
BONNEVILLE POWER ADMINISTRATION

Augmented Fish Health Monitoring for Washington Department of Wildlife

Five-year Project Report

This Document should be cited as follows:

Kerwin, John, Leni Oman, Steve Roberts, Bruce Bolding, "Augmented Fish Health Monitoring for Washington Department of Wildlife; Five-year Project Report", 1986-1991 Final Report, Project No. 198601300, 52 electronic pages, (BPA Report DOE/BP-64344-4)

> Bonneville Power Administration P.O. Box 3621 Portland, OR 97208

This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views in this report are the author's and do not necessarily represent the views of BPA.

AUGMENTED FISH HEALTH MONITORING FOR THE WASHINGTON DEPARTMENT OF WILDLIFE

Annual Report 1990 Five Year Project Report

Prepared by:

John Kerwin Steve Roberts Leni Oman Bruce Bolding

Washington State Department of Fisheries

Prepared for:

U.S. Department of Energy Bonneville Power Administration Environment, Fish and Wildlife PO Box 3621 Portland, Oregon 97208

Project No. 86-13 Contract No. DE-AI79-86BP64344

Abstract

The Augmented Fish Health Monitoring Project was funded by the Bonneville Power Administration (BPA) with the mandate to collect fish health data on the anadromous fish stocks of the Columbia River Basin in a standardized manner. The Washington Department of Wildlife began the project in 1986. Cumulative data and a final summary for this project are presented in this document.

Fish stocks were examined monthly for length, weight, and health status at all Washington Department of Wildlife Columbia River Basin hatcheries. Assays for specific fish pathogens were conducted on all stocks of broodfish and smolts in the study area. Pathogens of interest were replicating viral agents, erythrocytic inclusion body syndrome virus (EIBSV), and <u>Renibacterium salmoninarum</u>. Sea-run cutthroat (SCT) were also sampled midway through the rearing cycle for R. <u>salmoninarum</u>. Juvenile fish were examined for the presence of any pathogen. Assays for <u>Myxobolus cerebralis</u> were conducted on fish stocks in several locations along the Columbia River. An organosomatic index analysis was made on each stock of smolts at the Cowlitz and Wells hatcheries.

Results of the organosomatic index analysis were consistent between the years at each facility. However, the fish reared at Cowlitz displayed tissue changes associated with ceratomyxosis while those reared at Wells had a more desirable color and quality.

Cell culture assays for viral agents in broodfish were positive for infectious hematopoeitic necrosis virus (IHNV) in all stocks at the Cowlitz Hatchery four out of five years in the study. Other stations were less consistent over the Only the sea-run cutthroat stock spawned at Beaver Creek was negative years. Infectious pancreatic necrosis virus (IPNV) was isolated from for any virus. summer-run steelhead (SS) broodfish at Wells in 1989 and 1991 and at Yakima in 1991. Inclusions that are characteristic of EIBSV were found in red blood cells of brood fish from the Wells Hatchery in 1990 and 1991. Data collected on EIBSV during the first two years of the project cannot be compared with the later three years due to changes in laboratory protocol. Isolations of IHNV in smolts were made from Cowlitz and Skamania hatcheries and the Gobar Rearing Pond. Epizootics of IHN occurred at Lyons Ferry, Beaver Creek, Cowlitz and Skamania hatcheries during the project, EIBSV inclusions were identified in very low levels from smolts from Beaver Creek, Chelan, Cowlitz, Eastbank, and Ringold.

Assays for <u>R.</u> <u>salmoninarum</u> on broodfish and smolts revealed very low levels of infection and the disease was not a problem. Enteric redmouth disease was not observed in the project area. <u>Cytophaga psychrophila</u> was a chronic problem in young fish at Vancouver, Beaver Creek and Cowlitz hatcheries. <u>Ceratomyxa</u> <u>Shasta</u> was the only reportable parasite observed in the fish within the study area and caused yearly outbreaks of ceratomyxosis at the Cowlitz Hatchery. Fish at the Beaver Creek Hatchery were treated for furunculosis three of the five years of the project. An ozone water treatment plant has been installed to minimize the disease.

Flow and density indexes and feed conversion did not vary significantly at the hatcheries during this project. Egg mortality averaged 12.94% throughout the project with a range from 4.39% to 29.10%. The mean fry mortality during the project was 15.08% with a range of 2.01 to 37.43%. The overall mortality for early rearing was 20.43%. Prespawning broodstock mortality was recorded for SS and SCT and averaged 5.18% with a range from 0 to 38.8%. Fungal invasion was the primary cause of death in adult fish.

Epizootics of furunculosis, ceratomyxosis, bacterial coldwater disease, and IHN occurred during the project. Fewer cases were reported in more recent years.

The BPA augmented fish health project helped WDW identify problem areas in fish health while they were occurring. This knowledge allowed us to develop strategies for improved fish quality. Overall the project has been invaluable in assisting us in the improvement of the health of our fish.

Table of Contents

Page

-

Abstract	
Table of Contents iv	
List of Tables v	
List of Figures v	ii
Introduction 1	
Description of Study Area 1	
Methods and Materials 4	
Results	
Discussion 3	8
Literature Cited 4	2

-

List of Tables

.....

Table	1.	WDW Columbia River basin anadromous fish rearing programs	3
Table	2.	List of index hatcheries, species and stocks in which the organosomatic analysis was performed	4
Table	3.	System-wide fish health impediments	8
Table	4.	Site specific fish health impediments	9
Table	5.	Organosomatic index results. Mean values for species and stock deviation for measured parameters; length weight, condition factor, and hematocrit 1986 to 1991	13
Table	6.	Summary of percentage of organosomatic index characteristics by organ for species/stock/hatchery for Cowlitz and Wells Hatcheries, 1987 to 1991	14
Table	7.	Isolations of IHNV/IPNV from WDW Columbia River basin broodstocks from 1987 to 1991	17
Table	8.	Prevalence of EIBSV in WDW Columbia River basin broodstocks from 1987 to 1991	18
Table	9.	Isolations of IHNV/IPNV from smolts at WDW Columbia River basin hatcheries from 1987 to 1991	19
Table	10.	Prevalence of EIBSV in smolts from WDW Columbia River basin hatcheries from 1987 to 1991	20
Table	11.	Prevalence of <u>Renibacterium salmoninarum</u> in WDW Columbia River basin broodstocks from 1987 to 1991	21
Table	12.	Prevalence of <u>Renibacterium salmoninarum</u> in WDW Columbia River basin smolts from 1987 to 1991	22
Table	13.	Prevalence of <u>Renibacterium salmoninarum</u> in WDW Columbia River basin sea-run cutthroat sampled from 1987 to 1990,	22
Table	14.	Locations, species, stock, lifestage, and results of fish sampled for <u>Myxobolus cerebralis</u> , 1986 to 1990	23
Table	15.	Proposed locations and dates for water sampling at WDW Columbia River basin hatcheries	24
Table	16.	The range and mean of temperature, flow index, and density for WDW Columbia River basin hatcheries From 1983 to 1990	25

Table	17.	Isolation of IHNV/IPNV from WDW Columbia River basin broodstocks from 1983 to 1986	28
Table	18.	Summary of egg and fry mortality at WDW Columbia River hatcheries: 1983 to 1990	30
Table	19.	Prespawning broodstock mortality at WDW Columbia River basin hatcheries: 1986 to 1990	34
Table	20.	Summary of epizootics at WDW Columbia River basin hatcheries from January 1, 1986 to June 30, 1991	36
Table	21.	Summary of feed conversion for steelhead and sea-run cutthroat trout lots at WDW Columbia River basin hatcheries from 1983 to 1990	37

_ _

-

List of Figures

Page

Figure 1. Location of Washington Department of Wildlife Columbia River anadromous fish rearing programs..... 2

Introduction

The augmented fish health monitoring project was funded by the Bonneville Power Administration (BPA) with the mandate to collect fish health data on anadromous fish stocks of the Columbia River Basin in a standardized manner. The segment of the project reported here was carried out by the Washington Department of Wildlife (WDW). The project began in 1986 and culminated in 1991. This report summarizes fish health findings of anadromous cutthroat and steelhead trout stocks reared at WDW facilities during that time.

Before the inception of the BPA augmented fish health project, diagnosis of fish health problems and research on solutions were performed, primarily, on an as needed basis. This project allowed fish health specialists to make monthly visits to the WDW Columbia River Basin hatcheries. Data collected provided us with insight on early signs of disease and effective forms of treatment. A more thorough understanding of the magnitude of fish health problems and the severity of chronic and acute diseases was gained.

Information gathered has provided impetus to alter facility design and management practices for improved fish health through prevention of pathogen exposure and minimization of stress. Treatment efficacy was more closely monitored due to the monthly analysis of fish stocks. Disease prevention and control are better understood as a result of this project. The goal was to improve fish health and, ultimately, increase adult returns. Long term gains from this project will continue to be made as we implement the changes indicated through this study.

Description of Study Area

This project was designed to collect and summarize fish health related data from WDW facilities in the Columbia River drainage. Washington Department of Wildlife rears winter-run steelhead, summer-run steelhead, and sea-run cutthroat trout in these facilities. However, not all three species/stocks are raised at all stations. Location of the facilities and rearing programs are indicated on Figure 1 and Table 1.

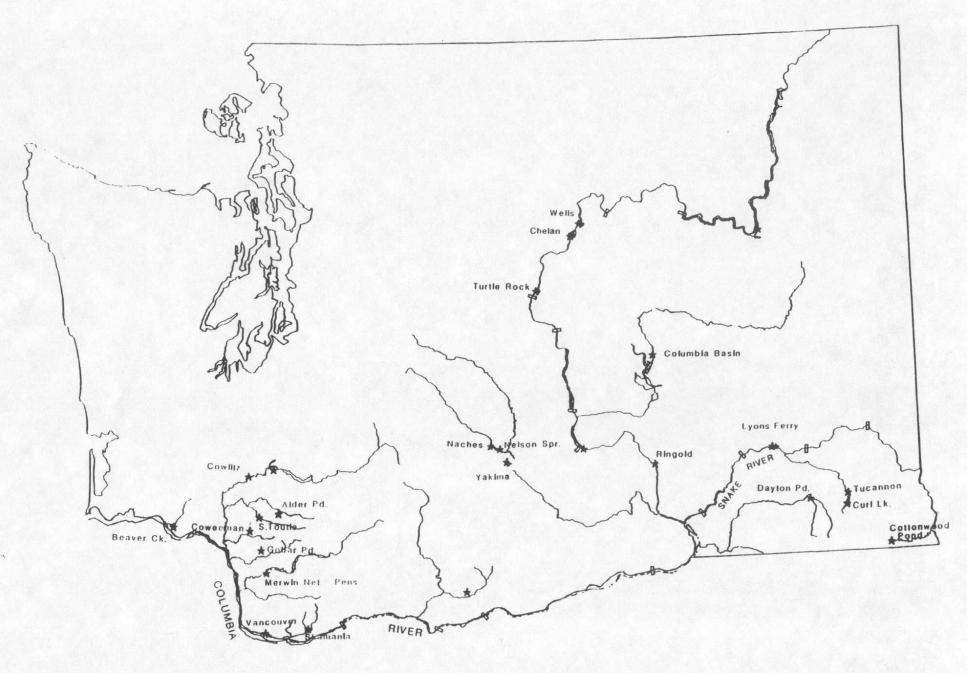


Figure 1. Location of Washington Department of Wildlife Columbia River anadromous fish rearing programs

