math is necessary. For years, scientists have observed complex behavior but have had
difficulty understanding it. Prominent examples include: insect colony organization, the
stock market, molecular interactions, fractals, and emergent behavior. Engineering such
systems will be an even greater challenge.

As described previously, our target application for complexity technology was physical se-
curity. While today the Robotics Center is part of the Security Systems and Technology
Center (6400), at the time it was not and relationships had to be formed. Here we describe
our efforts to team with 6400, and other organizations, and how they influenced our vi-
sion of security systems of the future. This vision had a direct effect on the theoretical
approaches taken to engineered complex systems.

One of our first contacts was with Cal Smith, 4241 Safeguards and Security. This group
provides the “guards and gates” for Sandia. We toured the Coyote Canyon test area where
Cal had set up equipment to secure the area. Cal’s primary concern was that an intruder
could observe the test from the rim of the canyon. In addition to security cameras placed
at strategic positions, Cal planned to rent a helicopter and continuously over-fly the area
during the test. This was obviously very expensive. Cal was very interested in inexpensive
and widely dispersed wireless sensor networks so that his team would have a warning of
an approaching intruder.

Our next contact was with Dan Pritchard of 6428, Security Systems and Technology. Hav-
ing just completed the TALON ”grand challenge”, they were beginning a one year grand
challenge entitled ”Virtual Perimeter Security.” We attended the kickoff meeting and many
subsequent meetings. One of their primary concepts was that of a wireless sensor network
arranged around the perimeter of a given base or facility. They were not concerned with the
sensors being covert. In fact they wanted the sensors to be seen so as to provide a deterrent
effect. They were also interested in ”annunciator” technology to provide a security officer
with an informative computer interface.

Contact was also made with Hung Nguyen of 5432, Integrated Military Systems Devel-
opment. Hung had also worked on the TALON project and considers unattended ground
sensors, or UGS, to be his group’s specialty. Since his missions tend to be clandestine, his
interest is in covert sensors placed in remote locations. He envisioned a ”coffee can” like
sensor capable of fusing data from low level and high level sensors.

Our next stop was the ”Cooperative Monitoring Center”, 6900. They worked a great deal
with border security, both in the US and in the former Soviet Union, where they were
interested in preventing the flow of nuclear materials out of the country. They had deployed
a number of wireless sensor networks and were very helpful on the practical aspects of such
a deployment. 6900 currently runs a sensor network deployment on the south side of the
RVR.

Many others in the security area were interviewed including: Dan Rondeau, Steve Ortiz,

14
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Rebecca Horton, Regan Stinnett, and Mike Toscano.

From these discussions a picture of the challenges faced by those in the security area began
to surface. Figure 2 displays a taxonomy used by the military for sensor fusion. Overlaying
the taxonomy are colored bars indicating the contributions made by various projects at
Sandia to the respective areas. What was clear was that little research was being done
to automatically identify the situation, assess the threat, and perhaps most importantly,
provide feedback to the system in order to improve the capability to protect assets.

Figure 2. Sandia security project space

To make these concepts more concrete, a notional security system was developed. The sys-
tem, shown in Figure 3, would consist of a very large number of inexpensive sensor nodes
widely distributed through the area to secure. These low power nodes would provide the
initial detection and tracking of an intruder. Augmenting these sensors would be dynamic
assets such as UGVs, UAVs, and remotely/robotically operated weapons systems (ROWS).

All the aforementioned components are being considered by the military and others for
security. However, as the number of these assets grows, management becomes overwhelm-
ing. What technologies would make such a complex system possible?

Our efforts to team in the complexity area were less productive than those for security,
primarily due to the loose definition of the term. We attended brown bags hosted by Bob
Floran, met with interested members of the Advanced Concepts Group, and even attended a
summer program run by the New England Institute. We found that some people, followers
of Bar-Yam, viewed complexity as a human interactions problem. Some considered it

15



Figure 3. System consisting of large number of inexpensive sen-
sor nodes

essential to the next generation Computer Aided Design (CAD) of sophisticated devices.
Still others focus on creating a simulation environments were complexity can be observed.
Reviewing some of the popular books on the subject led to the definitions shown in figure 4.
One of the common elements in most definitions of complexity is the interaction of many
entities in a system. To narrow the area of interest, we stuck with the definition provided by
Phillip Heermann at the kick-off meeting: “A complex system is a large scale distributed
system with many networked components, each with many states, and many coupled states
between components. They have non-linear, often unknown dynamics/states.” The notional
security system fits this definition well.

The first pillar of the LDRD, and the initial section of this report, involves the theoretical
concepts we planned to employ to engineer complex dynamic security systems. Three tech-
niques were chosen. Chapter 1, Partially Observable Markov Decision Process, provides a
method to make decisions in a security system that are optimal and non-myopic. Chapter 2,
Percolation and Graph theory, provides tools to analyze the connectivity and performance
of networks, including robustness to attacks. Chapter 3, Exergy/entropy theory, provides
tools to investigate stability of nonlinear and complex systems and to help investigate the
stability of a collective group of dynamic security system components.

The second pillar of the LDRD, and the middle section of this report, involves the simu-
lation tools used to help develop our complexity theories. Because an implementation of
POMDP requires a close link to the environment of interest, the decision was made early to

16



Figure 4. Complexity definitions

port the POMDP code to the Umbra simulation environment. Exergy and Percolation the-
ories, however, were more amenable to developed in the abstract and were thus simulated
in MATLAB. Chapter 4 describes details of these simulations.

The third pillar of the LDRD, and the final section of this report, involves experimentation
designed to demonstrate the theoretical and simulation portions of the LDRD. Since the
theoretical approaches taken to develop complexity tools were so diverse, the experiment
was also designed to pull the various ideas together. The experiment, or demo, was based
on the security system vision presented previously. It consisted of a large scale wireless
sensor network, an unmanned ground vehicle, an unmanned aerial vehicle, and a remotely
operated weapon system (using a laser tag weapon, a paintball gun or simulated by a camera
and pan/tilt platform), see Figures 3 and 5.

For the given system, POMDP provides a method to selectively power on and off sensor
nodes so as to minimize power utilization and tracking error while tracking one or more
intruders through the sensor network.

To investigate network centric warfare concepts, exergy/entropy collectives control design
and analysis would be an ideal tool for understanding throughput of the combined system
including multiple targets and weapons. One of the fundamental questions would be when
is the combined system network saturated? Or what are the stability boundaries of the
collective system? Fundamentally exergy/entropy collective techniques could also iden-
tify what level of optimality would work best for weapon to target assignments subject to

17



minimizing information flow through the network. The demonstration of some of these
concepts on the experimental testbed would have given insight on the potential solution to
the problem.

Percolation and Graph theory provides a highly efficient method to move messages through
the sensor network as well as to the UGV and UAV.

While funding shortfalls prevented a fully integrated demonstration of the system, devel-
opment of the individual components did conclude successfully. This third part describes
the development of the wireless sensor network (Chapter 5), the UGV (Chapter 6) and the
UAV (Chapter 7), respectively.

Figure 5. Paintball gun on tripod
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Chapter 1

Partially Observable Markov Decision
Process

1.1 Introduction

The purpose of sensor scheduling is to select the number and combination of sensors to
activate over time. A typical goal is to trade off tracking performance and sensor usage.
Sensor-scheduling problems are addressed in [1, 2, 3], where the problem is formulated
as an optimization problem to minimize the instantaneous estimation error or to maximize
the information gain. Because these schemes only consider the instantaneous performance,
they are said to be “myopic.” Non-myopic sensor scheduling has gained interest, focusing
on the use of stochastic dynamic programming, for example in [4, 5, 6].

We formulate the sensor-scheduling problem as a Partially Observable Markov Decision
Process (POMDP) to include long-term performance considerations [4, 5]. The underlying
process in the POMDP framework [7, 8] is a controlled Markov process. The sensor-
scheduling decision in a POMDP is based on recursively calculating the belief state, the
posterior distribution of the underlying state given the history of measurements and sensor-
scheduling actions. In general, analytical calculation of the belief state is impossible. In
this chapter, we employ a Monte Carlo approach that combines two techniques: particle
filtering for belief-state estimation, and a simulation-based Q-value approximation method
for decision making via “lookahead.” Particle filtering [9, 10] is a Monte Carlo method
for belief-state estimation. At each time step, the output of the particle filter is a set of
particles (samples) that represents the current belief state. The simulation-based Q-value
approximation method uses Monte Carlo simulation to evaluate, at the current belief state,
the expected cumulative cost of candidate actions as approximations of Q-values, which
are then used to select the optimal action. As particle filtering provides a set of particles for
the Q-value approximation method to initiate the evaluation, these two techniques dovetail
naturally in our approach.

Because of the POMDP formulation, our approach can take both long-term and short-term
costs into consideration. Furthermore, because it is a Monte Carlo method, it does not rely
on analytical tractability, and therefore it can incorporate sophisticated target dynamics and
sensor models.
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In our previous work [11, 12, 13], particle filtering and policy rollout (a simulation-based
Q-value approximation method) were applied to the scenario with single sensor activation
for single-target tracking. This work is an extension of our previous work to the multisensor
multitarget case. (A preliminary version of this paper was presented in [14].) A number
of new issues are solved in this extension. In the belief-state estimation, there is the data
association problem to decide which target is associated with each observation, and the
sensor data fusion problem to combine information from multiple sensors. We develop
an innovative tracking algorithm that integrates multisensor data fusion, multitarget data
association, and particle-filter tracking techniques. For decision making, we develop a
variation of policy rollout called Completely Observable rollout (CO-rollout). In this paper,
the problem formulation and the sensor model are different from those of [11, 12, 13]. We
use the algorithm here for studying the trade-off between tracking error and the sensor
usage cost.

Our experiments involve the activation of up to two of four sensors to track two targets.
The results verify that our integrated multisensor Joint Probabilistic Data Association (MS-
JPDA) and particle-filter tracking algorithm works correctly, illustrate that our Q-value
approximation method is effective in improving the total cost in heterogeneous sensor net-
works, and show the trade-off between tracking performance and sensor usage cost.

1.2 Problem Formulation

A POMDP [7, 8] is specified by its state space X , action space U, observation space Y ,
state transition law K(X ′|X ,u) (X ,X ′∈X and u∈U), observation law L(Z|X ,u) (Z∈Y ),
initial state distribution p0, and one-step cost function r(X ,u). It is basically a Markov
Decision Process (MDP) where the state is only partially observable through L.

Starting at time 0 from the initial state X0 with known distribution p0, a POMDP evolves
as follows. At time step k, the state of the system is Xk and the observation Zk is available.
Then the action uk is selected and a cost r(Xk,uk) is incurred. After that the system moves
to the state Xk+1 according to the transition law K(Xk+1|Xk,uk), and an observation Zk+1

is generated randomly according to the observation law L(Zk+1|Xk+1,uk).

Since the state is not directly observable, a POMDP keeps track of the belief state bk,
defined as p(Xk|Ik), the posterior probability distribution of state Xk conditioned on the
observation and action history Ik := (p0,u0,Z1,u1,Z2, · · · ,uk−1,Zk). The goal here is to
choose an action uk, based on the belief state bk, from a set of available actions U(bk) to
minimize the expected total cost. A policy is defined as a sequence of mappings from belief
states to actions π =

{
πk} .

Let the expected total cost starting from initial belief state p0 and using policy π over a
horizon of H steps to be JH(p0,π) = E

(
∑

H−1
k=0 r(Xk,uk) | p0,π

)
, where uk = πk(bk), and

the expectation is taken over all possible state and observation sequences. The objective
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here is to find an optimal policy π∗ =
{

π∗k} to minimize JH(p0,π).

We define the cost at belief state bk by taking action u as

g(bk,u) =
Z

r(X ,u)bk(X)dX .

Then the Q-value of action u at belief state bk is

QH−k(bk,u) = g(bk,u)+E
(

J∗H−k−1(b
k+1)|bk,u

)
, (1.1)

where J∗H−k−1(b
k+1) is the optimal value over H − k− 1 time steps starting at the next

belief state bk+1. Bellman’s optimality principle for POMDPs states that the minimum
expected total cost is given by JH(p0,π∗) = minu QH

(
p0,u

)
, and the policy that selects

action π∗k(bk) = argminu
(
QH−k(bk,u)

)
at step k is optimal. Because the Q-value of an

action summarizes the future cost of taking this action, Bellman’s principle gives rise to a
control approach called “lookahead.”

When H is very large, the optimal policy can be assumed to be stationary. In this case, the
optimal policy can be approximated by assuming, at each time step, the remaining horizon
is still H steps. Hence, the optimal action is given by

π
∗(bk) = argmin

u

(
QH(bk,u)

)
. (1.2)

This approach is called receding horizon control. The resulting optimal policy chooses the
action that minimizes the Q-value over a horizon of H steps at any current belief state.

In the sensor-scheduling scenario studied here, there are M sensors distributed in a sen-
sor field to track T targets. The central controller collects and processes data from these
sensors, and manages the sensor activation status. Our goal is to select the number and
combination of sensors to trade off tracking accuracy and sensor usage. We formulate this
POMDP as follows.

