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Abstract 
 
 Blocks of silicon up to 3-mm thick have been formed by directly bonding stacks 

of thin wafer chips. These stacks showed significant reductions in the thermal 

conductivity in the bonding direction.  In each sample, the wafer chips were obtained by 

polishing a commercial wafer to as thin as 36 µm, followed by dicing.  Stacks whose 

starting wafers were patterned with shallow dots showed greater reductions in thermal 

conductivity.  Diluted-HF treatment of wafer chips prior to bonding led to the largest 

reduction of the effective thermal conductivity, by approximately a factor of 50.  

Theoretical modeling based on restricted conduction through the contacting dots and 

some conduction across the planar nanometer air gaps yielded fair agreement for samples 

fabricated without the HF treatment. 

The Lincoln Laboratory portion of this work was sponsored by the Department of Energy under Air Force 
contract number FA8721-05-C-0002. The opinions, interpretations, conclusions and recommendations are 
those of the authors and are not necessarily endorsed by the United States Government. 
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Wafer bonding and fusion techniques have recently been utilized to create unique 

new material and device structures for a wide range of applications.1-9   In this work, we 

will describe reductions in thermal conductivity in bulk silicon achieved by bonding a 

stack of thin wafers as illustrated in Fig. 1(a), in which numerous nanometer air gaps10 in 

the bonded interface were used for impeding normal heat flow.  Bulk materials with 

reduced thermal conductivity are of interest for a variety of thermoelectric, 

thermophotovoltaic or micro-electromechanical systems applications. 

In each experimental run, a commercial one-side-polished, high-resistivity float-

zone Si wafer of 500 µm thickness was used. 11   In some runs, the wafer was first 

patterned with a matrix of 3-µm-diameter dots on 50-µm centers and was etched to an 

estimated 10- to 20-nm depth by CF4 reactive ion etching.  The wafer was then polished 

from the backside to a thickness of no greater than 100 µm.  (See column 6 of Table I.)  

This thin wafer is not only easily conformable (favorable for wafer bonding1, 9) but also 

allows more layers of nanometer air gaps per unit thickness (favorable for high thermal 

impedance).  The polished wafer was then saw-cut into numerous 6.0 x 7.5 mm 

rectangular chips (dimensions conveniently chosen to fit into an existing graphite 

container for wafer bonding).  The Si chips were then thoroughly cleaned in a procedure 

that included a Radio Corporation of America (RCA) process (of a cleaning solution of 

H2O, H2O2, and NH4OH) and a final methanol immersion rinse.  The native oxide formed 

after the RCA process was left in place for all but two experimental runs.  For Samples 5 

and 6, a diluted (5 to 10 percent) HF dip was used for the oxide removal prior to the final 

methanol rinse.   
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The chips were then picked from the methanol bath and assembled wet on a 

quartz pedestal.9, 12   The chip stack was then ready for bonding by heat treatment in an 

argon atmosphere.  For bonding with pressure application (for all samples except 2 and 

5), the chip stack was placed in the slot of a graphite container, topped by some graphite 

shims and a graphite plug for a tight fit into a thick-wall quartz cylinder.3   The loaded 

chip stack was then placed in a quartz tube in a furnace, which was constantly purged by 

an ultra-high-purity argon flow.  The system was first heated to approximately 50 C for a 

two hour baking, and then the temperature was raised to 500, 700, or 900 C, typically for 

15 hours.  These relatively low temperatures were used to minimize actual wafer fusion 

processes, which would likely increase thermal conductivity. 

Thermal conductivity measurements were performed in the direction normal to 

the bonded interfaces.  Thermal diffusivities were measured by a laser flash technique up 

to 1000 C in argon.  Thermal conductivities were calculated by multiplying the thermal 

diffusivities by a constant silicon density of 2.33 gm/cm3 and by the silicon specific heat 

of 0.169 cal/gm-C.  Results of four wafer-bonded samples are shown in Fig. 2, where the 

measured thermal conductivity of a usual homogeneous bulk Si sample is also included 

for comparison.  Table I summarizes all experimental runs, which are grouped for easier 

comparison of the varied experimental parameters. 

 Note that Sample 1, which had the thin native oxide left on and had been 

pressure-bonded, showed a relatively small decrease in thermal conductivity, as shown in 

Fig. 2.  A larger decrease was measured in Sample 2, whose pressure-free bonding might 

have resulted in fewer and smaller points of contact between wafer chips.  Samples with 
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patterned dots in between wafer chips generally showed still larger decreases in thermal 

conduction, as evident in Table I.   

 Table I also shows that Samples 5 and 6, whose chips had been treated in diluted 

HF prior to bonding, had significant reductions in thermal conduction when compared 

with similar but un-treated samples.  In particular, Sample 6 showed a reduction in 

thermal conductivity by a factor of 50 as compared to the homogeneous bulk Si.  This 

indicates that the removal of native oxide changed the surface chemical and structural 

properties for reduced bonding, although the exact details of the resultant atomic 

structure are unclear at this time.  

