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Abstract 

 
This report summarizes research advances pursued with award funding 

issued by the DOE to Drexel University through the Presidential Early Career 
Award (PECASE) program. Professor Rich Cairncross was the recipient of this 
award in 1997.  With it he pursued two related research topics under Sandia’s 
guidance that address the outstanding issue of fluid-structural interactions of 
liquids with deformable solid materials, focusing mainly on the ubiquitous 
dynamic wetting problem.    

The project focus in the first four years was aimed at deriving a predictive 
numerical modeling approach for the motion of the dynamic contact line on a 
deformable substrate.  A formulation of physical model equations was derived in 
the context of the Galerkin finite element method in an arbitrary 
Lagrangian/Eulerian (ALE) frame of reference.  The formulation was successfully 
integrated in Sandia’s Goma finite element code and tested on several 
technologically important thin-film coating problems.  The model equations, the 
finite-element implementation, and results from several applications are given in 
this report.   In the last year of the five-year project the same physical concepts 
were extended towards the problem of capillary imbibition in deformable porous 
media.   A synopsis of this preliminary modeling and experimental effort is also 
discussed.  
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1. Model for dynamic wetting lines on flexible substrates 

 
1.1 Introduction 
The methods and approaches resulting from this research project are applicable to many 
Sandia manufacturing technologies, most notably pulsed laser welding and component 
encapsulation. These processes share many essential physical features with thin-film 
coating flow technology, the main subject application of this report. For more 
information on Sandia-related applications of this research please see the following 
internal report:  P. R. Schunk, 2000. “TALE: An Arbitrary Lagrangian-Eulerian 
Approach to Fluid-Structure Interaction Problems”, Sandia Technical Report (SAND 
2000-0807).  
 
Wetting [5,12,19] plays a significant role in determining the quality of products coated 
from liquid solutions. For example, defects such as air entrainment [25] or other 
instabilities such as ribbing [8] can be reduced by proper control of wetting phenomena. 
Conventional rigid solids are often replaced by flexible solids to obtain uniformity in 
coating and to delay onset of ribbing defects. Mathematical modeling of deformation of 
the flexible substrate and motion of the wetting line give rise to a free surface problem. In 
this paper, we apply the finite element method with Arbitrary Lagrangian Eulerian (ALE) 
mesh motion to solve problems of dynamic wetting on flexible substrates. 
 Several researchers [c.f. 20,32] have developed finite element formulations for solving 
dynamic wetting on rigid solids. Wetting on rigid solids involves a discontinuity arising 
at the contact line due to an incompatibility between boundary conditions applied on the 
free surface and solid surface. This incompatibility leads to the so-called “Kinematic 
paradox” or a double-valued velocity at the wetting line.  The discontinuity arising at the 
wetting line gives rise to unbounded force, which would make coating impossible and 
hence, the singularity has to removed. Navier slip condition [10,17,23,34,36,39], which 
allows for local slip near the wetting line, is one of the most common models used to 
remove this discontinuity. Christodoulou and Scriven [10] used the Navier slip condition 
for wetting in slide coating and Silliman and Scriven [34] used the Navier slip condition 
for flow from a sharp edged slot. Kistler [20] used two nodal unknowns at the contact 
node with no penetration condition applied to one velocity unknown in the normal 
direction to the web and Navier slip condition applied to the other unknown in the 
tangential direction to the web. Schunk [32] used collapsible elements, where he 
collapsed three nodes at the contact node and the velocity becomes triple-valued. Schunk 
used the kinematic condition on one of the velocity unknowns, the impenetrability 
condition on the other two velocity unknowns in the normal direction to the web and 
Navier slip condition on the momentum residual of the velocity in the tangential direction 
of the web. Zhou and Sheng [39] used exponential variation of velocity over a slip length 
to allow for slip and Navier slip condition. In this paper the Navier slip condition, which 
is used in wide range of applications is used to relieve the singularity in the liquid 
domain. 
Modeling wetting on flexible substrates has several additional challenges (1) fluid-
structural interactions along the solid-liquid interface, (2) motion of contact line across 
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deformable solid surface, and (3) an elastic singularity at the contact line. Arbitrary 
Lagrangian Eulerian (ALE) method of mesh motion can handle the motion of contact 
node needed for wetting on flexible substrates. In Lagrangian method of mesh motion the 
grid follows a fluid/solid element, while in the Eulerian method of mesh motion the grid 
is fixed in space. The Lagrangian method usually breaks down for free surfaces, which 
undergo excessive deformation while the Eulerian method requires complicated fixed 
grid algorithms to track the moving boundary for solving the free surfaces with dynamic 
wetting lines. In order to take the advantage of the computationally easy Lagrangian 
method and minimal mesh distortions in fixed grid of Eulerian method, Arbitrary 
Lagrangian Eulerian (ALE) [1,28,35,38] method of mesh motion was developed where 
the grid/mesh moves independently of the underlying material reducing the mesh 
deformations. ALE method encompasses the features of both Lagrangian and Eulerian 
methods. ALE method was used extensively in the past to study complex moving 
boundary/free surface problems such as two and three dimensional free surface flows 
[35], incompressible unsteady viscous free surfaces [28], compression molding of 
viscoelastic polymers [1] and Hot forming process [38].  
Several mesh motion techniques have been used for modeling free surface problems. 
Algebraic mesh motion is one of the earliest ALE mesh motion schemes, which requires 
interpolation functions for the mesh points. One of the common interpolation methods is 
the method of spines used by Christoudoulou and Scriven [10] to study slide coating. The 
method of spines breaks down when the free surface is highly curved as shown by Saito 
and Scriven [30]. They used a combination of Cartesian and polar coordinate 
parameterization for studying the flow in the downstream end of a slot coater. Elliptical 
mesh generation  [8,33] was developed to handle irregular domains with free surfaces 
without losing the desired orthogonality in the mesh lines and mesh smoothness. 
Elliptical mesh generation determines the nodal positions by solving a system of elliptical 
partial differential equations mapping from the computational to physical domain. The 
disadvantage of this method is that it requires many input constants, which do not have 
any physical meaning. Hanumanthu [15] used a novel combination of elliptical and spine 
method of mesh generation to solve three-dimensional free surface coating flows. pseudo 
solid mesh motion developed by Sackinger et al. [29] treats the mesh to be a 
compressible, elastic solid and solves the Cauchy’s equation of equilibrium to determine 
the nodal positions subjected to boundary conditions. An advantage of pseudo solid mesh 
motion is that it gives a physical insight of the mesh motion. Physical insight about 
deformation in elastic solids can be used to understand relation between input parameters 
and mesh deformation. This method was used for three-dimensional modeling of static 
and dynamic wetting on rigid solids [6-7], slot coating [29] and blade coating [9]. 
The test problem for modeling dynamic wetting on flexible substrate in this paper is flow 
in the upstream end of a slot coater. Slot coating has been modeled by several researchers 
[11,13,16, 31] with rigid substrates. Higgins and Scriven [16] determined the bounds on 
coating bead operability in slot coating with rigid substrate.  They assumed the upstream 
and downstream free surfaces to be arcs of circles, the downstream meniscus to be 
pinned. They considered the cases of upstream meniscus to be free, pinned and the 
pressure drop under the feed slot to be negligible. Sartor [31] made first attempt in slot 
coating to solve the free surfaces with the radius of curvature varying on the free surface. 
He modeled the slot-coating problem for rigid substrate with Galerkin’s finite element 
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method with upstream meniscus free but downstream meniscus pinned. Cohen [11] 
modeled two-layer slot coating by assuming rectilinear flow between the die lip and the 
rigid substrate, through which he predicted the position of the interlayer and the 
separation line. Gates [13] modeled the slot coating process for rigid substrate using 
Galerkin’s finite element method by allowing the upstream and downstream menisci to 
be free to move and solved the free surface location without assuming it to be of constant 
radius of curvature. This paper models the upstream end of a slot coater with flexible 
substrate using Galerkin’s finite element method with the meniscus pinned and radius of 
curvature of the free surfaces varying. 
 In this paper, the first section describes the physical theory of dynamic wetting on 
flexible substrates and the mesh motion scheme for upstream end of a slot coater. The 
second section describes the Galerkin finite element method and application of boundary 
conditions to the fluid momentum, solid momentum and mesh motion equations. The 
third section discusses the results, which include comparison between the performance 
between rigid and flexible solid. 
 
