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Abstract

Uncertainty quantification (UQ) in the computational modeling of physical systems is important for scientific
investigation, engineering design, and model validation. In this work we develop techniques for UQ based on
spectral and pseudo-spectral polynomial chaos (PC) expansions, and we apply these constructions in com-
putations of reacting flow. We develop and compare both intrusive and non-intrusive spectral PC techniques.
In the intrusive construction, the deterministic model equations are reformulated using Galerkin projection
into a set of equations for the time evolution of the field variable PC expansion mode strengths. The mode
strengths relate specific parametric uncertainties to their effects on model outputs. The non-intrusive con-
struction uses sampling of many realizations of the original deterministic model, and projects the resulting
statistics onto the PC modes, arriving at the PC expansions of the model outputs. We investigate and discuss
the strengths and weaknesses of each approach, and identify their utility under different conditions. We also
outline areas where ongoing and future research are needed to address challenges with both approaches.



1 Introduction

Confidence intervals on predicted system behavior are necessary for design and optimization of engineer-
ing systems. They are also useful from a scientific point of view, where model validation with respect to
experimental measurements requires careful measures of uncertainty in both experimental data and computa-
tional predictions. In general, uncertainty in computational results can be due to both model and parametric
uncertainty. The present work deals with the latter. Empirical physical parameters used in the construction
of computational models are inherently uncertain as a result of unavoidable experimental measurement er-
rors. We seek to develop techniques to quantify propagation of this parametric uncertainty, with a focus on
detailed, stiff, chemical kinetics.

In general, the propagation of parametric uncertainty can be studied using Monte Carlo (MC) simula-
tions by sampling assumed or known distrubutions of model parameters over many iterations. For complex
models that consume considerable computational resources, this method may be very costly and inefficient.
Also, this approach does not readily provide information about the sensitivity of model outputs to specific
parametric uncertainties. Further, conventional sensitivity analysis sheds some light on first-order parametric
dependencies, but does not propagate nonlinear interactions through the model of interest.

An alternate approach is discussed here, based on a spectral stochastic description of uncertain parameters
and field quantities using polynomial chaos (PC) expansions for the stochastic representation of uncertainty.
Polynomial chaos [1-7] is a member of the set of homogeneous chaos, first defined by Wiener [1]. Ghanem
and Spanos [7] implemented a spectral PC expansion in terms of Hermite polynomials of Gaussian basis
functions in a finite element method. This was applied in the modeling of transport in porous media [8],
solid mechanics [9, 10] and structural [11] applications. The utility of the Hermite-Gaussian PC for modeling
non-Gaussian processes was also investigated in [12, 13]. Le Maitre et al. [14, 15] extended the application
of these techniques to thermo-fluid applications in the context of low Mach number flow. Xiu ez al. [16] used
generalized PC [17] for stochastic UQ in the modeling of flow-structure interactions, and for diffusion prob-
lems [18]. Debusschere et al. [19,20] used PC for UQ in the context of electrochemical flow in microfluidic
systems. Reagan et al. [21] studied UQ in the context of chemically reacting H,-O, flow.

In the most basic application, using MC sampling of the stochastic parameters, the corresponding solutions
of the deterministic system are evaluated and projected onto the PC basis to compute the spectral mode
coefficients. These coefficients are then used to construct probability density functions (PDFs) of the solution,
to infer sensitivity to various parametric uncertainties, and to highlight the dominant sources of uncertainty.
This non-intrusive spectral projection (NISP) approach {11, 15,21], has the advantage of being applicable to
legacy codes, which are run with varying parameters to compute the statistics and spectral mode values.

For computationally intensive problems, large-scale Latin-Hypercube MC sampling [22] of many deter-
ministic runs may not be practical. For example, studying homogeneous ignition, using a reduced model of
8 uncertain reaction rate preexponentials and five uncertain enthalpies of formation, requires over to 20,000
individual deterministic evaluations of the model to adequately sample the full stochastic space and reach
convergence [21]. Increasing the order of the PC expansion to more accurately represent the resultant output
PDFs and/or study larger sets of uncertain parameters can dramatically increase the number of samples re-
quired to achieve convergence. More complex models containing a greater number of reactions increase both
the required sampling and the time required to compute individual realizations. As a result, more complex
problems demand a more efficient approach.

An “intrusive” spectral/pseudospectral methodology allows the direct incorporation of spectral stochastic
information into the basic formulation of the model. If it is possible to reformulate the governing equations for
a particular problem, numerical efficiency can be gained by creating a purpose-built spectral code. In general,
these implementations of spectral PC expansions involve (1) the introduction of a new stochastic dimension
for each uncertain parameter in the problem, (2) the expansion of parameters and field quantities using PC in
terms of these stochastic dimensions, (3) the substitution of these expansions in the governing equations and
their reformulation using a Galerkin projection procedure into equations for the stochastic mode strengths,
and (4) the solution of this larger system of equations and the reconstruction of the field quantities of the
solution based on their PC expansions in terms of the computed stochastic modes. The computational effort
required to solve this system can be many times smaller than that required to generate many MC realizations,
depending on system nonlinearities and the necessary spectral order.

It is important to note that, while polynomial chaos-based uncertainty quantification provides sensitivity



information, it actually goes well beyond sensitivity analysis to propagate the full probablistic representation
of the model inputs to the model outputs. Depending on the chosen order of the PC expansion, intrusive
spectral methods also provide higher-order sensitivity information. Higher-order effects are not lumped into
a single coefficient, but are considered independently and in terms of parameter-parameter interactions. The
result is a complete polynomial chaos representation of the complex system response.

The present report presents advances in the state of the art of UQ in both the non-intrusive and intru-
sive areas as applied to computations of reacting flow. We begin by presenting the essential details of the
spectral/pseudo-spectral stochastic polynomial chaos formulation that forms the basis of both approaches.
We then present the construction of the non-intrusive approach and discuss results pertaining to non-intrusive
UQ in zero-dimensional and one-dimensional reacting flow computations. This is followed by an exposition
of the intrusive approach, with associated application to zero-dimensional reacting flow and simpler ODE
model problems, and discussion of corresponding results. We finish with conclusions regarding the state of
the research in this area and potential future avenues of investigation.

2 Formulation

2.1 Spectral methodology

As mentioned above, this method addresses parametric uncertainty. One can describe an uncertain model
parameter as a stochastic quantity with a known PDF. Let an uncertain parameter A be empirically given by

A=A%A (1)

where A is the mean and A defines the range of uncertainty.

With no additiona)l information, we can assume that A is sampled from a Gaussian PDF with a mean A
and a standard deviation A, consistent with Eq. 1. Further, if we let £ be a normalized Gaussian variable with
zero mean and unit variance we can express A as the expansion

h=ho+EN )

If, on the other hand, additional physical constraints are in effect, e.g. when A is a pre-exponential Arrhenius
rate constant that is strictly positive, then a lognormal distribution is necessary. In this case, as discussed
in [12, 13] and section 4.1.4, A can be expanded in powers of &, with the necessary order dictated by the
skewness of the distribution.

For a general prescribed distribution of A, satisfying specific conditions [23], we can represent A as a
spectral expansion in terms of suitable orthogonal eigenfunctions with weights associated with a particular
density. A well-studied example is the Wiener process (Brownian motion) which can be written as a spectral
expansion in terms of HERMITE polynomials and a normal Gaussian distribution. Other examples include
Charlier polynomials and the Poisson distribution, and the Laguerre polynomials and the Gamma distribu-
tion [23]. In the present context, these spectral expansions are generally referred to as Polynomial Chaos
(PC) expansions, following Wiener [1], and focus will be exclusively on the HERMITE-GAUSS PC. More-
over, while these expansions are infinite series, this work will consider only PC expansions truncated at some
suitably high order.

A parameter A can be represented using the (truncated) PC expansion as,

P
A= S ¥ 3
k=0

where the W}’s are the orthogonal Hermite polynomial functions of & [7], such that
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and the A’s are the known spectral mode strengths for the PC expansion for A.
More generally, for Ny uncertain parameters, each parameter introduces a stochastic dimension &, such

that, with 8 = {§,&,,--- &, 1
¥ =W (0) =‘l’k(§1,&2,...,§Ndim), k=0,...,P. (5)
Up to second order (Norg = 2), these polynomials are given by:

l k=0
Y=< & k=1.. Ngim 6)
&mﬁn—ﬁnm k=Nd1m+1...P; m= ]-”Ndim; n=1...Ndim,

they are orthogonal with respect to an inner product,
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is a Gaussian measure, < ¥; >= 8,9, and
<WV¥;>=0, i#j, i>0,j>0 €))

Note that, in general [17], P+ 1 = (Ngim + Nord) / (Ndim Nora!)-
Using the above orthogonality, it is easy to show, starting with the PC expansion for a general parameter A
in Eq. 3 above, multiplying both sides by ¥; and taking inner products, that

<AY; >

Ai=
<WI>

i=0,...,P (10)

Using this formalism, any stochastic field variable ®(x,r) can also be represented using the PC expansion,
as: ,
D =Y & (x,)¥ an
k=0

where the ®;’s are the unknown spectral modes of ®, analogous to the known spectral modes of A. Again,
given the orthogonality of the ‘¥';’s, the ®;’s are given by

(@Yy)

Pe= Ty

k=0,...,P. (12)

The Galerkin projection in Eq. 12 can be used in non-intrusive UQ analysis to project multiple realizations of
a deterministic system onto the PC basis [21], as discussed in section 3 below. These projection operations are
also the basis for intrusive UQ based on reformulating the governing equations, as in section 4 below. Such a
reformulated model construction provides built-in spectral stochastic uncertainty information, and eliminates
the need for extensive Monte Carlo sampling of a deterministic problem for UQ purposes. Instead, the
extended system of k = 0,..., P governing equations can be solved with an increase in computational load by
a factor proportional to P+ 1.
For a simple example of full spectral reformulation, consider an ODE in terms of ® and parameter A:

o = AD, D(0) =Dy 13)
dt
We can substitute the expansions Eq. 3 and Eq. 11 into the ODE, and rearrange:

& do,
2‘—‘“—227” o,¥ Y, (14)
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Then, multiplying both sides by ¥;, and taking inner products, use the orthogonality between the basis
functions to isolate the ‘P'’s:
dao; & & (¥p¥e¥)
—_—= E EKCD | =0,...,P 15
dr Ty ’ 1>

p=0g=0

where the Cpyj = <‘{‘p‘Pq‘P,-> / <‘P,2) are precomputed coefficient tensors.