To better understand the experimental results from basic heat transfer principles, 

an ideal model of the heat flow is developed, as illustrated in Fig. 1b and 1c, in which 

each bonded interface is characterized by a series of small contacting dots separated by 

laterally wide air gaps of nanometer thickness.   Argon gas is likely present in these air 

gaps, since argon ambient was used both in wafer bonding and in the subsequent thermal 

conductivity measurement.  For heat flow normal to the bonded interface, the structure 

can conduct either through the air gaps or through the small solid contact dots. 

Convection within the gap and radiation across the gap were not modeled because the 

combination of these effects was calculated to be less than 1% of the total heat flow.  

Since the air gaps have a much lower thermal conductivity, a large portion of the heat 

flows through the few widely spaced dots, where the extra path needed to constrict the 

heat flow to the dots and to spread the flow from the dots significantly increases the 

thermal resistance.   
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Here we consider an ideal case in which the contacting dots are arranged in a 

square matrix with a lattice constant l.  A simple resistance network model is then used to 

analyze the effective thermal conductivity of each unit cell, as shown in Figs. 1(b) and 

1(c). The total thermal resistance of the unit cell is given by13 
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where the thermal resistance of the dot is neglected because of the small thickness of the 

dot, Rs is the spreading resistance, and the factor of 2 reflects equal contributions from 

constriction and spreading.  

To evaluate keff using Eqs. (1) and (2), we use kSi of bulk silicon, since the 

nominal dot dimension of three µm is considerably greater than the phonon mean free 

path.15   However, a “rarefied gas” model must be applied to estimate krar, since the 

nanometer thickness of the gap is considerably smaller than the argon mean free path, 

and we have16 
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where α is the gas-surface thermal accommodation coefficient, R is the molar gas 

constant, M is the molecular weight, T is the absolute temperature, P is the pressure, λ is 

the mean free path, and γ is the ratio of specific heats.  Reported values of α for argon gas 

at silicon surface range between 0.7 and 0.9.17   

 Figure 3 illustrates modeled keff for one set of experimental parameters with 

fabricated dots.  The model generally yielded keff within a factor of 2 of the experimental 

values of Samples 3 and 4.  For Sample 6, however, the modeled keff was 3 to 4 times the 

experimental values.  This indicates that HF-treated surfaces may have smaller effective 

bonded area in each dot or a smaller number of dots contacting both silicon surfaces, 

since the native oxide left on the non-HF-treated surfaces of Samples 3 and 4 appear to 

have helped make more complete bonding over the entire area of each dot.   

In conclusion, wafer bonding has been used for the first time for the reduction of 

thermal conductivity in bulk Si by a factor of  50.  Since the nanometer air gaps in the 

wafer stacks are generally much smaller than optical wavelengths, relatively small 

reflections are expected for near-normal optical transmission.  Electron tunneling through 

these thin gaps could also maintain some electrical conduction in the stacks. 18    The 

present wafer bonding technique holds considerable promise in applications where a 

reduction in thermal conductivity is required. 

 The authors are indebted to C.D. Hoyt, J.M. Porter and R.A. Griesau for technical 

assistance.  
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Figure Captions 

 

Fig.1  Schematic cross-sectional view of an idealized bonded wafer stack, (a), and the   

unit-cell modeling of its thermal conductivity, (b) and (c). 

 

Fig. 2 (a) Experimentally measured thermal conductivity values of three wafer-bonded 

samples.  Also plotted is the measured thermal conductivity of an ordinary 

homogeneous bulk silicon sample.  (b) Expanded scale of Fig.2(a) showing 

measured low thermal conductivity of two wafer-bonded samples.  Also plotted is 

the thermal conductivity of bulk silicon divided by 50. 

 

Fig.3 Modeled effective thermal conductivity of wafer-bonded silicon for one set of 

bonding parameters and several air-gap thicknesses.  The bottom curve is for 

conduction through the contacting dots only.  
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Table I.  Summary of the Experimental Runs 

 

Sample  Dot pattern HF treatment Pressured bonding Temperature 

(C) 

Average chip thickness 

(µm) 

No. of chips k at 1000C 

(W/m-K) 

1   Yes 900 100 30 23.5 

2    900 69 36 8.37 

5  Yes  900 41 24 0.8 

3 Yes  Yes 500 64 20 3.1 

4 Yes  Yes 700 59 17 2.7 

6 Yes Yes Yes 900 36 30 0.45 

 

 

 

 

 

 

 

 



 

 11

 

 

 

  

 

 

 

 

 

 

 

 

d 

(a) 

d/2

d/2
δ

l

a

(b) 

Rd Rgap 

RSi/2 

RSi/2 

(c) 



 

 12

 

0

20

40

60

80

100

120

0 200 400 600 800 1000

Temperature (C)

Th
er

m
al

 C
on

du
ct

iv
ity

 (W
/m

K
) 

Bulk Si
Sample 1
Sample 2
Sample 6

 

      (a)      

 

 

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000

Temperature (C)

Th
er

m
al

 C
on

du
ct

iv
ity

 (W
/m

K
) 

Si/50
Sample 5
Sample 6

  

(b) 

 

 

 



 

 13

 

 

 

 