1.2 Physical theory for wetting on deformable substrates 
 
1.2.1 Model Formulation 
In a conventional slot coater as shown in Figure 1, the coating liquid is forced through a 
feed slot and applied to a moving substrate. This coating method involves an upstream 
meniscus where the wetting of the substrate takes place and downstream meniscus where 
the liquid is carried away on the substrate. In this paper, the upstream end, which is a 
prototype flow for dynamic wetting is modeled.  
 
 
 
 
 
 
 
 
              
 
    
        
 
 
 
Figure 1. Slot coater with uniform gap, upstream meniscus pinned to the upstream edge 
of the lip and flexible substrate used for coating. 
 
Wetting is influenced by substrate stiffness because deformation causes elastic forces that 
alter the force balances at the wetting line. Studying the effect of the substrate stiffness 
requires coupling the mechanics in the liquid and solid domains and conserving mass and 
momentum in both phases. 
 

Upstream lip Downstream lip 

Feed slot 

Flexible Substrate 

Upstream end of slot coater 

Downstream end  
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1.2.1.1 Conservation of Mass and Momentum in Liquid Domain 
In the liquid phase, the momentum balance is given by Navier-Stokes equation and the 
mass balance is given by continuity equation. Coating flows are often laminar, steady 
state, two-dimensional and incompressible. Also, the gap is small enough that 
gravitational forces are negligible. At low Reynolds number the Navier-Stokes equation 
reduces to Stokes equation (1) in dimensionless form: 
 

0=•∇ LT          (1) 
 
Where         
 

))(p( T
L LLL vvIT ∇+∇+−=        (2) 

 

LT  is the stress tensor, Lp  is the dimensionless pressure which is equal to 
L

L

U
Lp

µ
′

, Lv is 

the velocity vector, L is the characteristic length scale, which is chosen to be the height of 
the liquid domain, LU is the characteristic speed which is chosen to be as the speed of the 
undeformed solid,  µ is the viscosity of the liquid, Lp′  is the dimensional pressure, and I  
is the identity tensor. 
 Conservation of mass for an incompressible fluid is given by the continuity 
equation: 
 
 0=•∇ Lv          (3) 
 
1.2.1.2 Reference Frame in Solid Domain 
The solid moving through the domain at steady state undergoes deformation.  In our 
model we assume the velocity of the undeformed solid is uniform and that the solid is 
homogeneous and purely elastic. Based on these assumptions, the deformation at a fixed 
point in space is independent of time even though the solid is moving through the 
domain. The momentum and mass conservation equations can be written in either 
convecting Lagrangian frame or fixed Eulerian frame, in either of these reference frames 
the displacement is only a function of position if the solid is purely elastic. 
In the Lagrangian frame of reference, Xo denotes the position of a material on the solid at 
time t=0 and at time t, X  denotes the same material of the solid in a reference 
configuration which is undeformed and moving as a rigid solid. If x  denotes the 
deformed coordinates in the Eulerian frame and u denotes the displacement which is a 
function of position then 
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Figure 2. Flexible solid moving continuously at steady velocity with X as the referential 
coordinates and x as the spatial coordinates. 
 
 

uVXx So ++= t         (4) 
uXx +=          (5) 

Where tSo VXX += ,
dt
dX

= SV  is the undeformed solid velocity in the reference 

configuration. In Lagrangian reference frame, u is a function of X only and in Eulerian 
reference frame it is a function of x only. 
The mapping between the deformed coordinates at time t in the Eulerian reference frame 
and the undeformed coordinates in the reference configuration at the same time t is given 
by x=x (X). Oden and Lin [27] discussed the above shown referential coordinates for 
rotating deformable cylinder. In this paper, all the equations and boundary conditions 
both liquid and solid domains are in Eulerian frame of reference. 
The velocity in the deformed coordinates can be decomposed to the velocity in the 
reference coordinates and a component due to deformation of the solid. The deformation 
gradient tensor transforms the velocity in the referential coordinates to the velocity in the 
deformed coordinates. The velocity of a particle changes with position, but the velocity at 
every position in space remains constant for all time at steady state.  
 

xS,v =
ooo XtXtX t

Y
Y
x

t
X

X
x

t
x









∂
∂









∂
∂

+







∂
∂









∂
∂

=







∂
∂

    (6) 

yS,v =
ooo XtXtX t

Y
Y
y

t
X

X
y

t
y









∂
∂









∂
∂

+







∂
∂









∂
∂

=







∂
∂

    (7) 

 

Where 
oo YX t

Y
 ,

t
X









∂
∂









∂
∂

are the rigid solid velocities in the referential coordinates. 

  
SS VFv •=          (8) 

 

Where F =
X
x

∂
∂

 is the deformation gradient tensor, and Sv  is the dimensionless solid 

velocity in the deformed coordinates. 
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1.2.1.3 Conservation of Mass and Momentum in Solid Domain 
In the solid domain, the displacement field is described by Cauchy’s equation of 
equilibrium along with the incompressibility condition. In our model, we assume that 

gravitational forces are negligible ( 2

3
S

S uG 
L g 

St
ρ

= = 0) and that inertia is negligible 

( 2

22
S

S uG 
L U

Re
ρ

=  = 0). This leads to Cauchy’s equation of equilibrium in dimensionless 

form to equation (9). Sρ is the density of the solid, g is the gravitational constant, U is the 
characteristic speed which is chosen to be as the speed of undeformed solid xS,V , L is the 
characteristic length which is the height of the liquid domain, G is the shear modulus and 
u is the characteristic length scale for displacement which is chosen to be the height of 
the liquid domain. 
 

0=•∇ ST          (9) 
 
Where 
 

))1(GG f 2p(( 1
s

−−−++−= BB)I-TS ff      (10) 
 
Where the solid stress, ST , is predicted by the Mooney-Rivlin constitutive law [2] for 

incompressible, rubber-like solids, 2

2
S

s Gu
Lp

p
′

= , Sp  is the dimensionless pressure in the 

solid, Sp′  is the dimensional pressure in the solid, f is a material constant which varies 

between 0 and 1, and B = TFF is the left Cauchy-Green deformation tensor. F is the 
deformation gradient tensor in the deformed coordinates. The value of f does not 
significantly affect the vertical displacement in the parametric space used in this paper 
hence, f is chosen to be 1 [24].  The constant (-2 f G + G) I  needs to be added to the 
constitutive law in order to make the solid stress go to zero when the displacement goes 
to zero. 
Conservation of volume in the solid is given by incompressibility constraint, which 
requires the determinant of the deformation gradient tensor (represents the ratio of final 
volume to the initial volume) to be 1 as seen in equation (11).  
 

1=F           (11)  
 
This concludes the equations that govern the velocity and pressure fields in liquid and 
displacement and pressure fields in the solid. The next section discusses the boundary 
conditions used on the upstream end of slot coater. The type of boundary conditions 
applied on the solid and liquid domains are indicated in Figure 3.  
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Figure 3. Boundary conditions applied to the upstream end of Slot coater. 
 
1.2.2 Boundary Conditions 
Boundary conditions are applied on the Navier-Stokes equation in the liquid domain and 
Cauchy’s equation of equilibrium in the solid domain to solve for the velocity, pressure 
and displacement, pressure fields respectively. 
 
1.2.2.1 Boundary Conditions on Liquid Domain 
The flow in the liquid is primarily is shear flow between a stationary rigid solid at the 
upper surface and a moving substrate at the lower surface. The pressure gradient forces 
need to balance the Couette forces from the shear flow in the entire liquid domain for the 
net flow rate to be zero. At steady state, the liquid/vapor free surface is stationary but it 
changes its location such that net flow rate is zero. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Boundary conditions applied in the liquid domain with the no slip boundary 
condition applied at the rigid solid boundary. 