1.2.1 System state, action, and state transition law

The system state vector consists of the state Sk of T targets, the state ak of M sensors, and
the state Fk of the filter. At time step k, the system state is written as

Xk = [Sk, ak, Fk]>,

Sk = [xk
1, · · · , xk

T ]>,
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xk
i = [xk

i , ẋk
i , yk

i , ẏk
i ]
>, i = 1, · · · ,T,

ak = [ak
1, · · · , ak

M]>.

Here xk
i is the state of target i (i = 1, · · · ,T ), including the target position and velocity in

Cartesian coordinates. The vector element ak
m is the activation status of sensor m (m =

1, · · · ,M). If sensor m is activated at time step k, then ak
m = 1; otherwise ak

m = 0. The filter
state Fk could describe any filter used in the belief-state estimation. Because the goal of
sensor scheduling is to trade off tracking error with sensor cost, we need the state of the
filter to estimate the tracking error, and to select sensors for measurement. In the specific
setting considered in this paper, the filter is a particle filter, and Fk contains N particles,
each being a sample of the target state Sk:

Fk = [Sk
1, · · · , Sk

N ]>.

An action uk = [uk
1, · · · , uk

M]> is an M-vector, where uk
m = 1 or uk

m = 0 specifies whether
the m-th sensor is active or inactive at time step k +1 to generate observation at time k +1
based on the system state Xk+1.

The state transition law K(Xk+1|Xk,uk) is defined by the state dynamics Xk+1 = f (Xk,uk,vk),
where vk represents the randomness in the state transition. If we assume that targets move
independently, then the state dynamics can be decomposed into the state dynamics for each
target, state transition of sensors, and state transition of the filter:

Xk+1 = [ f t(xk
1, vk

1), · · · , f t(xk
T , vk

T ), f a(uk), f f (Fk)]>.

The sensor state transition is given by

ak+1 = f a(uk) = uk.

The progression of the filter state is uniquely defined by the particle-filter algorithm given
in the subsection 1.3.1.

The target motion model f t(xk
i , vk

i ), i = 1, · · · ,T, used in this specific example is the Nearly
Constant Velocity (NCV) model [15] with Gaussian acceleration uncertainty:

xk+1
i = f t(xk

i , vk
i ) =


1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1

xk
i +


T 2

s
2 0
Ts 0

0 T 2
s
2

0 Ts


[

vk
i,x

vk
i,y

]
. (1.3)

Here, the noise vk
i,x and vk

i,y represent the acceleration uncertainty of target i in the x and y
directions, respectively. We assume that they are independent and zero-mean Gaussian.
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1.2.2 One-step cost

The one-step cost r
(
Xk,uk) combines the target tracking error and sensor usage cost. In

our experiments, we use

r
(

Xk,uk
)

= α

T

∑
i=1

[
(x̂k

i − xk
i )

2 +(ŷk
i − yk

i )
2
]
+

M

∑
m=1

(
cusage

m ·ak
m + cstart

m · (ak
m−uk

m)2
)

.(1.4)

Here (x̂k
i , ŷ

k
i ) is the estimated position of target i determined by the filter state, cusage

m and
cstart

m are the sensor operation cost (per step) and starting/stopping cost of sensor m, respec-
tively, and α is a weight factor to adjust the relative importance of tracking error and sensor
cost. We explore the effect of varying α in Section 1.4.

1.2.3 Observation and observation law

The observation law L(Zk|Xk,uk−1) depends on the sensor model. We use the associated
sensor model [16], which dominates the tracking and data fusion literature. In this model,
each sensor measurement consists of a number of observations that can be either valid
measurements from established targets, or false alarms from clutter or emerging targets.
The overall observation Zk is the collection of observations from all the active sensors, and
each sensor scan may output several observations. Assuming that at time k, the output Zk

m
of sensor m includes Nm observations, the overall observation can be written as

Zk =
{

Zk
m : m satisfies ak

m = 1
}

, Zk
m =

{
zk

m,1, · · · , zk
m,Nm

}
.

Associated with each sensor is a coverage area. Within each coverage area, the quality of
the measurement is related to the distance between the target and the sensor. Let r(i,m)
denote the distance between target i and sensor m. If r(i,m) < Rmin or r(i,m) > Rmax,
sensor m does not generate any measurement from target i. Otherwise, sensor m generates
at most one measurement based on the state of target i with detection probability Pd .

Each single observation zk
m,i ( j = 1, · · · ,Nm), includes range, angle, and range rate of either

a target or a false alarm. If zk
m, j is generated from target i, then it depends on the state of

target i as follows:

zk
m, j =

[
rk

m, j, θ
k
m, j, ṙk

m, j

]
= h

(
xk

i ,w
k
j(i,m)

)
, j = 1, · · · ,Nm, (1.5)

with

rk
m, j =

√
(xk

i − spx(m))2 +(yk
i − spy(m))2 +wk

j,r(i,m),
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θ
k
m, j = tan−1 yk

i − spy(m)
xk

i − spx(m)
+wk

j,θ(i,m),

ṙk
m, j =

(xk
i − spx(m))ẋk +(yk

i − spy(m))ẏk√
(xk

i − spx(m))2 +(yk
i − spy(m))2

+wk
j,ṙ(i,m).

Here, spx(m) and spy(m) are the (x,y) positions of sensor m, and wk
j,r(i,m), wk

j,θ(i,m), and
wk

j,ṙ(i,m) represent measurement noise, assumed to be Gaussian with zero mean. Since the
measurement variance is proportional to 1/SNR, and SNR is proportional to r−4 [17], the
variances σ2

r (m,r), σ2
θ
(m,r), and σ2

ṙ (m,r) are proportional to r4(i,m).

We assume that the number of false alarms is Poisson with parameter (rate) β. Spatially,
the false alarms are distributed uniformly throughout the surveillance volume Vc.

1.3 POMDP Solutions

Our sensor management controller applies a policy that approximately solves the sensor-
scheduling POMDP problem. At each decision epoch, the controller takes observations
from the sensor system and generates an action to control the sensor activation at the next
time step. There are two components in the controller: a “tracker” that takes observations
and outputs the belief-state estimation, and a “sensor selector” that takes the belief-state
estimation and outputs a sensor-scheduling action.

For the tracker, under certain circumstances, the belief state can be derived analytically. For
example, if the transition law and the observation law are linear and the noise is Gaussian,
Kalman filtering provides an analytical solution of the belief state. In general, however,
the linear-Gaussian assumption does not hold, making it impossible to obtain an analytical
solution. Particle filtering is a Monte Carlo tracking algorithm that can be applied to many
nonlinear non-Gaussian systems to estimate the belief state. If a particle filter is used as the
tracker, the best we can do to implement a practically viable policy is to map the particle-
filter output (i.e., the filter state) to actions.

For the sensor selector, the policy specifies, at the current filter state, the approximate best
sensor activating action according to the objective function. Recall from (1.2) that in the
lookahead approach, the optimal action is the one that minimizes the Q-value for a horizon
into the future. Therefore, in the action selector, the key task is Q-value estimation. In
general, Q-values are difficult to obtain, especially for problems with large state spaces,
such as the target tracking problem. This motivates a Monte Carlo (simulation-based) Q-
value approximation method.

Because particle filtering and simulation-based Q-value approximation are both Monte
Carlo methods, they combine naturally. Particle filtering provides samples as the starting
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point of the Monte Carlo simulation in the Q-value evaluation, and the Q-value approxima-
tion method provides an action for the particle filter to predict new particles.

1.3.1 Particle filtering for belief-state estimation

If we were to ignore the control variable, the belief state can be updated at each time step
using a Bayesian filter in two steps: predicting and updating [9, 10]. The special feature
in a POMDP is the control variable u in the state transition law and the observation map.
With this control variable, the predicting step is given by [18, 19]

p(Xk|Ik−1,uk−1) =
Z

p(Xk|Xk−1,uk−1) ·bk−1 dXk−1, (1.6)

and the updating step is given by:

bk =
p(Xk|Ik−1,uk−1) · p(Zk|Xk,uk−1)R

p(Xk|Ik−1,uk−1) · p(Zk|Xk,uk−1)dXk . (1.7)

Particle filtering is an implementation of the above optimal recursive Bayesian filter by
Monte Carlo simulation. This method uses a set of N particles (samples) to approximate
the belief state. In our problem, only the target state part (Sk) of the system state (Xk) needs
to be estimated, so each particle Si, i = 1, · · · ,N, represents the states of targets.

p(S|I)≈
N

∑
p=1

wpδ(S−Sp).

Here δ is the Dirac delta function, and wp is the importance weight of particle Sp.

In a particle filter, the filter state is recursively updated when new observations become
available. There are many variations of particle-filtering algorithms. We use the Sampling
Importance Resampling (SIR) algorithm (also called the standard particle filter). In SIR,
filter state update is done in three steps. First, new particles are generated from the pre-
vious particles by sampling from the kinematic prior distribution, p(Sk|Sk−1,uk−1). Then,
particle weights are updated according to its agreement with the observation:

wk
p = p(Zk|Sk

p,u
k−1).

Finally, a resampling step may be used to prevent particle degeneracy.

In our previous work [11, 12, 13], we used the SIR particle-filtering algorithm for single-
sensor single-target tracking. For multi-target tracking, there is a problem of data associa-
tion: to determine which observation is associated with which target. This problem comes
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from the associated measurement model, where the dependence of an observation on target
state is explicitly given only for associated target-observation pairs. In terms of the particle
filter, the problem is that p(Zk|Sk

p,u
k−1) is not directly available from h

(
xk

i ,w
k(i,m)

)
in

the multitarget case. To solve this problem, We use the Joint Probability Data Association
(JPDA) algorithm. The probability calculation of the target-observation association hy-
potheses in JPDA provides a good connection between p(Zk|Sk

p,u
k−1) and the observation

law for known target-observation pairs [20].

We consider the single-sensor case first (assuming it is sensor m) and will incorporate
multisensor data fusion later. Let Hl, l = 1, · · · ,NH(m), be all the possible association hy-
potheses. The number of hypotheses, NH(m), is determined by the number of targets T
and the number of observations Nm. Let Hl(i) be the observation index in {0,1, · · · ,Nm}
assigned to target i according to association hypothesis Hl , while 0 means that target i is
not detected. Observations that are not assigned to any target are considered false alarms.
Using the total-probability theorem, p(Zk

m|Sk
p,u

k−1) can be calculated as follows:

p(Zk
m|Sk

p,u
k−1) =

NH(m)

∑
l=1

p(Zk
m,Hl|Sk

p,u
k−1). (1.8)

In JPDA, the probability p(Zk
m,Hl|Sk

p,u
k−1) is calculated using

p(Zk
m,Hl|Sk

p,u
k−1) = β

n f (Hl) · (1−Pd)T−nd(Hl) ·Pnd(Hl)
d ∏

i:Hl(i)6=0
em(i,Hl(i)). (1.9)

Here, n f (Hl) and nd(Hl) are the number of false alarms and detected targets in the associ-
ation Hl , and e(i,Hl(i)) is the likelihood of getting observation Hl(i) from target i, deter-
mined by the distribution of the measurement noise. (See Chapter 6 in [21] for details and
examples.) For the sensor model in Subsection 1.2.3, the likelihood of getting observation
j at sensor m from target i is given by

em(i, j) =
exp(−dm(i, j)2/2)√

(2π)3σr(m, r̂m,i)σθ(m, r̂m,i)σṙ(m, r̂m,i)
, (1.10)

dm(i, j)2 =
(

r̂m,i− rm, j

σr(m, r̂m,i)

)2

+

(
θ̂m,i−θm, j

σθ(m, r̂m,i)

)2

+
( ˆ̇rm,i− ṙm, j

σṙ(m, r̂m,i)

)2

.

If multiple sensors are activated simultaneously, multisensor fusion should be used to im-
prove the tracking accuracy. The extension from JPDA to parallel-implemented multisen-
sor JPDA (MS-JPDA) is given in [22]. Later, sequential MS-JPDA [23] was studied, and
was shown to be more efficient computationally and superior in tracking performance than
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the parallel implementation. In the sequential MS-JPDA, the observations from sensors are
processed one sensor at a time. After each sensor reading, JPDA and Kalman filtering are
used to compute an intermediate belief-state estimate, and then the observation from the
next sensor is used to further improve this intermediate state estimate. Here we combine
sequential MS-JPDA with particle filtering, i.e., we update the filter state after each sensor
reading using a particle filter, instead of a Kalman filter.

The integrated sequential MS-JPDA and particle filtering algorithm is as follows:

1. Initialization.
For each particle p = 1, · · · ,N, sample S0

p from initial distribution, and set w0
p = 1/N.

Set k = 1.

2. Prediction.
For each particle p = 1, · · · ,N,

(a) Predict xk
p,i by f t(xk−1

p,i ,vk−1
p,i ) for each target i = 1, · · · ,T .

(b) Construct a new particle using
Sk

p = [xk
p,1, · · · , xk

p,T ]>.

3. Weight update.
For each particle p = 1, · · · ,N,

(a) For each sensor m = 1, · · · ,M, calculate weight wk
p,m = P(Zk

m|Sk
p,u

k−1) using
(1.8), (1.9), and (1.10).

(b) Calculate weight wk
p = ∏m wk

p,m.