Solving for the spatiotemporal evolution of these modes allows the reconstruction of ®(x,t) per Eq. 11.
This approach requires extensive and specific recoding of an existing code, which can be difficult. For mul-
tiple stochastic parameters and field variables, and high non-linearities, evaluation of the multi-dimensional
summations and coefficient tensors become intractable (see section 4.1.2). Moreover, there is no evident
means of dealing with non-polynomial functions of stochastic quantities within this fully spectral context.
These difficulties are resolved using a pseudospectral construction, where order-2P PC expansions resulting
from pairwise products of order-P stochastic quantities are reprojected onto an order-P polynomial before
proceeding further. This retains the order-P accuracy of the construction, while providing great simplifica-
tion of the implementation. This construction is discussed in the following section.

2.2 Pseudospectral formulation

In this formulation, a PC-product term involving more than two factors is evaluated using two-factor pseu-
dospectral products. Let

P
w=Auv, u= z u Vs, as well as A & v. (16)
k=0
Project each two-factor product onto a (P + 1) polynomial:

- (“I"kl}’ ‘P>
Ww=u = W= UpVj (17)
D
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This construction allows for a general representation using a new pseudospectral “overloaded” multiplication
operation
w=A*u*v (19)

where each deterministic multiplication is transformed into a corresponding product of polynomial chaos ex-
pansions. This has great potential for automatic transformation of legacy deterministic code into the requisite
stochastic PC code. Using this method, we can define other operators. For example, a pseudospectral inverse
function:

|
1 < <EP uk‘*’k\Pa> L
w=-aw=1Qu= Al L A R D A 20
- Ez) W) a g a¥a (20)

Note that the evaluation of the resulting pseudo-spectral mode strengths is straightforward for polynomial
functions, w(u), by addition of pseudospectral products, but requires additional work for other functions,
such as inverses, exponentials, logarithms, etc. Generally, if a good local polynomial approximation for any
of these functions is found, at least in the +30(u) of up, then substitution of that polynomial in the above
projection will give an approximation to the necessary w,’s. Taylor series expansions may be used towards
this end, however, the resulting representation is not convergent in general. Alternatively, the expectations
can be evaulated using sampling or quadrature, but the associated computational cost rises very quickly
with increasing number of stochastic dimensions . Alternate approaches have been outlined in [20, 24,25].
Inverses, w = 1 /u, can be most robustly handled using a linear-system solve for the modes of w (see also
section 4.3.4). Moreover, a general integration approach was presented for handling any function w(u) as
long as its derivative dw/du is a rational function of u [25]. We have utilized these constructions to develop
a a generalized library of routines for pseudospectral PC operations that multiplies, inverts, or otherwise
algebraically transforms spectral variables.



3 Non-Intrusive UQ

In the present discussion, we investigate the propagation of uncertainty from the model parameters to sim-
ulation outputs in the context of low Mach number reacting flow modeling using non-intrusive UQ, with a
focus on supercritical water oxidation (SCWO). Supercritical water oxidation has been identified as a novel
means of treating a wide array of dilute aqueous wastes [26]. At the typical operating conditions of 450 to
600°C and 250 to 280 bar, free-radical oxidation reactions proceed rapidly and completely. The design of the
SCWO process requires the development of appropriate combustion chemistry models. Sources of paramet-
ric uncertainty in these models include experimentally-determined reaction rate constants, thermodynamic
properties, and transport properties.

In general, the propagation of parametric uncertainty can be studied non-intrusively using Monte Carlo
(MC) simulations, with appropriate choices of model parameters over their ranges of uncertainty. However,
this approach does not readily provide information about the sensitivity of model outputs to specific paramet-
ric uncertainties. An alternative non-intrusive approach is discussed here, based on the spectral polynomial
chaos stochastic description of uncertain parameters and field quantities. Given MC sampling of the stochas-
tic parameters, the corresponding solutions of the deterministic system are evaluated and projected onto the
PC basis to compute the spectral mode coefficients. These coefficients are then used to construct probability
density functions (PDFs) of the solution, to infer sensitivity to various model parameters, and to highlight the
dominant sources of uncertainty.

This non-intrusive spectral projection (NISP) approach, which is based on [11], has the advantage of being
applicable to legacy codes, which are run with varying parameters to compute the statistics and spectral
mode values. It is important to note that, while NISP does provide sensitivity information, it actually goes
well beyond sensitivity analysis in that it propagates the full probablistic representation of the model inputs
to the model outputs. Moreover, the NISP-evaluated dependencies are related to the specific uncertainty in a
given parameter, while sensitivity analysis compares equal parametric perturbations. Further, depending on
the chosen order of the PC expansion, NISP also provides higher-order sensitivity information. Higher-order
effects are not lumped into a single coefficient, but are considered independently and in terms of parameter-
parameter interactions.

Other UQ methods are available, and for certain problems may have efficiency advantages. The deter-
minisitic equivalent modeling method (DEMM) [27], is a probabilistic collocation method that generates a
PC expansion of model outputs for systems with well-behaved response functions. It limits sampling to a
subset of the roots of the next-higher order polynomial chaoses, and may exhibit instability at higher or-
ders. The stochastic response surface method (SRSM) [28] expands sampling by using regression to generate
coefficients from a complete set of higher-order roots. Both of these methods give good agreement with
Monte Carlo for the estimation of output PDFs, and also fit the probabalistic response function to a set of PC
coefficients. However, it is not clear that limiting sampling to the partial or full set of polynomial roots can ad-
equately sample the necessary range of stochastic space, particularly for systems with strongly non-Gaussian
reponses.

In the present discussion we apply the NISP procedure to two model problems. The first is a homoge-
neous ignition, a problem where uncertainty propagation has been studied previously by Phenix et al. [27].
The deterministic solver used for modeling ignition uses DVODE [29] for stiff integration of the species
equations under constant temperature and pressure conditions. The second is a steady one-dimensional (1-
D) premixed hydrogen-oxygen freely-propagating flame at SCWO conditions, computed with the Chemkin
PREMIX code [30,31]. In both instances, we examine the mean and statistics of the solution and evaluate the
corresponding spectral PC-modes, given known uncertainties in reaction rate constants and thermodynamic
properties of the model based on [27]. We arrive at broad measures of confidence in model predictions, fo-
cusing on detailed chemistry. We also identify dominant sources of uncertainty in computed species concen-
trations, and highlight specific model parameters where reduction of uncertainty via additional experimental
measurements can most effectively improve confidence in model predictions.

3.1 NISP Formulation

The formulation and numerical implementations of the deterministic solvers used for both the ignition and
1-D flame problems are well documented in the literature [29-31]. We will focus instead on the description



of the NISP model.

As mentioned above, we focus on parametric uncertainty. As outlined in section 2.1, we represent each
uncertain model parameter as a stochastic quantity with known probability density function (PDF). Thus a
parameter A is expressed using the PC expansion,

P
A=Y MY @1
i=0

where, the A;’s are the known spectral mode strengths of A.

_<7»lpi>
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Further, the model solution u is represented using the PC expansion, according to:

P

u(x,t) = 3, u(x 1)V (23)
k=0

where the u,’s are the unknown spectral modes of u, given by

u't
uk=<\P—2k>, k=0,...,P 24)
(¥
The NISP approach uses realizations of the computed deterministic solution to evaluate the expectations in
Eq. 24, thereby reconstructing the PC expansion of u. This procedure involves the following steps :

1. Define PDFs for the model parameters, using known distributions or assuming normal, lognormal, or
other general forms.

2. Determine the corresponding spectral PC expansion for each of the parameters.

3. Sample the vector of gaussians 8 = {&1,82,--- ,En }, and use it to evaluate ¥y, k =0, ..., P and the cor-
responding parametric realizations for the vector of parameters {A1,A2,---,Ax}, given the parameter
PC expansions.

4. For each realization of the vector of parameters, solve the deterministic problem, and compute the
corresponding realization of the solution u.

5. Evaluate the above expectations specified in Eq. 24, over a sufficiently large number of samples, and
find the spectral coefficients u; of the solution. Thus, for M realizations, the modes are found by

M
E_,I(M)m(‘*‘k)m

Uy = , k=0,...,P (25)

M
> (¥
m=1

where (),, denotes the m-th realization.

In this study, the above NISP analysis of simulation results is performed using the DAKOTA toolkit [32,33]
using Latin-Hypercube sampling [22] (LHS) for normal random variables. Convergence of the sampling is
tracked by examining the maximum standard deviation, calculated directly from the evolving PC expansion.
Each LH sample provides a vector of normal random variables &;. These are used to sample from lognormal
distributions of the Arrhenius pre-exponential rate constants for the forward reaction rates ks, and Gaussian
distributions of the enthalpies of formation AH? of the species. The reverse reaction rates are related to the
inverse equilibrium constant, which is also log-normally distributed due to its exponential dependence on the
Gibbs free energies and therefore the enthalpies of formation [27].