Table 1. WDW Columbia Ri.ver basin anadromous fish rearing programs

Location

Installation	Number	Drainage	Annual Program
Beaver Cr. Hatchery	1	Elochoman	SW* Smolts SW Pre-Smolts for 2 and 7 SS* Smolts SS Pre-Smolts for 5 SCT* Smolts SCT Pre-Smolts for 3 SCT and SW broodstocks
Upper Coweeman	2	Coweeman	SW Smolts
Lower Coweeman	3	Coweeman	SCT Smolts
Alder Creek Pond	4	Toutle	SS Smolts
South Toutle Trap	5	Toutle	SW Smolts
Cowlitz Hatchery	6	Cowlitz	SW Smolts
			SS Smolts
			SCT Smolts
			SS/SW/SCT/LSW broodstocks
Gobar Pond	7	Kalama	SW Smolts
Merwin Net Pens	8	Lewis	SS Smolts
Vancouver Hatchery	9	L. Columbia	SS Smolts
Skamania Hatchery	10	Washougal	SW Smolts
			SS Smolts
			SS Pre-Smolts for 4, 7 and 8
			SCT Smolts
			SS/SW/SCT broodstocks
Yakima Hatchery	11	Yakima	SS Smolts
			SS Fingerling for 12
			SS Broodstock
Nelson Springs Raceway		Naches	SS Smolts
Naches Hatchery	13	Naches	SS Fingerling for 12
Ringold Pond	14	Mid-Columbia	SS Smolts
Columbia Basin Hatcher	-	Crab Creek	SS Fingerling for 14
Turtle Rock Pond	16	Mid-Columbia	SS Smolts
Chelan PUD Hatchery	17	Mid-Columbia	SS Smolts
			SS Fingerling for 16
Eastbank Hatchery	18	Mid-Columbia	SS Smolts
			SS Broodstock from 14
Wells Hatchery	19	Mid-Columbia	SS Smolts
Issens Dessus Hetchesses	0.0		SS Broodstock
Lyons Ferry Hatchery	20	L. Snake	SS Smolts
			SS Pre-Smolts for 20 and 21 SS Broodstock
Curl Lake	21	Tucannon	SS Broodstock SS Smolts
Cottonwood Pond	22	Grande Ronde	SS Smolts
Dayton Pond	23		SS Smolts
Daycon Fond	4.5	Touchet	DD DMUTLD

*SW - winter-run steelhead, SS - summer-run steelhead, SCT - sea-run cutthroat, LSW - late winter-run steelhead

Materials and Methods

Task 3.1. Organosomatic Analysis at Index Hatcheries

Organosomatic analysis were performed using the organosomatic index as developed by Ron Goede (Goede 1988). The Cowlitz and Wells hatcheries were selected as index hatcheries within the Columbia River drainage (Table 2).

Table 2. List of index hatcheries, species and stocks in which organosomatic analysis was performed

Species	Stock
Summer-run Steelhead	Cowlitz
Winter-run Steelhead	Cowlitz
Sea-run Cutthroat	Cowlitz
Late Winter-run Steelhead	Cowlitz
Summer-run Steelhead	Wells
	Summer-run Steelhead Winter-run Steelhead Sea-run Cutthroat Late Winter-run Steelhead

Individual fish were examined for organ color, fat content, and clinical signs. Sixty fish were sampled annually and scored from each stock on each station. Data was entered in Lotus 123 worksheet. Mean length (mm), weight (gms), and hematocrit (%), were determined along with a standard deviation for each parameter. The following items were examined, scored, and summarized as a percent of the population.

Organ	Classification:
Eyes	Normal, exopthalmia, hemorrhage, blindness, cataracts, or
	absence
Gills	Normal, fraying, clubbing, marginated, pale
Pseudobranchs	Normal, lithic, swollen, inflammed, pale
Thymus	Normal, degree of hemorrhage
Fat	Percent of pyloric caeca covered
Sex	Male, female, precocious male, undeveloped
Spleen	Black, red, granular, enlarged, nodular
Hind gut	Normal, degree of hemorrhage
Kidney	Normal, pale, swollen, granular, mottled, urolithiasis
Liver	Red, bright red, pale, mottled, fatty, nodular
Gall bladder	Green, yellow, empty, dark green

Task 3.2. Test for Specific Pathogens

Standard techniques as defined by the Fish Health Section of the American Fisheries Society were employed for the analysis of all samples collected for the project. Viral assays were run under an interagency subcontract by the Washington Department of Fisheries. Cell culture assays utilized were consistent with the <u>Procedures for the Detection and Identification of Certain</u> <u>Fish Pathogens</u> (Amos 1985), hereafter referred to as the Blue Book. One millileter (ml) of ovarian fluid was mixed with one ml of antibiotic solution (containing penicillin, streptomycin, gentimycin, and fungizone), and incubated overnight at 4 C or two hours at 15 C. Kidney/spleen samples were homogenized with Hank's balanced salt solution (HBSS) at a 1:10 dilution. Three ml of homogenate was placed in tubes and centrifuged at 2000 x g for 10-12 minutes. One ml of the supernatant was mixed with 3 ml of antiobiotic solution and incubated as above. Monolayers of chinook salmon embroyo -214 (CHSE) and epithelial papillosum cyprini (EPC) cells were prepared in 24 well plates approximately 24 hours in advance of use. Samples were centrifuged again and 0.1 ml of supernatant added to each well. Ovarian fluid was plated on EPC cells and kidney/spleen homogenate on CHSE cells. Replicates were made of each sample and a negative control of HBSS/antibioic solution was added to each plate. Samples were adsorbed onto the cell culture for one hour at 15 C. A methylcellulose overlay was added to EPC cells and -5 overlay to monolayers of CHSE at 0.5 ml/well. Samples were incubated at 15 C for 14 days. Observations were made the day of plating and weekly thereafter. Samples displaying cytopathic effect (CPE) were subsampled with the serum neutralization test for infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV). Serial dilutions of the suspect sample were made and mixed with the antisera at 1:1 ratio. Samples were incubated at 15C for one hour. Following centrifugation at 2000 x g for 10-12 minutes, samples were plated on EPC monolayers as described above. Negative and positive controls were prepared on the same plate. During the 1989-90 spawning season, techniques were altered for the remainder of the project. One drop of 7% PEG was added to each well of EPC cells prior to the addition of 0.2 ml of the sample. After one hour of adsorption, the samples were covered with 0.5 ml of methylcellulose overlay.

Assays for erythrocytic inclusion body syndrome virus (EIBSV) were carried out at the WDW laboratory. Samples were obtained by severing the caudal peduncle and collecting blood in a heparin coated hematocrit tube. A drop of blood was then placed on a glass slide and spread in a thin film by lightly dragging the end of a second slide across it. Slides were air dried, fixed in absolute methanol for five minutes, and prepared with pinocynol chloride stain (Yasutake 1986). Slides were examined at 1000X by light microscopy for two minutes each or until two cytoplasmic inclusion bodies were found. Positive inclusions were basophilic and ranged in size from 0.8 to 2.0 microns (Holt and Piacentini 1989). In 1988, a workshop was conducted to aid in the identification of EIBSV and to promote uniformity between agencies participating in the project. The parameters used to identify inclusions thought to be unique to the EIBSV were different than those previously utilized by WDW and so prevalence cannot be compared between results obtained before 1988 with those subsequently obtained. Assay results were reported as the prevalence at the time of assay.

Samples for <u>Myxobolus cerebralis</u> were collected from hatcheries and streams. Fish heads were split longitudinally, anterior to posterior, and one half of the head prepared for the plankton centrifuge method according to the protocol listed in the Blue Book. The other half was fixed in Bouin's solution for 1 1/2 days followed by preservation in 70% isopropyl alcohol. This tissue was used for histological examination when suspect spores were found by the plankton centrifuge method. The histological examination was used as a confirmatory identification of M. <u>cerebralis</u>. Thick sections were cut and stained with Giemsa for reading. Histological samples were prepared by Jan Yancey and analyzed by John Morrison of the USFWS, Olympia Fish Health Center.

The direct fluorescent antibody technique (DFAT) was used to assay all samples for the presence of <u>Renibacterium</u> salmoninarum, the causative agent of bacterial kidney disease (BKD). Goat anti-R. <u>salmoninarum</u> immunoglobulin conjugated with fluorescein isothiocyanate was obtained from Anadromous, Inc. (Corvallis, OR) or Kirkegaard and Perry Laboratories (Gaithersburg, MD). By the manufacturer's recommendation, the Anadromous, Inc. conjugate was diluted 1:100 with 0.01 M physiological buffered saline (PBS). The Kirkegaard and Perry Laboratories conjugate was diluted 1:30 with 0.01 M PBS. Both were filtered through a 0.2 micron acrodisc filter.

5

والمستحد والمحالي وال

Ovarian fluid or kidney imprints were collected from broodfish for R. salmoninarum assays; kidney imprints were collected from pre-smolts The ovarian fluid was collected in micro-centrifuge tubes and centrifuged for 5 minutes at 10,000 x g to remove cellular debris. The supernatant was decanted and the cell pellet swabbed onto a spot slide with a sterile cotton swab. Slides were air-dried, fixed in absolute methanol, and air dried again. Kidney samples were collected by inserting a sterile cotton swab through the kidney and smearing a thin layer onto a spot slide. Slides were then air dried and heat fixed. Fixed slides were flooded with anti-sera, incubated in a dark humid chamber for one hour, rinsed with PBS, flooded with Evan's blue counterstain (diluted at 1:100) for 3 to 5 minutes, washed twice, and air dried. Coverslips were mounted with buffered glycerol mounting medium. The slides were examined under epifluorescent ultraviolet light at 600X for two minutes. Suspect bacteria were examined at 1000X. Bacteria were considered positive if they were $0.3 \times 1.0-1.5$ microns and displayed a bright apple green fluorescent ring.

Task 4.3. Monitoring Flow and Loading Densities

Flow index (FI) and density index (DI) data were collected for all WDW Columbia River anadromous fish hatcheries. Both indices were calculated using the method described in <u>Fish Hatchery Management</u> (Piper et al, 1982). The calculations are written below.

```
FI = Biomass<sup>1</sup>/(flow<sup>2</sup> X length<sup>3</sup>)
DI = Biomass/(volume<sup>4</sup> X length<sup>3</sup>)
```

1 - Biomass = pounds of fish in a pond
2 - Flow = water flow to pond in gallons/minute
3 - Length = average length of fish in inches
4 - Volume = cubic feet of the pond.

Data was entered into a Lotus 123 worksheet for each pond of fish within each lot of fish. The mean indices were calculated for each lot. Results were reported as the range and the mean.

Task 6.1.2. Total Number and Percent Loss of Each Lifestage of Fish Species

Lot production data from the WDW Columbia River hatcheries were entered into a Lotus 123 worksheet. The total number and percentage mortality in each lot was calculated from egg to hatch and again from hatch to ponding. Total mortality for early rearing was also calculated.

Adult prespawning mortality data was collected from the hatcheries and entered into a Lotus 123 worksheet. Results were expressed as the percentage of fish that died from the total captured.

Task 6.1.3. <u>Number and Causative Agents of Epizootics, Type, and Amount of</u> Medication Used

Disease outbreaks causing significant mortality (cumulative..0.10%) occurred at Columbia Basin hatcheries between July 1, 1986 and June 30, 1991. Data on population size, percentage mortality, pathogen, and treatment were recorded in a Lotus 123 spreadsheet.

. . .

.....

б

Task 6.1.4 Feed Conversion

Feed conversion for all lots of fish at WDW Columbia River hatcheries was calculated as (pounds of fish produced/pounds of feed used). This data was entered into a Lotus 123 worksheet.