Normalization: for p = 1, · · · ,N, w̃k
p =

wk
p

∑
N
p=1 wk

p
.

4. Resampling. Select N particles from Sk
p based on w̃k

p.

5. Let k = k +1, and go to Prediction step.

As the number of particles becomes very large, the particle filter approaches the exact
Bayesian update in (1.6) and (1.7). However, constrained by computer memory and com-
putational complexity, the number of particles used in simulations is necessarily limited.
This causes a problem when the variance of measurements is much smaller than the vari-
ance of the distribution represented by the particles. In this case, most particles have very
small weight (sometimes even smaller than the smallest number a computer can handle)
except a few ones that are closest to the measurement. This then causes loss of particle
diversity at the resampling step. As time goes on, tracks may get lost. To ensure the
stability of the tracker, the number of particles must be large enough to match the measure-
ment accuracy. For our sensor model, the variance of measurements is proportional to r4,
varying in a very wide range. When the target is very close to the sensor, the number of
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particles needed is beyond our computer’s ability. Our solution to this problem is to use a
fixed number of particles (2000 in our simulations) and change the likelihood calculation
em(i, j) slightly. If r(i,m) < R0, where R0 is some predefined threshold value between Rmin
and Rmax,we use fixed σr(m,R0), σθ(m,R0), and σṙ(m,R0) in (1.10) (instead of the very
small σr, σθ, and σṙ) to artificially increase the particles’ weights and the diversity after re-
sampling. With this change, the tracker is much more stable and has much smaller tracking
error.

1.3.2 CO-Rollout for Q-value approximation

Recall that in the “lookahead” procedure, the optimal action minimizes the Q-value defined
in (1.1). There are several Q-value approximation methods available [7, 24, 25]. We use the
“policy rollout” method given in [24, 25]. The basic idea of rollout is to replace J∗H−1(b

k+1)
in (1.1) by Jπb

H−1(b
k+1), the objective function value corresponding to a base policy πb. This

base policy should be a reasonable heuristic policy for the problem, and makes Jπb
H−1(b

′)
relatively easy to compute. Since J∗H−1 = minπ Jπ

H−1, this approximation gives an upper
bound on the true Q-value. The resulting policy from this rollout Q-value approximation
algorithm is defined as

π(bk) = argmin
u

{
g(bk,u)+E

(
Jπb

H−1(b
k+1)|bk,u

)}
. (1.11)

It has been shown that this policy is at least as good as the base policy [25].

We use Monte Carlo simulation to compute Jπb
H−1(b

k+1). Because the belief state is approx-
imated by a set of particles, our method can take advantage of these particles in initiating
the simulation. Starting from each particle, we run a simulation: apply action u for the first
time step, and apply base policy πb to the remaining time steps. The estimated Q-value for
action u is obtained by averaging the cumulative costs from these simulation runs.

In the rollout Q-value approximation method for POMDPs, we need a base policy that maps
belief states to actions, and we need to simulate how the system evolves in the future in re-
sponse to actions resulting from this base policy. Practical implementations of this involve
using a base policy that maps filter states to actions. In our case, this involves simulating
a policy that maps particle-filter states to actions over time (this is called “rolling out” the
policy). Keeping track of particle-filter states in a simulation is unduly burdensome, con-
sidering that we need many simulation runs for each candidate action. To overcome this
problem, we use a base policy that maps underlying target states to actions. In this case,
the lookahead simulation involves only keeping track of a completely observable version
of the system. We call this method Completely Observable Rollout (CO-rollout)[7].

Although the real target state is not known to the controller in practice, remember that
we are using the target state information only in the lookahead simulation for Q-value
approximation, not in the simulation of a real controller. For target tracking applications, a
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CO-rollout base policy is naturally available, e.g. the Closest Point Approach (CPA) that
choose the closest sensor to the real target position.

Because we use the CO-rollout approximation, and do not keep track of the particles in
the rollout simulation, we cannot use (1.4) to calculate future costs. It is necessary to use
some cost surrogation [7]. For this purpose we use a very simple tracker in the lookahead
simulation. If sensor m is used to generate the measurement of target i, the target-state
estimate of this tracker is just the converted Cartesian coordinates from the polar measure-
ment. The tracking error is given by the variances σ2

x(m) and σ2
y(m), which are functions

of r(i,m), θ(i,m), σr(m,r), and σθ(m,r). (This conversion is given in [26].) When mul-
tiple sensors are scheduled to take measurements, the target-state estimates from these
sensors are combined by a Gaussian-Markov estimator[25], and the variances are given by
σ2

x = (∑m σ−2
x (m))−1 and σ2

y = (∑m σ−2
y (m))−1.

Because only radial velocity (ṙ) is measured, the direction of the target movement (call
it φ) affect the velocity (v) estimate, and therefore the future tracking error. From ṙ =
v · cos(φ− θ), the resulting tracking error in x and y can be given by T 2

s σ2
ṙ/cos2(φ− θ),

while Ts is the time interval between measurements.

Obviously the tracking error of this simple tracker is different from that of the particle filter.
To keep the relative contribution of the tracking error to the sensor usage cost appropriate,
we need to scale the tracking error of this simple tracker (by a factor of γ) so that the effect
of the current sensor scheduling action is properly reflected in the Q-value approximation.
To summarize, the tracking error term in lookahead is approximated by

γ

((
∑
m

σ
−2
x (m)

)−1

+
(

∑
m

σ
−2
y (m)

)−1

+
T 2

s σ2
ṙ

cos2(φ−θ)

)
.

1.4 Simulation Experiments

In our experiments, there are two moving targets and four sensors (radars) in a surveillance
area of 40km×40km. The two moving targets are modeled by an NCV model with acceler-
ation uncertainty σx = σy = 7m/s2. Sensor 0 is at the center of the area, the other 3 sensors
are 30km from sensor 0, with a 120◦ separation from each other. All four sensors have
the same sensible area with Rmin = 25km and Rmax = 100km, and same start/stop cost 0.1.
Sensor 0 is more expensive to use than other sensors, and sensor 3 is more accurate than
other sensors. A summary of the sensor parameters are as follows:

Sensor 0: at ( 0, 0)km, cost 0.5/step, σr = 500m, σθ = 2◦, σṙ = 6m/s.

Sensor 1: at (−30, 0)km, cost 0.1/step, σr = 500m, σθ = 2◦, σṙ = 6m/s.

Sensor 2: at (15, 26)km, cost 0.1/step, σr = 500m, σθ = 2◦, σṙ = 6m/s.
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Sensor 3: at (15,−26)km, cost 0.1/step, σr = 250m, σθ = 1◦, σṙ = 3m/s.

The sampling interval is Ts = 2s, and we simulate for 300s. The target detection probability
is Pd = 0.85, and the false alarm rate is β = 1.0×10−8, which corresponds to a false alarm
probability of Pf = 0.47 in our experiment. We use 2000 particles in the particle filter, and
use a receding horizon of 8 steps in the rollout Q-value approximation method.

In the single-sensor single-target tracking problem, the CPA policy is commonly used [11,
12]. Since the measurement variance is proportional to r4, it is natural to select the closest
sensor to the target. But CPA is a “greedy” approach because it does not take into account
the different sensor costs or their error statistics.

Let us define the effective distance r̃(i,m) between target i and sensor m as r(i,m) if
r(i,m) > Rmin, and as Rmax otherwise. For the case of one target (target 0) and one sensor,
CPA chooses sensor argminm r̃(0,m) to measure target 0. This policy can be generalized
to include multiple targets, i.e., to choose sensor argminm ∑

T−1
i=0 r̃(i,m) as the closest sen-

sor to multiple targets. For the multisensor multitarget tracking problem, we construct a
Closest Sensors Policy (CSP) based on the CPA policy, which chooses the action with the
minimum sum of distances between all targets and their closest active sensors:

uCSP = argmin
u

(
T−1

∑
i=0

min
m:um=1

r̃(i,m)

)
. (1.12)

For activating at most two sensors to track two targets, CSP activates one closest sensor for
each target. If the closest sensors to both targets are the same, only that sensor is activated.
To have a fair comparison between the base policy and the CO-rollout policy, the maximum
number of activated sensors selected by the CO-rollout policy is also limited to two. Note
that as long as r̃(i,m) is calculated from the underlying target state, the CSP base policy
has the property of mapping the states of targets to action, as required by the CO-rollout
approximation method.

We compare the performance of the CSP policy (1.12) (with a maximum of 2 sensor ac-
tivations) and the CO-rollout policy (1.11) using CSP as the underlying base policy. Fig.
1.1 illustrates one example of the true trajectories of the targets (shown by solid lines),
the estimates of the target positions (shown by marks), and the selected sensors (shown
by shapes of marks) using CSP and CO-rollout, respectively. In this example, target 0
starts at (2.5,25) and moves south at 222m/s, target 1 starts at (−5,−20) and moves east
at 120m/s. We notice that our multisensor multitarget tracker works well in this example:
the estimated target positions closely follow the target trajectories, and the target crossing
is handled correctly. Next, we notice the differences in the sensor selections of the two
policies. First, while CSP activates sensor 0 all the time because its location is closest to ei-
ther target, CO-rollout only actives sensor 0 for a short period of time, considering its high
usage cost. Second, CSP turns on sensor 3 after the target crossing, when sensor 3 becomes
the closest sensor to target 0, while CO-rollout turns on sensor 3 before the target crossing,
because of its high accuracy of measurement. Sometimes CSP select only one sensor when
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Figure 1.1. Target trajectories and sensor selection of CSP (left)
and CO-rollout (right).

it is the closest to both targets, but CO-rollout may find it beneficiary to activate 2 sensors.
Yet at other times CSP activates 2 sensors, and CO-rollout decides one is enough.

Fig. 1.2 shows a quantitative comparison of the four policies: CSP with 1 or 2 sensor ac-
tivations, and CO-rollout with 1 or 2 sensor activations. The tracking error, sensor usage,
and total cost are the average values and 90% confidence intervals over 100 random sim-
ulations. Here the total cost is defined in (1.4) with α = 1. Notice that by activating up
to two sensors, the total cost is reduced by 15% in CSP and 30% in CO-rollout. We can
also conclude that our CO-rollout policy improves the total cost by 20% for one-sensor
activation and by 40% for two-sensor activation.

Obviously there is a trade-off between the tracking error and sensor usage. We study this
trade-off in our algorithm and illustrate it in Fig. 1.3. By adjusting the value of α in (1.4),
the priority could be put on either the tracking error or the sensor cost. Here combined pri-
ority means α = 1, tracking priority means α = 32, and usage priority means α = 0.032. As
we can see in Fig. 1.3, as α decreases, tracking error increases, while the usage decreases.

1.5 Conclusion

In this chapter, we formulate the problem of multisensor scheduling for multitarget track-
ing as a POMDP, and employ a general approach that combines particle filtering and
simulation-based Q-value approximation for solving this POMDP. We integrate sequential
MS-JPDA and particle filtering for belief state estimation, and use a CO-rollout algorithm
based on the Closest Sensors Policy for Q-value approximation. Our simulation experi-
ments involving the selection of multiple sensors for tracking multiple targets illustrate the
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effectiveness of our approach in trading off tracking error and sensor usage cost.



Figure 1.2. Comparison of policies and number of sensors.

Figure 1.3. Tradeoff between tracking error and sensor usage for
CO-rollout 1 (left) and CO-rollout 2 (right).
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Figure 1.4. Umbra interface

effectiveness of our approach in trading off tracking error and sensor usage cost.

Although we described our simulation-based approach in generic terms, the power of the
methodology is realized when it is implemented on a high-fidelity simulator tailored to
an application domain. An example of such a simulator is Umbra (see [27] for details).
We have implemented our algorithm in Umbra to exploit and leverage the simulation ca-
pabilities that have already been embedded into it. Umbra is an agent-based simulation
environment developed by Sandia National Laboratories. In this project, sensors, targets,
terrains, particles, and POMDP controller, are all agents. Umbra provides a time-stepped
execution engine to calculate sequentially the behavior of the agents through time. Since
agents in Umbra are composed of modules, simple module insertion and replacement are
allowed. Fig. 1.4 shows an example of Umbra output, where a target (a truck in this exam-
ple) is moving in the terrain along its trajectory (shown by the line). Some sensors (shown
by circles) are distributed in the terrain, and one sensor (shown by the square box) is cur-
rently active. The particles (shown by dots on top of the target) follow the target using the
measurement from the activated sensor.