In terms of computational cost, Monte Carlo methods, by design, require many iterations. For the 0-D
ignition chemistry, we could perform approximately 125 realizations per hour on a single-processor Pentium



HI workstation. For 1-D flames, using the existing Chemkin PREMIX codes, 20 realizations per hour could
be expected. For typical runs of 10,000-30,000 samples, this clearly requires considerable computing time.
However, the non-intrusive nature of the method described above lends itself to simple parallel distribution
of the computing load. Individual machines can process a subset of the samples, using a consistent set
of sampling points, and the actual statistics can be compiled through post-processing. The use of multiple
independent machines allowed the most intensive calculations to be performed within a reasonable timeframe.

Analysis of the results uses the spectral modes to infer both uncertainty and sensitivity information. To
first order in &, neglecting second and higher-order terms, we have

u
3

such that the amplitude and sign of a spectral mode is a measure of the influence of the associated parameter
on the solution. Note that this sensitivity information includes the full non-linear coupling of associated
species and temperature variations in the system. When comparing flame solutions resulting from different
values of the Arrhenius rate constant Ay, the net change in the rate of progress of reaction k& is not simply
due to the change in A, but also due to the associated changes in all species concentrations and temperature.
These effects can be quite significant as will be observed below.

= Uk (26)

3.2 NISP Results and Discussion
3.2.1 0-D integration of the chemistry

In the previous study by Phenix et al [27], the DEMM was used with Monte Carlo to propagate uncertainty
in supercritical-water oxidation. Using sensitivity analysis, the study developed a reduced variant of the
hydrogen oxidation mechanism of Yetter [34] that had proven useful in earlier SCWO modeling studies [35].
This mechanism is given in Table 1. To account for experimental uncertainty, uncertainty in the adaptation
of the mechanism to SCWO conditions, and limited stable-species mixture data in supercritical water, each
forward rate constant, k¢, was represented by a log-normal probability distribution. The distributions were
parameterized via a median value and a multiplicative uncertainty factor, S, giving upper and lower bounds
for each &y ;:

Median(ks ;) x S 27
Median(ks;) <+ S (28)
Uncertainty factors used in this analysis and the Phenix study are listed in Table 1. The standard-state en-

thalpies of formation were modeled as Gaussian distributions, with mean values and standard deviations
given in Table 2.

Reaction A n E,R | S

1.OH+H < H;O 1.620E+14 | O 75 3.16
2. H, + OH < H,O+H 1.024E+08 | 1.6 | 1660 | 1.26
3 H+O; < HO, 1.481E+12 | 06 | O 1.58
4. HO +HO, & H;0,+0; | 1.867E+12 | 0 775 1.41
5.H;0,+0OH & H;O+HO; | 7.829E+12 | 0 670 1.58
6. H,0, +H < HO,+H; 1.686E+12 | O 1890 | 2.00
7. HO, < OH+OH 3.000E+14 | 0 24400 | 3.16
8.OH+HO, & H,0+0; 2.891E+13 | O -250 3.16

Table 1: Reduced hydrogen oxidation mechanism with estimated multiplicative uncertainty factors [27].
k = AT" exp(—E,/RT) with units of cm?, mol, s, and K.
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Species | uo 20

H 52.10 | 0.01 kcal/mol
OH 9.3 0.02

H;0 -57.80 | 0.01

H;0, -32.53 | 0.07

HO, 3.0 0.5

Table: 2 Mean values and standard deviations of the species standard-state heats of formation AH ; [27].

In the DEMM analysis, the response functions were represented as PDFs to estimate the effect of uncer-
tain input parameters. Our NISP analysis also represents the responses in terms of PDFs, but with greatly
enhanced sampling of phase space. Since DEMM selects collocation points only from the roots of the next
higher Hermite polynomial, it is not clear that such limited sampling will be effective for all systems, partic-
ularly those with larger high-order dependencies. Our analysis also uses the coefficients of the polynomial
chaos expansion to characterize the detailed dependencies of each response on each uncertain input parame-
ter.

For this study, we repeated the analysis using NISP techniques and second-order PC expansions. Using the
DVODE solver, we integrated the ODE system over a 10s time interval. The vector of random variables &; was
used to sample from the reaction rate and enthalpy distributions for 30,000 independent realizations. Each
set of sampled parameters was used to integrate the species conservation equations and to generate profiles
of concentration vs. time for each species. The mean and standard deviation for each species concentration
was computed, and the concentration profiles were projected onto the PC basis to calculate the deterministic
coefficients, u(j,t), as functions of species j and time ¢. The system was integrated at constant 7=823 K
and P=246 bar, with initial concentrations of cy, = 0.481 x 10~3mol/cm?, co, = 0.243 x 10> mol/cm?, and
CH,0 = 0.999mol/cm?>. While it is also possible to integrate the system with stochastic initial conditions, the
present study focuses on uncertainty in reaction rate pre-exponential factors and enthalpies of formation. As
such, the statistics and PC mode values evaluated herein necessarily correspond to the above deterministic
initial conditions. In the following, spectral mode numbering proceeds from 1 to 8 by reaction number for the
pre-exponential rate constants in Table 1, and from 9 to 13 for species H, OH, H,0, H>O3, HO» respectively
for the enthalpies of formation in Table 2. Species H, and O, have identically zero enthalpies of formation.

Figure | shows the evolution of OH radical concentration (con) vs. time for the reduced chemical system.
Upper and lower bounds designate cou £ G as calculated directly from the MC statistics during the NISP
production run. This profile outlines the total uncertainty generated by the estimated parametric uncertainty,
with 26 approaching the magnitude of the mean. The results of Phenix et al showed similar levels of uncer-
tainty for various species, with variations of 70 to 180% from median concentrations. The standard deviation
can also be calculated directly from the existing PC coefficients by the summation:

P
o’ =Y up <> (29)
k=1
which produces a similar numerical result for standard deviation as the direct evaluation from the MC statis-
tics. For our system with 13 uncertain parameters (eight reaction pre-exponentials and five enthalpies of
formation) and second-order PC expansions, P = 105 modes.

The time-evolution of the first-order (W, = &) spectral modes in the PC-expansion for coy is shown in
Figure 2. These modes correspond to uncertainties in the Arrhenius pre-exponential terms Ay of the forward
reaction rates k¢ It is evident that uncertainties in the pre-exponential rate constants of reactions 5, 7,
and 8 dominate the expansion and therefore dominate the generation of the total uncertainty in con. This is
consistent with the results of Phenix e al, who identified Rn.7 as dominant for the 0-D evolution of the H;
consumption, although the study did not directly address uncertainty in the concentrations of intermediates.
We find Rn.7 to be the dominant OH production channel during the ignition process, while Rn.2 is the
dominant OH consumption channel. An increase in A7 might then be expected to increase OH production
and therefore OH concentration, which is indeed observed in Fig. 2 and in the time evolution of coy. As
for Rn.5, its net progress at the unperturbed parameter values is in the reverse direction, thus producing OH,
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Figure 1: OH concentration vs. time for 0-D integration of chemistry, with +6 bounds.
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Figure 2: Spectral decomposition of OH concentration profile, with modes 5, 7, and 8 representing first-order
dependence on forward reaction rates.
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Figure 3: Spectral decomposition of OH concentration profile for modes 9 through 13, representing first-order
dependence on heats of formation.

albeit at a relatively small rate. Thus, an increase in As might be expected to lead to an increase in the forward
rate of Rn.5, lower OH production and less OH. In fact, we find that increasing As, and the associated changes
in species production rates and concentrations, leads to stronger net forward rates of Rns. 2,3,4 and 7 in the
first 1/2-ms of the ignition process. This leads to a faster OH production rate at early time, and increased
overall OH concentration, which is shown by the indicated evolution of us in Fig. 2. Note that the net effect
on the rate of progress of Rn.5 is a stronger reversal, contributing to the increased rate of OH production.
In a similar way, the negative influence of ug can be explained based on the overall resultant changes to the
reaction network at the larger/smaller Ag.

It is noteworthy that uncertainties in parameters of Rns. 5 and 8, both somewhat insignificant OH chan-
nels, have such a significant impact on the system and lead to large contributions to the total uncertainty in
OH prediction. By propagating actual uncertainty values, rather than simply perturbing parameters to gage
sensitivity, we can see how both the influence of a given reaction and the uncertainties associated with re-
action rates combine to create a net uncertainty in simulation results. The spectral decomposition not only
shows sensitivity information, but also indicates where a given uncertain parameter holds the most influence.
In Fig. 2, Rn.7 provides the greatest contribution to uncertainty at t < | s, with Rn.8 dominating at longer
times. Furthermore, the relative dependence of Rns.5 and 7, and consequently their relative contribution to
uncertainty propagation, changes with time as the concentration of OH increases.

Figure 3 gives mode strengths for ug through u3, which represent the first-order variation of con(t) due to
uncertainty in the standard-state enthalpies of formation. The importance of AH? i, to the total uncertainty is
highlighted, in agreement with the observations of Phenix et al. We also see a significant negative dependence
on AH}”OH, a parameter on which the equilibrium for Rns.1, 2, 5, 7, and 8 depend.