Rigid solid: xL,v = yL,v =0 Pinned corner: xL,v = yL,v =0 
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Liquid Outflow 
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Solid Inflow 
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Along the liquid/vapor free surface, a normal stress balance condition is applied on the 
liquid velocity equations. This boundary condition balances the normal stress in the 
liquid, external pressure from the vapor and surface tension in the interface, and is 
normally called the capillary boundary condition: 
 

Ca
H2

pext
n

InTn L

r
rr ∗∗

+•=•−       (12) 

Where H is the surface mean curvature, Ca= 
LV

xS,V

σ
µ

is the capillary number, LVσ  is the 

liquid/vapor surface tension. The capillary number scales the significance of the viscous 
forces to that of the surface tension forces at the liquid/vapor free surface. 
At the liquid outflow plane, flow is assumed to be fully developed. There are two 
formulations for boundary conditions at the outflow: (1) Specify pressure at outflow and 
(2) Specify velocity profile. 
Specifying pressure is one of the techniques for applying boundary conditions at the 
outflow. Pressure stresses are acting on the downstream end and hence the normal 
stresses are equated to the pressure and applied on the horizontal velocity with the 
vertical velocity being zero indicating no cross flow. 
 

InTn L downP•−=•
rr

            (13a) 
 

yL,v =0          (13b) 
 
Alternate technique is to specify velocity profile. A fully developed flow boundary 
condition, which is Couette-Poiseuille flow, can be applied as a Dirichlet condition. The 
velocity profile for the fully developed flow with no net flow rate in dimensionless form 
is derived from the Navier-Stokes equation using the no slip boundary condition i.e. 

xL,v = xS,V  at y = 0 and xL,v = 0 at y = hL in dimensional form. 
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Where xS,V  is the velocity of the liquid and is equal to the undeformed velocity of the 
solid, y is the dimensional position in the y-direction starting from the bottom of the solid 
domain. 
The dirichlet condition of equation (14) can cause wiggles [14] at the outflow plane. 
Hence, specifying the pressure via equation (13) is used as the outflow boundary 
condition. 
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Along the solid/liquid interface, close to the wetting line, the singularity in stress in the 
liquid is relieved by using the Navier slip condition, which allows for local slip near the 
contact line. This slip transmits the momentum flux arising because of the discontinuity 
in the velocity of the liquid by the action of viscosity to the liquid.  This condition is 
applied to the tangential component of the momentum equation at the interface. 
 

LSL Tnvv •=−
r

)(
1
β

        (15) 

 
Where β  is the slip coefficient. β  = 0 corresponds to no slip condition whereas β  = ∞ 
corresponds to free slip condition. The no penetration condition is applied to the normal 
component of the momentum equation, as the liquid does not penetrate the solid. 
 

0=• Lvn
r

         (16) 
 
Away from the contact node (further than 2 elements) the no slip condition is applied and 
the velocity of the liquid is equal to velocity of solid. The velocity of the solid in the 
deformed coordinates is calculated from the velocity in the referential coordinates, which 
is uniform, and the deformation gradient tensor.  
 

0=− SL vv SL VFv •=⇒        (17) 
 
1.2.2.2 Boundary Conditions on Solid Domain 
At the solid outflow, there is pressure force acting normal to the solid and shear force 
from the solid/liquid interface. Similar to the outflow boundary condition for the liquid 
(equation (14)), the solid displacement can be calculated as a fully developed profile 
using Cauchy’s equation of equilibrium. 
Cauchy’s equation of equilibrium in two-dimensions with zero normal stress in y-
direction and shear forces varying only in x-direction reduces to:  
 

  0
T

x

T xys,xxs, =
∂

∂
+

∂
∂

y
        (18) 

 
Where xxs,T is the stress in the x-direction and xys,T is the shear stress. 
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Figure 5.  Solid domain with the inflow boundary chosen far enough such that there is no 
displacement and no displacement boundary condition at the rigid solid. 
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)4h 3(hE-yE 4y E 3 SSSs
2

s +−=         
 
u is the displacement in the x-direction, v is the displacement in the y-direction, hS is the 
height of solid, hL is the liquid film thickness, y is the dimensional position in the y-

direction, G is the shear modulus and Es=
forces Elastic
forces Viscous

LG 

V xs, =
µ

. The Elasticity number 

scales the significance of the viscous forces along the solid/liquid interface to that of the 
elastic forces in the solid. An Elasticity number of zero corresponds to rigid solid and 
greater the elasticity number corresponds to a more flexible solid. 
Along the solid/vapor free surface and solid/liquid interface, normal stress balance 
condition is used on the displacement of the solid. This boundary condition balances the 
normal stress in the solid, external pressure from the vapor or liquid and surface tension 
in the interface. Equation (20b) gives the normal stress from the liquid acting along the 
solid/liquid interface. 
 
solid/vapor free surface 

ESV
ext Ca

H2
p

n
InTn S

r
rr ∗∗

+•=•− ;  ESVCa =
SV

GL
σ

    (20a) 

 

Solid Inflow: u=v=0 
Rigid solid: u=v=0 

Liquid domain 

  downP  

shear stress 

y = hL 

y = -hS 



 

 
 

16 

 r 

solid/liquid interface 
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H2
E*

n
TnTn LS

r
rr ∗∗

+•=•− ;  ESLCa =
SL

GL
σ

    (20b) 

         
H is the surface mean curvature, ESVCa is the elastic capillary number for solid/vapor free 
surface, ESLCa is the elastic capillary number for solid/liquid interface, SVσ  is the 
solid/vapor surface tension and SLσ  is the solid/liquid surface tension. Elastic capillary 
number scales the elastic forces in the solid to the surface tension forces along the 
solid/vapor free surface or solid/liquid interface. 
 
1.2.2.3 Boundary Conditions at the Contact Line   
 
Mass and momentum balances in both the phases and geometric constraint in the form of 
contact angle determine the boundary conditions at the contact line. Conservation of mass 
in the liquid domain is obtained by applying the no penetration condition and the 
kinematic condition and in the solid domain by conforming the mesh to the solid.         
 
 
 
 
 
       
                
 
 
 
Figure 6. Contact node motion under the influence of three surface tension forces, 
viscous forces and elastic forces. 
 
At the dynamic contact line, all the forces that enter the momentum equation need to be 
determined in order to implement the boundary conditions at the contact line. The first 
step requires modifying Young’s equation [22] of force balance at the contact line. The 
forces acting in the vicinity of the contact line (as shown in Figure 7) are the three 
interfacial surface tensions arising at the contact line, elastic forces in the solid and 
viscous forces in the liquid: 
                                                              σLV 
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Figure 7. Control volume for balancing forces in the vicinity of a dynamic contact line. 
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Where  sf is the force in the solid due to elastic stress, Lf  is the force in the liquid due to 
stress in the liquid, LVm

r
is the tangent of the liquid/vapor free surface at the dynamic 

contact line, LVσ is the surface tension of the liquid/vapor free surface at the dynamic 
contact line, SVm

r
is the tangent of the solid/vapor free surface at the dynamic contact 

line, SVσ  is the surface tension of the solid/vapor free surface at the dynamic contact 
line, SLm

r
is the tangent of the solid/vapor free surface at the dynamic contact line, SLσ is 

the surface tension of the solid/vapor free surface at the dynamic contact line, SVθ  is the 
angular location of the solid/vapor free surface, SLθ is the angular location of the 
solid/liquid interface and LVθ is the angular location of the liquid/vapor free surface. 
Equation (21) is the force balance at the contact line and its application at the dynamic 
contact line is discussed in section 3.2. 
The force  sf is finite but the elastic stress is singular. Singularity in elastic stress results 
at the contact line due to line force acting from the liquid/vapor surface tension. The line 
force acting at the contact line on an infinitesimal area results in an infinite displacement 
as given in [37]. But this is not observed physically as such a line force would rip the 
solid apart whereas a finite displacement actually results at the contact node. Hence, the 
line force should act on a finite contact region of molecular dimensions to give finite 
displacement. The solution for a distributed force over a finite contact region is given in 
[37]. The singularity in the solid is relieved by distributing the line force over a finite 
contact region.  
Similarly, the force Lf  is finite but stress is singular. A singularity in viscous stress 
results at the contact line due to the double-valued velocity. Huh and Scriven [18] 
developed a model for stress in the liquid for a rigid solid moving with a constant 
velocity and the liquid/vapor free surface making a finite angle with the solid. They 
assumed creeping flow in the liquid and rigid solid. A singularity in the liquid is arises 
due to the double valued velocity and leads to infinite stresses and non-physical results. 
But in reality, the stresses in the liquid are finite and hence the double valued velocity is 
relieved using Navier-slip condition.  
Momentum balance requires all the three surface tensions and the forces arising at the 
contact node due to the stresses in the liquid and solid to be balanced. At the contact line 
it is desired that contact line moves along with the liquid/vapor free surface, and 
conforms to the solid domain with a contact angle θ at the contact line. The contact angle 
is a geometric constraint that is applied at the contact node by specifying the contact 
angle with respect to the bisecting plane. Mass is balanced in the solid at the contact node 
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by making the mesh to conform to the solid and not allowing for mass flux to leave the 
solid. This leads to setting the y-mesh displacement equal to the y-solid displacement. 
Based on the mass, momentum balances and geometric constraint, following set of 
boundary conditions are applied at the contact line: 
 