Results

Objective 1.0 Complete Start-up Phase

Task 1.1 Acquire Competent Staff

Project staffing during the five years of the study was as follows:

- Project Leader: Jim Gearheard, September 1, 1986 to April 30, 1989. John Kerwin, May 1, 1989 to August 30, 1991.
- Fish Pathologists: Steve Roberts, September 1, 1986 to August 30, 1991. Don Chase, January 21, 1987 to August 10, 1987. John Kerwin, October 20, 1987 to April 30, 1989. Leni Oman, July 18, 1989 to August 30, 1991.
- Fish Biologists: Bruce Bolding, March 1, 1987 to August 30, 1991. Shelley Evans, June 14, 1991 to August 8, 1991

Objective 2.0 Serve on technical steering committee

Task 2.1 Technical Steering Committee

A number of technical steering committee meetings were held during the project period. Discussions at the meetings were about the project progress, technical problems, and interpretation and modification of project tasks. A list of the technical steering committee meetings, along with WDW personnel who attended the meeting, is listed below.

Location	Date	WDW Representative(s)		
Boise, ID	March 4, 1987	Gearheard, Roberts		
Bozeman, MT	June 22, 1987	Roberts		
Olympia, WA	October 8, 1987	Gearheard, Roberts, Bolding		
Clackamas, OR	March 29-30, 1988	Gearheard, Kerwin, Roberts		
Olympia, WA	June 2, 1988	Gearheard, Kerwin, Roberts		
Couer D'Alene, ID	September 20, 1988	Gearheard, Roberts		
Portland, OR	January 19, 1989	Gearheard		
Union, WA	April 20, 1989	Gearheard, Roberts, Kerwin, Bolding		
Twin Falls, ID	October 17-18, 1989	Kerwin, Roberts, Oman		
Wenatchee, WA	April 25-26, 1990	Kerwin, Roberts		

Task 2.2 Technology transfer

Information was disseminated within WDW in the manner listed below.

- 1. A meeting was held on April 9-10, 1987 at the Mossyrock Hatchery to brief hatchery managers involved in the project on data requirements and collection methods.
- 2. Bruce Bolding presented an overview of the project to the Fisheries Management Division meeting in Port Townsend, WA on June 10, 1988.
- 3. Significant findings, such as viral isolations, were reported in The Leaky Boot, the quarterly WDW hatchery newsletter, which is distributed inside and outside the agency.

Information transfer to other agencies and the general public listed below.

- 1. Steve Roberts presented an overview of the project at the Western Fish Disease conference in Bozeman, MT on June 25, 1987.
- 2. Steve Roberts presented a paper entitled 'IPNV in Washington Salmonids' at the Western Fish Disease Conference in Vancouver, BC in June 1988.
- 3. Copies of the annual reports for this project were sent to the Washington State Library for public access.

Task 2.3 Facility impediments

The following list was compiled to provide BPA with a list of fish health impediments at each hatchery as well as to itemize the expected benefit and costs. The impediments have been listed as those that pertain to all hatcheries (Table 3) and those that are site specific (Table 4). Costs are expressed in 1988 dollars.

Table 3. System-wide fish health impediments

Project	cost	Benefit	Justification	
Fish health training	\$2,000/facility	High	Increase facility personnel awareness to improve fish health; increase diagnostic capabilities.	
Microcomputers and training	<pre>\$5,000/facility currently not computerized.</pre>	Medium	Optimize feed conversion under CHOP program and provide facility database.	
Flow measurement instrumentation	\$10,000/facility	Medium	Provide ability to determine rearing densities to produce higher smolt quality.	

Facility	Project	costs	Benefits	Justification
Alder Creek Pond	None			
Beaver Creek	Water develop- ment project	\$ 500,000	High	Facility has seasonal low flows. Increased flows will improve fish health.
	Oxygen injection system	\$ 500,000	High	Facility suffers from seasonal high water temperatures and low DO's resulting in chronic stress. Increased DO's will increase fish health.
Chelan	Acclimation ponds for Wenatchee & Entiat rivers	\$ 500,000	High	Ponds will reduce stress and disease during smolting.
Columbia Basin	Increase water flows Cover springs	\$ 100,000 \$1,100,000	High High	Increased flows will improve rearing environment resulting in improved fish quality. Covered springs will
				reduce pathogen transfer.
Coweeman Pds	Construct large rearing ponds (2)	\$ 250,000	Medium	Pond construction will optimize rearing efficiency and improve fish quality.
Cowlitz	Adult holding pond rehabilitation		High	Allow segregation by species and sex and reduce spread of disease.
	Adult holding pond covers	\$ 100,000	Medium	Increase egg quality and reduce disease transfer.
Gobar Pond	None			
East Fork Lewis River	Construct\$ imprinting pon	ıd	Medium	Imprinting pond will reduce <i>stress</i> during smolting, decrease straying and improve survival.

Table 4. Site specific fish health impediments

Table 4 (Cont.)

Facility	Project	costs	Benefits	Justification
Lyons Ferry	Bird predation control	\$ 100,000		Minimize transfer of pathogens and stress on fish.
Merwin Net Pens	None			Will be discontinued with construction of the Lewis River hatchery.
Nelson Spgs.	None			Will be discontinued with the development of the Yakima project.
Naches	None			Will be discontinued with the development of the Yakima project.
Ringold	Asphalt pond	\$ 300,000	Low	Reduce the reservoir of pathogens.
	Cover springs	\$ 50,000	Medium	Covered springs will reduce disease transfer.
Skamania	Adult barrier	\$ 300,000	High	Adult barrier will reduce level of adults migrating upstream of hatchery intake and pathogen load in water supply; adult returns will be maximized.
	Water treatment	\$ 500,000	High	High copper levels in water stress fish. Removal will improve health.
	Construction of new raceways	\$1,250,000	Medium	Rearing raceways need replacement to maximize rearing flows and eliminate pathogen transfer.
	Downstream SW barrier remova		Medium	Impassable velocity barrier removal would allow SW broodstock returns in all years.
	Facility repiping to allow volit release from 1		High	Eliminate handling stress and optimize release strategies while improving smolt quality.

we a good and a second se

Table 4 (Cont.)

Facility	Project	costs	Benefits	Justification
S.Toutle Trap	Raceway development (if operation continues)	\$ 250,000	Medium	Currently no permanent raceways. Fry survival will be increased.
Turtle Rock	None			
Vancouver	Construction of new raceways	\$ 750,000 \$	Medium	Replacement of round ponds will maximize flows and improve fish health.
	Development of new water source	\$ 500,000	High	Facility requires water replacement source to maximize potential.
	Spring redevelopment	\$ 150,000	Medium	Springs require redevelopment to maximize flow potential.
Yakima	None			Yakima steelhead production will be discontinued with development of the Yakima master plan.
Wells	Water treatment for rearing ponds	\$1,000,000	Medium	Reduce pathogen load in Columbia River water supply.
	Asphalt ponds	\$ 300,000	Low	Improve pond draining characteristics, reduce stress during pond drainage, reduce pathogen habitat.
Dayton Pond	None			
Curl Lake	None			
Cottonwood Pd	None			

An ozone plant was constructed by Tacoma City Light at the Cowlitz Trout Hatchery in 1990-91. It is currently in its first year of use and will be evaluated for the impact on ceratomyxosis. Initial results are promising.

The Eastbank Hatchery has been constructed and the SS production from Turtle Rock Hatchery has been moved to the new site. Summer steelhead fingerlings are moved from Chelan Hatchery to Turtle Rock to be reared to smolts.

Task 3.1 Organosomatic analysis at index hatcheries

The overall condition of the smolts at Wells Hatchery was better in all categories than the smolts at the Cowlitz Hatchery. This determination was based on the percentage of fish that were closer to normal on the organosomatic index. The fish at Wells were longer, heavier, with a better condition factor and a higher average hematocrit level than those at Cowlitz (Table 5). In addition, the Wells fish had a greater pyloric fat level. The fish at Cowlitz had varying degrees of abnormality, such as enlarged and inflamed hind guts and mottled kidneys or pale gills. The less desirable condition of the fish at the Cowlitz Hatchery was attributed to the presence of the protozoan parasite <u>Ceratomyxa Shasta</u> in the intestinal tract of the fish. The pathological signs listed above are classic for C. <u>Shasta</u> infections (Bartholomew 1989). The parasite was found in all production lots at Cowlitz and has been implicated as the causative agent in the loss of up to 80% of some production lots there. Tables 5 and 6 list the comparative data for all stocks examined with the organosomatic index.

A comparison of the 1991 data with that of the previous four years shows almost no change in the Wells summer steelhead. The size and condition of the fish are almost identical. The four stocks of fish examined at the Cowlitz, however, display different values from previous years in all measured categories. This is attributed to ceratomyxosis in the fish during all five years of the project.

Location	Species	Year	Length	Weight	K factor	Hematocrit
Cowlitz	SS	1987				
		1988	186	59.9	0.8	36.4
		1989	171	50.9	1.0	39.0
		1990	162	42.5	1.0	37.0
		1991	184	59.7	1.0	41.7
		SD	9.8	7.2	0.1	2.1
Cowlitz	SW	1987	212	93.8	1.0	42.1
		1988	169	41.9	0.9	36.9
		1989	174	59.5	1.1	40.0
		1990	154	36.4	1.0	44.8
		1991	162	50.7	1.0	42.2
		SD	20.1	20.3	0.1	2.6
Cowlitz	SCT	1987	210	94.5	1.0	44.4
		1988	182	55.2	0.8	37.2
		1989	183	66.8	1.1	42.0
		1990	173	56.1	1.0	39.1
		1991	205	84.1	1.0	45.8
		SD	14.3	15.6	0.1	3.2
Cowlitz	LSW	1987 1988	189	78.4	1.2	44.8
		1989	180	60.4	1.0	49.0
		1990	163	45.6	1.0	45.2
		1991	158	41.1	1.0	48.3
		SD	12.5	14.5	0.1	1.8
Wells	SS	1987	205	75.6	0.9	50.4
		1988	192	66.2	0.9	53.8
		1989	189	66.2	1.0	54.0
		1990	198	72.7	0.9	57.0
		1991	198	70.7	0.9	48.9
		SD	5.5	3.1	0.0	2.9

and hematocrit. 1986 to 1991

Table 5. Organosomatic index results. Mean values for species and stock for measured parameters: length, weight, condition factor (K factor),

-I_.-.--

____ ...

Table	6.	Summary of percentage of organosomatic index characteristics by
		organ for species/stock/hatchery for Cowlitz and Wells Hatcheries,
		1986 to 1990

Location	Species	Year	Score	Fat	Spleen	HindGut	Kidney	Liver	<u>Gills</u>
Cowlitz	SS	1987	0						
		2007	1						
			2						
			3						
			4						
Cowlitz	SS	1988	0	70.0%	90.0%	45.0%	100.0%	98.3%	
			1	28.3%	3.3%	41.7%	0.0%	1.7%	
			2	1.7%	6.7%	13.3%	0.0%	0.0%	
			3	0.0%	0.0%	0.0%	0.0%	0.0%	
Cowlitz	SS	1000	4	0.0%	0.0%	0.0%	0.0%	0.0%	07 00
COWIICZ	66	1989	0 1	40.0% 55.0%	45.0% 45.0%	57.0%	100.0%	97.0%	97.0%
			2	5.0%	45.0%	43.0% 0.0%	0.0%	4.0%	4.0%
			23	0.0%	5.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0%
			ů 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0% 0.0%
Cowlitz	SS	1990	0	48.0%	17.0%	47.0%	98.0%	27.0%	88.0%
			1	30.0%	48.0%	33.0%	0.0%	70.0%	12.0%
			2	20.0%	30.0%	0.0%	2.0%	2.0%	0.0%
			3	0.0%	0.0%	0.0%	0.0%	2.0%	0.0%
			4	0.0%	8.0%	0.0%	0.0%	0.0%	0.0%
Cowlitz	SS	1991	0	20.0%	32.0%	50.0%	82.0%	25.0%	95.0%
			1	28.0%	65.0%	50.0%	0.0%	75.0%	5.0%
			2	35.0%	3.0%	0.0%	18.0%	0.0%	0.0%
			3	15.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Cowlitz	SW	1987	0	20.0%	45.0%	61.0%	0.0%	100.0%	
			1	51.7%	50.0%	35.0%	20.0%	0.0%	
			2	20.0%	0.0%	3.3%	0.0%	0.0%	
			3	8.3%	0.0%	0.0%	0.0%	0.0%	
	СW	1000	4	0.0%	5.0%		80.0%	0.0%	
Cowlitz	SW	1988	0	93.2%	80.0%	7.5%	100.0%	96.7%	
			1 2	6.8%	3.3%	58.3%	0.0%	3.3%	
			2 3	0.0% 0.0%	26.7%	34.2%	0.0%	0.0%	
			4	0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0%	
Cowlitz	SW	1989	0	70.0%	75.0%	55.0%	0.0% 97.0%	0.0%	100 08
		1909	1	30.0%	20.0%	43.0%	3.0%	97.0% 3.0%	100.0%
			2	0.0%	2.0%	2.0%	0.0%	3.0% 0.0%	0.0% 0.0%
			3	0.0%	3.0%	0.0%	0.0%	0.0%	0.0%
			4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Cowlitz	SW	1990	0	53.0%	53.0%	35.0%	58.0%	35.0%	84.0%
			1	40.0%	28.0%	47.0%	35.0%	50.0%	16.0%
			2	6.0%	18.0%	18.0%	2.0%	7.0%	0.0%
			3	0.0%	0.0%	0.0%	5.0%	2.0%	0.0%

14

Table 6. (Cont.)