For 13 stochastic dimensions and a second-order expansion, a total of 105 modes are present in the PC ex-
pansion. In this study, the second-order modes u 4 to u s, reflecting both higher-order dependence on specific
parameters as well as coupling between parameters, are approximately an order of magnitude smaller than
first-order mode (< 2.0 x 10~ 4). However, the large number of these modes makes their aggregate contribu-
tion to the uncertainty quite significant (up to 50%). Also, for systems with strongly non-Gaussian response
behavior, higher-order expansions may become necessary to represent skewed or highly-asymmetrical PDFs.
For this particular problem, it is fortuitous that the response functions are well-behaved and can be accurately
represented as moderately-skewed Gaussians using second-order PC expansions. This will certainly not be
the case for many systems of interest, therefore higher-order analysis and more extensive sampling would be
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Figure 4: Profile of OH mass fraction vs. position in a 1-D premixed supercritical-water flame, with =6
bounds.

required. NISP allows an arbitrarily high order and large number of samples as computation resources allow.

3.2.2 1-D premixed flame simulations

We next extend the NISP technique to the analysis of a 1-D hydrogen flame. We use as our model the Chemkin
PREMIX package with SCWO inlet conditions at T=823K, P=246 bar and a stoichometric fuel mixture. The
MC integration uses 22,000 samples from the log-normal and Gaussian distributions for the eight reaction
rates and five enthalpies of formation to generate PREMIX input parameters. Convergence was measured by
tracking the maximum standard deviation computed directly from the evolving PC expansion. Each flame
was normalized to a standard x-coordinate system by matching the point at which the concentration of H; has
reached 10% of total consumption.

In Fig. 4, the mass fraction of OH, You(x), is plotted vs. position. Upper and lower bounds of You,
You(x) £ © are given, calculated directly from the PC expansion. The uncertainty due to the model parameters
grows over x, with peak values occurring inside the primary flame reaction zone (x=0.0505 cm to 0.0515 cm).
Profiles of the other intermediates and products-HO, H>O3, and HyO-also show similar localized increases
of total uncertainty.

Figure 5 highlights the four largest first-order modes of Yoy from the spectral decomposition. It is clear
that Rn.5 dominates the accumulation of uncertainty within the primary flame. In this case, u7 is relatively
insignificant (< 0.0002) over all x. The selected modes show how changes in & ; control the shape of the
mass fraction profile of OH. The change in the sign of uy, us, and ug near x = 0.051 cm corresponds to the
inflection point in the You(x) profile, and highlights the effect of variation in the respective reaction rates on
the local slope of the OH profile. Further, the modes describe where, and to what degree, a specific parameter
contributes to the total uncertainty in You. Reaction flux analysis (not shown) indicates that Rn.7 dominates
OH production in this flame, with a smaller contribution by Rn.5 (net rate in the reverse direction). On the
other hand, Rn.2 is the main OH consumer, with lesser contributions by Rns.1 and 8.

Let us consider the significance of the variation in u5 in the figure, corresponding to the effect of changes
in the pre-exponential Arrhenius term As. Comparison of flame structure between the mean and higher
values of As indicates that the slope of the OH profile increases with increased As. The change in the sign
of us is a reflection of the difference between the mean OH profile and the higher-slope OH profile. The
increase in slope is driven by an increase in the net OH production and consumption rates (not shown), as a
result of changes in the rates of all the OH reactions towards higher production/consumption. In particular,
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Figure 5: Spectral decomposition of the mass fraction of OH, highlighting first-order dependence on reactions
1,5,6,and 8.

Rn.5 is found to have a larger net reverse rate at the higher As, again reflecting the coupling of changes in
all species and temperature associated with the single change in As. Here again, we note the significance
of a relatively minor production/consumption channel on the overall uncertainty in the predicted species
concentration profile despite a comparatively low S.

Figure 6 describes the first-order dependence of Yoy on the enthalpies of formation. Here, AH ",OH shows
the greatest significance, with lesser contributions to the overall uncertainty in OH by the enthalpies of for-
mation of HO, HO, and H;O;. As with the 0-D analysis, the AH;, ; dependencies reflect the roles of the
enthalpies of formation in the reaction equilibria, indicating the net sensitivity of the reaction network to
particular thermodynamic parameters, and the importance of each parameter in uncertainty propagation. All
second-order modes were an order of magnitude smaller, and are not shown.

The analysis is repeated for the H>O; intermediate in Figures 7-9. For this intermediate, in Fig. 7 we see
that the uncertainty in the HoO; mass fraction varies greatly with position, with a maximum uncertainty inside
the 1-D flame from x=0.0500 cm to 0.0505 cm, little uncertainty near x=0.05075 c¢m, and a small, slowly
increasing, and eventually constant degree of uncertainty downstream. Tracking the individual realizations of
Yu,0,, we find that, for any set of parameters, the mass fraction passes near zero near x=0.05075 cm, resulting
in minimum total uncertainty at that point. This uncertainty minimum separates two distinct flame regions,
such that the relatively small uncertainty in the post-flame H,O, mass fraction is effectively independent
of the larger uncertainty in the primary flame region. Note specifically the large uncertainty in H,O; mass
fraction within the primary flame, where the standard deviation is larger than the mean. The large range
of values of Yn,0, spanned by the data suggests that the reduced chemical model may lack robustness for
predicting this species, given existing uncertainties in chemical and thermodynamic parameters. Reducing
the parametric uncertainty in the reaction rates, particularly Rn. 5, would reduce the total accumulation of
uncertainty in Y,0, and enhance the robustness of the model.

In order to identify the causes behind this observed uncertainty in Yu,0,, we plot the associated first-
order spectral modes in Figure 8. Here, us again dominates, reaching twice the magnitude of u; or ug.
The decay of all spectral modes to near zero in the vicinity of x=0.05075 cm reflects the above observed
minimum in uncertainty at this location. Note that the main production and consumption zones of H,O2 in
the deterministic/unperturbed flame are to the left of the minimum at x=0.05075 cm, with Rns.4 and 5 being
the dominant production channels, and Rn.7 the dominant consumption channel. The effect of As-uncertainty
can again be studied by comparing the flame structure at the mean and high As values. Increasing As leads to
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an increase in both production and consumption peaks of H2O> (not shown). These are driven by changes in
all reaction rates of progress resulting from the change in As and associated change in species concentration
and temperature. Particularly significant increases in the production rate of HoO2 at x < 0.05075 are due to
Rns.4 and 5 (Rn.5 again going in a net reverse direction). A significant increase in consumption of H,O, in
this region is due to an increase in the net reverse rate of Rn.7. All of these changes are driven by the increase
in As and the associated changes in flame structure. The net result is an increased peak value and smaller
width of the Yy,0, profile-hence larger slopes that, as with OH, create the associated signature observed in
the us profile in Fig. 8. Note that us is also the significant source of H,O; uncertainty downstream, as seen
in Fig. 8.

The first-order enthalpy-of-formation spectral modes of Yy,0, are shown in Fig. 9. Uncertainty in the
enthalpy of formation of OH is again significant, as well as that of HO;. On the other hand, these amplitudes
are small compared to those resulting from the uncertainties in rate constants, in Fig. 8, and therefore have
lesser impact on the robustness of the chemical model.

A similar analysis performed for other species reveals that As and AHY ¢ on are the dominant parameters for
all species mass fraction profiles in this mechanism. Clearly, a reducuon of the experimental uncertainty in
both of these quantities (as well as in AH "7 0,) will have a large impact towards improving robustness of the
chemical SCWO model and increasing confidence in model predictions.

One feature that can be discerned through a spectral analysis of uncertainty is not only to what degree, but
where and when do particular paramteric uncertainties manifest themselves. In Fig. 2 and Fig. 3, we see that
a parameter’s contribution to total uncertainty can vary with time or flame position and that different parame-
ters propagate uncertainty in different chemical regimes. Fig. 10 separates the chemical and thermodynamic
effects of uncertainty propagation into Yoy in terms of contribution to the standard deviation. Shown are the
partial standard deviations computed directly from selected modes of the PC expansion using Eq. 29. The
uncertainty contributed through chemical reaction pre-exponential uncertainties can be seen in the shaded
curves, with combinations of Rns. 1 and 6, Rns. 1, 6, and 8, and Rus. 1, 6, 8, and 5 highlighted. The dotted
line gives the total contribution due to all 1st-order modes u;-u;3. It is clear that chemical uncertainties dom-
inate propagation in the flame front, while the remaining thermodynamic parameters become increasingly
important in the products side of the flame as the products approach equilibrium downstream of the flame.
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3.3 Non-Intrusive UQ Summary

A generalized, non-intrusive spectral projection scheme has been implemented to propagate parametric uncer-
tainty in reacting-flow simulations. Compared to global Monte-Carlo estimation of total uncertainty, spectral
methods quantify the source of the uncertainty, the propagation of uncertainty through the model, and the
sensitivity of model outputs to specific parameters.

For homogeneous ignition chemistry, NISP provides sensitivity information that is consistent with previous
work. Quantification of spectral modes adds an additional level of understanding, identifying the significance
of individual uncertain parameters and determining where within the evolution of the system each parameter
has influence. Extending the analysis to a simple 1-D problem allows the analysis of uncertainty propagation
in different regions of a premixed flame, identifying relationships between parameters, specific flame features,
and the total propagation of uncertainty.

The consequences of such an analysis are significant. The dramatic amplification of parametric uncertainty
within a particular chemical model may call into question the robustness of the model. Further, highlighting
the parameters primarily responsible for the large uncertainty in model outputs is a valuable indicator of
where additional experimental measurements may best be targeted. In the particular SCWO system at hand,
parameters that merit further measurements are the rate of Rn.5 and the enthalpies of formation of OH and
HO>, as well as the rates of Rns. 7 and 8. Better estimates of these parameters should improve the overall
ability of the model to represent the system being studied.