• x - component of fluid momentum residual is replaced by kinematic condition - 
• xL,v = 0 

• y - component of fluid momentum residual is replaced by no penetration - yL,v =0 

• x - component of solid momentum residual is added to capillary condition from 
solid/liquid interface, solid/vapor and liquid/vapor free surfaces and normal stress 
from the liquid 

• y - component of solid momentum residual is added to capillary condition from 
solid/liquid interface, solid/vapor and liquid/vapor free surfaces and normal stress 
from the liquid 

• x - component of mesh displacement is replaced by contact angle condition with 

respect to the bisecting plane - cos?
)(

=
−
−

•
SVSL

SVSL
LV mm

mm
m rr

rr
r

. 

• y - component of mesh displacement is replaced by - dy = v (Contact node moves 
along with the real solid in the vertical direction)  

 
1.2.3 Mesh Motion Schemes 
The challenging aspect of the problem is that the mesh in the solid needs to conform to 
the solid and to be able to move with the liquid/vapor free surface. This aspect of the 
motion can be handled using an ALE method of mesh motion. We have tested two ALE 
mesh motion schemes for dynamic wetting: pseudo solid mesh motion [6,7,29] and an 
alternative mesh motion scheme based on spine method of mesh motion [10,15,30]. In 
the liquid domain, pseudo solid mesh motion is implemented and in the solid domain 
both pseudo solid and spine methods of mesh motion are tested. 
 
1.2.3.1 Pseudo Solid Mesh Motion              
Pseudo solid mesh motion moves the nodes as though they behave as an elastic solid by 
solving Cauchy’s equation of equilibrium and the boundary conditions describing the 
physics of the problem. 
 If X denotes the position of a point in the initial configuration, x denotes the 
position in the final configuration and d denotes the displacement field that maps the 
initial domain to the final domain then 
 x = X+d         (23) 
d is obtained by solving the field equations, boundary conditions on the mesh domain. 
For the mesh motion, we use Cauchy’s equation of equilibrium with the assumptions of 
no body forces: 
     0=•∇ S          (24) 
Where  BIS *µλ +−= e . µλ, are the Lame coefficients. e is the volume dilatation, which 
under small strain reduces to d∇tr .  
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 Pseudo solid mesh motion [6,7,29] moves the nodes in the interior as an elastic 
solid so as to satisfy the applied boundary conditions. These boundary conditions are 
chosen such that they describe the physics of the problem. The mesh conforms to the 
boundaries when it deforms and hence, the final deformed shape of the mesh is the actual 
shape of the physical domain. Some of the boundary conditions that are applied on the 
mesh are shown in Figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Liquid domain with the zero displacement boundary condition applied at the 
rigid solid boundary, zero displacement applied at the pinned corner and zero 
displacement applied at the liquid outflow plane. dx is the x-displacement of the mesh 
and dy is the y-displacement of the mesh. 
 
 
Along the liquid/vapor free surface, a kinematic condition is applied on the displacement 
in the normal direction (x-displacement). The kinematic condition physically does not 
allow any normal velocity through the interface.  
 

0=• Lvn
r

         (25) 
 
Along the tangential direction (y-displacement), the nodes are allowed to be shear free so 
that they can freely slide and minimize element distortions.  
Along the solid/vapor free surface and solid/liquid interface, the vertical motion of the 
mesh must conform to the solid. Hence the y-displacement of the mesh is set equal to the 
y-displacement of the solid: 
 
dy = v          (26) 
 
For the x-displacement, the nodes are allowed to be shear free so that the nodes slide 
freely and their motion will become independent of the underlying solid. Tangential 
motion of the dynamic contact line along the solid surface will dictate motion of the node 

 Liquid outflow 
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associated with the contact line, and all other nodes on the solid surface will distribute to 
reduce shear of the mesh. The shear free boundary condition reduces element distortions. 
 
1.2.3.2 Spine Method of Mesh Motion 
When the dynamic contact line moves significantly upstream or downstream, pseudo 
solid mesh motion in the solid domain can lead to excessive mesh distortion near the 
contact line. An alternative mesh motion scheme based on spines and algebraic mesh 
generation results in less distortion. In this mesh motion scheme, the nodes are moved by 
using a stretching parameter, which is equal to the ratio of adjacent elements. Elements 
are stretched to be smaller closer to the dynamic contact line using the stretching 
parameters. Nodes align vertically along spines. Vertical distribution comes from setting 
the displacements of the nodes to be equal to the displacements of the solid: 
 
v mesh = v solid         (27) 
 
Where v mesh is the displacement of the mesh and v solid is the displacement of the solid. 
The spine method has the advantages of easy implementation and smaller memory usage. 
The elements are more concentrated near the contact node by stretching the elements 
more towards the contact node. The stretching function used is given in the equation (28) 
 

 







−=∆ 1-neCRTOTAL1 -1

-1
)LL(x

η
η

      (28)  

 
Where 1x∆  is the size of the first element adjacent to the element whose size is fixed, 

TOTALL  is the total length of the domain over which stretching is applied and ne is the 
number of elements in the domain and η  is the stretching parameter. η  > 1 if the 
elements sizes are desired to increase over the domain and η  < 1 if the elements sizes are 
desired to decrease over the domain. 
 
1.3 GALERKIN FINITE ELEMENT FORMULATION 
 
1.3.1 Residual Calculations in the Finite Element Method 
Coating problems usually involve a free surface, which makes the boundary conditions 
nonlinear, and hence, numerical methods like the Finite Element method (FEM) are used. 
Galerkin’s method with finite element basis functions method approximates the solution 
in each element to be the product of the nodal unknowns and the basis functions. The 
two-phase problem in this paper requires solving for the displacement, pressure and mesh 
displacement in the solid, and velocity, pressure, mesh displacement in the liquid. The 
basis functions for velocity and displacement unknowns are chosen to be biquadratic and 
for the pressure unknowns to be bilinear. The order of basis functions for pressure is 
chosen to be one order less than that of velocity or displacement in order to satisfy the 
Ladyzhenskaya-Babuska-Brezzi (LBB) condition [26]. 
The displacements fields in the solid domain is given by 
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)yx,(uu
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n
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= φ       (29) 

 
The pressure field in the solid domain is given by 
 

  )yx,(pp i

m

1i
iSS ψ∑

=

=         (30) 

Where u is the solid displacement in x-direction, v is the solid displacement in the y-
direction, Sp  is the pressure in the solid domain, )yx,(iφ denotes the biquadratic basis 
function, )yx,(iψ is the bilinear basis function, n is the number of nodes in an element 
where the variable u or v are calculated which is 9 and m is the number of nodes in an 
element where the variable Sp  is calculated which is 4. 
 
The velocity fields in the liquid domain is given by 
 

 )yx,(vv
n

1i
iixL,xL, ∑

=

= φ ; )yx,(vv
n

1i
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=

= φ     (31) 

 
The pressure field in the liquid domain is given by 
 

 )yx,(pp i

m

1i
iLL ψ∑

=

=         (32) 

 
Where xL,v  is the velocity of liquid in the x-direction, yL,v  is the velocity of liquid in the 

y-direction, Lp is the pressure in the liquid domain. 
 
The momentum residual in the liquid domain is integrated by parts using the basis 
function as weighting function. The weighted residual in the weak form is expressed as 
follows: 
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The Continuity residual is obtained as follows: 
 

dv )(R i
V

c
i φ∫ •∇= Lv         (34) 

 
The momentum residual in the solid domain is obtained as follows: 
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The incompressibility residual in deformed co-ordinates is obtained as follows: 
 

dv )1 -(R i
V

c
i ψ−∇= ∫ uI        (36) 

 
The second term in the momentum residual is a boundary condition term. For the 
capillary condition, the boundary integral term can be expressed in terms of surface 
divergence [6] and can be added to the residual. The details of this derivation are 
provided in [6]. 
 