$ \begin{array}{c c c w litz \\ C c w litz \\ S H \\ l 991 \\ 0 \\ 4 5.0 \\ 3 8.0 \\ 3 .0 $	Location	Species	Year	Score	Fat	Spleen	HindGut	Kidney	Liver	Gills
$ \begin{array}{c ccc} \begin{tabular}{ cccc ccc cccc } & 1 & 52.0\% & 33.0\% & 3.0\% & 5.0\% & 40.0\% & 5.0\% \\ 2 & 3.0\% & 3.0\% & 0.0\% & 78.0\% & 0.0\% & 0.0\% \\ 3 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 4 & .07 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 4 & .07 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 6.7\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 6.7\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 6.7\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 1.7\% \\ 3 & 15.0\% & 20.0\% & 0.0\% & 0.0\% & 1.7\% \\ 4 & 56.7\% & 0.0\% & 0.0\% & 78.3\% & 1.7\% \\ 2 & 6.7\% & 0.0\% & 0.0\% & 78.3\% & 1.7\% \\ 2 & 5.0\% & 5.0\% & 3.4\% & 0.0\% & 0.0\% \\ 2 & 5.0\% & 5.0\% & 3.4\% & 0.0\% & 0.0\% \\ 2 & 5.0\% & 5.0\% & 3.4\% & 0.0\% & 0.0\% \\ 2 & 5.0\% & 5.0\% & 3.4\% & 0.0\% & 0.0\% \\ 2 & 5.0\% & 5.0\% & 3.4\% & 0.0\% & 0.0\% \\ 2 & 35.0\% & 3.0\% & 100.0\% & 0.0\% & 0.0\% \\ 2 & 35.0\% & 3.0\% & 100.0\% & 0.0\% & 0.0\% \\ 2 & 35.0\% & 3.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 35.0\% & 3.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 35.0\% & 3.0\% & 35.0\% & 50.0\% & 0.0\% & 0.0\% \\ 2 & 35.0\% & 35.0\% & 35.0\% & 50.0\% & 10.0\% \\ 2 & 65.0\% & 53.0\% & 35.0\% & 50.0\% & 10.0\% \\ 2 & 65.0\% & 18.0\% & 18.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 10.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 10.0\% & 10.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 10.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 10.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 10.0\% & 10.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 10.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 3.0\% & 30.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & $				4	0.0%			0.0%		0.0%
$ \begin{array}{c c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Cowlitz	SW	1991	0	45.0%	58.0%				
$ \begin{array}{c ccc} Cowlitz \\ Cowlitz \\ Cowlitz \\ SCT \\ 1987 \\ 1987 \\ 1987 \\ 1987 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$				1	52.0%	38.0%			40.0%	
Cowlitz SCT 1987 4 .02 0.08 0.08 0.08 0.08 Cowlitz SCT 1987 1 10.0 10.08 8.3% 18.3% 6.7% 2 6.7% 0.08 0.08 0.08 0.08 1.78 Cowlitz SCT 1988 0 45.0% 43.3% 73.3% 96.6% 86.7% Cowlitz SCT 1988 0 45.0% 43.3% 73.3% 96.6% 86.7% 2 5.0% 5.0% 3.4% 13.3% 2 5.0% 23.5% 1.00.08 0.08				2	3.0%	3.0%	0.0%	78.0%	0.0%	
$ \begin{array}{c c c w litz \\ c c w l c w c w c w c w c w c w c w c w$				3			0.0%			0.0%
$ \begin{array}{c ccc} \begin{tabular}{ cccc ccc cccc} & 1 & 10.0 & 10.0 & 8.3 & 18.3 & 6.7 & \\ 2 & 6.7 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\ 3 & 15.0 & 20.0 & 0.0 & 0.0 & 0.0 & 1.7 & \\ 4 & 56.7 & 0.0 & 0.0 & 78.3 & 91.6 & \\ 56.7 & 0.0 & 50.0 & 23.3 & 3.4 & 13.3 & \\ 2 & 5.0 & 5.0 & 3.4 & 0.0 & 0.0 & \\ 1 & 50.0 & 50.0 & 23.3 & 40 & 0.0 & \\ 2 & 3.0 & 1.6 & 0.0 & 0.0 & 0.0 & \\ 0 & 0.0 & 0.0 & 0.0 & 0.0 & \\ 0 & 0 & 0.0 & 0.0 & 0.0 & \\ 0 & 0 & 0 & 0.0 & 0.0 & \\ 0 & 0 & 0 & 0 & 0.0 & \\ 0 & 0 & 0 & 0 & 0.0 & 0.0 & \\ 0 & 0 & 0 & 0 & 0.0 & \\ 0 & 0 & 0 & 0 & 0.0 & 0.0 & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\ 0 & 0 &$				4	.0%	0.0%	0.0%	0.0%	0.0%	0.0%
$ \begin{array}{c ccc} \\ \mbox{Cowlitz} & \mbox{SCT} & \mbox{198} & \mbox{198} & \mbox{1}, $	Cowlitz	SCT	1987	0	11.7%	70.0%		3.3%	90.0%	
$ \begin{array}{c ccc} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				1	10.0	10.0%	8.3%	18.3%	6.7%	
$ \begin{array}{c c w litz \\ Cowlitz \\ SCT \\ lag 2 \\ Cowlitz \\ SCT \\ lag 2 \\ SCT \\ $				2	6.7%	0.0%	0.0%	0.0%	0.0%	
Cowlitz SCT 1988 0 45.0% 43.3% 73.3% 96.6% 86.7% 1 50.0 50.0% 53.3% 3.4% 13.3% 2 55.0% 50.0% 0.0% 0.0% 0.0% 3 0.0% 1.6% 0.0% 0.0% 0.0% Cowlitz SCT 1989 0 7.0% 43.0% 100.0% 95.0% 97.0% 100.0% 2 35.0% 3.0% 0.0%				3	15.0%	20.0%	0.0%		1.7%	
Cowlitz SCT 1989 0 50.0 50.0% 23.3% 3.4% 13.3% Cowlitz SCT 1989 0 7.0% 1.6% 0.0% 0.0% 0.0% Cowlitz SCT 1989 0 7.0% 43.0% 100.0% 95.0% 97.0% 100.0% 235.0% 3.0% 0.0% <td< td=""><td></td><td></td><td></td><td>4</td><td>56.7%</td><td>0.0%</td><td>0.0%</td><td>78.3%</td><td>1.7%</td><td></td></td<>				4	56.7%	0.0%	0.0%	78.3%	1.7%	
Cowlitz SCT 1989 0 0.08 0.08 0.08 0.08 0.08 Cowlitz SCT 1989 0 7.0% 43.0% 100.08 0.08 0.08 1 28.0% 65.0% 50.0% 97.0% 100.08 0.08 100.08 2 35.0% 3.0% 0.08 10.08 0.08 0.08 0.08 2 35.0% 3.0% 0.08 10.08 0.08 0.08 0.08 0.08 2 35.0% 35.0% 55.0% 50.0% 0.08	Cowlitz	SCT	1988	0	45.0%	43.3%	73.3%	96.6%	86.7%	
$ \begin{array}{c ccc} \begin{tabular}{ ccc ccc } \hline & 3 & 0.08 & 1.68 & 0.08 & 0.08 & 0.08 \\ 4 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.708 & 43.08 & 100.08 & 95.08 & 97.08 & 100.08 \\ 2 & 35.08 & 3.08 & 0.08 & 18.08 & 0.08 & 0.08 \\ 3 & 15.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ \hline & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0.08 & 0$				1	50.0	50.0%	23.3%	3.4%	13.3%	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c c$				2	5.0%	5.0%	3.4%	0.0%	0.0%	
$ \begin{array}{c c c w litz SCT } SCT & 1989 & 0 & 7.0\% & 43.0\% & 100.0\% & 95.0\% & 97.0\% & 100.0\% \\ 1 & 28.0\% & 65.0\% & 50.0\% & 0.0\% & 75.0\% & 5.0\% \\ 2 & 35.0\% & 3.0\% & 0.0\% & 18.0\% & 0.0\% & 0.0\% \\ 3 & 15.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 4 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 4 & 0.0\% & 28.0\% & 47.0\% & 35.0\% & 55.0\% & 84.0\% \\ 1 & 40.0\% & 28.0\% & 47.0\% & 35.0\% & 55.0\% & 84.0\% \\ 1 & 40.0\% & 28.0\% & 47.0\% & 35.0\% & 50.0\% & 0.0\% \\ 2 & 6.0\% & 18.0\% & 18.0\% & 2.0\% & 7.0\% & 0.0\% \\ 2 & 6.0\% & 18.0\% & 0.0\% & 0.0\% & 2.0\% & 0.0\% \\ 2 & 6.0\% & 18.0\% & 0.0\% & 0.0\% & 2.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 3.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 3.0\% & 3.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 3.0\% & 3.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 3.0\% & 3.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 3.0\% & 3.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 3.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 3.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 3.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 3.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 3.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 3.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 3.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 3.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & $				3	0.0%	1.6%	0.0%	0.0%	0.0%	
1 28.0% 65.0% 50.0% 0.0% 75.0% 5.0% 2 35.0% 3.0% 0.0				4	0.0%	0.0%	0.0%	0.0%	0.0%	
$ \begin{array}{c ccc} & 2 & 35.0\% & 3.0\% & 0.0\$ & 18.0\% & 0.0\$ & 0.0\$ \\ 3 & 15.0\% & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ \\ 4 & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ \\ 0 & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ \\ 0 & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ \\ 1 & 40.0\% & 28.0\% & 47.0\% & 35.0\% & 50.0\% & 16.0\$ \\ 2 & 6.0\% & 18.0\% & 18.0\% & 2.0\% & 7.0\% & 0.0\$ \\ 3 & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 2.0\% & 0.0\$ \\ 3 & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ \\ 2 & 6.0\% & 18.0\% & 18.0\% & 2.0\% & 0.0\$ \\ 0 & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ \\ 0 & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ \\ 0 & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ \\ 0 & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ \\ 0 & 0.0\$ & 0.0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0\$ & 0.0.0\$ & 0.0\$ & 0.0.0\$ & 0.0.0\$ $	Cowlitz	SCT	1989	0	7.0%	43.0%	100.0%	95.0%	97.0%	100.0%
$\begin{array}{c ccc} & 3 & 15.0\% & 0.0\% $				1	28.0%	65.0%	50.0%	0.0%	75.0%	5.0%
$ \begin{array}{c ccc} \mbox{Cowlitz} & \mbox{ss} & \mbox{1990} & \mbox{4} & \mbox{0.0\%} & $				2	35.0%	3.0%	0.0%	18.0%	0.0%	0.0%
$\begin{array}{c c c wlitz ss 1990 0 53.0\% 53.0\% 35.0\% 58.0\% 35.0\% 84.0\% \\ 1 40.0\% 28.0\% 47.0\% 35.0\% 50.0\% 16.0\% \\ 2 6.0\% 18.0\% 18.0\% 2.0\% 7.0\% 0.0\% \\ 3 0.0\% 0.0\% 0.0\% 5.0\% 2.0\% 0.0\% \\ 4 0.0\% 0.0\% 0.0\% 0.0\% 5.0\% 2.0\% 0.0\% \\ 4 0.0\% 0.0\% 0.0\% 0.0\% 5.0\% 2.0\% 0.0\% \\ 1 52.0\% 38.0\% 93.0\% 5.0\% 40.0\% 95.0\% \\ 1 52.0\% 38.0\% 93.0\% 5.0\% 40.0\% 5.0\% \\ 2 3.0\% 3.0\% 0.0\% 0.0\% 0.0\% 0.0\% 0.0\% 0.0\%$				3	15.0%	0.0%	0.0%	0.0%	0.0%	0.0%
1 40.0% 28.0% 47.0% 35.0% 50.0% 16.0% 2 6.0% 18.0% 18.0% 2.0% 7.0% 0.0% 3 0.0% 0.0% 0.0% 50.0% 2.0% 7.0% 0.0% Cowlitz SW 1991 0 45.0% 58.0% 7.0% 60.0% 95.0% 2 3.0% 50.0% 7.0% 60.0% 95.0% 90.0% 50.0% 95.0% 2 3.0% 38.0% 93.0% 5.0% 40.0% 50.0% 2 3.0% 3.0% 0.0%				4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
2 6.0% 18.0% 18.0% 2.0% 7.0% 0.0% 3 0.0% 0.0% 0.0% 5.0% 2.0% 0.0% Cowlitz SW 1991 0 45.0% 58.0% 7.0% 17.0% 60.0% 95.0% 1 52.0% 38.0% 93.0% 5.0% 40.0% 0.0% <td>Cowlitz</td> <td>SS</td> <td>1990</td> <td>0</td> <td>53.0%</td> <td>53.0%</td> <td>35.0%</td> <td>58.0%</td> <td>35.0%</td> <td>84.0%</td>	Cowlitz	SS	1990	0	53.0%	53.0%	35.0%	58.0%	35.0%	84.0%
$\begin{array}{c ccc} & & & & & & & & & & & & & & & & & &$				1	40.0%	28.0%	47.0%	35.0%	50.0%	16.0%
$\begin{array}{c ccc} \mbox{Cowlitz} & \mbox{SW} & 1991 & \begin{tabular}{ ccccc } & 4 & 0.0 $0,0 \mbox{$0,0 \mbox{$1,0 \mbox{$0,0 \mbox{$				2	6.0%	18.0%	18.0%	2.0%	7.0%	0.0%
Cowlitz SW 1991 0 45.0% 58.0% 7.0% 17.0% 60.0% 95.0% 1 52.0% 38.0% 93.0% 5.0% 40.0% 5.0% 2 3.0% 3.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Cowlitz SCT 1987 0 11.7% 70.0% 91.7% 3.3% 90.0% Cowlitz SCT 1987 0 11.7% 70.0% 91.7% 3.3% 90.0% 1 10.0 10.0% 8.3% 18.3% 6.7% 2 6.7% 0.0% 0.0% 0.0% 1.7% 4 56.7% 0.0% 0.0% 1.7% 1.7% Cowlitz SCT 1988 45.0% 43.3% 73.3% 96.6% 86.7% 1 50.0% 5.0% 3.4% 0.0% 0.0% 0.0%				3	0.0%	0.0%	0.0%	5.0%	2.0%	0.0%
$\begin{array}{c cccc} 1 & 52.0\% & 38.0\% & 93.0\% & 5.0\% & 40.0\% & 5.0\% \\ 2 & 3.0\% & 3.0\% & 0.0\% & 78.0\% & 0.0\% & 0.0\% \\ 3 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 4 & .0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 4 & .0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 1 & 10.0 & 10.0\% & 8.3\% & 18.3\% & 6.7\% \\ 2 & 6.7\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 3 & 15.0\% & 20.0\% & 0.0\% & 0.0\% & 1.7\% \\ 4 & 56.7\% & 0.0\% & 0.0\% & 0.0\% & 1.7\% \\ 4 & 56.7\% & 0.0\% & 0.0\% & 0.0\% & 1.7\% \\ 1 & 50.0 & 50.0\% & 23.3\% & 3.4\% & 13.3\% \\ 2 & 5.0\% & 5.0\% & 3.4\% & 0.0\% & 0.0\% \\ 1 & 50.0 & 50.0\% & 23.3\% & 3.4\% & 13.3\% \\ 2 & 5.0\% & 5.0\% & 3.4\% & 0.0\% & 0.0\% \\ 1 & 78.0\% & 50.0\% & 0.0\% & 0.0\% & 0.0\% \\ 1 & 78.0\% & 50.0\% & 0.0\% & 0.0\% & 0.0\% \\ 1 & 78.0\% & 50.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 15.0\% & 7.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 15.0\% & 7.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 15.0\% & 7.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 15.0\% & 7.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 15.0\% & 7.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 15.0\% & 7.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 0.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 15.0\% & 7.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 15.0\% & 7.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 15.0\% & 7.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 15.0\% & 7.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 15.0\% & 7.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 15.0\% & 7.0\% & 0.0\% & 0.0\% & 0.0\% & 0.0\% \\ 2 & 28.0\% & 0.0\% & 0.0\% & 0.0\% & 22.0\% & 83.0\% & 18.0\% \\ 2 & 28.0\% & 0.0\% & 2.0\% & 0.0\% & 2.0\% & 0.0\% \\ \end{array}$				4	0.0%	0.0%	0.0%	0.0%	3.0%	0.0%
$\begin{array}{c cccc} 2 & 3.0\% & 3.0\% & 0.0 \$ & 78.0\% & 0.0 \$ & 0.0 \$ \\ 3 & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 4 & .0 \% & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 4 & .0 \% & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 6 & .0 \% & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 7 & .0 \% & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 1 & 10.0 & 10.0 \$ & 8.3\% & 18.3\% & 6.7\% \\ 2 & 6.7\% & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 3 & 15.0 \% & 20.0 \% & 0.0 \$ & 0.0 \$ & 1.7 \$ \\ 4 & 56.7 \% & 0.0 \$ & 0.0 \$ & 0.0 \$ & 1.7 \$ \\ 4 & 56.7 \% & 0.0 \$ & 0.0 \$ & 0.0 \$ & 1.7 \$ \\ 1 & 50.0 & 50.0 \% & 23.3\% & 3.4\% & 13.3\% \\ 2 & 5.0 \% & 5.0 \% & 3.4\% & 0.0 \$ & 0.0 \$ \\ 1 & 50.0 & 50.0 \% & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 2 & 5.0 \% & 5.0 \% & 3.4 \% & 0.0 \$ & 0.0 \$ \\ 2 & 0.0 \$ & 1.6 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 4 & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 4 & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 4 & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 5.0 \% & 0.0 \$ & 0.0 \$ \\ 6 & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 6 & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 6 & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 6 & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 6 & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 6 & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 6 & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 6 & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 7 & 0.0 5 & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 7 & 0.0 5 & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 7 & 0.0 5 & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 7 & 0.0 5 & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 7 & 0.0 5 & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 7 & 0.0 5 & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 7 & 0.0 5 & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 7 & 0.0 5 & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 7 & 0.0 5 & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 7 & 0.0 5 & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ & 0.0 \$ \\ 7 & 0.0 5 & 0.0 \$ & 0$	Cowlitz	SW	1991	0	45.0%	58.0%	7.0%	17.0%	60.0%	95.0%
Cowlitz SCT 1987 0 0.0%				1	52.0%	38.0%	93.0%	5.0%	40.0%	5.0%
Cowlitz SCT 1987 0 11.7% 70.0% 91.7% 3.3% 90.0% 1 10.0 10.0% 8.3% 18.3% 6.7% 2 6.7% 0.0% 0.0% 0.0% 0.0% 3 15.0% 20.0% 0.0% 0.0% 1.7% Cowlitz SCT 1988 0 450.7% 0.0% 0.0% 78.3% 1.7% Cowlitz SCT 1988 0 45.0% 43.3% 73.3% 96.6% 86.7% 2 5.0% 5.0% 3.4% 13.3% 2 5.0% 5.0% 3.4% 13.3% 2 5.0% 5.0% 3.4% 0.0% 0				2	3.0%	3.0%	0.0%	78.0%	0.0%	0.0%
Cowlitz SCT 1987 0 11.7% 70.0% 91.7% 3.3% 90.0% 1 10.0 10.0% 8.3% 18.3% 6.7% 2 6.7% 0.0% 0.0% 0.0% 0.0% 3 15.0% 20.0% 0.0% 0.0% 1.7% 4 56.7% 0.0% 0.0% 78.3% 1.7% Cowlitz SCT 1988 0 45.0% 43.3% 73.3% 96.6% 86.7% 1 50.0 50.0% 23.3% 3.4% 13.3% 2 5.0% 5.0% 3.4% 13.3% 2 5.0% 5.0% 3.4% 0.0% 0.				3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
1 10.0 10.0% 8.3% 18.3% 6.7% 2 6.7% 0.0% 0.0% 0.0% 0.0% 3 15.0% 20.0% 0.0% 0.0% 1.7% 4 56.7% 0.0% 0.0% 78.3% 1.7% Cowlitz SCT 1988 0 45.0% 43.3% 73.3% 96.6% 86.7% 1 50.0 50.0% 23.3% 3.4% 13.3% 2 5.0% 5.0% 3.4% 0.0% 0.0% 3 0.0% 1.6% 0.0% 0.0% 0.0% 4 0.0% 0.0% 0.0% 0.0% 0.0% Cowlitz SCT 1989 7.0% 43.0% 100.0% 95.0% 97.0% 100.0% 2 15.0% 7.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2 15.0% 7.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2 15.0% 7.0% 0.0% 0.0% 0.0% 0.0% 0.0%				4	.0%	0.0%	0.0%	0.0%	0.0%	0.0%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cowlitz	SCT	1987	0	11.7%	70.0%	91.7%	3.3%	90.0%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	10.0	10.0%	8.3%	18.3%	6.7%	
Cowlitz SCT 1988 4 56.7% 0.0% 0.0% 78.3% 1.7% Cowlitz SCT 1988 0 45.0% 43.3% 73.3% 96.6% 86.7% 1 50.0 50.0% 23.3% 3.4% 13.3% 2 5.0% 5.0% 3.4% 0.0% 0.0% 3 0.0% 1.6% 0.0% 0.0% 0.0% Cowlitz SCT 1989 0 7.0% 43.0% 100.0% 95.0% 97.0% 100.0% Cowlitz SCT 1989 0 7.0% 43.0% 100.0% 95.0% 97.0% 100.0% 1 78.0% 50.0% 0.0%				2	6.7%	0.0%	0.0%	0.0%	0.0%	
Cowlitz SCT 1988 0 45.0% 43.3% 73.3% 96.6% 86.7% 1 50.0 50.0% 23.3% 3.4% 13.3% 2 5.0% 5.0% 3.4% 0.0% 0.0% 3 0.0% 1.6% 0.0% 0.0% 0.0% 4 0.0% 0.0% 0.0% 0.0% 0.0% Cowlitz SCT 1989 0 7.0% 43.0% 100.0% 95.0% 97.0% 100.0% 1 78.0% 50.0% 0.0%				3	15.0%	20.0%	0.0%	0.0%	1.7%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				4	56.7%	0.0%	0.0%	78.3%	1.7%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cowlitz	SCT	1988	0	45.0%	43.3%	73.3%	96.6%	86.7%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	50.0	50.0%	23.3%	3.4%	13.3%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				2	5.0%	5.0%	3.4%	0.0%	0.0%	
Cowlitz SCT 1989 0 7.0% 43.0% 100.0% 95.0% 97.0% 100.0% 1 78.0% 50.0% 0.0% 5.0% 3.0% 0.0% 2 15.0% 7.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Cowlitz SCT 1990 0 2.0% 55.0% 77.0% 98.0% 15.0% 82.0% 1 15.0% 45.0% 22.0% 2.0% 83.0% 18.0% 22.0% 2.0% 0.0% <td></td> <td></td> <td></td> <td>3</td> <td>0.0%</td> <td>1.6%</td> <td>0.0%</td> <td>0.0%</td> <td>0.0%</td> <td></td>				3	0.0%	1.6%	0.0%	0.0%	0.0%	
1 78.0% 50.0% 0.0% 5.0% 3.0% 0.0% 2 15.0% 7.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Cowlitz SCT 1990 0 2.0% 55.0% 77.0% 98.0% 15.0% 82.0% 1 15.0% 45.0% 22.0% 2.0% 83.0% 18.0% 2 28.0% 0.0% 2.0% 0.0% 2.0% 0.0%				4	0.0%	0.0%	0.0%	0.0%	0.0%	
2 15.0% 7.0% 0	Cowlitz	SCT	1989	0	7.0%	43.0%	100.0%	95.0%	97.0%	100.0%
3 0.0% 0.				1	78.0%	50.0%	0.0%	5.0%	3.0%	0.0%
4 0.0% 0.				2	15.0%	7.0%				
Cowlitz SCT 1990 0 2.0% 55.0% 77.0% 98.0% 15.0% 82.0% 1 15.0% 45.0% 22.0% 2.0% 83.0% 18.0% 2 28.0% 0.0% 2.0% 0.0% 2.0% 0.0%				3	0.0%	0.0%	0.0%			
1 15.0% 45.0% 22.0% 2.0% 83.0% 18.0% 2 28.0% 0.0% 2.0% 0.0% 2.0% 0.0%				4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
2 28.0% 0.0% 2.0% 0.0% 2.0% 0.0%	Cowl itz	SCT	1990	0	2.0%	55.0%	77.0%	98.0%		82.0%
				1	15.0%	45.0%	22.0%		83.0%	
3 47.0% 0.0% 0.0% 0.0% 0.0% 0.0%				2	28.0%	0.0%				
				3	47.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Table 6. (Cont.)