In comparison to the DEMM and SRSM method used before, this method provides similar stochastic infor-
mation while making fewer assumptions about the system response. For systems with simple, Gaussian-like
reponses, convergence should be quick and efficient. For more complex systems, particularly chemical sys-
tems subject to the positive-concentration constraint, ¢; >= 0.0, higher-order terms are likely to be significant
for intermediates or during the early stages of an ignition problem. Unphysical PDFs (distributions with sig-
nificant probabilities for negative concentrations) or non-convergent expansions (PC coefficients increasing
with increasing order) would indicate that the selected order is not sufficent to represent the system response.

Finally, this analysis is readily extendable to multiple dimensions and greater numbers of uncertain param-
eters, while preserving the integrity of the realization engine through the non-intrusive construction. However,
the computational cost associated with monte-carlo sampling can render the intrusive UQ analysis imprac-
tical. In many applications, it is simply not possible to compute many thousands of realizations, even on
massivelly parallel computational hardware. Alternative “sampling” techniques based on quadrature [24]
and cubature/sparse-quadrature methods can be useful in this regard. The intrusive UQ approach provides
another potential means of addressing this difficulty. This is the subject of the following section.

4 Intrusive UQ

This section addresses intrusive UQ in chemical systems by developing the formulation for a pseudo-spectral
chemical source term for detailed chemical mechanisms with multiple parametric uncertainties in rate con-
stants and thermodynamic properties. Further, we address the numerical challenges inherent in such a con-
struction for highly-nonlinear chemical systems. The application focus is on 0-D homogeneous ignition,
a problem that highlights the utility and potential challenges of this approach. The treatment starts with a
description of the components of the intrusive PC formulation for a generalized chemical source term. We
then use these tools to examine homegeneous ignition for a detailed reaction mechanism, the advantages and
disadvantages of intrusively-reformulated models, and issues of stability and the limits of the formulation.

4.1 Chemical source term
4.1.1 Definition of the chemical system

A key to the construction of a spectral reacting-flow code is an efficient stochastic chemical source term.
In the following, we present dimensionless deterministic and stochastic formulations for a chemical source
term.

Consider a spatially homogeneous perfect gas mixture of N species ¥, with i = 1,..., N, participating in
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M reactions:

vakXI — zvllea k: ,"'7M (30)

where v/, and v/ are the stoichiometric coefficients for species i appearing as a reactant or product, respec-
tively, in reaction k. Given this set of reactions, the mass production rate of species i is given by

M
wi =W; Y VieGeRe (3D
k=1
where W, is the molar mass of species i,
Vik = V ik~ Vlk (32)

and, ( is a correction factor due to third-body and/or pressure-fall-off corrections [30]. This factor is given
by

1 for a non-third-body, non-pressure-fall-off rxn
G = G = 27:1 Bixc; for a third-body, non-pressure-fall-off rxn (33)
(E,CP%) F, for a pressure-fall-off rxn (third body or not)

where, By is the third-body efficiency of species i in reaction k, P¥ is given by

K0

’;( FZM for a pressure-fall-off third-body (+M) rxn

P=1 i (34)
k ' fora pressure-fall-off non-third-body (+);) rxn

Floo
kk

Here, ¢y is the total concentration of the mixture, kk’ and kF°° are the low and high pressure forward rates
of reaction k, respectively [30], and Fy is a known function of P* and T describing fall-off behavior for each
pressure fall-off reaction k [30]. Further, &; is the rate of progress of reaction k, given by

=,
1:12

— kg Hc g (35)

where k{ and kf are the forward and reverse rates of reaction k, ¢; = p¥;/W; is the molar concentration of
species i, p is the mass-density of the mixture, and Y; is the mass fraction of species i in the mixture.
The time-evolution of the chemical system is governed by the ODE system,

d_tz Da

= =—w, i=1,...,N—1 36
= W,-W i=1,...,N (36)
dp

@ hiw; — DaW 37
" %TE iwi —Da Z 37

with algebraic constraints resulting from mass conservation,

2 Y=l (38)

and the perfect gas state equation:
T
=P (39)

In this nomenclature [36], Da is the Damkohler number defined based on reference quantities, T is the
temperature, ¢p is the mixture specific heat at constant pressure, h; is the specific enthalpy of species i, Fo
is the stagnation pressure (assumed constant), W = 1/ Z 1 Y;W; is the molar mass of the mixture. These

equations are closed with initial conditions ¢;( = 0) = ¢? and p(r=0) =p°.
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4.1.2 Fully spectral construction

We illustrate in this section the necessary spectral construction for the representation of the reaction rates of
progress ®; given above in 35, assuming known spectral expansions for the forward and reverse rates, and the
concentrations. Moreover, we illustrate this for brevity using only the forward term, given that the extension
to the reverse term is straightforward in this context. Thus, we seek to present the full spectral construction
for R F, given by

N o
=kf Hc;/”‘. (40)
i=1

To begin with, in order to exclude zero exponents, define the set of species indices containing those species
with non-zero stoichiometric coefficients on the reactants side of reaction k. This set is given by,

I = {ilvi # 0} = {i}, 5, lLk} 1
and, dropping the k-sub/super-scripts for clarity, we have the set
I ={i1,iz,...,ir} (42)

such that, again dropping the k’s,

Ly P Vip
=kFHci —kFH (Z c,p ) 43)
p=1

j=0

Next, we have by inspection, for integer n > 0,

P " p P P P " a
Yaj| =% Y - Yaja,-a,=3 | [la, (44)
j=0 j1=0j2=0  j,=0 Jp=0 |p=1 9=1
where
p |" P P P
| =X ¥ X @5)
Jp=0 |p=1 i1=0 2= Jn=0
such that ,
L P |V
112 H(c,,, (46)
p=1jp=0|p=19=1
Further,
v . PV Vi P Y
R = Kk 2 H(cil)(jq)l‘y(jq)l z H(C"’ ]q)2 ]q
(jp)1=0 |p=1 971 (jp)2=0{p=19=1
P v§L V:L
Z H(C'L (gL
(jp)1=0 |p=14=1
P v;l P ‘42 P VgL L V:p
= X )Y > | )0, (47)
(=0 lp=1Up)2=0p=1  (ip)=0|p=1 P=14=1
or,
p Vi |E Vip L Vip
F _,F
R’ =k Z HH(C’P (Jg)p HH\PJq)p (48)
(Up)e=0|p=1l7=1 \P=1g=! p=1g=1
Finally, with
P
=Y K'Y (49)
i=0
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we have
v L v

P P iz L Vip L Vﬁp
Z z H H CII’ (Jg)p ¥i H H\P(Jq)p (50)
=0 (jp):=0 |p=1 |2 p=1g=1 p=lg=1

such that, the mode strengths in the PC expansion for R * = 25=0 RFW, are given by

P

Z

=0

Vﬁz L :p Yo' Hp—IH \P(]q >
kF H H C'p (q)p (1{;‘21> (1)

=1 p=lg=1

||M'*:

b=1

It should be evident that proceeding in this manner is not only cumbersome but computationally intractable.
This is a result of (1) the high-dimensional summation and product operations; (2) the fact that both the
forward and reverse rates have complex dependencies on the presumed uncertainties in the reaction rate
constants (preexponential, temperature exponent, and activation energy), field variables (temperature and
concentrations), and thermodynamic properties; and (3) the necessary accounting for third body and pressure-
falloff corrections. This is the primary motivation for the pseudospectral construction introduced above, and
further specified below.

In the following, we discuss the dependence of the reaction rates on uncertain thermodynamic properties,
and the specification of lognormal distributions for uncertain reaction rate parameters. Given this, we then
proceed to the complete pseudo-spectral formulation for the chemical source term.

4.1.3 Reaction rates with thermodynamic uncertainties

The generalized source term allows any rate constant kf to be uncertain. Consider a situation with several
species i = 1,...,N participating in M reactions k = 1,...,M with forward rates k} = B, T%e~5/T. The
reverse rate is derived from the forward rate by a mutual relationship to the equilibrium constant. There
may be instances where the mechanism specifies the reverse rate explicitly. If this is not the case, we must
derive the spectral reverse reaction rate from the spectral forward rate constant. This coupling of forward and
reverse reaction rates allows the introduction and propagation of thermodynamic parametric uncertainty into
the source term.
The reverse rate is related to the forward rate through the equilibrium constant:

.t
k= Kex (52)
where K. is defined as:
Ky =<3 (53)
(o73 = 2,’:] Vik 54
Lo =3N vigWi (55)

Note that g; = g;(T) = h; — T's; is the dimensionless Gibbs free energy per unit mass of species i.

The relationship between enthalpic and entropic uncertainties and the Gibbs free energy derives from the
species heat capacity, Cp ;. Note that g;W; = —G;) = GY/RT, is the dimensionless per-mole Gibbs free energy,
with GY being the corresponding dimensional quantity. We recall that,

G!=H-TS (56

Assuming ideal gas properties, one can compute the enthalpy and entropy by integration over T
HY =[] CpidT (57)
S? = T i (58)

Let Cp; = Cpi(T) be uncertain with a specified mean C, ;o and standard deviation Cp 1,

Cpi =Cpio+EiCp,in (59)

22



where Cp, 0 = C,, o(T) and C,, 5y = Cp,;1(T) are known functions of temperature and &; is a Gaussian random
variable. Integrating to compute the enthalpy and entropy:

HY = [lC,odT+& JfC,idT (60)
= Hip+&;Hj\ 61

S¢ = [T 0T 48 [T Lilar (62)
= Sio +E&iSi (63)

Reconstituting the definition of G¢, we have
G} =Hp+&Hn—T (Sio+&Su) (64)
= Hjo— TSip + & (Hi — TSi1) (65)

Substituting W¥; = &; (first-order modes in a Gaussian basis) and Wo = 1.0 gives a complete expression repre-
senting G in terms of the means and standard deviations of enthalpy and entropy:

G! =(Hip—TSio)Yo+ (Hi —TSi)V¥; (66)
=3} o (Hin—TSim) i (67)

G? is then divided by Gt = RT;r to nondimensionalize, and substitute into Eq. 55. Further, substituting £
into Eq. 53, defines an uncertain K« in terms of uncertain thermodynamic parameters, coupling uncertainty
in reaction equilibrium to uncertainty in the Gibbs free energy.