In the future, we plan to apply our work to a more general sensor management problem,
which includes sensor motion control, sensor waveform switching, sensor bandwidth al-
location, as well as sensor scheduling. We will also consider applying our approach to a
more dynamic environment, like tracking targets in an urban terrain, where a non-myopic
approach should significantly improve the tracking performance.
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Chapter 2

Percolation and Graph Theory

Percolation theory is concerned with the flow of fluid in random media and was first in-
troduced by Broadbent and Hammersley in 1957 [28]. For a two-dimensional lattice two
main types of percolation models are studied: site percolation and bond percolation. Site
percolation considers the lattice squares or sites to be the relevant entities while bond per-
colation considers the edges of the lattice. Under site percolation, a lattice site is open with
probability p and closed with probability 1− p and fluid flows from open site to open site
across the lattice. Under bond percolation, each edge of the lattice is said to be open with
probability p and closed with probability 1− p and fluid flows through the open edges of
the lattice. A cluster is defined as a set of connected entities (edges for bond percolation
and sites for site percolation). An infinite cluster is defined as a cluster that reaches from
one side of the lattice to the other. One of the more interesting properties observed in
percolation models is the phase transition that occurs as p increases and the state changes
from a finite number of clusters to one infinite cluster. An example of this phase transition
is shown in Figure 2.1. The x-axis is the probability p that a site or edge is open while
the y-axis is the probability θ(p) that any individual site is a member of the infinite cluster.
Above a critical probability, pc, there is a phase transition and the probability of any site
belonging to the infinite cluster rapidly changes from a very low probability to a very high
probability. For the example shown in Figure 2.1, pc ≈ 0.4. Percolation theory studies the
existence and value of pc for which a phase transition occurs, as well as cluster numbers,
sizes, and structures. Unfortunately, except for a few distinct cases, there is no general
analytical formula for estimating pc for a given type of lattice structure. Usually pc is
estimated with Monte Carlo simulations.

Graph Theory is a powerful tool for modeling the structure of large scale systems. A graph
is represented as G = (V,E) where V is the set of vertices and E is the set of edges. An
example of a simple graph is shown in Figure 2.2. For the graph shown in Figure 2.2
V = {1,2,3,4,5} and E = {(1,2),(2,3),(2,4),(3,5),(4,5)}. In a graph with no loops, the
degree of a vertex is the number of edges adjacent to that vertex. The diagonal degree
matrix D of G is defined as di = |Ni| where di is the degree of node i. The degree matrix D
for the graph shown in Figure 2.2 is
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Figure 2.1. Percolation Phase Transition
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Figure 2.2. Graph Example
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D =


1 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

 (2.1)

The adjacency matrix A of a graph G with n vertices is an n×n matrix with the following
structure

ai j =
{

i 6= j the number of edges joining vertex i and vertex j
i = j the number of loops at vertex i (2.2)

The adjacency matrix A of a graph G is always a symmetric matrix. A complete graph Kn is
a graph with n vertices with exactly one edge joining every pair of vertices. The adjacency
matrix A for the graph shown in Figure 2.2 is

A =


0 1 0 0 0
1 0 1 1 0
0 1 0 0 1
0 1 0 0 1
0 0 1 1 0

 (2.3)

The Laplacian matrix L(G) of a graph G is defined as L = D−A where D is the degree
matrix and A is the adjacency matrix. The Laplacian matrix always has a zero eigenvalue
λ1 = 0. If G is connected, the second smallest eigenvalue λ2 is greater than zero. This
eigenvalue is named the algebraic connectivity of the graph [29] because it serves as a
lower bound on the degree of robustness of the graph to node and edge failures. This
follows from the following inequality [29]

λ2(G)≤ ν(G)≤ η(G) (2.4)

where ν(G) is the node-connectivity and η(G) is the edge-connectivity of a graph. There-
fore, a network with high algebraic connectivity is robust to both node and edge failures.

The edge-connectivity and node-connectivity may also be calculated directly from the
graph. For a graph G = (V,E) and a set of edges denoted by F , the graph G−F rep-
resents the graph obtained from G by deleting all of the edges in F. If a connected graph G
becomes disconnected after removing the set of edges F , the set F is called a disconnect-
ing set. A graph is k-edge connected if every disconnecting set has at least k edges. The
edge-connectivity number λ(G) is the minimum size of the disconnecting set in G. For a
complete graph with N vertices, λ(G) = N − 1. Node or vertex connectivity is similarly
defined. A set of vertices W in a graph G = (V,E) is defined as a separating set if G−W
has more than one component. The connectivity number κ(G) of a graph G is defined as
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the minimum size of the separating set. A graph is k-connected if κ(G)≥ k. In other words,
k is the minimum number of vertices that must be removed in order to break a connected
graph into two or more components.

The edge-connectivity number λ(G) for graph shown in Figure 2.2 is λ(G) = 1. By remov-
ing the edge between nodes 1 and 2 the graph becomes disconnected. The connectivity
number κ(G) is κ(G) = 1. By removing node 2 the graph becomes disconnected. The
Algebraic Connectivity for the same graph is λ2 = 0.83, which satisfies the inequality.

2.1 Literature Review

Percolation theory was originally developed to model the flow of fluids through random
media, e.g. water flowing through sedimentary rocks. Recent applications have focused
on communications and epidemiology applications [30, 31, 32, 33]. Because percolation
theory is concerned with the connections within a lattice, the connectivity of a communi-
cations network is a natural application of percolation theory. Areas of research include
the reachability of nodes within a network and the probability of flooding a network with a
command message.

Graph theory was originally developed by the famous mathematician Leonhard Euler in
1736. The problem that motivated Euler was whether it was possible to walk a route that
crosses each of the seven bridges in Königsberg, Prussia exactly once and return to the
starting point. Using graph theory, Euler proved that no such path exists. Because graph
theory looks at pairwise relationships between objects in a collection, graph theory is well
suited for modeling and analyzing different types of networks. An overview of complex
networks appears in [34]. A description of the world-wide web’s scale-free characteristics
appears in [35].

In [36] Watts and Strogatz look at the phase transitions that occur between regular and
random graphs. They show that the small-world phenomenon (popularly known as six
degrees of separation) can occur in sparse networks with many vertices. They show this
effect by starting with regular ring lattice networks with n vertices and k edges per vertex
and then rewire each edge with probability p. The effects of random rewiring of links for
regular ring lattice networks are shown in Figure 2.3. Olfati-Saber then showed that it is
possible to greatly increase the algebraic connectivity in regular complex networks without
adding new links or nodes by using the same type of random rewiring [37]. They use this
result to imply that the consensus problem can be solved more quickly on certain small-
world networks. He also claims that this increase in algebraic connectivity results in an
increase in node and edge connectivity. In this project we have shown that the contrary
is true. While there is an increase in algebraic connectivity, there is a decrease in node
and edge connectivity (but Fiedler’s inequality still holds, it is just a conservative bound).
Research has also been conducted on maximizing the algebraic connectivity for a given
graph [38]. A reference on Laplacian matrices of graphs appears in [39].
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Figure 2.3. Random ring lattice graph G = C(n,k) with n = 20,
k = 4, for p = 0,0.1,0.5,1

A k− separator or k− shredder of a k−node connected graph is defined as the set of k
nodes whose removal results in an unconnected graph. When analyzing network robust-
ness, it is important to identify the nodes that are most vulnerable to bringing down network
connectivity. Papers that discuss algorithms for k− shredders include [40, 41].

2.2 Percolation of Network Broadcast Messages

When a broadcast message is presented to a network, a common approach is to have every
node repeat the broadcast message once to make sure that every node receives the message.
For a system with N nodes and a broadcast message of length T , the minimum length of
time required to flood the network with the broadcast message is NT . By applying percola-
tion theory, every node rebroadcasts the message with probability p. The communications
range of each node and the probability p must be selected so that every node still hears
the broadcast message. However, since p can be much less than one, the minimum time
required to flood the network becomes pNT which is much less than NT . Simulation re-
sults are presented for a 30 by 30 mesh network (900 nodes) with a communication radius
of 4 and a rebroadcast probability p = 0.25. The nodes that receive the initial broadcast
from the center node (15,15) are shown in Figure 2.4. Red nodes have not yet received the
broadcast message. Yellow nodes are the nodes that will rebroadcast the message. They
are randomly chosen with probability p = 0.25. Each round of transmissions is illustrated
in Figures 2.5-2.11. A summary of the nodes that “talked” is shown in Figure 2.12. Of
the 900 nodes, only 223 rebroadcast the message in this simulation. This corresponds well
with p = 0.25 and is a significant improvement in the time required to flood the network

41



Figure 2.4. Initial Broadcast by One Node Figure 2.5. Second Round of Transmissions

over the traditional approach of every node rebroadcasting.

2.3 Percolation Applied to Distributed Sensor Networks

One concept for applying percolation theory to distributed sensor networks is summarized
by the following hypothesis: the probability of detection for a distributed sensor network
will undergo a “phase transition” as the number of nodes is increased. Each sensor node
has a cost associated with it. If there were a steep phase transition in the probability of
detection curve, there would be minimal benefit in using more sensors than the number
necessary to get past the steep part of the curve. This concept was tested using Monte
Carlo simulations of a hypothetical distributed sensor network. The parameters for the
simulations are summarized in Table 2.1. Each sensor was designed to have a probability
of detection PD = 0.9 for each footstep taken within the sensor range of 20 meters. An
intruder performs a random walk through the sensor field in each simulation run. Fifty
simulations were conducted as the number of randomly placed sensors was increased from
1 to 50. The probability of detection for each run was calculated using

Pdetection = 1− (1−PD)(number of sensor hits) (2.5)

where PD is the probability of detection of each sensor (0.9 within a range of 20 meters
for this simulation). The results of a typical test run are shown in Figure 2.13 (left). The
overall probability of detection curve versus the number of sensors is shown in Figure 2.13
(right). Unfortunately, for smaller numbers of sensors there is a roughly linear relationship
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Figure 2.6. Third Round of Transmissions Figure 2.7. Fourth Round of Transmissions

Figure 2.8. Fifth Round of Transmissions Figure 2.9. Sixth Round of Transmissions
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Figure 2.10. Seventh Round of Transmissions Figure 2.11. Eighth Round of Transmissions

Figure 2.12. 223 of 900 Nodes that Transmit the Broadcast Mes-
sage
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Parameter Value
Sensor range 20 m
Sensor PD 0.9
Number of sensors 1-50
Test field 1000 m by 1000 m
Random walk step size -1 to 1 m x-component
Random walk step size 0 to 2 m y-component
Monte Carlo runs per sensor number 50

Table 2.1. Simulation Parameters

between the number of sensors and the overall probability of detection and therefore, the
phase transition is not as steep as it would be for larger numbers of sensors.

2.4 Algebraic Connectivity and Network Robustness

A graph G that consists of a set V of vertices (or nodes) and a collection of E edges is said
to be connected if and only if there is a path between every pair of vertices in it. The node-
connectivity number ν(G) of a graph G is defined as the minimum size of a separating set,
or in other words, the minimum number of nodes that may be removed to separate the graph
into more than one component. Similarly, the edge-connectivity number η(G) is defined
as the minimum number of edges that may be removed to separate the graph into more
than one component. Algebraic connectivity is of great interest because of the following
inequality developed by Fiedler:

λ2(G)≤ ν(G)≤ η(G) (2.6)

which states that the Algebraic Connectivity of a graph G (defined as the second smallest
eigenvalue λ2(G) of the Laplacian) is less than or equal to the node-connectivity which is
less than or equal to the edge-connectivity [29]. Although increasing the Algebraic Connec-
tivity increases the lower bound on node-connectivity, our simulation results show that for
circular and mesh lattice graphs an increase in Algebraic Connectivity often corresponds
to a decrease in node-connectivity and edge-connectivity.

The small-world network introduced by Watts and Strogatz [36] was based on a one-
dimensional lattice on a ring with n nodes where each node is connected to its k nearest
neighbors. They showed that random rewiring of nodes with a small probability p greatly
reduces the characteristic path length resulting in a small-world network. Figure 2.14 (left)
shows the effects of random rewiring for a network with 20 nodes and k = 4. Olfati-Saber
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Figure 2.13. Typical Test Run Result, 50 sensors (left) and Prob-
ability of Detection versus Number of Sensors (right)

then showed that this random re-wiring also results in a large increase in Algebraic Con-
nectivity for ring lattices [37].

Unfortunately large increases in Algebraic Connectivity for certain types of networks often
correspond to a decrease in node-connectivity and edge-connectivity. As an example, the
results for a circular random graph with 100 nodes are shown in Figure 2.15 (left). For
this case, we start with a ring lattice with n = 100 vertices and k = 4 edges per vertex and
then rewire each edge at random with a probability p. As p increases from 0 to 0.9 there
is a large increase in algebraic connectivity and a decrease in the mean path length of the
network. However, the node-connectivity and edge-connectivity of the network decrease
as the probability p increases. Similar results can be shown for a regular mesh lattice
like the one shown in Figure 2.14 (right) where there are 100 nodes and each node has a
communication radius R = 1. The results for this mesh lattice are summarized in Figure
2.15 (right).

In a system where nodes are redundant or dispensable, improving Algebraic Connectiv-
ity can improve the overall robustness of the network by reducing the characteristic path
length. However, in systems where each node is critical, concepts like node-connectivity
and edge-connectivity are important parameters for assessing robustness. This highlights
the fact that there are often tradeoffs when assessing robustness to different parameters.
In addition there are computational tradeoffs. Computing Algebraic Connectivity is much
quicker than computing node-connectivity or edge-connectivity for large networks.
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Figure 2.14. Random ring lattice graph G = C(n,k) with n = 20,
k = 4, for p = 0,0.1,0.5,1, (left - 4 circles). Regular mesh lattice
graph, N=100, Communication radius R=1 (right - square).