Location	Species	Year	Score	Fat	Spleen	HindGut	Kidney	Liver	Gills
			4	8.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Cowlitz	SCT	1991	0	0.0%	10.0%	85.0%	83.0%	85.0%	82.0%
			1	2.0%	90.0%	15.0%	0.0%	15.0%	18.0%
			2	53.0%	0.0%	0.0%	17.0%	0.0%	0.0%
			3	27.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			4	5.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Cowlitz	LSW	1987	0	6.7%	75.0%	80.0%	0.0%	95.0%	
			1	3.3%	25.0%	16.7%	100.0%	50.0%	
			2	15.0%	0.0%	3.3%	0.0%	0.0%	
			3	25.0%	0.0%	0.0%	0.0%	0.0%	
			4	50.0%	5.0%	0.0%	80.0%	0.0%	
Cowlitz	LSW	1988	0						
			1						
			2						
			3						
			4						
Cowlitz	LSW	1989	0	0.0%	7.0%	2.0%	100.0%	96.7%	100.0%
			1	80.0%	90.0%	98.3%	0.0%	0.0%	0.0%
			2	20.0%	3.0%	0.0%	0.0%	0.0%	0.0%
			3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
G = = 1 : + =	T ON	1000	4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Cowlitz	LSW	1990	0	2.0%	30.0%	95.0%	100.0%	28.0%	100.0%
			1	12.0%	70.0%	0.0%	0.0%	72.0%	0.0%
			2	45.0%	0.0%	5.0%	0.0%	0.0%	0.0%
			3	40.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Gevel : : : :	T OM	1001	4	2.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Cowlitz	LSW	1991	0	0.0%	46.0%	98.0%	98.0%	73.0%	98.0%
			1	3.0%	53.0%	2.0%	0.0%	27.0%	0.0%
			2	43.0%	1.0%	0.0%	2.0%	0.0%	0.0%
			3	53.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Wells		1987	4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
WEITS	SS	1907	0						
			1 2						
			2 3						
			3 4						
Wells	SS	1988	4	0.0%	100.0%	100.0%	100 0%	00 20/	
WCIIS	66	1900	1	33.3%	100.0% 0.0%	100.0% 0.0%		98.3%	
			2	66. 7%	0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	
			2 3	0.0%	0.0%	0.0%	0.0%	0.0%	
			4	0.0%	0.0%	0.0%	0.0%	0.0%	
Wells	SS	1989	0	0.0%	100.0%	100.0%	100.0%	100.0%	100.0%
	55	1909	1	3.3%	100.0%	0.0%	0.0%	0.0%	
			2	67.0%	0.0%	0.0%	0.0%	0.0%	0.0% 0.0%
			23	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			4	0.0%	0.0%	0.0%	0.0% 0.0%	0.0%	0.0%
Wells	SS	1990		0.0%	100.0%	100.0%	100.0%	100.0%	0.0%
			9 1	3.0%	0.08	0.0%	0.0%	0.0%	0.0%
			2	37.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			2 3	58.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			4	2.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			-	~. 070	0.00	0.00	0.00	0.00	0.00