4.14 Lognormal distributions in a Gaussian basis

When assuming a priori the probability distribution corresponding to each uncertain reaction rate pre-exponential
constant, it is necessary to choose distributions with zero probability of negative values. One typical choice is
the lognormal distribution [27]. We address here the means of construction of a PC expansion for a random
variable with a given lognormal distribution.
Let g be a Normal random variable with mean u, and standard deviation 6. Further, let u be a lognormal
random variable [37], with
u=ef (68)

Then for a given { > 0,
Plu<l]=Plg<Ing] ©9)

Let the median of u be m,, i.e. Plu < m,] = 0.5. Then, since P[g < u,] = 0.5, we have
e =Inm, (70)
Following Phenix er al. [27], we can define a multiplicative factor, S, as
Pim,/S<u<m,S]=1-¢ an
where € is a suitably small number (e.g. 0.05). then

1-e = Plu<msS]—Plu<m/S]=Plg<In(m,S)|— Plg < In(m./S)]
= Plg<pug+InS]— Plg < ug—InS]
= 1-P[g>pg+InS]—Plg < ug—1nS] (72)

But, by the symmetry of g, P{g > ug +InS] = P[g <y, — InS], hence
£
Plg<pug—InS]= 3 (73)
and

Plg < g +1nS] =1—§ (74)
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and, with U being the standard normal random variable, we have

“ <B-n
Plg < B] = F,(B) FU(B g) PlU G—g] (75)
8
thus,
InS
Plg <pug+InS) = FU(—)-— 1—5 (76)
and, from tabulated Fy,, we have, s
n €
— =Fl(1-= 77
S v ( 2) 77
or,
InS
O¢ = =T 5y 78
Fr(1-3%)

such that, e.g. for € = 0.05, we have Fj; !(1 — £) = 1.96.

Thus, given a presumed lognormal distribution for the random variable u, with known mean m,, and multi-
plicative factor S, the corresponding normally distributed random variable g, such that ¥ = €4, is determined
by its mean u, and standard deviation 6, givenin Egs. 70 and 78 above, respectively. Given this, Ghanem [12]
provides the requisite formulation for the mode strengths of the sought-after PC expansion for u, u = 20 A %

1 ,.04
u = explug + zog]z!—. (79

4.1.5 Assembling a pseudospectral source term

As seen in the example of full-spectral reformulation, the evaluation of the products of multiple PC expan-
sions can be quite complex. But by truncating the expansions of products to order P (section 2.2), a set of
pseudospectral operators may be used to form the chemical source term.

First, define an overloaded product operator:

="uxtux 3w 6Ny (80)

S
I
==
-
2
=
I
—=

1 1

r

Using pseudospectral operators, the spectral source term can be constructed directly, following the defini-
tion in Section 4.1.
First, the forward reaction rate for each reaction,

K = B T"e ™ @1
can be written in terms of pseudospectral multiplication, inversion, exponentiation, and logarithm operators:
ki = By x (exp[n*In(T) —E,+ (12 T))) (82)

where T is now a PC expansion for temperature, and By, n, and E, are represented as PC expansions, intro-
ducing any specified parametric uncertainty.

Each reaction rate now includes the uncertainty contributed by an uncertain temperature (propagated from
previous calculations), the parametric uncertainty that may be associated with a lognormally-distributed re-
action preexponential, By, the parametric uncertainty in the activation energy, or parametric uncertainty in the
temperature exponent n (each as specified).

The reverse rate can be calculated in two ways. If an explicit reverse reaction rate is available, it can be
included directly. Or, the reverse reaction rate may be calculated from the equilibrium constant, Eq. 52, with
the substitution of the appropriate pseudospectral operations and expanded variables and parameters. This
computation also includes the effect of uncertain temperature itself, along with the derived uncertainty in
Gibbs free energies, g;(T), due to dependence on the uncertain enthalpy and entropy.
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The truncated stochastic expansion for the rate of progress of reaction k, K, in terms of pseudospectral
exponentiation operators (xx) is then given by

N N
Re = kf *[Jcrmeviy — &+ [T eimvi (83)
=1 =l

At this stage, third-body efficiencies may be added pseudospectrally (Eq. 33), with (; = 1 for no correction
and

N
Ck == Z(B,'k * C,') (84)
i=1

for third-body corrections with no pressure fall-off. The implementation of pressure fall-off corrections
follows in a very similar manner using pseudo-spectral operations.
The mass production rate (kg/m?.sec) of species i is now written generally as

M
wi =W; Y Vier Gex Re (85)
k=1
where w; is a full stochastic expansion:
P
wi =y wi'x (86)
k=1

that can be implemented in the chemistry integration, or into any other operation that requires a stochastic
chemical source term.

This functionality has been implemented in the form of a pseudospectral chemistry library that accepts
a local chemical state vector and computes a spectral rate-of-progress for each reaction, based on the PC
expansions for temperature and concentrations and the parametric uncertainty associated with enthalpies
of formation, activation energies, exponents, and reaction preexponentials. This library returns a full PC
expansion of the chemical source term for each individual species.

4.2 Extended ODE system

Returning to the governing equations for the chemical system, we write the PC expansions for concentrations,
¢;, density, p, and temperature, T, as :

P

ci(t) = Yeall¥r i=1...,N (87)
k=0
P

p() = Y pul)¥s (88)
k=0
P

T() = Y Tl)¥: (89)
k=0

and substitute into the corresponding chemical equations.
The time-evolution of the resulting pseudospectral chemical system is governed by the extended ODE
system, fork =0,...,P:

dei Da .
= —w; =1,... -1
dr u/iwlka 1 17 a(N ) (90)
dpe < Dal,
o Da,.zzl{“®(CP*T)]*(’”*W')};W,~:§(W*w’)k oy
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The new algebraic constraints derive from mass conservation for mode O of the expansion, given that all
higher-order modes sum to zero, since mass is conserved with zero-uncertainty, thus

N
dYo = 1, 92)
i=1

f
k=
k-
I
_

P (93)

N
> Yy
i=1

and finally, from the perfect gas state equation, where Py is the stagnation pressure, assumed to be constant,
and uncertain,

Py = [(p*T)@W]O (94)
0 = [(p*T)@V_V_Jk, k=1,...,P (95)

These equations are closed with deterministic initial conditions:

& k=0
x(t=0 = ! 96
ci(t =0) {o k=1,...,P )
p? k=0
t=0) = 97
Pl =0) {0 k=1,...,P ©7

4.3 Intrusive Results and discussion
4.3.1 Homogeneous ignition

To demonstrate the solution of the above UQ ODE model, we focused on the homogeneous constant-
temperature ignition of a hydrogen-air mixture with a detailed chemical mechanism [34]. Initial conditions
are deterministic, with 7 = 1200K, p = 0.276 kg/m?, cu, = 0.238 x 1075, co, = 0.119 x 1073, and ex, =
0.832 x 1073, The integration proceeds at constant T and p. Physical properties, including the mean values
of uncertain heats of formulation, were generated with the CHEMKIN properties database [30].

We specified two uncertain dimensions (Ngim = 2), and ran the integration with Norg = 3, 5, and 7. We
chose parametric uncertainties that reflect experimental uncertainties [27]. We modeled the uncertain pre-
exponential Arrhenius rate constant for reaction 11 (HO, + H = OH + OH) as a lognormally distributed
random variable, with a median value of 1.690 x 10'* mole-cm-sec-K and a multiplicative factor of 3.0. The
second uncertain parameter is the enthalpy of OH, which we assume to have a normal distribution with a
temperature-dependent mean given by the deterministic CHEMKIN [30] data base and a standard deviation
of 0.01 kcal/mole [21,27].

The extended system of conservation equations with pseudospectrally-generated chemical source terms
was integrated using the DVODE solver [29] with discretized Jacobians. The integration used a timestep of
2 x 104 ms. For the complete integration, the mean and standard deviation calculated at each Nyq4 varied by
less than 0.5%. The results in this section use Ngqg = 5.

Figure 11 shows the mean value of H,O; concentration vs. time for the homogeneous ignition. Dashed
lines indicate the range of resulting uncertainty with &6 bounds. We observe a fast rise in both the mean HO,
concentration and its standard deviation in the first 0.1 ms time interval. The resulting peak in uncertainty at
/ 0.1 ms is a result of uncertainty in both the Rxn.11 rate constant and in the enthalpy of OH. At later time,
there is a gradual decrease in uncertainty as the system tends towards equilibrium, where the rate-constant
uncertainty would have no impact, while the enthalpic uncertainty would be reflected in the equilibrated
species mixture.