1.3.2 Momentum Balance at the Contact Node 
The total momentum that enters the residual equation at the contact node is obtained by 
adding the residual contributions from the solid and liquid domains: 
 

 ∫∫∫∫∫∫ •∇+•∇=•∇
LS V

DCL
V

DCL
V

DCL dvdvdv φφφ LS TTT     (37)  

 
Where DCLφ  is the weighting function that corresponds to the node at the dynamic contact 
line. Using the same approach of [24], equation (37) can be expressed by integrating by 
parts as shown in equation (33) to obtain contributions from all the surfaces and use the 
surface divergence theorem to express in terms of surface tension.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Control volume over which momentum balance is written in the vicinity of the 
dynamic contact line. Bold lines indicate the interfaces. Quadrilaterals correspond to 
elements in mesh. 
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Where s∇  is the surface gradient operator [24]. The first five terms in the above residual 
disappear as a result of force balance obtained by the force balance at the dynamic 
contact line (equation (21)) shown in section 2.2.3 and hence the rest of the terms enter 
the momentum equation of the solid at the contact node.  
 
1.3.3 Application of Boundary Conditions 
In a two-dimensional model, the momentum equation results in two components along 
the two directions.  The continuity equation is scalar equation and it serves as a constraint 
to determine pressure. The boundary conditions to the momentum equations are applied 
either by adding the stress (second term) resulted in equation (33) to the momentum 
equation (weak form) or by replacing the momentum equation and by a boundary 
condition such as a Dirichlet condition (strong form). 
 The Capillary boundary condition along the liquid/vapor free surface, solid/vapor 
free surface, solid/liquid interface; Navier slip condition close to the dynamic contact 
line; and liquid outflow boundary condition are applied in the weak form. Solid inflow, 
solid outflow, rigid solid, no slip condition, Lagrangian boundary condition on the mesh 
displacement, and pinned condition are applied as dirichlet conditions. The Contact angle 
condition and kinematic condition are applied in the strong form by wiping the entire 
residual and replacing it with the boundary condition. 
3.4 Method of Solving the Nonlinear Residual Equations 
The discretized residual equations resulting from applying the Galerkin finite element 
method are a system of nonlinear equations for the nodal values of field variables. These 
equations are linearized using the Newton’s method [10,29] and the resulting matrix is 
solved for updates of the variables using a sparse solver [21], which performs LU 
decomposition and solves the matrix problem. Numerical integration is performed by 
gaussian quadrature over each element in two directions using four gauss points in each 
direction.  
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Figure 10. Quadrilaterals correspond to elements in mesh. Constant element sizes in x-
direction along the solid/vapor free surface and solid/liquid interface and in y-direction 
along the liquid/vapor free surface around the dynamic contact line. 
 
 
An additional constraint is placed on the deformed element sizes adjacent to the dynamic 
contact line such that they are constant in x-direction along the solid surface and in y-
direction along the liquid/vapor free surface as shown in Figure 10.  
 

CRDCLLVFSDCLSLFSSVFSDCL Lyyxxxx =−=−=−     (39) 
 
Where CRL is the constant length of the element size adjacent to the contact node. 
 
 This constraint distributes the line force from the liquid/vapor free surface over an 
effective constant contact region. Equation (39) is applied as a Dirichlet condition on the 
x-mesh residuals at node 1 and node 2 and y-mesh residual at node 3. If this constraint is 
not applied, the trends of variation of dynamic contact line position with elasticity 
number changes depending upon the variation of the element sizes adjacent to the contact 
node.  
 
Figure 11 shows the trends of the variation of dynamic contact line with elasticity number 
for spine and pseudo solid mesh motion schemes under the constraint of element size 
fixed and unfixed. The trends from the spine method and pseudo solid method match 
when the element size is fixed. When the element sizes are not fixed for the spine 
method, initially the dynamic contact line moves upstream with increase in elasticity 
number and then downstream but with the pseudo solid method the dynamic contact line 
always moves downstream with increase in elasticity number. Hence, in order for 
predictions for both mesh motion schemes to be consistent the elements adjacent to the 
contact node should be fixed. With the variation of elasticity number, depending upon 
whether the contact line moves upstream or downstream, the size of the elements 
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adjacent increase or decrease for the mesh motion schemes if they are not fixed. Hence, 
the stress acting at the contact line changes and causes the inconsistency. 
  
1.4 TESTS OF MESH PERFORMANCE  
1.4.1 Mesh Convergence  
The first step in this analysis is to show that the numerical solutions presented are 
accurate solutions of the system of partial differential equations presented above. Here, 
convergence means with further refinement the change in the shapes of the solid and 
liquid/vapor free surfaces is negligible and change in the x-position of the contact node is 
small (order of 10-3). The tests were performed for a base case of downstream pressure of 
70, Capillary number of 0.02, Elasticity number of 0.002, contact angle of 90o, and 
Elastic capillary number 10. Navier slip coefficient β = 0.00001, slip length over 2 
elements, and contact region CRL = 0.1 are used for the simulations. 
 
 The elements required in different regions, namely, elements upstream of the 
contact node in x-direction, elements downstream of the contact node in x-direction, 
elements in the y-direction in solid and liquid phases were optimized to obtain 
convergence and then from these tests the number of elements required for the whole 
domain were determined. Then the number of elements and stretching were increased 
simultaneously in all directions to show convergence. A coarse mesh with 4 elements in 
the y-direction in both the solid and liquid were increased to 8 elements (base case) and 
then to 10 elements (refine mesh). While the number of elements were increased, the 
stretching in the x-direction upstream and downstream was changed such that the size of 
nearest neighboring elements adjacent to the contact node decreases by 50 % from the 
coarse mesh to base case and then by another 50% from the base case to the refine mesh. 
The elements adjacent to the contact node are fixed and hence, their sizes do not change 
with refinement. There is a change in the dynamic contact line position of the order of 
10–2 for a change from coarse mesh to base case mesh and then a change in the order of 
10–3 in the contact line position for a change from base case to refine mesh. The solid free 
surface, liquid/vapor free surfaces, contours of pressure, displacements and velocity 
fields are compared to show convergence. Figures 12a-12b show a comparison of 
liquid/vapor free surface and solid free surface for all three meshes. It can be seen that 
there is a negligible change in the solid free surface and liquid/vapor free surface between 
base case and refine mesh. Figure 13 shows a comparison of contours for pressure fields 
between base case and refined case. The pressure field varies linearly at distances far 
from the contact line and the pressure contours predicted using the base case and refined 
meshes match. Close to the contact line there is small deviation in the contour shapes. 
Horizontal velocity field contours show a slight deviation near to the contact line but in 
the far field contours match, vertical displacement; vertical velocity and horizontal 
displacement field contours almost lie on one another between base case and refined case. 
After optimizing the elements in different regions and comparing the free surfaces and 
contours it has been concluded that 12 elements in x-direction with η  = 1.33 on the 
solid/liquid side, 6 elements in x-direction with η  = 0.46 on the solid/vapor side, 8 
elements in y-direction of liquid and solid are sufficient to get a converged solution with 
respect to stretching and elements. 
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1.4.2 Comparison of spine and pseudo solid Mesh Motion Schemes 
 The two mesh motion schemes, pseudo solid and spines, were implemented in the 
solid domain but, pseudo solid mesh motion gives more distortion and hence, less 
accurate results. The distortions in the elements in the pseudo solid mesh are due to 
shearing and extension near the contact line as the contact line moves. Figure 14 shows 
the meshes at the limits of convergence for the mesh motion schemes. In the liquid 
domain, pseudo solid mesh motion has been used for all the results in this paper. The 
trends for the location of dynamic contact line with change in elasticity number from both 
the mesh motion schemes are same as seen from Figure 15. The predicted dynamic 
contact line x-position with the pseudo solid method is slightly higher than that of spine 
method. This difference is due to the elemental distortions in the pseudo solid mesh 
motion near the contact line. The y-position from both the mesh motion schemes is 
almost the same as shown in Figure 15. The elements are less distorted (Figure 14) with 
the spine method in the solid domain than with the pseudo solid method and also wider 
range of convergence of the code is obtained. The spine method in the solid is used for all 
the results in the remainder of the paper.  
 