·····

Table 6. (Cont.)

Location	Species	Year	Score	Fat	Spleen	HindGut	Kidney	Liver	Gills
Wells	SS	1991	0	0.0%	100.0%	100.0%	100.0% 10	0.0% 1	.00.08
			1	3.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			2	37.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			3	58.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			4	2.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Scores:	50% caed Spleen: 4- enla: Hind Gut inflamma Kidney: granular Liver: ((D), 4 -	cum cov red (R rged () :: 0 no ation 1 - no c (G) 4 0 - nor - focal 0 - nor	ered,), 1 - E) ormal (1 - urc mal (A . disco mal (N	4 - cae black mation, N), 1 lithia), 1 - lorati), 1 -	ecum com (B), 2 1 - mi - swolle sis (U) Pale (E on (E),	pletely c - granula ild infla n (S), 2 3), 2 - f	covered ir (G), 3 immation, - mottle atty (C) ht genera	nod 2 - se ed (M), , 3 - no al disco	3 - odules oloratin(F)

Task 3.2 Test for Specific Pathogens

Viral pathogens

Viral assays run in 1990-91 revealed that six stocks of steelhead broodfish and one stock of cutthroat broodfish at three hatcheries had detectable levels of IHNV (Table 7) though no mortality was attributed to viremia. Infectious pancreatic necrosis virus was detected in summer steelhead broodfish at the Wells Hatchery during 1991. IPNV was also detected in one summer-run steelhead broodfish at the Yakima Hatchery in 1991. This was the first isolation of IPNV from a WDW hatchery other than Wells since 1983. Table 7 lists all isolations of replicating viral agents from broodfish sampled from 1983 to 1991 for this project.

Table 7. Isolations of IHNV/IPNV from WDW Columbia River basin broodstocks from 1987 to 1991.

Hatchery	Species	Stock	1987	1988	1989	_1990	1991
Beaver Creek	SCT	Elochoman	_				
Chelan	SW ss	Elochoman Ringold	-	IHNV			IHNV NF
Cowlitz	SCT	CowĬitz		IHNV	IHNV	IHNV	IHNV
	SS	Cowlitz		IHNV	IHNV	IHNV	IHNV
	SW	Cowlitz		IHNV	IHNV	IHNV	IHNV
	LSW	Cowlitz		IHNV	IHNV	IHNV	IHNV
Lyons Ferry	SS	Lyons Ferry	IHNV	-	IHNV	IHNV	-
Skamania	SCT	Washougal	-			IHNV	-
	SS	Washougal	IHNV	-		IHNV	IHNV
	SW	Washouqal	-	IHNV	IHNV	IHNV	-
Wells	SS	Wells			IHNV\IP	_	IPNV
Yakima	SS	Yakima			(IPNV

- = No virus detected

NF = No fish on facility

Assays for erythrocytic inclusion body syndrome virus (EIBSV) were carried out by WDW staff. A three percent incidence of the virus was detected in summer steelhead broodfish at Wells Hatchery in 1990. In 1989 Wells SS broodstock was also positive at a 50% prevalence. Assays of all other broodstocks were negative for the viral inclusions (Table 8). These low levels of the virus are consistent with the previous two years. Data from 1986 and 1987 can not be compared to later years due to changes in assay technique.

from 1986 to Hatchery Sp	1990. ecies Stock	1987	1988	1989	1990	1991
Beaver Creek SC	r Elochoman			 0%		0۶
SW	Elochoman	30%	15%	0%	0%	0%
Chelan ss	Ringold	78%	28%	0%	0%	NF
Cowlitz SC	r Cowlitz	98%	NS	0%	0%	0%
SS	Cowlitz	18%	8%	0%	0%	0%
SW	Cowlitz	42%	36%	0%	0%	0%
LS	W Cowlitz	NS	0	0%	0%	0%
Lyons Ferry ss	Lyons Ferry	58%	5%	0%	0%	0%
Skamania SC	T Washougal	NS	NS	0%	0%	0%
SS	Washougal	47%	NS	0 %	0%	0 %
SW	Washougal	37%	NS	0%	0%	0%
Wells ss	Wells	90%	8 %	0 %	5%	38
Yakima ss	Yakima	23%	22%	0%	0%	0%

Table 8. Prevalence of EIBSV in WDW Columbia River basin broodstock

NF = No fish on facility

NS = Not sampled

_

Cell culture assays on 1991 smolt samples were negative for replicating viral agents (Table 9). Beaver Creek had a 5% prevalence of EIBSV in SCT smolts; Chelan and Eastbank had 2% in SS smolts, Ringold SS, had 3%, and Cowlitz SW had a prevalence of 2%. These levels are consistent with the low levels found the previous four years (Table 10).

In October 1990, IHNV was isolated from winter-run steelhead fingerlings at the Cowlitz Hatchery. This infection was concurrent with an epizootic of ceratomyxosis and mortality was attributed primarily to the parasitic infection. IHNV was isolated from SS and SW steelhead fry and searun SCT fry at Beaver Creek hatchery in May. Mortality reached epizootic levels in the two steelhead stocks but not in the cutthroat (Table 20). Table 10. Prevalence of EIBSV in smolts from WDW Columbia River basin hatcheries from 1987 to 1991.