Other radical species exhibit much larger uncertainties than H,O,. Figure 12 shows the mean value of
HO, concentration vs. time, with =6 bounds indicated. These results exhibit similar fast-rise in mean and
standard deviation at early time, followed by a gradual decay to some asymptotically constant value of both
at later time. Note the overall magnitude of total uncertainty in HO,. Given realistic, moderate parametric
uncertainties—uncertainties that reflect known limitations in the measurement of physical properties—the
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Figure 11: Mean value and uncertainty in the concentration of HyO;

standard deviation of the concentration reaches over 40% of the mean. We note that the uncertainty in
the H,O product (not shown) are relatively small, while that associated with some intermediate species is
evidently quite large in comparison.

A notable strength of the polynomial chaos decomposition of uncertainty is that the contribution of specific
parameters can be traced through each field quantity and into the simulation results. Figure 13 breaks down
the 1¥-order contribution to the variance, 62, of the H,O, concentration due to the two uncertain parameters.
The shaded regions indicate the [*-order contribution of uncertainty from the uncertain enthalpy of forma-
tion, the 1*-order contribution from the uncertain reaction preexponential, and the total variance calculated
from the full expansion, include 2nd 3rd and higher-order effects. For these two uncertain parameters, the
resulting concentration PDFs are roughly Gaussian in form, leading to higher-order contributions that are
small compared to the standard deviation. Other studies that studied additional uncertain parameters [21]
have shown larger contributions from higher orders. This form of analysis has great utility in larger and more
complex systems, designating where, and to what extent, a given parametric uncertainty affects the total un-
certainty in the predictions. This specifies which parameters are most impacted by experimental limitations,
and thus may be used to guide future research. Also, since approximations and reductions are present in many
chemical models, this methodology may reveal inherent limitations of mechanisms that may not be robust
predictors of concentrations of intermediate radical species.

4.3.2 Solvability of the pseudospectral formulation

A larger goal of this intrusive UQ construction is to construct large-scale reacting-flow simulation codes us-
ing pseudospectral stochastic PC operations. With this in mind, the solvability of the stiff chemistry may
shed light into the numerical difficulties that may be encounted in more complex, highly-coupled multidi-
mensional solvers. Two related effects are most apparent when assessing the solvability of the homogeneous
ignition problem—the ability of the intrusive polynomial chaos approach to adequately represent the evolving
probability distributions of the system variables, and the magnitude of the uncertainty.

Fig. 14 compares the PDFs of cyo, expanded to third, fifth, and seventh order at £ = 3.6 x 1073 s, using
the pseudospectral source term, in the region of maximum uncertainty. The shape of the PDF is not skewed
greatly from a Gaussian, but the standard deviation is considerable and the coefficient of variation, C = ¢/ c?,
becomes quite large. There are clear discontinuities/spikes/artifacts in the PDF for Nog = 3 (solid line),
indicating that third-order expansions insufficiently resolve the shape of the distribution. PDFs at Nog = 5
and 7 (circles and squares, respectively) show smoothly-varying distributions. These discontinuities reflect
large values present in the highest modes of expansion. In this example, the third-order modes of the third-
order expansion achieve the same overall magnitude as the first-order modes, resulting in an PC expansion
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that is not convergent.

With the basic physical constraint of positive values for concentration, the resolution of the PDF near zero
becomes important. Recall that the reformulation replaces each random variable/process by a spectral PC
expansion. While we do not discretize the PDF itself, a non-convergent expansion, i.e. one in which signif-
icant energy exists in the neglected/truncated higher order modes, will result in an unacceptable probability
density. PDFs that are poorly resolved and non-convergent expansions lead to large errors in the computed
solution, and can lead to instabilities in the time integration procedure.

Figure 15 compares the PDF of cqo, at several points in the ignition process (Norg = 5). As seen in
Fig. 12, during the initial ignition, total uncertainty increases rapidly, with the standard deviation attaining a
similar order-of-magnitude to the mean. When mode 1, which here dominates the standard deviation of the
distribution, exceeds 30% of the mean, a steeply-varying PDF is required to insure no significant probability
of negative cyo, values. As very large uncertainties develop, and ¢ approaches the mean, larger Noq may be
needed to compensate, and to adequately resolve the energy within the truncated expansion. This increases
the complexity and the computational effort required to solve the problem.

Figure 16 illustrates the magnitude of mode strengths for HO, concentration for the PDF at 7 = 3.8 x 107>
s, including expansions truncated at Norg =3, 5, and 7. Vertical bars group the modes |ck| by order, from 1*
to 7. For Nyg = 3 and Nora = 5, we see that some modes within the highest order bracket are greater in
magnitude than the corresponding modes for the higher-order expansions. However, the trend of the modes
in the log-linear plot suggests a trend toward convergence. In this plot, the maximum and minimum mode
amplitudes for each order correspond to modes dependent only on one of the uncertain dimensions. If we
plot these values vs. Ng4, a roughly linear decay that suggests exponential convergence, with the maxi-
mum amplitudes (dependent on reaction uncertainty) converging more slowly than the minimum amplitudes
(dependent on enthalpic uncertainty).

As the standard deviation of the PDF increases, the behavior of the PDF tails around ¢; = 0 becomes an
issue. If indeed the pseudospectrally-reformulated problem acts upon the full distribution of possible con-
centrations (as well as temperatures, densities, etc.), we should expect that finite probabilities of unphysical
negative concentrations, generated by insufficiently-resolved stochastic space near ¢; = 0, will cause the in-
tegration to fail.

To illustrate this, we performed another calculation of an extreme case. In the case of large uncertainties in
specific parameters or a large number of independent uncertainty parameters, a large total uncertainty may be
generated. Figure 17 shows the PDFs of cp,0, at several times for an alternate ignition computation. For this
case, performed at Norg = 5, we set the preexponential of reaction 1 (H+O;=0+OH) to be uncertain with a
S = 1.5 in addition to the previously-specified S = 3.0 for reaction 11. The enthalpic uncertainty was removed,
leaving Ngim = 2. This generates a much greater total uncertainty through direct generation by the source term
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Figure 16: Absolute magnitude of cno, (k) modes at maximum total cyp, uncertainty for N,,; = 3 (dia-
monds), N,y = 5 (squares), and N,,; = 7 (circles). Vertical lines separate orders from first through seventh.
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and through the interactions between two large uncertain parameters. The PDFs grow rapidly in width, with
the standard deviation approaching the mean and signs of clear nonconvergence of the PC expansions after
1.8 x 1073 5. Analysis of the individual PC modes indicates that once a concentration PDF extends into the
nonphysical c¢; < 0 region, the values of the modes diverge rapidly and the time integration fails. In Fig. 18
a plot of mean concentration and standard deviation vs. time is overlaid with individual 1% and 2" _order
mode values. Vertical dashed lines notes the three timesteps referenced in Fig. 17. By t =2.0 x 1075 s, the
standard deviation has exceeded the mean, and both 1% and 2"¢-order modes are growing rapidly, resulting
in failure of the integration at t = 2.75 x 1073 s.

4.3.3 Model initial-value problem

To better understand the consequences of large standard deviations with a mean near-zero, i.e. a large coeffi-

cient of variation (COV), we considered a simpler case—the time integration of a model initial-value problem

based on the chaos system. It is important to address and explore the conditions that lead to very fast growth

of the solution and potential instability, as can happen during homogeneous ignition with large uncertainties.
Consider first the ODE given by

du

— =8) = au(u+b)(u+c) (98)
with u(t = 0) = U, which has two attractors, at u = —b and —c. It also has a saddle point at « = 0. Using
values of the constants of b = 10, c = —1, a = — 1, any trajectory with U > 0 is attracted to the u = 1 limit,
while U < 0 trajectories are attracted to u = —10. A trajectory with U = 0 remains at u = 0.

Now, allow u to be a stochastic quantity, u = ¥f_,u ¥, using fourth-order chaos (P = 4), and let the
constants a, b, c be deterministic as chosen, but let the initial condition U have a specified uncertainty, given
by a mean Uy and a standard deviation U, and a presumed Normal distribution. Thus, U = Uy + U 18, with
zero higher order modes.

Given Uy, consider the behavior of ug(z) for two different values of Uy = 0.2,0.3. The corresponding
PDFs for U are shown in Fig. 19. While both have non-zero probability of negative values—given the infinite
support of the gaussian distribution, the case with Up = 0.2 has a larger COV, with corresponding larger
probability of negative U. As Fig. 20 shows, the time evolution of u is drastically different for the two cases.
The initial stage of the evolution (up to ~ t = 0.6) is towards the positive attractor in both cases, with only
minor difference in the trajectories. Soon after this however, the case with larger negative overlap is attracted
towards the negative stationary point. The end result at t = 1.5 is that the two cases are stationary at the two
attractors.
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We note of course, that there is no sampling of either PDF in the time integration procedure. The equa-
tions integrated are the Galerkin-projected ODEs for the polynomial chaos expansion mode strengths. These
equations are representing the physical situation accurately, thereby reflecting the increased probabilitiy of
negative samples and its consequences. Also note that, despite the small probability of negative initial values,
the mean of the PDF is completely dominated by their large magnitude as they tend towards -10, versus the
much smaller values of the samples attracted to the positive limit.

We also note that, with an alternative problem, e.g. du/dt = —10u(u — 1), which has attractors at u = 1
and —eo, the negative overlap of the PDF of U is a source of instability, as the negative branch of the solution
tends to —oe. The infinite well of this attractor creates a potential source of instability, as any overlap of the
solution PDF with the region u < 0 would allow the solution to grow without bounds. A normally distributed
initial condition can lead to an infinite rate of growth of the solution if its COV is large-enough.