Figure 2.15. Results for a ring lattice random graph, N=100, k=4
(left). Results for a mesh lattice graph, N=100, R=1 (right).
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2.5 Summary

Percolation and graph theory are complimentary techniques for analyzing the connectivity
of large distributed systems. Using percolation theory, we have presented a simple but pow-
erful approach for greatly reducing the time required to flood a network with a broadcast
message. We also explored the relationship between probability of detection and the num-
ber of nodes in a distributed sensor network. Unfortunately, this relationship turns out to be
roughly linear. A steep phase transition would have identified an ”optimal” number of sen-
sor nodes. Additional nodes would add to the system cost but provide little improvement in
the probability of detection. Our results on algebraic connectivity and graph robustness are
very interesting. Algebraic connectivity is more closely correlated with characteristic path
length and we have shown that node/edge connectivity can actually decrease for random
circular and mesh networks even as algebraic connectivity increases.

48



Chapter 3

Exergy/Entropy Theory

This chapter develops a novel control system design methodology that uniquely combines:
concepts from thermodynamic exergy and entropy; Hamiltonian systems; Lyapunov’s di-
rect method and Lyapunov optimal analysis; electric AC power concepts; and power flow
analysis. Relationships are derived between exergy/entropy and Lyapunov optimal func-
tions for Hamiltonian systems. The methodology is demonstrated with two fundamental
numerical simulation examples: 1) a Duffing oscillator/Coulomb friction nonlinear model
that employs PID regulator control and 2) a van der Pol nonlinear oscillator system. The
control system performances and/or appropriately identified terms are partitioned and eval-
uated based on exergy generation and exergy dissipation terms. This novel nonlinear con-
trol methodology results in both necessary and sufficient conditions for stability of nonlin-
ear systems.

Exergy is the elixir of life. Exergy is that portion of energy available to do work. Elixir is
defined as a substance held capable of prolonging life indefinitely, which implies sustain-
ability of life. In terms of mathematics and engineering, exergy sustainability is defined
as the continuous compensation of irreversible entropy production in an open system with
an impedance and capacity-matched persistent exergy source. Irreversible and nonequilib-
rium thermodynamic concepts are combined with self-organizing systems theories as well
as nonlinear control and stability analyses to explain this definition. In particular, this paper
provides a missing link in the analysis of self-organizing systems: a tie between irreversible
thermodynamics and Hamiltonian systems. As a result of this work , the concept of “on
the edge of chaos” is formulated as a set of necessary and sufficient conditions for stability
and performance of sustainable systems. In addition, exergy is shown to be a fundamental
driver and necessary input for sustainable systems, since exergy input in the form of power
is a single point of failure for self-organizing, adaptable systems. Further developments of
exergy sustainability for complex systems are in reference [42].

Collective systems are typically defined as a group of agents (physical and/or cyber) that
work together to produce a collective behavior with a value greater than the sum of the indi-
vidual parts. This amplification or synergy can be harnessed by solving an inverse problem
via an information-flow/communications grid: given a desired macroscopic/collective be-
havior find the required microscopic/individual behavior of each agent and the required
communications grid. The goal of this report is to describe the fundamental nature of the
Hamiltonian function in the design of collective systems and the connections between and
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values of physical and information exergies intrinsic to collective systems. In particular,
physical and information exergies are shown to be equivalent based on thermodynamics
and Hamiltonian mechanics. Further developments of exergy/entropy concepts applied to
collective systems for both physical and information exergies are given in reference [43].

3.1 Introduction

Today’s engineering systems sustain desirable performance by using well-designed con-
trol systems based on fundamental principles and mathematics. Many engineering break-
throughs and improvements in sensing and computation have helped to advance the field.
Control systems currently play critical roles in many areas, including automation, manu-
facturing, electronics, communications, transportation, computers, and networks, as well
as many commercial and military systems [44]. Traditionally, almost all modern control
design is based on forcing the nonlinear systems to perform and behave like linear sys-
tems, thus limiting its maximum potential. In this paper a novel nonlinear control design
methodology is introduced that overcomes this limitation.

Several of the popular advanced nonlinear control system approaches are based in passiv-
ity and dissipative control theories. Initially, Moylan [45] discussed the implications of
passivity for a broad class of nonlinear systems, a connection is established between the
input-output property of passivity and a set of constraints on the state equations for the
system. Later, Wyatt, et.al. [46, 47] clarified the meaning of passivity and losslessness as
understood in nonlinear circuit theory, and their counterparts in classical physics. Most
recently, Ortega, Jiang, and Hill [48] reviewed recent results on the stabilization of nonlin-
ear systems using a passivity approach. Passivity properties play a vital role in designing
asymptotically stabilizing controllers for nonlinear systems where the nonlinear versions
of the Kalman-Yacubovitch-Popov lemma are used as key testing tools. The dissipative
characteristics of dynamical systems has its origins in work by Willems [49] with further
specifics given by Hill and Moylan [50]. In [50], a technique is introduced for generating
Lyapunov functions for a broad class of nonlinear systems represented by state equations.
The system, for which a Lyapunov function is required, is assumed to have a property
called dissipativeness. In other words, the system absorbs more energy from the external
world than it supplies. Different types of dissipativeness can be considered depending on
how the “power input” is selected. Dissipativeness is shown to be characterized by the
existence of a computable function which can be interpreted as the “stored energy” of the
system. Under certain conditions, this energy function is a Lyapunov function which es-
tablishes stability, and in some cases asymptotic stability, of the isolated system. It was
shown that for a certain class of nonlinear systems, that an “energy” approach was use-
ful in analyzing stability. Kokotovic and Arcak [51] provide a recent discussion about the
historical perspective of constructive nonlinear control theories. Structural properties of
nonlinear systems and passivation-based designs exploit the connections between passivity
and inverse optimality, and between Lyapunov functions and optimal value functions. Re-
cursive design procedures, such as backstepping and forwarding, achieve certain optimal
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properties for important classes of nonlinear systems. Some of the more popular nonlinear
control system designs [52, 53, 54] have their fundamental foundations built upon these
concepts.

In other engineering disciplines, Alonso and Ydstie [55] connect thermodynamics and the
passivity theory of nonlinear control. The storage function is derived from the convexity of
the entropy and is closely related to thermodynamic availability. Dissipation is related to
positive entropy production. In this form the supply function is a product of force and flow
variation variables. Results are discussed in relationship to heat conduction and reaction
diffusion equation problems. Anthony [56] suggests that non-equilibrium thermodynam-
ics of irreversible processes may be included into the framework of a Lagrangian formal-
ism. This formalism presents a unified method for reversible and irreversible processes.
A straightforward procedure allows for the incorporation of both the first and second laws
of thermodynamics into the Lagrangian. The theory is illustrated in three representative
examples which include; material flow, heat conduction, diffusion and chemical reactions.

The main contribution of this chapter is to present a novel nonlinear control design method-
ology that is based on thermodynamic exergy and irreversible entropy production concepts.
Relationships are developed between exergy, irreversible entropy production, Hamiltonian
systems, Lyapunov optimal functions, electric AC power concepts, and power flow, for con-
trol system design. Both necessary and sufficient conditions for stability are determined for
nonlinear systems. By combining the first and second laws of thermodynamics, an exergy
analysis approach is developed to construct Lyapunov optimal functions for Hamiltonian
systems. The first time derivative of the Lyapunov functions, based on exergy, irreversible
entropy production rate, and power flow is partitioned into either exergy dissipative or ex-
ergy generative terms.

This chapter is divided into eight sections. Sections 3.2 and 3.3 provide the preliminary
thermodynamics and Hamiltonian mechanics definitions. Section 3.4 develops the relation-
ships and connections between thermodynamics and Hamiltonian mechanics. Section 3.5
defines the necessary and sufficient conditions for stability of nonlinear systems. Sec-
tion 3.6 shows how, with simplifications to this novel control theory, conventional Lya-
punov optimal and passivity control design methodologies are recovered. Section 3.7
presents regulator control design examples that include; 1) a PID control regulator for a
nonlinear Duffing oscillator/Coulomb friction dynamic system and 2) a van der Pol nonlin-
ear oscillator system. Numerical simulations resulted in the demonstration of both perfor-
mance and stability criteria. Finally, Section 3.8 summarizes the results with concluding
remarks.

3.2 Thermodynamic Concepts

In this section the first and second laws of thermodynamics are used to define exergy. One
interpretation of the first law of thermodynamics states energy is conserved (see Fig. 3.1-
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left). The second law of thermodynamics implies that the entropy of the universe always
increases. The first law is a conservation equation while the second law is an inequality.
Mathematically, a result of the first law can be written in terms of its time derivatives or
energy rate for a system [57] as

Ė = ∑
i

Q̇i +∑
j

Ẇ j +∑
k

ṁk (hk + kek + pek + . . .) . (3.1)

The term on the left represents the rate at which energy is changing within the system. The
heat entering or leaving the system is given by Q̇i and the work entering or leaving the
system is given by Ẇ j. Next, material can enter or leave the system by ṁk that includes
enthalpy, h, kinetic and potential energies, ke, pe, etc. In addition, each term is “summed”
over an arbitrary number of entry and exit locations i, j,k.

The second law or entropy rate equation for a system [57] is given as

Ṡ = ∑
i

Q̇i

Ti
+∑

k
ṁksk + Ṡi = Ṡe + Ṡi. (3.2)

Here the left hand term is the rate entropy changes within the system and the right hand
terms represent, in order, the rate heat conducts entropy to and from the system and the rate
material carries it in or out. These two terms can be combined into one term Ṡe, the en-
tropy exchanged (either positive or negative) with the environment and Ṡi is the irreversible
entropy production rate within the system. Figure 3.1 (right) shows the entropy exchanges
and production within the system [58].

Figure 3.1. Energy flow control volume (left), second law en-
tropy with flux exchange system (right)

The irreversible entropy production rate can be written as the sum of the thermodynamic
forces and the thermodynamic flows [58, 59]

Ṡi = ∑
k

FkẊk ≥ 0 (3.3)
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where the entropy change is the sum of all the changes due to the irreversible flows Ẋk with
respect to each corresponding thermodynamic force Fk.

Next, for systems with a constant environmental temperature, a thermodynamic quantity
called the availability function which has the same form as the Helmholtz free energy
function is defined as [58]

Ξ = E −ToS (3.4)

where To is the reference environmental temperature. The availability function is described
as the maximum theoretically available energy that can do work which we call exergy.
Exergy is also known as negative-entropy [57, 60]. By taking the time derivative of the
availability function (3.4) and substituting in the expressions for (3.1) and (3.2) results in
the exergy rate equation

Ξ̇ = ∑i

(
1− To

Ti

)
Q̇i

+∑ j

(
Ẇ j− po

dV̄
dt

)
+∑k ṁkζ

f low
k −ToṠi.

(3.5)

Where Ξ̇ is the rate at which exergy stored within the system is changing. The terms on the
right, in order, define the rate exergy is carried in/out by; i) heat, ii) work (less any work
the system does on the environment at constant environmental pressure po if the system
volume V̄ changes), and iii) by the material (or quantity known as flow exergy). The final
term, ToṠi, is the rate exergy is destroyed within the system.

3.3 Hamiltonian Mechanics

The derivation of the Hamiltonian [61] begins with the Lagrangian for a system defined as

L = T (q, q̇, t)−V (q, t) (3.6)

where

t = time explicitly
q = N-dimensional generalized coordinate vector
q̇ = N-dimensional generalized velocity vector
T = Kinetic energy, and
V = Potential energy.

The Hamiltonian is defined in terms of the Lagrangian as

H ≡
n

∑
i=1

∂L
∂q̇i

q̇i−L(q, q̇, t) = H (q, q̇, t). (3.7)
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The Hamiltonian in terms of the canonical coordinates (q, p) is

H (q, p, t) =
n

∑
i=1

piq̇i−L(q, q̇, t) (3.8)

where the canonical momentum is defined as

pi =
∂L
∂q̇i

. (3.9)

Then Hamilton’s canonical equations of motion become

q̇i = ∂H
∂pi

ṗi = −∂H
∂qi

+Qi
(3.10)

where Qi is the generalized force vector. Next taking the time derivative of (3.8) gives

Ḣ =
n

∑
i=1

(
ṗiq̇i + piq̈i−

∂L
∂t

− ∂L
∂qi

q̇i−
∂L
∂q̇i

q̈i

)
. (3.11)

Then substitute (3.10) into (3.11) and simplifying gives

Ḣ =
n

∑
i=1

Qiq̇i−
∂L
∂t

. (3.12)

Hamiltonians for most natural systems are not explicit functions of time (or ∂L/∂t = 0).
Then for

L = L(q, q̇) (3.13)

the power (work/energy) equation becomes

Ḣ (q, p) =
n

∑
i=1

Qiq̇i. (3.14)
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3.4 Thermo-Mechanical Relationships

3.4.1 Conservative Mechanical Systems

A system is conservative if

Ḣ = 0 and H = constant.

A force is conservative if

I
F ·dx =

I
F · vdt =

I
Q jq̇ jdt = 0

where F is the force, dx the displacement, and v the velocity. Basically, all of the forces
can be modeled as potential force fields which are storage devices.