Location	Species	Stock	_1987	1988	1989	1990	1991
Alder Creek Pond Beaver Creek Beaver Creek Beaver Creek Chelan Cottonwood Pond Coweeman Pond, Lower Coweeman Pond, Lower Cowlitz Cowlitz Cowlitz Cowlitz Cowlitz Cowlitz Curl Lake Dayton Pond Eastbank Gobar Pond Lyons Ferry Lyons Ferry Lyons Ferry Lyons Ferry Merwin Net Pen Nelson Springs Nile Pond Ringold Skamania Skamania South Toutle Trap	ss SCT ss SW ss SCT/SW SCT/SW SCT/SW SCT ss SW LSW ss ss ss ss ss ss ss ss ss ss ss ss ss	Washougal Elochoman Washougal Elochoman Wells Wallowa Elochoman Cowlitz Cowlitz Cowlitz Cowlitz Cowlitz Lyons Ferry Wells Washoual Wells Lyons Ferry Wallowa Washougal Yakima Ringold Washougal Washougal Washougal Elochoman	NS 25% 25% 25% 25% 25% 25% 27% 27% 27% NF 22% 27% NF 22% 22% 22% 20%	0% 00000000000000000000000000000000000	NF 3%%% 0%% 0%% 0%% 0%% 0%% 0%% 0%% 0%% 0%	NF % % % % % % % % % % % % % % % % % % %	NF 5% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% NF 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Turtle Rock Vancouver Wells Yakima	55 55 55 55 55	Ringold Washougal Wells Yakima	55% 23% 42% 17%	08 08 08 08 08	0 % 0 % 0 % 0 %	0 8 0 8 0 8 0 8	0 % 0 % 0 % 0 %

NF = No fish on facility NS = Not sampled

-

20

Bacterial pathogens

Clinical signs of enteric redmouth disease were not observed during the monthly visits of this project. Furunculosis as epizootics occurred at the Beaver Creek Hatchery in 1986, 1987, 1988, and 1989. <u>Aeromonas salmonicida</u> was also isolated from SS juveniles at Columbia Basin Hatchery in 1987. <u>Cytophaga psychrophila</u>, the causative agent of bacterial coldwater disease, was isolated from fish at Cowlitz Hatchery, Beaver Creek Hatchery, Vancouver Hatchery, and Lyons Ferry Hatchery. Low grade, chronic mortality was associated with the pathogen and it was concurrent with coagulated yolk at Vancouver and IHN at Beaver Creek in 1991.

Results from the 1990-91 broodstock assays for $\underline{\mathbf{R}}$. <u>salmoninarum</u> revealed a very low rate of infection. Sea-run cutthroat broodfish had a prevalence of 3% at Cowlitz and 2% at Skamania. This finding is consistent with the previous four years (Table 11).

Table 11.	11.	Prevalence	of	renik	acte	<u>eriu</u> m	salmonlnarum In	WDW	Columbia River	basin
		broodstock fr	com	1987	to	1991.				

Hatchery	Species	Stock	1987	1988	1989	1990	1991
Beaver Creek	SCT	Elochoman	 5%	 6%	 2%	0%	#0 #0
	SW	Elochoman	5%	3%	0%	2%	0%
Chelan	SS	Ringold	0%	0%	2%	0%	NF
Cowlitz	SCT	Cowlitz	3%	3 %	2%	0%	3%
	S S	Cowlitz	0%	0%	0 %	2 %	0%
	SW	Cowlitz	0%	0%	0%	08	0%
	LSW	Cowlitz	0%	0%	3 %	0%	0%
Lyons Ferry	5 5	Lyons Ferry	3 %	3 %	8 %	0%	0%
Skamania	SCT	Washougal	0%	0%	08	0%	2 %
	S S	Washouga;	0%	0%	0%	0%	0%
	SW	Washougal	5%	6 %	2 %	0 %	0 %
Wells	SS	Wells	2%	3 %	0%	0 %	0 %
Yakıma	SS	Yakima	7%	7%	0%	0%	NS

NF = No fish on facility
NS = Not sampled

The 1990 smolts showed an equally low number of bacteria. Only the SS smolts from Vancouver were positive at a prevalence of 2% (Table 12). In 1991 11 of 26 stocks were infected. Five percent or less of each sample was positive. Clinical signs were not observed in the fish sampled. Prevalence of infections have been 5% or less with the exception of the Coweeman Ponds in 1987 when infection at the Coweeman Ponds reached 20% and 30% (Table 12).

<u>Renibacterium salmoninarum</u> was not detected in the 1990 broodyear sea-run cutthroat midterm samples collected in the fall of 1990. Table 13 shows the cumulative data for the five years of the study. Low levels of the bacterium were found in all stocks in 1987 and in the Skamania SCT in 1988. All samples collected in 1989 and 1990 were negative.

Location	Species	Stock	1987	1988	1989	1990	1 991
Alder Creek Pond	SS	Washougal			NF	NF	NF
Beaver Creek	SCT	Elochoman					
Beaver Creek	SS	Washougal					
Beaver Creek	SW	Elochoman					
Chelan	SS	Wells					NF
Cottonwood Pond	SS	Wallowa					
Coweeman Pond, Lower	,	Elochoman					
Coweeman Pond, Upper	SCT/SW	Elochoman					
Cowlitz	SCT	Cowlitz					
Cowlitz	SS	Cowlitz		IHNV			
Cowlitz	SW	Cowlitz					
Cowlitz	LSW	Cowlitz		NS		IHNV	
Curl Lake	SS	Lyons Ferry					
Dayton Pond	SS	Lyons Ferry					
Eastbank	SS	Wells	NF	NF	NF		
Gobar Pond	SS/SW	Washougal	IHNV				
Lyons Ferry	SS	Wells		NF	NF	NF	NF
Lyons Ferry	SS	Lyons Ferry					
Lyons Ferry	SS	Wallowa					
Merwin Net Pen	SS	Washougal					
Nelson Springs	SS	Yakima					
Nile Pond	SS	Yakima	NF	NF	NF		NF
Ringold	SS	Ringold					
Skamania	SCT	Washogual					
Skamania	SS	Washougal	IHNV			IHNV	
Skamania	SW	Washougal					
South Toutle Trap	SW	Elochoman	NF	NF			
Turtle Rock	SS	Ringold					
Vancouver	SS	Washougal					
Wells	SS	Wells			_		
Y akima	SS	Yakima					

Table 9. Isolations of IHNV/IPNV from smolts at WDW Columbia River basin hatcheries from 1987 to 1991.

- = No virus detected

NF = No fish on facility NS = Not sampled

+-----

Location	Species	Stock	1987	1988	1989	1990	1991
Alder Creek Pond	S S	Washougal		0%	NF	 NF	NF
Beaver Creek	SCT	Elochoman	0%	0%	0%	0%	200%
Beaver Creek	SS	Washougal	0%	0%	0%	0%	0%
Beaver Creek	SW	Elochoman	0%	0%	0%	0%	0%
Chelan	SS	Wells	0%	0%	0%	0%	0%
Cottonwood Pond	SS	Wallowa	3%	0%	0%	0%	28
Coweeman Pond, Lower	SCT/SW	Elochoman	20%	3%	0%	0%	0%
Coweeman Pond, Upper		Elochoman	33%	0%	2%	0%	NF
Cowlitz	SCT	Cowlitz	0%	0%	0%	0%	0%
Cowlitz	S S	Cowlitz	08	5%	60	0%	0%
Cowlitz	SW	Cowlitz	0%	2%	08	0%	0%
Cowlitz	LSW	Cowlitz	0%	08	0%	0%	0%
Curl Lake	SS	Lyons Ferry	0%	08	0%	0%	2%
Dayton Pond	SS	Lyons Ferry	60	0%	0%	0%	0%
Eastbank	SS	Wells	NF	NF	NF	2%	3%
Gobar Pond	SS\SW	Washoual	0%	0%	0%	0%	0%
Lyons Ferry	SS	Wells	0%	0%	0%	0%	NF
Lyons Ferry	SS	Lyons Ferry	0%	60	0%	60	2%
Lyons Ferry	SS	Wallowa	08	08	0%	60	NF
Merwin Net Pen	SS	Washougal	0%	2%	0%	0%	0%
Nelson Springs	SS	Yakima	0%	08	60	0%	2%
Nile Pond	SS	Yakima	NF	NF	NF	0%	NF
Ringold	SS	Ringold	0%	0%	0%	0\$	5%
Skamania	SCT	Washougal	0%	0%	08	0%	0%
Skamania	SS	WAshougal	0%	08	08	0%	0%
Skamania	SW	Washougal	0%	0%	08	0%	3%
South Toutle Trap	SW	Elochoman	0%	08	08	0%	0%
Turtle Rock	SS	Ringold	0%	0%	0%	0%	2%
Vancouver	S S	Washougal	0%	0%	08	2%	0%
Wells	5 S	Wells	08	88	28	0%	3%
Yakima	SS	Yakima	0%	0%	0%	0%	28

Table 12. Prevalence of <u>penibacterium</u> <u>salmoninarum</u> in WDW Columbia River basin smolts from 1987 to 1991.

NF = No fish on facility

NS = Not sampled

Table 13. Prevalence of <u>Renibacterium salmoninarum</u> in WDW Columbia River basin juvenile sea-run cutthroat trout from 1987 to 1990.

Hatchery	Stock	1987	1988	1989	1990
Beaver Creek Cowlitz Skamania	Elochoman Cowlitz Washougal	3% 2% 5%	0% 0% 5%	0% 0% 0%	08 08 08

and a state a state

a antica antica de la composición de la

-+

Parasitic pathogens

No samples were processed for Myxobolus cerebral is this yeable 14 lists all the hatcheries and natural waters sampled during this project. All 18 sites assayed for M. cerebralis were negative. Ceratomyxa shasta continues to cause significant losses in production lots at the Cowlitz Hatchery, our only site which is plagued by the parasite. An ozone water treatment plant has been installed by Tacoma City Light in an attempt to control the ceratomyxosis. The system was tested during the summer of 1991 and initial results are promising. The causative agent of proliferative kidney disease (PKX) was not detected during routine necropsy and clinical signs of the disease were not observed at any of the Columbia River basin facilities.

Table 14.	Locations,	species,	stock,	lifesta	age, and	results	of	fish	sampled
	for <u>Myxobo</u>	<u>lus cereb</u>	ralis, 3	1986 to	1990.				

Location	Sampling date	Species	stock	Lifestage	Sample Result size
Beaver Creek Hatchery	02/02/88	SW	Elochoman	Juvenile	20 Negative
Beaver Creek Hatchery	01/01/87	SW	Elochoman	Juvenile	60 Negative
Cottonwood Pond	04/25/88	SS	Wallowa	Smolt	60 Negative
Coweeman Pond	10/14/88	SW	Elochoman	Juvenile	25 Negative
Cowlitz Hatchery	03/22/88	SW	Cowlitz	Smolt	60 Negative
Curl Pond	01/01/87	SS	Lyons Ferry	Smolt	60 Negative
Curl Pond	04/26/88	SS	Lyons Ferry	Smolt	60 Negative
Gobar Pond	09/22/88	SS/SW	Washougal/	Juvenile	60 Negative
			Elochoman		
Merwin Net Pen	03/01/88	SS	Washougal	Smolt	60 Negative
Nelson Springs Pond	01/12/87	SS	Yakima	Juvenile	40 Negative
Skamania Hatchery	01/01/87	SS	Washougal	Juvenile	60 Negative
Skamania Hatchery	03/18/89	SS/SW	Washougal	Smolt	20 Negative
south Toutle Trap	09/07/88	SW	Elochoman	Juvenile	60 Negative
Turtle Rock Pond	01/01/87	SS	Ringold	Juvenile	60 Negative
Turtle Rock Pond	12/17/87	SS	Ringold	Juvenile	60 Negative
Wells Hatchery	01/01/87	SS	Wells	Juvenile	60 Negative
Wells Hatchery	02/17/88	SS	Wells	Juvenile	60 Negative
White Salmon River	10/12/88	RB	Wild	Juvenile	21 Negative
				Total	906

Objective 4.0 Monitoring Hatchery Water Supplies

Task 4.1 Sample Hatchery Water Supplies

A sampling plan was completed in the 1986 annual report (Table 15). BPA did not select a laboratory for water analysis so sampling was not initiated.