 
 
 
1.5 RESULTS 
 
1.5.1 Base Case for Wetting on a Flexible Substrate 
Figures 16, 18-20 display contour plots of pressure, velocity and displacement fields for 
downstream pressure of 70, Capillary number of 0.02, Elasticity number of 0.002, contact 
angle of 90o and Elastic capillary number of 10.  
Figure 16 shows the contours of pressure fields in the solid and liquid domains near the 
contact line. The pressure contours for the solid and liquid domain match at the 
downstream end, as there is negligible displacement in the vertical direction even though 
the solid is sheared there. Hence, the pressure in the solid is equal to the pressure in the 
liquid near the outflow plane and both vary linearly consistent with fully developed flow. 
Near the contact node there is a low-pressure region in both the solid and liquid phases. 
The pressure in the solid near the contact node is less than that of the liquid because the 
solid is in tension there due to the action of liquid/vapor surface tension pulling upward at 
dynamic contact line. The pressure variation is one-dimensional (along the x-direction) 
towards the outflow plane. Close to the free surface near the dynamic contact line, liquid 
turns around and hence pressure variation is two-dimensional there. Figure 17 shows that 
the pressure in the solid and liquid goes through a minimum at the contact line and then 
increases to the downstream almost linearly for most of the domain along the solid/liquid 
interface. Close to the contact line, pressure in the solid deviates from linear variation. 
Figure 18 shows the contours of horizontal velocity field in the liquid domain and vertical 
displacement field in the solid domain near the contact line. The horizontal velocity is 
zero at the contact node and rises to solid velocity through the Navier slip condition 
(equation (15)) over the slip length. After the slip length, the velocity of the liquid is 
equal to that of the solid because of the no slip condition. Variations in the horizontal 
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velocity at the solid surface are related to the gradient of the vertical displacement in the 
solid:  

 xS,xL, V
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Likewise the vertical fluid velocity along the interface is also related to the slope of the 
interface. 
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This equation was derived from equation (17). A maximum in vertical displacement of 
the solid occurs at the contact node because of the line force pulling the contact line 
upwards and reducing the gap size. The downstream end of the liquid domain 
corresponds to fully developed flow and the vertical displacement is zero.  
Figure 19 shows the contours of vertical velocity field in the liquid domain. The vertical 
velocity in liquid is zero for most of the domain except near the upstream end where the 
fluid turns around to flow downstream. At the contact node vertical velocity is zero. 
Figure 20a shows the horizontal displacement field in the solid domain near the contact 
line. Horizontal displacement field contours show that near the downstream region of the 
contact node, solid is sheared towards the contact node because of the shear forces from 
the liquid and line force. Upstream of the contact node, solid is sheared towards the 
contact node because of the line force pulling the solid. Figure 20b shows the horizontal 
displacement varying along the substrate thickness where the solid is getting sheared 
along the solid/liquid interface. At the outflow plane, the horizontal displacement is 
parabolic as a result of shear forces and pressure forces acting there. Close to the contact 
line, the solid displacement is zero at the bottom of the solid and the displacement of the 
solid at the surface is resultant of line force, shear forces from the liquid and the pressure 
forces. The displacement at the surface close to the contact line comes out to be higher 
than that at the outflow plane because of line force. Displacements decay to zero at the 
inflow plane of the solid. 
 
1.5.2 Analytical Model for the Dynamic Contact Line Location for Rigid Solid 
To analyze the motion of dynamic contact line, we have derived an analytical model for 
the location of the dynamic contact line for rigid solid based on Higgins and Scriven [16]. 
Figure 21 depicts the domain and geometry of the analytical model. A comparison of the 
analytical and the finite element models is shown in Figure 23. The assumptions of the 
model are that the solid is rigid, the meniscus is an arc of circle and the pressure is a 
linear function of distance along the substrate. 
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Where FSP  is the pressure at the meniscus, downP  is the pressure at the downstream end, 
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The liquid pressure at the meniscus comes from the capillary pressure across the curved 
meniscus: 

 
R

s
P LV

FS =          (42) 

Where R is the radius of curvature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21.  Schematic of computational domain for analytical model of dynamic wetting 
on rigid substrate moving with a velocity xS,V and liquid/vapor free surface making an 

angle θ with the solid. 
 
The radius of curvature R is related to the dynamic contact line position by: 
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Equations (41)-(43) are combined to develop an equation relating the downstream 
pressure and the location of dynamic contact line: 
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1.5.3 Analytical Model for the Dynamic Contact Line Location for Flexible Solid 
To account for substrate flexibility in the analytical model presented above, vertical 
displacement of the solid at the contact line modifies the geometric relationship for 
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meniscus curvature (equation (45)). As a simple approximation for a flexible solid, the 
solid at the contact line is assumed to behave as a spring as shown in Figure 22. The 
deformed gap at the contact line is assumed to follow Hooke’s law: 
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Where ξ  is a constant determined from numerical experiments with static wetting such 
that ξ  = 2.333.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22. Schematic of computational domain for analytical model of dynamic wetting 
on flexible solid moving with a velocity xS,V and liquid/vapor free surface making an 

angle θ with the bisecting plane. 
 
For simplicity, the substrate deformation is assumed only to affect the relationship for 
curvature and does not affect the pressure profile in the gap. Equation (44) and (45) gives 
the following model for the flexible solid: 
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This equation relates downstream pressure and dynamic contact line position for a 
flexible solid. 
 
1.5.4 Study of Variation of Dynamic Contact Line with Downstream Pressure, Capillary 
Number, Contact Angle for Rigid and Flexible Solids 
The dynamic wetting line position variation with different parameters for rigid solid such 
as downstream pressure, Capillary number and Contact angle for rigid solid are presented 
in Figures 23, 25, 27 and 29. The results show that increase in downstream pressure 
moves the contact line away from the gap (upstream), decrease in capillary number 
pushes the contact line towards the gap (downstream) if the meniscus is convex from the 
vapor side, increase in contact angle pushes the contact line towards the gap 
(downstream). Figure 23 depicts the comparison from analytical and FEM models for the 
variation of dynamic contact line position with downstream pressure for rigid solid. 
There is a good qualitative agreement between the analytical and FEM results for rigid 
solid as shown in Figures 23. Both the models predict the same trends that increase in 
downstream pressure moves the contact line away from the gap. The slope of the curve 
deviates from linearity for low or high pressures as the dependence of radius of curvature 
on dynamic contact line position becomes non-linear as seen from the analytical model 
(Equation (44)). 
Figure 25 shows the variation of dynamic contact line position in FEM model with 
downstream pressure for a rigid solid.  With increase in downstream pressure, with all the 
other parameters constant, the pressure in the gap goes up. In order to balance the 
pressure in the liquid and the pressure drop across the meniscus, the meniscus increases 
the length of the gap pushing the contact node away from the gap (upstream) and 
similarly when the downstream pressure is decreased, it moves the contact node towards 
the gap (downstream). The meniscus changes its shape from concave to convex from 
vapor side as the downstream pressure is increased. 
Figure 27 shows the variation of dynamic contact line position with capillary number for 
a rigid solid.  The trends for the variation of the dynamic contact line position with 
capillary number are different depending on the shape of the meniscus. With decrease in 
capillary number, all the other parameters constant, surface tension goes up. With 
increase in surface tension, the pressure drop across the liquid/vapor free surface goes up. 
In order to balance the pressure in the liquid and pressure drop across the meniscus, the 
length decreases by pushing the contact node towards the gap (downstream) if the 
meniscus is curved convex from the vapor side. If the meniscus is curved concave from 
the vapor side, the physics remains the same but the meniscus moves upstream. As the 
surface tension increases, the meniscus shape becomes flat due to the increase in radius 
of curvature. 
Figure 29 shows the variation of dynamic contact line position with contact angle for a 
rigid solid.  With the increase in contact angle, the free surface should decrease the radius 
of curvature and hence the pressure near the free surface goes up hence, the meniscus 
decreases the length in order to balance the pressure and the converse is true when the 
contact angle is decreased. The analytical model for rigid solid gives a good qualitative 
agreement for the variation of capillary number and contact angle. 
Figure 24 depicts the predictions of dynamic contact line location for a flexible solid 
from the analytical and finite element methods. As the downstream pressure is increased, 