3.4.2 Reversible Thermodynamic Systems

A thermodynamic system is reversible if

dS = dQ
TH

dS =
H dQ

T = 0H
dS =

H
[dSi +dSe] =

H [
Ṡi + Ṡe

]
dt = 0

which implies that Ṡe = Q̇ /T since by definition the second law gives Ṡi = 0.

3.4.3 Irreversible Thermodynamic Systems

For

I
dS =

I [
Ṡi + Ṡe

]
dt = 0

then Ṡe ≤ 0 and Ṡi ≥ 0.
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3.4.4 Analogies and Connections

Now the connections between thermodynamics and Hamiltonian mechanics are investi-
gated.

1. The irreversible entropy production rate can be expressed as

Ṡi = ∑
k

FkẊk =
1
To

∑
k

Qkq̇k ≥ 0. (3.15)

2. The time derivative of the Hamiltonian is equivalent to the exergy rate

Ḣ = ∑k Qkq̇k
Ξ̇ = Ẇ −ToṠi = ∑

N
j=1 Q jq̇ j−∑

M+N
l=N+1 Ql q̇l

(3.16)

Where N is the number of generators, M the number of dissipators, and let Ẇ =
∑ j Ẇ j. The following assumptions apply when utilizing the exergy rate equation
(3.5) for Hamiltonian systems:

(a) No substantial heat flow:

Q̇i ≈ 0.

(b) No substantial exergy flow or assume Ti is only slightly greater than To:

1− To

Ti
≈ 0.

(c) No poV̄ work on the environment:

po
dV̄
dt

= 0.

(d) No mass flow rate:

∑
k

ṁkζ
f low
k = 0.

(e) Then define:

Ẇ ≥ 0 power input/generated
ToṠi ≥ 0 power dissipated.

3. A conservative system is equivalent to a reversible system when

Ḣ = 0 and Ṡe = 0

then

Ṡi = 0 and Ẇ = 0.
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4. For a system that “appears to be conservative”, but is not reversible is defined as:

Ḣave = Pave(over a cycle) = 0
= 1

τ

H
[Ẇ −ToṠi]dt

= (Ẇ )ave− (ToṠi)ave
= 1

τ

H
[∑N

j=1 Q jq̇ j−∑
M+N
l=N+1 Ql q̇l]dt

where τ is the period of the cycle. To be more specific about the average power
calculations, the AC power factor [62] provides an excellent example. For the general
case of alternating current supplied to a complex impedance the voltage and current
differ in phase by an angle θ. For

Ẇ = P = Qq̇ = v i =
√

2v̄cos(ωt +θ) ·
√

2īcosωt
= v̄ī [cosθ+ cos(2ωt +θ)]

where P is power, v is voltage (v̄), i is current (ī), θ is the phase angle, and ω is the
frequency. Integrating over a cycle gives

(Ẇ )ave = v̄īcosθ

where for the second term
I

cos(2ωt +θ)dt = 0.

This is an important set of conditions that will be used in the next section to find the
generalized stability boundary.

5. Finally, the power terms are sorted into three categories:

(a) (Ẇ )ave - power generators; (Q jq̇ j)ave > 0,

(b) (ToṠi)ave - power dissipators; (Ql q̇l)ave < 0,

(c) (ToṠrev)ave - reversible/conservative exergy storage terms; (Qkq̇k)ave = 0.

These three categories are fundamental terms in the following design procedures.

3.5 Necessary and Sufficient Conditions for Stability

The Lyapunov function is defined as the total energy which for most mechanical systems
is equivalent to an appropriate Hamiltonian function

V = H (3.17)
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which is positive definite. The time derivative is

V̇ = Ḣ = ∑k Qkq̇k = ∑
N
j+1 Q jq̇ j−∑

M+N
l=N+1 Ql q̇l

= Ẇ −ToṠi.
(3.18)

3.5.1 Stability and Instability Theorems

To describe a nonlinear system’s behavior two theorems [63] help to characterize the essen-
tial features of its motion. In addition, by bounding the Lyapunov function between these
Theorems, both necessary and sufficient conditions are a result of the transition of the time
derivative of the Lyapunov function from stable to unstable.

1. Lyapunov Theorem for Stability Assume that there exists a scalar function V of the
state x, with continuous first order derivatives such that

V (x) is positive definite
V̇ (x) is negative definite
V (x) → ∞ as ‖x‖→ ∞

Then the equilibrium at the origin is globally asymptotically stable.

2. Chetaev Theorem for Instability Considering the equations of disturbed motion, let
V be zero on the boundary of a region R which has the origin as a boundary point, and
let both V and V̇ be positive-definite in R; then the undisturbed motion is unstable at
the origin.

3.5.2 Stability Lemma for Nonlinear Systems

Based on the relationship between thermodynamic exergy and Hamiltonian systems a fun-
damental stability Lemma can be formulated.

Fundamental Stability Lemma for Hamiltonian Systems The stability of Hamiltonian
systems is bounded between Theorems 1 and 2. Given the Lyapunov derivative as a de-
composition and sum of exergy generation rate and exergy dissipation rate then:

V̇ = Ẇ −ToṠi =
N

∑
j=1

Q jq̇ j−
M+N

∑
l=N+1

Ql q̇l (3.19)

that is subject to the following general necessary and sufficient conditions:

ToṠi ≥ 0 Positive semi-definite, always true
Ẇ ≥ 0 Positive semi-definite; exergy pumped in.
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The following corollaries encompass both stability and instability for Hamiltonian systems
which utilize AC power concepts [62]:

Cor 1: For (ToṠi)ave = 0 and (Ẇ )ave = 0 then V̇ = 0 the Hamiltonian system is neutrally
stable, conservative and reversible.

Cor 2: For (ToṠi)ave = 0 and (Ẇ )ave > 0 then V̇ > 0 the Hamiltonian system is unstable.

Cor 3: For (ToṠi)ave > 0 and (Ẇ )ave = 0 then V̇ < 0 the Hamiltonian system is asymptot-
ically stable and a passive system in the general sense (passivity controllers).

Cor 4: Given apriori (ToṠi)ave > 0 and (Ẇ )ave > 0 then the Hamiltonian system is further
subdivided into:

4.1: For
(
ToṠi

)
ave >

(
Ẇ
)

ave with V̇ < 0 yields asymptotic stability.

4.2: For
(
ToṠi

)
ave =

(
Ẇ
)

ave with V̇ = 0 yields neutral stability.

4.3: For
(
ToṠi

)
ave <

(
Ẇ
)

ave with V̇ > 0 yields an unstable system.

The bottom line is that stability is defined in terms of power flow which determines whether
the system is moving toward or away from its minimum energy and maximum entropy
state.

3.6 Lyapunov Optimal and Passivity Control

Present day robotic and aerospace applications use feedback controller designs that are
Lyapunov Optimal [64]. A control law is Lyapunov Optimal if it minimizes the first time
derivative of the Lyapunov function over a space of admissible controls. In general, a
set of feedback gains are optimized by minimizing the regulating and/or tracking error of
the feedback controller while regulating to zero and/or tracking a desired reference input.
The Lyapunov function is the total error energy which for most mechanical systems is
equivalent to an appropriate Hamiltonian function

V = H . (3.20)

Then the concept of Lyapunov Optimal [64] follows directly from setting Ẇ = 0 in (3.19)
and maximizing ToṠi for which the time derivative of the Lyapunov function (Hamiltonian)
or the modified power (work/energy) equation is written as

V̇ = Ḣ =−ToṠi =−
N

∑
j=1

Q jq̇ j =−
N

∑
j=1

FjṘ j (3.21)
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which is independent of system dynamics and is a kinematic quantity that applies to any
system. Note that Fj denotes a set of forces acting on a mechanical system and Ṙ j denotes
the inertial linear velocity of the point where Fj is applied.

Passivity control [52] for robotic systems follows directly from setting Ẇ = 0 in (3.19).

3.7 Regulator Control Design Examples

Two nonlinear dynamic systems are investigated to demonstrate exergy/entropy control
design analogies for control design theory and to provide unique insights as well. These
examples are based on 1) a PID regulator control for nonlinear Duffing oscillator/Coulomb
friction dynamic system and 2) a van der Pol nonlinear system.

3.7.1 Duffing Oscillator/Coulomb Friction with PID Control System

This example is the design of a control law for a single degree of freedom nonlinear os-
cillator. The Duffing oscillator/Coulomb friction dynamic model (see Fig. 3.2) is defined
as

Mẍ+Cẋ+CNL sign(ẋ)+Kx+KNLx3 = u (3.22)

where M,C,K, and u are the mass, damper, stiffness coefficients and external force input
terms, respectively. The nonlinear stiffness and Coulomb friction coefficients are KNL and
CNL, respectively.

Figure 3.2. Duffing oscillator/Coulomb friction system

The PID controller is defined as

u =−KPx−KI

Z t

0
xdτ−KDẋ (3.23)
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where KP, KI , and KD are the proportional, integral and derivative controller gains, respec-
tively.

Initially, the nonlinear Duffing oscillator is investigated as a neutrally stable, reversible
conservative system or

Mẍ+Kx+KNLx3 =−KPx

subject to the initial condition x(0) = xo = 1.0. Now apply exergy/entropy control design
and the derivative of the Lyapunov function/Hamiltonian becomes

V̇ = Ḣ = Ẇ −ToṠi =
N

∑
j=1

Q jq̇ j−
M+N

∑
l=N+1

Ql q̇l

which yields

ToṠi = 0
Ẇ = 0
(ToṠrev)ave = (Mẍ · ẋ+(K +KP)x · ẋ+KNLx3 · ẋ)ave

= 0.

Numerical simulations are performed with the numerical values listed in Table 3.1. Note
that for all cases that M = 10.0 kg, K = 10.0 N/m, and KNL = 100.0 N/m3. For this initial
Case 1 the phase plane plot (left) and the potential and kinetic energy rate plots (right) are
shown in Fig. 3.3. This run demonstrates Corollary 1 and a stable orbit for the nonlinear
system with offsetting potential and kinetic energy rates responses.

Table 3.1. Duffing oscillator/Coulomb friction model and PID
control system numerical values

.
Case KP KI KD C CNL
No. (kg/s2) (kg/s3) (kg/s) (kg/s) (N)

1 10.0 0.0 0.0 0.0 0.0
2 10.0 20.0 2.0 0.1 5.0
3 10.0 40.05 2.0 0.1 5.0
4 10.0 80.0 2.0 0.1 5.0

Next, consider the additional PID, linear, and Coulomb friction effects applied to the Duff-
ing oscillator and partition into exergy generation and exergy dissipation terms. Now apply
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Figure 3.3. Cases 1: Duffing oscillator/Coulomb friction with
PID control numerical results - phase plane and energy rates

the exergy/entropy control design and the derivative of the Lyapunov function/Hamiltonian
becomes

V̇ = Ḣ = Ẇ −ToṠi =
N

∑
j=1

Q jq̇ j−
M+N

∑
l=N+1

Ql q̇l

which yields

ToṠi = (C +KD)ẋ · ẋ+CNL sign(ẋ) · ẋ
Ẇ =−KI

R t
o xdτ · ẋ

(ToṠrev)ave = (Mẍ · ẋ+(K +KP)x · ẋ+KNLx3 · ẋ)ave
= 0.

To determine the nonlinear stability boundary from the exergy/entropy control design

V̇ = Ḣ = Ẇ −ToṠi

which gives

(Ẇ )ave = (ToṠi)ave.

Substituting the actual terms yields the following:

[
−KI

Z t

o
xdτ · ẋ

]
ave

= [(C +KD)ẋ · ẋ+CNL sign(ẋ) · ẋ]ave (3.24)
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which is the nonlinear stability boundary. To best understand how the boundary is de-
termined, concepts and analogies from electric AC power have been introduced earlier.
Essentially, when the average powerin is equivalent to the average powerdissipated over a cy-
cle, then the system is operating at the stability boundary. Later, in the exergy and exergy
rate responses for the nonlinear system, one may observe that the area under the curves for
the exergy rate generation and the exergy rate dissipation are equivalent and for the cor-
responding exergy responses the slopes will be equal and opposite. This helps to explain
why PID control works well for nonlinear systems.

Numerical simulations are performed to demonstrate where the nonlinear stability bound-
ary lies for the Duffing oscillator/Coulomb friction dynamic model subject to PID control.
Three separate cases are conducted with the numerical values listed in Table 3.1. The
nonlinear system is subject to an initial condition of x0 = 1.0. For Case 2 the integral of
position, position, velocity, and acceleration responses along with the exergy and exergy
rate responses are plotted in Fig. 3.4. For this case, the dissipative term is greater than
the generative term. This is observed from the decaying system responses. In Case 3 the
system responses along with the exergy and exergy rate responses are shown in Fig. 3.5.