Moreover, note that even the stable initial conditions in this discussion are in fact unstable if sufficiently
high order is used for the PC expansion. For example, while using a 7"-order expansion, still gives the same
final limit of 1.0 for g in the Uy = 0.3 case, taking the order up to 11 leads to up heading into negative
territory after first approaching 1.0. The higher accuracy with the higher-order expansions leads to adequate
resolution of the very small negative tail region in the Uy = 0.3 case, and therefore the attraction of the
mean to the large negative limit. The infinite support of the Gaussian PDF of the normally-distributed initial
condition implies that, in the limit of infinite order, any such initial condition will tend to the negative limit.
It is only the inaccuracy of the low-order expansions that prevents this from ocurring for some small COV
values (< 0.08/0.3).

It is also noteworthy that this same dependence on PC order and COV is observable with an initial condition
U that is lognormally distributed. Thus, for example, we find that with a median U of 0.3, and a multiplicative
factor Sy = 4.5, while both 4™ and 7" -order computations of ug reach the positive limit and stay there within
the 1.5 time limit, using 11"-order chaos we find that ug leaves the 1.0 stationary point at around ¢ = 1.4
and heads downward. Further, going to Sy = 5.4, we find that this occurs earlier at + = 1, and u¢ reaches
the negative stationary point by 7 = 1.5. Moreover, with Sy, = 9, even the 4-order solution leaves positive
territory around 1=0.5, and decreases towards —10. While this may seem surprising at first glance, given that
the initial PDF ought-not to have any negative part, the explanation is based on the inadequate resolution
of this and later PDFs by the truncated PC expansion. In the limit of very large Sy /Uy, or very low order,
the truncated PC expansion for the lognormally distributed U exhibits an actual PDF that does have a finite
probability of negative values. For example, for Sy = 9, the 4 -order PDF of U has significant probabilities
of negative values. This is not so at the lower Sy values (Sy = 4.5 — 5.4), where the initial PDFs are indeed
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Figure 20: Evolution of u for each of the initial PDFs in Fig. 25, with du/dt = au(u + b){(u + ¢) as defined
above. The case with the initial PDF overlapping zero is attracted to the negative stationary point, in contrast
to solution with an initial PDF that has much smaller overlap with zero.
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well resolved with the PC expansions with order > 4. However, the time integration procedure with the
11" -order expansion leads to finite probabilities of negative u(¢) at early time, which tends to dominate the
solution, driving uo to the negative limit. In fact, the results shown in Fig. 21, for Sy = 6, illustrate this
situation very clearly. The results show that increasing the PC order from 4 to 7 leads to the stabilization of
the solution at the positive attractor (at least up to t = 2.0). On the other hand, increasing the order further, to
11, leads back to an early departure of the solution from the positive limit.

We note finally that the implications of negative PDF tails are crucially important for stable integration
of the chemical system. Finite probabilities of negative concentrations, temperature, or density, can cause
destabilization of the time integration procedure. We do observe that at high-enough uncertainty in rate
constants such instabilities do occur, as observed earlier above.

Finally, it is important to examine clues for impending instability in the time integration due to such
negative tails. Examining the system jacobian eigenvalue evolution does not give immediate clues to stability,
as both the finite and infinite attractor problems exhibit rapidly-growing positive maximum eigenvalues for
Cy > 0.3 —-0.4. Additional analysis needs to be done to establish metrics for judging stability. This is
investigated in the sections below.

4.3.4 Stochastic inversion

An interesting approach for detecting that a stochastic quantity u has a finite probability of crossing zero
is to evaluate its stochastic inverse and examine the condition number of the matrix involved. This reveals
one possible pathway to numerical difficulties—for example when part of the PDF for density, p, closely
approaches zero, can we then expect to evaluate the stochastic inverse T = 1/p? In fact, this effect is observed
during hydrogen-air ignition studies—the T expansion resulting from an inversion of density contains a small
but finite probability of extremely large values. We present here the means of doing this check.

Note that we use a linear system solution to find the stochastic inverse, as outlined in [20,24]. We out-
line that procedure here in order to explain the zero-crossing detection strategy. Thus, first, define the PC
expansion for the random quantity u, and its inverse v,

P
u = ZM,-‘Pi (99)
=0

1 P
= - = 2 AV 100
v u '=0v] j ( )



Then, since w = uv = 1, we express the PC expansion for the product,

P P

P
w= qu\l’qzuvz ZZM,‘VJ'\P,"PJ'. (101)

4=0 j=0i=0

Using Galerkin projection, we express the coefficients of the expansion for w in terms of the coefficients u;
and v;,
P <YW > L&

2 2 uv; =¥ Y uviCii (102)
j=0i= < \Pz j=0i=0
But, since wy = 9y, we have

P P

Y JuviCijo = 1 (103)

j=0i=0

P P

Y YuviCijx = 0  k=1,--,P (104)

j=0i=0

This is a (P + 1)-dimensional system of linear equations for v;, j =0,--- ,P, i.e.,
Av=Db (105)

In the A-matrix, the entry for row &k = 0,---,P and column j =0,---, P is given by

P
Aj =Y uiCijk (106)
i=0

and entries for the right-hand side are given by
bk:8k0; k:OvaP (107)

Note that A; is simply a linear combination of the modes of u, and thus easily evaluated. We can thus compute
the condition number of A (the ratio of its maximum and minimum eigenvatues). Condition numbers of order
1 indicate a readily-invertable distribution, while larger condition numbers reflect potential difficulties with
the inversion, and potential incidences of zero crossing in the PDF of u.

4.3.5 Detecting negative PDF tails

The stochastic natural logarithm function can be used to detect negative values in tails of distributions. Let u
be a normal distribution with COV (y, u = N(6/(y,6), then fix ¢ and vary (. For each such choice of u,
evaluate the error £ given by

£ = ||u— exp(In(u))|| (108)

The variation of E with COV is shown in Fig. 22. The error is small and smoothly varying for Cy < 0.36. It
also decays with decreasing ;. For (yy > 0.36, however, the error is large, roughly fixed, and non-smooth.
At large COVs, the PDF of u is wide enough to have 3G > y, leading to finite probability of negative u values.
Clearly, the In()-function evaluation with polynomial chaos will fail when the PDF has a significant negative
tail.

These results suggest the potential utility of the stochastic In()-function for monitoring the solution during
a time integration procedure, and providing early detection of signs of trouble. This information could be
used to periodically filter the solution, sacrificing some measure of accuracy for stability.

4.4 Intrusive UQ Summary

A generalized intrusive spectral projection scheme has been presented and implemented for detailed chem-
istry. We presented both fully spectral and pseudospectral constructions. We examined a chemical system
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Figure 22: Computed error ||u — exp(log(u))||~ versus C,, where u = N(0.2/(,,0.2) using fourth order
chaos.

with only two uncertain parameters and moderate uncertainties. The hydrogen combustion model amplified
this parametric uncertainty considerably in some of the radical species. The amplification of small uncertain-
ties in this fashion may call into question the robustness of a model for predictions of a specific species, and
highlights the importance of including uncertainty quantification in computations.

A full multiparameter analysis would include known uncertainties in empirically-determined enthalpies of
formation, and reaction rate preexponentials. Future studies using this method will investigate the cumulative
effects of such multi-parameter systems, particularly those including transport, focusing on the higher-order
effects caused by the inherent coupling of the stochastic variables.

Limitations of the method include considerations of the resolution of the stochastic space. For example, the
constraint ¢; > 0 within the chemistry integration may require high-order expansions (representing skewed
or sharply-defined PDFs) to ensure convergent expansions with a HERMITE basis. Unphysical PDFs or non-
convergent expansions may be corrected via the use of higher-orders, with the corresponding computational
expense of a greater number of simultaneous equations. On the other hand, stability is not guaranteed for
arbitrarily high orders, as indicated by the above model-problem results. Alternatively, filtering of the PC
expansions to decrease the amplitude of higher-order modes may be sufficient to stabilize the computations.
More work is required in this regard.

5 Conclusions

This work has covered a wide range of issues pertaining to the quantification of uncertainty propagation in
models of reacting thermofluid systems. We have presented both intrusive and non-intrusive UQ constructions
based on spectral and pseudo-spectral polynomial chaos expansions. We have applied these constructions to
chemically reacting flow systems, allowing for uncertain reaction rate and thermodynamic parameters. While
not presented here, we have also developed elsewhere similar implementations for flow in heated cavities [24].
We have also applied the intrusive pseudo-spectral construction to a multi-dimensional low Mach number
reacting flow system.

It is clear that where model-reformulation, and therefore code rewrite, is feasible, and where model non-
linearities are not excessive, the intrusive construction is superior in terms of computational efficiency. Deal-
ing with chemical systems however, non-linearities are by no means weak, and the present intrusive con-
struction faces many chatlenges. These continue to be the subject of ongoing research, focusing on methods
for filtering the spectral expansions, and/or choosing alternate PC bases in place of the Hermite-Gaussian
combination.



Where legacy code rewrite is not feasible, or extreme non-linearities hinder the intrusive approach, the non-
intrusive construction is necessary. However, it is clear that monte-carlo/latin-hypercube sampling strategies,
which typically require many thousands of samples, are not practical for large-scale computations. Alternate,
more efficient, sampling techniques are needed. Given that the sampling problem is essentially an Ngip-
dimensional integration problem, advanced quadrature techniques can potentially alleviate the problem and
allow reduced numbers of samples. Specifically, we have found that for a small number of dimensions
(Ngim < 3), Gauss-Hermite quadrature provides a much more efficient sampling strategy than latin-hypercube.
However, the curse of dimensionality catches up with this technique when Ny, reaches O(10). In this
limit, we see great potential in the use of cubature/sparse-quadrature techniques. These advanced sampling
techniques are a subject of ongoing work.
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