 

 
 

31 

the contact line moves away from the gap and as the downstream pressure is decreased, 
the contact line moves into the gap. The meniscus changes its shape from concave to 
convex from vapor side as the downstream pressure is increased as shown in Figure 26. 
There is good qualitative agreement between the analytical and FEM models. The 
physics remains the same as that of rigid solid at constant elasticity number. As the 
downstream pressure is increased, the pressure in the liquid increases and the meniscus 
balances the pressure drop across the meniscus and the pressure in the liquid by 
lengthening the gap and the converse is true when the pressure is decreased. The 
quantitative agreement between the analytical and FEM models is not good because of 
the assumptions of free surface to be an arc of circle and pressure gradient in the liquid 
domain to be a constant all the way till the meniscus, which is not valid as shown in 
Figure 17.  
The trends and the physics for the variation of dynamic contact line with capillary 
number and contact angle at constant elasticity number remain the same as that of rigid 
solid. The meniscus moves downstream with decrease in capillary number when the 
meniscus is curved convex from the vapor side as shown in Figure 28 and moves 
upstream with decrease in capillary number when the meniscus is curved concave from 
the vapor side. The meniscus moves upstream with decrease in contact angle. The 
analytical model gives a good qualitative agreement for the variation of capillary number 
and contact angle at a constant elasticity number.  
 
1.5.5 Effect of Substrate Stiffness on the Position of the Dynamic Contact Line with 
Variation in Downstream Pressure, Capillary Number and Contact Angle 
In general, the variation of the dynamic contact line position with downstream pressure, 
capillary number and contact angle for constant elasticity number follow the same trends 
qualitatively as that of rigid solid as discussed in last section. The variation of dynamic 
contact line position with substrate stiffness for constant downstream pressure, capillary 
number and contact angle is displayed in Figure 30. With increase in flexibility of the 
solid, the displacement of the contact node increases in the vertical direction as a result of 
increase in strain as shown in Figure 30. If the meniscus is concave from the vapor side 
and for lower contact angles, the decrease in gap results increase in pressure near the 
meniscus and hence, the meniscus moves upstream and away from the gap to balance the 
pressure in the liquid and pressure drop across the meniscus. The analytical model 
supports this trend for all elasticity numbers. The higher the flexibility of the solid, the 
more the contact line moves upstream as seen from the results in Figure 30b. Figure 31 
show the mesh and the contact node moving upstream as the elasticity number is 
increased. When the meniscus is curved convex from the vapor side and for lower contact 
angles, the meniscus moves upstream for lower elasticity numbers and then downstream 
for higher elasticity numbers as shown in Figure 30a. The initial trend of the meniscus 
moving upstream is not supported by the analytical model which could be due to the fact 
that stresses from the liquid are neglected, which could be important at higher pressures. 
At higher elasticity numbers, the stress from the line force increases and hence, it 
dominates over the stress from the liquid and hence, the trends from analytical model and 
FEM match.  
In Figure 25 the variation of dynamic contact line with substrate flexibility and 
downstream pressure for finite element method is shown. The contact line moved 
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upstream (away from the gap) for lower elasticity numbers and for lower contact angles 
at constant downstream pressure. This behavior for lower elasticity numbers is observed 
in the analytical model only when the meniscus is curved concave from the vapor side. 
This could be due to neglecting the stresses from the liquid in the analytical model, which 
could be important at higher pressures. As the flexibility of the solid is increased, the 
pressure near the meniscus increases due to the decrease in the gap and so the meniscus 
balances the pressure drop across the meniscus and the pressure in the liquid by moving 
upstream.  
With decrease in capillary number, the line force increases and hence the vertical 
displacement of the contact node increases which results in the decrease of the gap and 
hence the pressure near the meniscus in the liquid goes up. If the meniscus is curved 
concave from the vapor side and for lower contact angles, the meniscus balances the 
pressure in the liquid and pressure drop across the meniscus by moving upstream and 
away from the gap as seen from the Figure 27b. The analytical model supports this trend. 
For constant capillary number, lower elasticity numbers and lower contact angles, the 
contact line moves further upstream if the meniscus is curved convex from the vapor side 
which is opposite of the trend given by the analytical model. This could be the effect of 
stresses from the liquid where they tend to push the contact node upstream. This effect is 
seen in the Figure 27a. 
Figure 29 depicts the predictions of variation of dynamic contact line position with 
elasticity number and contact angle. For higher contact angles, the meniscus moves 
downstream with respect to the rigid solid with increase in flexibility (lower elasticity 
numbers) and the converse is true for lower contact angles as shown in Figure 28. The 
mechanism is similar to the other parameters.  
The trend with change in elasticity number is supported by the analytical model at all 
elasticity numbers if the meniscus is convex from the vapor side; higher contact angles 
and if the meniscus is concave from the vapor side; lower contact angles and at higher 
elasticity numbers at all conditions.   
 
1.6 CONCLUSIONS 
This paper presents a finite element formulation for solving dynamic wetting on flexible 
solids with application to the upstream end of slot coater as the test problem. The 
challenge involved in this model is coupling the fluid and solid mechanics and taking into 
account the motion of dynamic contact line across the flexible substrate. There are two 
singularities that arise because of line force acting on the solid and a double valued fluid 
velocity arising in the liquid. The singularity in the solid is relieved by applying the line 
force over a finite contact region and the singularity in the liquid is relieved by applying 
the Navier-slip condition. The boundary conditions at the contact node involve applying 
two momentum balance conditions on the solid, a kinematic condition and a no 
penetration condition on the liquid velocity, contact angle condition and Lagrangian 
motion on the mesh displacements. 
 The parametric studies have shown that the pressure at the outflow, capillary 
number, contact angle and substrate stiffness affect the motion of the contact line. At 
constant elasticity numbers, increase in downstream pressure pushes the contact line 
away from the gap, decrease in capillary number moves the contact node away from the 
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gap if the meniscus is curved concave from the vapor side and increase in contact angle 
pushes the contact node into the gap. 
 The substrate stiffness has an effect on the motion of the contact line. The results 
have shown that at higher substrate stiffness at the same operating parameters, the contact 
line is pushed into the gap if the meniscus is convex from the vapor side and decreases 
the gap width by moving vertically. Conversely, the contact line moves upstream and 
away from the gap when the meniscus is curved concave from the vapor side. This paper 
provides a new formulation that can be applied to various applications, which involve 
flexible solids in contact with liquids and three phase wetting lines. There are also many 
industrial processes which could benefit from this model, such as roll coating, flexible 
blade coating and in studying flow though porous media in recovery of oil in rocks.  
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Figure 11. Comparison of location of dynamic contact line as a function of Elasticity number for spine 

mesh motion and Pseudo solid mesh motion for constant contact region versus variable contact region. 

Downstream pressure = 70, contact angle = 90o and Ca = 0.02. 
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Figure 12.  Mesh refinement study. Comparison of  (a) shape of liquid-vapor free surface and (b) shape of 

solid-liquid free surface at three levels of mesh refinement. The contact angle is 90o, ESVCa  = ESLCa  = 

10, Ca = 0.02, Es = 0.002 and downstream pressure = 70 are used for this comparison. 
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Figure 13. Comparison of contour plot of pressure field (a) for full domain (b) solid domain close to the 
contact line (c) liquid domain close to the contact line (d) close to the outflow plane at two levels of mesh 
refinement with solid contours for base case and dotted contours for refined mesh. The contact angle of 
90o, ESVCa  = ESLCa  = 10, Es = 0.002, Ca = 0.02 and downstream pressure = 70 are used for this 
comparison. The minimum pressure contour level was set at –30, maximum pressure contour level was set 
at 70 and the number of levels was set to 26. 
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Figure 14. Shape of mesh near the dynamic contact line position at downstream pressure 
= 50, Es = 0.002 and Ca = 0.02 for (a) spine mesh motion – contact angle – 127o and (b) 
pseudo solid mesh motion – contact angle - 109o. 
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Figure 15. Comparison of location of dynamic contact line as a function of elasticity number for spine mesh 

motion versus pseudo solid mesh motion for downstream pressure = 30, contact angle = 90o and Ca = 

0.02. 
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(a) 

  
 

(b) 

               
(c) 

 
 

     
 
 