Figure 3.4. Cases 2: Duffing oscillator/Coulomb friction with
PID control numerical results

In this case, the average exergy slopes and integrated power areas for the dissipative and
generative terms are equivalent which demonstrates (3.24). This results in system responses
that do not decay, displaying constant nonlinear oscillatory behavior. In final Case 4, the
system responses along with the exergy and exergy rate responses are shown in Fig. 3.6.
In this case, the dissipative term is less than the generative term which results in a system
response with increasing nonlinear oscillatory behavior. In conclusion, Fig. 3.7 shows the
responses for the total exergy with respect to each case along with the phase plane plot for
the nonlinear system. For Case 3 the nonlinear stability boundary (or neutral stability) is
characteristic of an average zero output for the total exergy response or validation of (3.24).
For the phase plane plot, Case 2 demonstrates an asymptotically stable decaying response,
Case 3 a neutrally stable orbital response, and Case 4 an asymptotically unstable increasing
orbit response.
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Figure 3.5. Cases 3: Duffing oscillator/Coulomb friction with
PID control numerical results

Figure 3.6. Cases 4: Duffing oscillator/Coulomb friction with
PID control numerical results

Figure 3.7. Cases 2:4 - Duffing oscillator/Coulomb friction nu-
merical results 3D Hamiltonian (left) and phase plane plot (right)
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The last three cases for the PID control regulator Duffing oscillator/Coulomb friction dy-
namic system demonstrates the three subcases for Corollary 4: Given apriori (ToṠi)ave > 0
and (Ẇ )ave > 0 then the nonlinear system showed the following:

i. Case 2 yielded (ToṠi)ave > (Ẇ )ave; asymptotic stability; damped stable nonlinear re-
sponse and demonstration of Corollary 4.1.

ii. Case 3 yielded (ToṠi)ave = (Ẇ )ave; neutral stability; and demonstration of Corollary 4.2.
This case is the nonlinear stability boundary where dissipation and generation terms
cancel each other out on the average.

iii. Case 4 yielded (ToṠi)ave < (Ẇ )ave; increasingly unstable towards another orbit; and
demonstration of Corollary 4.3.

Notice that the trajectories are constrained to move along the Hamiltonian surface. The
specific trajectory path can be influenced as shown above, by either control integral action
KI

R
xdτ (generator) or control derivative action KDẋ, respectively. The control propor-

tional action, KPx changes the storage/potential function or the Hamiltonian surface. For
example, to determine the effect that the proportional controller gain KP has on the sys-
tem, Hamiltonian phase plane plots are generated. By investigating a system with negative
stiffness and by adding enough KP to result in an overall positive net stiffness, changes the
shape of the Hamiltonian surface from a saddle point surface (see Fig. 3.8 -top pair) to a
positive bowl surface (see Fig. 3.8- bottom pair). A two-dimensional cross-section of the
Hamiltonian versus the position shows the characteristics of the overall storage or potential
functions. The operating point at (H, ẋ,x) = (0,0,0) changes from being unstable to stable,
for small values of |x|> 0, when enough additional KP is added, a net positive stiffness for
the system results.

3.7.2 Van der Pol Nonlinear System

The classic van der Pol’s equation [65] is analyzed using the techniques of this section.
Originally, the “van der Pol equation” is credited to van der Pol, and is a model of an elec-
tronic circuit for early radio vacuum tubes of a triode electronic oscillator [65]. The tube
acts like a normal resistor when the current is high, but acts as a negative resistor if the cur-
rent is low. The main feature is that electrical circuits that contain these elements pump up
small oscillations due to a negative resistance when currents are small, but drag down large
amplitude oscillations due to positive resistance when the currents are large. This behavior
is known as a relaxation oscillation, as each period of the oscillation consists of a slow
buildup of energy (’stress phase’) followed by a phase in which energy is discharged (’re-
laxation phase’). This particular system has played a large role in nonlinear dynamics and
has been used to study limit cycles and self-sustained oscillatory phenomena in nonlinear
systems.
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Figure 3.8. Three dimensional (top-left) Hamiltonian phase
plane plot negative stiffness produces a saddle surface. The two-
dimensional cross-section plot (top-right) is at ẋ = 0. Three di-
mensional (bottom-left) Hamiltonian phase plane plot where the
net positive stiffness produces a positive bowl surface. The two-
dimensional cross-section plot (bottom-right) is at ẋ = 0.

Consider the van der Pol equation with mass (m) and stiffness (k) values other than unity
and a nonlinear damping term (µ) to be defined as:

mẍ−µ(1− x2)ẋ+ kx = 0.

The appropriate Hamiltonian/Lyapunov function is defined as:

H = V =
1
2

mẋ2 +
1
2

kx2 > 0.

Then the corresponding time derivative of the Lyapunov function/Hamiltonian becomes

V̇ = [mẍ+ kx] ẋ
=

[
µẋ(1− x2)

]
ẋ

= µẋ2−µx2ẋ2.
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Next identifying the generator and dissipator terms yields

ToṠi = µx2ẋ2

Ẇ = µẋ2

(ToṠrev)ave = (mẍ · ẋ+ kx · ẋ)ave = 0.

The nonlinear stability boundary can be determined as[
Ẇ
]

ave =
[
ToṠi

]
ave[

µẋ2]
ave =

[
µx2ẋ2]

ave

By investigating several initial conditions both inside, on, and outside the limit cycle then
three separate regions can be observed. Figure 3.9 shows these conditions with the corre-
sponding numerical values given in Table 3.2.

Table 3.2. van der Pol model numerical values

Case xo ẋo µ m k
(m) (m/s) (kg/s) (kg) (kg/s2)

generate 0.1 −0.1 1.5 1.0 1.0
neutral 1.0 −1.0 1.5 1.0 1.0

dissipate 2.0 −2.0 1.5 1.0 1.0

The responses are plotted on the Hamiltonian 3D surface (top) with the projection onto
the phase plane shown on the 2D plot (middle). For the case outside the limit cycle, the
dissipator term dominates and for the case inside the limit cycle the generator term dom-
inates. For both cases inside and outside the limit cycle, the system migrates back to the
stability boundary. For the case already on the limit cycle then the system is already at
neutral stability. The neutral exergy-rate and exergy plots are shown in Fig. 3.9 (bottom).
The cycle is defined at approximately τ = 3.5 seconds. For the neutral pair the terms can-
cel each other out at the end of the cycle or [Ẇ ]ave = [ToṠi]ave. For the generator case then
[Ẇ ]ave > [ToṠi]ave and for the dissipator case then [Ẇ ]ave < [ToṠi]ave, respectively. Even-
tually, given enough cycles both the generator and dissipator cases will converge to the
neutral case.

3.8 Summary and Conclusions

A novel control system design methodology was developed that uniquely combined: con-
cepts from thermodynamic exergy and entropy; Hamiltonian systems; Lyapunov’s direct
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Figure 3.9. van der Pol responses - 3D Hamiltonian, phase plane
plot (top), and exergy-rate and exergy plots (bottom)

method and Lyapunov optimal analysis; electric AC power concepts; and power flow analy-
sis. Relationships were derived between exergy/entropy and Lyapunov optimal functions
for Hamiltonian systems. The methodology is demonstrated with two fundamental nu-
merical simulation examples: 1) a Duffing oscillator/Coulomb friction nonlinear model
that employs PID regulator control and 2) a van der Pol nonlinear oscillator system. The
control system performance results and/or appropriately identified terms were partitioned
and evaluated based on exergy generation and exergy dissipation terms. These numerical
results showed the stability boundaries for each nonlinear system. This novel nonlinear
control methodology resulted in both necessary and sufficient conditions for stability of
nonlinear systems. In the near future, this novel control system design methodology will
be extended to tracking and adaptive control of multi-input/multi-output nonlinear systems.
This methodoloy is applicable to a large class of nonlinear systems.
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Part II

Modeling & Simulation
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Chapter 4

Simulation Environment

4.1 Umbra

Umbra is a powerful asset to employ for the Q-value approximation. The principle of an
agent based simulation program once again melds seamlessly with our continuous notion
of “particles” as a representation of the targets’ belief-state space. Each particle chosen
from the Particle Filters final distribution is acquired by Umbra and translated into the
simulations as an actual physical entity (or agent).

Sandia National Laboratories built Umbra to be a simulation environment in which dis-
parate entities could be modeled, and their interactions observed, such that complex system
behavior can be analyzed [66]. It implements agents as a collection of “modules,” each of
which corresponds to different components of that agent. Umbra also implements “worlds”
that monitor and influence the behavior of similar modules spread across several agents. As
an example, in this project, each of the sensors, the terrain, the vehicles and pedestrians be-
ing tracked, the particles and the POMDP are each composed of multiple modules. These
modules are given time and spatial constraints as per each agent they represent. The sen-
sors, vehicles and pedestrian are referenced by a world module to process which target is
being detected by which sensor at each time step. Additionally, the POMDP is a world to
the particles, in that it monitors their position, advances and replays some of them during
the Monte-Carlo analysis and filters them appropriately.

In this hierarchical organizational structure, where agents are composed of an assembly of
modules, and where world modules can supply phenomenological modeling, Umbra pro-
vides a time-stepped execution engine to sequentially calculate the behaviors of the agents
through time. Because of the modular composition of the agents, variable degrees of model
fidelity can be integrated for different portions of the simulation. For example, because the
particles are massless, they do not need a physics-based representation, but because the
vehicles and pedestrians do have mass, their agents can have low, medium, or high fidelity
physics models associated with them. Umbra allows for simple module insertion and re-
placement, changing fidelity can be done even during execution of the simulation. Deciding
the degree of the fidelity of the model depends on the aspects of the simulation that are of
the highest importance. This experiment required good models for sensing, communication
and particle dispersal, so it is in these areas where the highest fidelity modules were written.
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A large part of the simulation environment was leveraged from former work done at Sandia
National Laboratories. Entities like the terrain, vehicles, pedestrians and communications
systems had already been developed, and were used without modification. However, new
capabilities were written to create the paths for the pedestrians, the particles, the particle
motion models and the POMDP. Other capabilities had to be extended for this projects use.
Specifically, a new model of radar sensors had to be implemented based on a larger sensor
suite that had already been developed for Umbra.

The simulation was organized such that sensor reports were provided to the POMDP through
a communication simulation including radio modems and relays. This radio simulation
builds an ad-hoc network based on message addressing and route requests. The POMDP
does its execution of building targets along with their particle clouds based on these sensor
reports. The POMDP, in turn, sends messages back to the sensors using this same radio
network. The communication and sensor models both take into account ground effects and
line-of-sight in their calculations. One of the needs of the POMDP algorithm is accuracy in
the motion model for the particles. The modular architecture and high fidelity of the terrain
used in this simulation make it an excellent development and test environment for motion
model algorithms. By replacing the module type in the startup script, the different motion
model will be instanced and executed for the POMDP in subsequent runs. Different algo-
rithms, such as slope-based costing (Dijkstra), weighted random-walk, etc., can be easily
implemented and evaluated within the simulation developed for this study.

In addition to integrating this simulation with the many other capabilities built in Umbra,
it is easy to integrate physical hardware systems such as the Wireless Sensor Network
into the simulation as well. Since this simulation is time stepped (as the vast majority
of Umbra simulations are), by synchronizing the simulation clock with real-time, external
data coming from the WSN Annunciator can be fed in directly to the POMDP module.
(The WSN Annunciator has a visualization aspect that was developed in Umbra that takes
advantage of the real-time execution of Umbra.) By using Umbra as a real-time execution
environment for the POMDP, we are able to use any of a suite of real and virtual sensors,
in any combination to exercise the POMDP. Additionally, we are able to bring the benefits
of the POMDP to a fielded sensor network.

4.2 Matlab/Simulink

The Mathworks Matlab/Simulink environment was used to develop and simulate the vari-
ous exergy/entropy control architecture evaluations. An S-function was developed for both
the controller and dynamic plant, respectively. The S-function environment consists of a
predefined general nonlinear state-space model which may include either or both discrete
and continuous modules. The control law accepts reference inputs and generates control
outputs that are sent into the dynamic plant. Both the control and dynamic modules are
compiled as a MEX function and easily integrated into the remaining control architec-
ture components. The particular S-functions used were programmed in the C-language.
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Simulations were performed using the simulink suite of integrators (where the 4th-order
Runge-Kutta was the primary integrator employed). Gains and pertinent system parame-
ters were created with the constant block, in the simulink model for ease of changing values
and re-running each case study. The numerical simulation results were saved in the Mat-
lab environment and post plotted with a custom m-file. A representative exergy/entropy
simulation scenario is shown in Figure 4.1.

Figure 4.1. Matlab/Simulink modeling environment - represen-
tative exergy/entropy control scenario
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Part III

Physical Experiments
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Chapter 5

Wireless Sensor Network

To validate the previously discussed algorithms, as well as other surveillance algorithms, a
one-hundred node wireless sensor network was constructed and fielded at Sandia National
Laboratories (Kirtland Air Force Base). A single sensor node is shown in Fig. 5.1 (all nodes
are identical). The node consists of two primary components: a pyroelectric infrared (PIR)
sensor (colored tan) and a networked radio (white box on ground). The primary design
criteria for the system were low cost, low power, and RF range over a mile.

Figure 5.1. Physical Sensor

The PIR node (see Figure 5.2) employs four C172 dual pyroelectric sensors oriented 90
degrees apart. Cone optics mounted with the sensor provide 90 degrees horizontal and 30
degrees vertical field of view. Infrared transmissive plastic film, 0.11mm thick, covers four
windows in the custom built plastic housing. Together the sensor is sensitive in the 7-14
micrometer wavelengths and has a range of approximately 15 meters. The analog sensor
signal is amplified and digitized by a custom build circuit board utilizing an Atmel Atmega
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Figure 5.2. Wireless sensor network hardware

128 processor. Communication to the radio is conducted via an RS 485 cable.