Figure 16. Contour plots of pressure field for base case conditions: (a) liquid domain (b) full domain, and 
(c) close to the contact node in the solid with downstream pressure = 70, contact angle = 90o, Es = 0.002 
and Ca=0.02. The maximum and minimum contour levels are at 70 and –20 with the number of levels 31.  
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Figure 17. Variation of pressure in solid and liquid as a function of x-position along the solid surface for 

base case conditions. Downstream pressure = 70, Es = 0.002, contact angle = 90o and Ca = 0.02. Solid 

pressure at dynamic contact line drops to about –300.  
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(a) 
 

  
(b) 
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Figure 18. Contour plots of horizontal velocity in liquid and vertical displacement in solid for base case: 
(a) close to the contact node in liquid, (b) for the full domain, and (c) close to the contact node in the solid. 
Downstream pressure = 70, contact angle = 90o, Es = 0.002 and Ca = 0.02. The maximum and minimum 
contour levels for velocity are at 1 and -0.3 with the number of levels 14 and for displacement are at 0.04 
and -0.004 with the number of levels 11 respectively.  
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(a) 

  
(b) 

 
 
 
Figure 19. Contour plots of vertical velocity in liquid and horizontal displacement in solid for base case: 
(a) close to the contact node in liquid (b full domain. Downstream pressure = 70, contact angle = 90o, Es = 
0.002 and Ca = 0.02. The maximum and minimum contour levels for velocity are at 0.02 and -0.7 with the 
number of levels 13. 
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Figure 20. Contour plot of (a) horizontal displacement in solid and vertical velocity in liquid close to the 
contact node in the solid and (b) Line plot of horizontal displacement through the substrate at an arbitrary 
x-position of 9.29 close to the dynamic contact line for base case. Downstream pressure = 70, contact 
angle = 90o, Es = 0.002 and Ca = 0.02. The maximum and minimum contour levels for velocity are at 0.02 
and -0.7 with the number of levels 13 and for displacement are at 0.002 and -0.02 with the number of levels 
11 respectively.  
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Figure 23. x-position of the dynamic contact line as a function of downstream pressure at Es = 0, contact 

angle = 90o and Ca = 0.02 for analytical and finite element methods. 
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Figure 24. x-position of the Dynamic contact line as a function of downstream pressure for Es = 0.002, 

contact angle = 90o and Ca = 0.02 for analytical and finite element methods. 
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Figure 25. Location of dynamic contact line as a function of downstream pressure for contact angle=90o 

and Ca=0.02. 
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Figure 26. Shape of the mesh for (a) full domain with downstream pressure = 50, near the contact node for (b) 

base case with downstream pressure = 50, (c) low downstream pressure with pressure = 15, and (d) high 

downstream pressure with pressure = 90, Es = 0.002, contact angle = 90o, Ca = 0.02. 

(a) 

(b) 

(c) (d) 



 

 
 

48 

 

 

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 0.02 0.04 0.06
Capillary number

L
o

ca
tio

n
 o

f d
yn

am
ic

 c
o

n
ta

ct
 li

n
e,

 x
D

C
L

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.01 0.02 0.03 0.04
Capillary number

L
o

ca
tio

n
 o

f d
yn

am
ic

 c
o

n
ta

ct
 li

n
e,

 x
D

C
L

 

 

Figure 27. Location of dynamic contact line as a function of capillary number for (a) high downstream 

pressure with pressure = 70 and (b) low downstream pressure with pressure = 30 and contact angle = 90o. 
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Figure 28. Shape of the mesh near the contact node for (a) low capillary number with Ca = 0.0058, (b) high 

capillary number with Ca = 0.058, downstream pressure = 70, Es = 0.002, contact angle = 90o. 
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Figure 29. Location of dynamic contact line as a function of contact angle for (a) high downstream 

pressure with pressure = 50 and (b) low downstream pressure with pressure = 30 and Ca = 0.02. 
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Figure 30. Location of dynamic contact line as a function of elasticity number for (a) high downstream 

pressure with pressure = 70 and (b) low downstream pressure with pressure = 30, contact angle = 90o and 

Ca = 0.02. 
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Figure 31. Shape of the mesh near the contact node for (a) semi-flexible solid with Es = 0.002, (b) flexible 
solid with Es = 0.0087, downstream pressure = 30, contact angle = 90o, Ca = 0.02. 
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2. Wetting and penetration in deformable porous media 
 
The transport properties of hygroscopic porous media, such as paper, are a strong 
function of the extent of swelling.  Dry paper fibers exhibit a flat, ribbon-like shape. 
When the moisture content of paper rises water diffuses into paper fibers, which reduces 
the tension of condensed water in the lumen and reduces the strength of hydrogen bonds.  
Then, the lumen of the fiber expands and the morphology of individual paper fibers 
transforms from a ribbon-like shape to an elliptical cross-section.  A single-fiber model 
has been developed to predict the change in cross-sectional shape of paper fibers during 
swelling and drying.  The model balances elastic stresses in the fiber wall to a transmural 
pressure caused by the capillary pressure of condensed water in the lumen.   
 
Macroscopic transport properties (e.g. effective diffusion coefficients) in porous media 
depend strongly on the morphology of the medium.  Paper fibers are arranged randomly 
within the plane of the paper.  An idealized unit cell structure has been developed to 
reproduce the key features of paper.  The idealized unit cell contains layers of paper 
fibers with fibers in each layer parallel to each other and fibers in adjacent layers 
perpendicular to each other.  The fiber cross-sections from the single-fiber model have 
been imported into the unit cell structure in order to predict effective diffusion 
coefficients and porosity for paper.  
 
To predict the changes in microstructure of paper during drying and moisturization, a 
single-fiber deformation model has been developed.  Wet paper fibers resemble thick-
walled tubes and during processing (drying and calendaring), the thick-walled tubes 
collapse to a ribbon-like shape.  This collapse is caused by capillary pressure of water in 
the lumen of the tube exerting tensile stresses on the tube wall.  The single-fiber model 
balances elastic stresses in the fiber wall to a transmural pressure caused by the capillary 
pressure of condensed water in the lumen.  The single-fiber model treats the fiber wall as 
an isotropic hyperelastic material.  Deformation of the tube is predicted using Abacus, a 
commercial finite element package.  With Abacus, it is possible to predict deformation of 
a tube from a nearly-elliptical cross-section to a ribbon-like geometry in which the lumen 
is essentially completely collapsed.  The geometry of collapsed tubes from model 
matches qualitatively with observations of drying paper fibers.  Experiments have also 
been conducted at Drexel (by a summer student in summer 2003) to observe the shape of 
tubes collapsing under negative (i.e. lower on inside) transmural pressures.  The 
experiments and model both predict that the cross-section remains elliptical up to a 
critical value of the transmural pressure (normalized by the elastic modulus).  At this 
critical pressure, the lumen collapses rapidly until opposite walls of the tube touch, and 
then the cross-sectional area of the tube plateaus. 
 
The predicted fiber shapes from the single-fiber model have been used to predict 
macroscopic properties of paper using and idealized microstructural model.  An idealized 
unit cell structure has been developed to reproduce the key features of paper.  The 
idealized unit cell contains layers of paper fibers with fibers in each layer parallel to each 
other and fibers in adjacent layers perpendicular to each other.  The fiber cross-sections 
from the single-fiber model have been imported into the unit cell structure.  The unit cell 
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structure has been used to create a finite element mesh in FEMLAB to model transport 
within the inter-fiber pore-space.  To predict effective diffusion coefficients, a water 
vapor concentration difference is imposed across the unit cell and the flux of water vapor 
is predicted by solving the diffusion equation within the inter-fiber pore-space.  The 
model predicts that the effective diffusion coefficient decreases by about a factor of two 
between the wet and dry states.  The porosity of the paper also decreases by about the 
same amount. 
 
The results from this microstructural model of transport properties in paper will be used 
to predict drying and moisturization of paper coatings.  The procedure used here to 
predict transport properties is not particularly complicated although it is computationally 
intensive because the diffusion model is three-dimensional with an irregular domain 
structure.  In the future, it will be useful to predict other transport properties 
(permeability, fiber diffusion coefficient, conductivity, etc.) by the same technique.  
Another likely extension to this model is to model the transient diffusion into and 
swelling of the fiber wall during moisturization. 
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