The radio (see Figure 5.3) consists of the following components: a modified Xecom XE900S-
500 radio transceiver, antenna, solar cells, batteries, geophone, and a custom board for
power regulation/charging, signal conditioning and RS 485 interface. They are mounted
together in a commercial weather-resistant box with a clear lid.

Figure 5.3. Wireless sensor network radio hardware

The Xecom transceiver has adjustable output power from 1mW to 0.5W and operates in
902-928MHz range (frequency hopping). Sandia redesigned the radios firmware under a
non-disclosure agreement with Xecom to meet the requirements of WSN and FCC part
15 regulations. Data rate was boosted to 152kbps at a range of several miles. Power
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consumption was reduced to 130 uA average (two year stand alone operation without solar).
An algorithm to process geophone signals for classification (pedestrian, vehicle, tampering)
was also added.

The WSN is capable of interfacing with over 1000 sensor nodes arranged in 32 clusters
with 32 sensor nodes per cluster. This topology is illustrated in Fig. 5.4.

Figure 5.4. Sensor node communication topology

Alarm and status information is funneled through the cluster heads back to a master node
that connects with an annunciator display computer using an RS-485 interface (Fig. 5.5).
Configuration data from the annunciator can also be sent to sensor nodes for the purpose of
adjusting sensor performance.

Sandia developed a unique form of network control for WSN called Hybrid Division Mul-
tiple Access (HDMA) that combines several forms of common access control strategies to
minimize contention within the network. Carrier Sense Multiple Access (CSMA) is used
at the sensor node level. When a sensor node needs to communicate a spontaneous alarm
message to a cluster head, it waits if it senses another node transmitting, thus avoiding a
collision. This technique works well because most sensor nodes within a cluster are within
radio range of one another.

Routine status messages within a cluster are scheduled over time to preclude simultaneous
communications. This technique is called Time Division Multiple Access (TDMA) or
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Figure 5.5. WSN Graphic interface through Umbra

slotting.

Frequency Division Multiple Access (FDMA) is used to separate adjacent clusters from
interfering with each other. Since every cluster operates on a different frequency at any
given time, there is no possibility of interference.

Cluster heads communicate with the master node on yet a different frequency than the
cluster frequencies (FDMA). Contention between cluster heads is avoided using TDMA
instead of CSMA because clusters may not be able to sense one another due to their re-
moteness. The entire network is synchronized and is constantly changing frequencies to
avoid interference with other radio systems that might be operating within the general area.

Supervisory state of health messages are sent from each node every 8 seconds and a node’s
voltage and temperature is communicated to the master node and annunciator every 30
minutes. Alarm messages have a maximum latency of 250ms and are time stamped to
an accuracy of 8ms. Synchronized time within the entire network is maintained to about
100µs. Configuration commands from the annunciator require up to 8 seconds to be re-
ceived by a sensor node because these units are dormant most of the time to conserve
power. This communication scheme is illustrated in Fig. 5.6.
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Figure 5.6. TDMA communication diagram
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Chapter 6

Unmanned Ground Vehicles

An unmanned ground vehicle, or UGV, has many uses in a dynamic security system. It
can act as a constantly moving sensor platform, thus denying an intruder the advantage of
knowing were all the sensors are. It can move to investigate sensor trips, and if an intruder
is detected, it can intercept and challenge him. The intruder’s response will determine his
“intent.” If properly equipped (with sticky foam, flash bangs, lethal weapons, etc.) the
vehicle can effectively delay an intruder. Finally, a UGV can be used to test other sensors
in the field. From the perspective of complexity, a UGV’s mobility provides a type of
dynamic system interaction that static sensors cannot provide.

Because of its capability to carry large payloads (weapons, sensors, etc.), the Hagar vehicle
was chosen as our UGV platform (See figure 6.1). Developed under a previous LDRD,

Figure 6.1. UGV Hagar

the vehicle used the DOS operating system and a primitive communication strategy with
its base station. The vehicle was not equipped with an inertial measurement system and
could thus be neutralized by jamming GPS. Finally the vehicle used a crude sonar system
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for collision avoidance. Our first action was to upgrade the vehicle with state of the art
capabilities. The remainder of this section describes the vehicle’s capabilities.

Hagar’s main computer is an Ampro Littleboard 700 single board computer with an Intel
400MHz ULV Celeron processor, 256 Mbyte memory, and 1 Gbyte compact flash disk. It
interfaces to a PC104 stack. The interface to the four wheels is provided by a Galil Motion
Control DMC-1200 4-axis board.

Communication between the base station and Hagar is either by a Cisco Aironet BR500
wireless bridge, which provides high bandwidth at close range, or by a Freewave DGR-
115H data radio, which can provide communication up to 20 miles. A separate California
Microwave transmitter is used for the video feed.

The robot pose is determined by a Garmin GPS17N gps receiver, a new Novatel IMU, and
a Crossbow Technology CXTILT02E roll, pitch, and yaw sensor. Proximity to obstacles is
determined by a new Sick AG model LMS-291 laser rangefinder , which was mounted on
an aluminum nodding table to enable 3 dimensional measurements (See figure 6.2). The
nodder had its own Galil DMC-1200 motion control board. Video was provided by a Sony
CCD color video camera Directed Perception pan-tilt unit.

Figure 6.2. UGV target and mapping

The computer on Hagar runs a version of Debian Linux. This seemed optimal for a small
computer. The kernel was 2.4.27 customized for low latency, and with modules added to
handle the video and motion control boards, and up to 12 serial ports. The Swarm vehicle
code was used to manage sensor input and wheel control.

We used the Swarm basestation code on a Dell Latitude C600 laptop computer running
Windows 2000. This allowed us to teleoperate the robot, or to send it to designated GPS
waypoints. All telemetry data was recorded on the basestation for future analysis.

Experiments were carried out at the RVR to determine the accuracy of the Novatel IMU,
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and to assess the capability for autonomous waypoint navigation. Given the complex course
at the RVR, the robot was quite successful in waypoint navigation. The result of the IMU
mapping of the RVR motocross track is shown in Figure 6.3. It was usually able to navigate
about 1/3 of the course at a time, using up to 12 waypoints. After that, it appeared that drift
in either the GPS or the compass would send the robot off the track, almost always in the
counterclockwise direction.

Figure 6.3. Mapping of RVR facility with IMU

We did not explore using the Hagar vehicle for SLAM (Simultaneous Localization and
Mapping). However, Linux drivers were developed for the DMC-1200 motion control
boards under another LDRD (Enhanced Perception), which would enable us to run the
Carmen code from Carnegie Mellon University. This would provide SLAM capability on
Hagar, should that be needed.
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Chapter 7

Unmanned Aerial Vehicles

An unmanned aerial vehicle, or UAV, has many uses in a dynamic security system. Its
high speed and relatively simple collision avoidance algorithms allows it to respond to
alarms in extremely remote areas, whether night or day. Its high vantage point gives it
an unprecedented view of the area, allowing large swaths of sensor coverage or detailed
images of a small area.

Until recently, UAVs have been very expensive. This has prevented Sandia from delving
into this area in the past. Driven by interest from DoD and Homeland Security, UAV
components are now affordable, especially components for smaller UAVs. Our goal for this
project was to evaluate the performance of off the shelf UAV components and determine
whether an inexpensive security UAV was practical.

Figure 7.1 displays our UAV platform. Based on a “Roadrunner” airframe, designed for

Figure 7.1. UAV Mark 1 aircraft

remote control hobbyists, this platform provided suitable room, lift and duration to test the
components of interest. Costing around a $1000, it is also very inexpensive in the case of a
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crash.

The UAV was equipped with ground surveillance video, shown in Figure 7.2. A Sony CCD
color camera provided video while the data was relayed to the ground through a California
Microwave transmitter. Autopilot functions were provided by a Micro-pilot MP2008 unit

Figure 7.2. UAV equipped with ground surveillance video

and associated ground control software. A display of the ground control laptop is given in
Figure 7.3. The autopilot communicated to the base station via a Freewave radio. Telemetry
was downloaded and waypoints could be changed while the vehicle was in the air.

Figure 7.3. Display of UAV ground control station

Flying on base is not a trivial matter. Bob Bickerstaff worked out an arrangement between
the Air Force and the FAA to allow UAV operations in the RVR area.
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A great deal of UAV experience was gained in this portion of the project. The work con-
tributed to two follow on projects: one to create a UAV roadmap for Sandia management,
and the other project was classified.
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Chapter 8

Conclusions and Recommendations

The goal of this LDRD was to “Develop the core competencies needed to design and de-
ploy complex physical (security) systems that are robust, limited in behavior and not brit-
tle.” Our discussions with staff in the physical security area revealed that they were indeed
fielding more and more complex systems (wireless sensor networks, remotely operated
weapon systems, barricades, etc.) and that managing these systems-of-systems was becom-
ing problematic. We believe that when components of a security system begin to number
in the hundreds or thousands manual control of security assets through an annunciator, as
it is done presently, will no longer be effective. Some type of man-in-the-loop autonomous
control will be necessary to manage the complexity.

Four tools for developing and controlling complex physical security systems have been
presented in this paper. How they collectively contribute to a security system is illustrated
in figure 8.1. This figure shows the major components of a security system. At the lowest
level, sensor components (wireless sensor networks, UAVs, UGVs, patrol personnel, etc.)
must efficiently communicate with one another so that information on intruders can be
forwarded to decision makers. Percolation and Graph Theory provide the tools to design
this communication network. At the next level up, sensor information needs to be combined
so as to produce an accurate track of the intruders’ paths. POMDP achieves this task
of multi-target tracking while simultaneously minimizing power consumption in power
limited assets. Finally, tracking information for multiple targets is passed to a fire control
system which optimally assigns defense assets to individual targets taking into account
their position, required orientation change, collision free paths, etc. Entropy principles
are utilized to determine the number of weapons and their performance so as to defeat the
design basis threat.

Finally, complexity experts note that certain insects (ants, termites, bees, etc.) are capable
of amazing group behaviors: building the hive, collecting food, attacking an intruder, etc.
What is more amazing is that they achieve it not through centralized control but through the
dynamics of individuals interacting with one another while using a small set of behaviors.
This is termed “emergent behavior” and it is a form of complexity. This capability could
be of great benefit to many system-of-systems because of the robustness it provides and
because of the simplicity of the algorithm on each system. Unfortunately, it has proven to
be difficult to start from a desired group behavior and work backwards to the behaviors of
the individual system or agent.
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Figure 8.1. Heterogeneous remote security systems scenario

The techniques presented in this paper also produce some amazing group behaviors: op-
timizing target tracking error and power utilization in a large sensor network, determining
under what conditions a group of defenses will be overwhelmed by an attacking force and
optimizing information flow in a communications network. However they do so utilizing
centralized strategies. We submit that for physical security applications centralized control
is not a limitation. In these applications, a centrally located highly defended asset is the
prize. Once it has been seized, the game is over. Therefore, control of the security system
should be located with or near the asset. For other applications, coordinating the Future
Combat System for example, robustness to controller destruction is paramount. However,
centralized control can be made robust by distributing redundant controllers throughout the
force. When one is destroyed, another takes over, just as is done with personnel in the
military hierarchy.
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Appendix A

Land Agreement

To demonstrate the complex adaptive technologies developed by this LDRD, experiments
were planned that involved a 100 node wireless sensor network, an unmanned ground vehi-
cle, an unmanned aerial vehicle and simulated remotely/robotically operated weapon sys-
tems. A large tract of land would be needed to field this testbed. The Robotic Vehicle Range
controls 220 acres of land, see Figure A.1 and the area marked in blue. However this area
was mostly flat and could easily be monitored with video and infrared cameras. What was
needed to properly demonstrate the capabilities of a large complex adaptive heterogeneous
interlinked system was rugged terrain. Many Sandia controlled sites were inspected but
none were found to be adequate. The best alternative was to obtain a ”Land Use Permit”
from Kirtland Air Force base for land they controlled. A 93 acre area to the west of the
RVR, shown in Figure A.1 (area marked in red) and in Figure A.2, was deemed to be suit-
able. This LDRD and the VPS project combined resources to raise the $14K needed to
apply for the Land Use Permit. Additionally, the RVR provided personnel to assist with the
application and to administer the permit.

Figure A.1. Land use permit at the RVR
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Figure A.2. Land use permit map

The permit took over a year to move through Air Force channels. Its duration is from
January 1, 2006 to December 2010. To extend the permit, a renewal must be filed one year
before the expiration date.

Both an Environmental Impact Analysis and an Environmental Baseline Survey were re-
quired as part of the permit. And the Air Force stipulates that the land be returned in the
same condition as when it was given. No alterations of the area are allowed without prior
Air Force approval. The permit allows for the placing of wireless sensor nodes anywhere
in the area. UGVs, however, are restricted to existing roads and pathways.

Further information can be found in the Land Use Permit and supporting documents.
Copies can be obtained from Kenneth Groom, Dan Pritchard, or Dan Puetz.
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