Task 4.2 Monitoring Flow and Loading Densities

The flow and density index data for the project are summarized in Table 16 and are presented as the mean, minimum, and maximum loadings for each facility. The loadings did not vary significantly during the study.

Table 15. Proposed locations and dates for water sampling at WDW Columbia River basin hatcheries.

Hatchery Location	Water Supply	Sample Date
Alder Cr. Pond	Alder Cr	April
Beaver Cr.	Beaver Cr.	April, October
	Well source	January
	Elochoman River	July
Chelan	Well source	April, October
	Spring source	April, October
Columbia basin	Spring	August
Cottonwood Pond	Cottonwood Cr.	April
Coweeman CT Pd	Creek	April
Coweeman SW Pd	Creek	April
Cowlitz	Well source	April, October
	Cowlitz	July
Curl Lake	Tucannon River	April
Dayton Pond	Touchet River	April
Gobar pond	Gobar Cr.	April
Lyons Ferry	(sampled per WDF cont:	ract)
Merwin Net Pen	Merwin Res.	April
Naches	Seep system	May, November
Naches River		June
Nelson Springs	Spring	April
Ringold Springs	(sampled per WDF cont	ract)
Skamania	Skamania River	April, October
Vogel Cr.		January
S. Toutle Trap	Creek	April
Turtle Rock	(sampled per WDF contr	ract)
Vancouver	Spring	April, October
Keffel Lake		January
Wells	(sampled per WDF cont	-
Yakima	Spring	April, November
Spring Cr.		April

					Pond	TEM	P		DI			FI	
Locat i on		Speci es	Stock	Year	Туре	mın	max	min	max	avg	mi n	max	av g
Beaver Cr	eek	SS	Washougal	1988	R	40	65	0. 09	0. 24	0.15	0. 06	1. 45	0. 95
			Washougat	1989	R	44	58	0.06	0.26	0.18	0.34	3. 92	1.28
			Washougal	1990	R	45	66	0.05	0. 28	0. 20	0. 25	1.38	1.05
				AVG		43	63	0.07	0.26	0.18	0. 22	2.25	1.09
				SD		2.16	3.56	0. 02	0. 02	0.02	0.12	1.18	0.14
Beaver Cr	eek	SW	El ochoman	1987	R	42	52	data in	c: ompl et	e for	year		
			El ochoman	1988	R	40	65	0.09	1.17	0. 25	0.41	1.86	0.97
			ELochoman	1989	R	44	58	0.07	0.39	0. 23	0.44	1.84	1.00
			El ochoman	1990	R	44	66	0.01	0.91	0.26	0. 20	2.15	1.22
				AVG		44	62	0.06	0.82	0. 25	0.35	1.95	1.06
				SD		0.00	4.00	0. 03	0.32	0.01	0.11	0.14	0.11
Beaver Cr	reek	SW	El ochoman	1987	RP	42	52						
			ELochoman	1988	RP								
			ELochoman	1989	RP	44	52				0.88	2.03	1.49
			El ochoman	1990	RP	45	51	0.16	0.37	0.29	0.82	1.87	1.47
				AVG		45	52	0.16	0.37	0.29	0.85	1.95	1.48
				SD		0.50	0.50	0.00		0.00	0. 03	0. 08	0.01
Beaver Cre	eek	SCT	El ochoman	1988	R	40	65	0.10	0.24	0.17	0.42	1.66	0.97
			El ochoman	1989	R	44	58	0. 01	0.31	0.18	0.31	2.07	1.19
			ELochoman	1990	R	45	66	0.16	0.59	0. 23	2.15	0. 20	1.22
				AVG		43	63	0.09	0.38	0.19	0.96	1.31	1.13
				SD		2.16	3.56	0.06	0.15	0. 03	0.84	0.80	0.11
Chelan		SS	Wells	1987	R	54	56	0.16	0.09	0. 29	1.12	0.53	2.94
			Ri ngol d	1987	R	54	56	0.15	0.05	0. 27	0. 88	0.33	1.54
			Wells	1988	R	55		0.12	0.03	0. 24	0. 92	0. 22	1.95
			Wells	1989	R	55		0.16	0.09	0. 28	1.30		2.21
			Wells	1990	R	54	56	0.13	0.09	0.16	1.01	0.76	1.24
				AVG		54	56	0.14	0.07	0. 25	1.05	0.51	1.98
				SD		0.49	0.00	0. 02	0.03	0. 05	0.15	0. 21	0.59
Columbia 1	Basi n	SS	Skamani a	1987	R	58	60	0.19	0.06	0. 30	0. 70		1.06
			Ri ngol d	1987	R	58		0. 22	0.17	0. 29	0. 79		1.04
			Skamani a	1988	R	59		0.11	0.02	0.19	0.39	0.06	0.68
			Ri ngol d	1988	R	59		0.17	0.13	0. 27		0.45	0.96
			Lyons Ferry		R	58	60		0.14	0.15	0. 51	0.49	0.53
			Ri ngol d	1989	R	59		0.12	0.11	0.13			0.47
				AVG		59	60		0.11	0. 22			0.79
				SD		0.50			0. 05	0.07			0. 24
Cowlitz		SS	Cowlitz	1988	R	48			0.17	0. 08			0. 21
			Cowlitz	1989	R	44	54		0. 03	0.01	0.03		0. 05
			Cowlitz	1990	R		01	0.01	0.00	0.01	0.00	0.10	0.00
			00001102	AVG	~	46	54	0.01	0.10	0. 05	0. 04	0. 93	0.40
				SD		2.00			0.07	0.03		0. 82	0. 34
Cowlitz		SS	Cowlitz	1989	RP	2. 00 44	47		0. 07	0.01	0.01	0.02	0.04
0011102		66	Cowlitz	1990	RP					0.01			0.04
			50	AVG		44	47	0.00	0. 00	0. 01	0. 00	0.00	0. 04
				SD			.,	5. 00	5. 00	5. 01	5.00	0.00	0.01
Cowlitz		SW	Cowlitz	1988	R	48	54	0. 01	0. 26	0.11	0. 35	0.56	1.37
55WI I LZ		2	Cowlitz	1989	R	40			0. 20	0.03			0. 05
			Cowlitz	1989	R	-10	50	5.00	0.10	0.00	0.00	0.07	0.05
			JUWIILZ	AVG		47	55	0. 01	0. 21	0. 07	0. 20	0. 32	0.71
				SD					0. 21	0.07			0. 71
				JU		1.50	1.00	0.01	0.05	0.04	0.15	0. 20	0.00

Table 16. The range and mean of temperature, flow index, and density index for WDW Columbia River basin hatcheries from 1983 to 1990.

R • raceway, RP • rearing pond, C • circular

.....

Table 16. flow and density index data continued

Locati on	Speci es	Stock	Year	Pond Type	៣1 n	max	min	max	avg	min	max	avg
Cowlitz	SW	Cowlitz	1988	RP	48	55				1. 29	3. 03	1.80
		Coulitz	1989	RP								
		Cowlitz	1990	RP								
			AVG		48	55				1.29	3. 03	1.80
			SD		0.00	0.00						
Coulitz	SCT	Cowlitz	1988	R	48	51	0.07	0.15	0. 08		1.95	
		Cowlitz	1989	R	44	56	0.01	0. 02	0.10	0. 02	0.04	0.04
		Coulitz	1990	R								
			AVG		46	54	0.04	0. 09	0.09		1.00	0.52
			SD		2.00	2.50	0.03	0.07	0. 01	0.00	0.95	0.48
Cowlitz	LSW	Cowlitz	1988	R	48	51	0.10	0. 22	0.14	0.57	2.16	1.31
		Cowlitz	1989	R	46	51	0.00	0. 02	0.01	0.00	0.04	0. 03
		Coulitz	1990	R								
			AVG		47	51		0.12	0. 08		1.10	0.67
			SD		1.00	0.00	0.05	0.10	0.06		1.06	
Eastbank	SS	Wells	1989	RP	48	56		0. 01	0.06		0.54	1.56
		Wells	1989	RP	48	54	0. 03	0. 02	0.05		0. 73	1.25
		Wells	1990	R	48	51	0.16		0.26		0.82	1.58
			AVG		48	54	0. 08	0. 03	0.12		0. 70	1.46
			SD		0.00	2.05		0. 03			0.12	0.15
Lyons Ferry	SS	Wallowa	1987	RP	52	53					0.28	1.32
		Wal lowa	1987	R	50	54		0. 03				0.58
		Lyons Ferry		R	48	54		0.04	0.16			1. 38
		Lyons Ferry	1987	RP		52	0.01	0.00	0. 02		0.34	1.49
		Wallowa	1988	R		53	0.10	0.06	0.16	0.81	0.56	1.61
		Wallowa	1988	RP	51	53		0.01	0. 02			1.22
		Lyons Ferry		RP	51	53	0.01	0.00				3 1.66
		Lyons Ferry	1988	R	52	53	0.11	0.04	0.21	0.90	0.44	1.41
			AVG		51	53						1. 33
			SD		1.37	0.60	0.04	0. 02				0.32
Naches	SS	Yaki ma	1987	R	52							1.90
		Yaki ma	1988	R	46	58	0.32	0.13	0.53	1.09	0.51	2.10
			AVG		49	58.5	0.34	0.115	0.56	3 1.24	0. 68	2
			SD		3.00	0.50	0.02	0. 02	0. 03	0.15	0.17	0.10
Nelson Springs	SS	Yaki ma	1987	R	49	51	0.31	0.24	0.37	1.41	1.37	1.51
		Yaki ma	1988	R	50		0. 28	0. 25	0. 32	1.08	0.94	1.22
		Yaki ma	1989	R	50		0.35	0. 29	0.41	1.33	1.11	1.55
			AVG		50	51	0.31	0.26	0.37	1.27	1.14	1.43
			SD		0.47	0.00	0.03	0. 02	0. 04	0.14	0.18	0.15
Ri ngol d	SS	Ri ngol d	1987	RP	50					2.51	1.32	4. 52
		Ri ngol d	1988	RP	52	59	0. 02	0. 01	0. 02	2.12	1.12	3. 25
		Skamani a	1989	RP	54	59	0.01	0. 01	0. 02	2 1.92	1.11	2.74
		skamani a	1990	RP	52	59	0. 02	0. 01	0. 02	2 1.55	0.78	2.26
			AVG		52	59	9 0. 02	0. 01	0. 02	2.03	1.08	3 3.19
			SD		' 1.41	0.43	B 0. 00	0.00	0.00	0.35	0.19	0.84
Skamani a	SS	washougal	1988	R	40	5	7 0.07	0.38	0. 21	0. 33	1.48	1.01
		Washougal	1989	R	41	59	9 0.14	0.26	6 0.21	0.68	3 1.46	5 1.19
		Uashougal	1990									
			AVG		41	58	8 0.11	0. 32	2 0.21	0.51	1.47	1.10
			SD		0.50	1.00	0.04	0.06	3	0.18	3 0.01	0.09

R - raceway, RP - rearing pond, C - circular

26

- -

Table 16. flow and density index data continued

				Pond	TEM	P		DI			FI	
Locati on	Speci es	Stock	Year	Туре	min	max	min	max	avg	mi n	max	avg
Skamani a	su	El ochoman	1988	R	40	57	0. 07	0. 35	0. 23	0. 37	1. 89	1.21
		ELochoman	1989	R	41	59	0.11	0.31	0.24	0.50	1.72	1.26
		El ochoman	1990									
			AVG		41	58	0.09	0. 33	0.24	0.44	1.81	1.24
			SD		0.50	1.00	0. 02	0. 02	0.00	0.07	0. 09	0.02
Skamani a	SCT	El ochoman	1988	R	40	57	0. 02	0.35	0.21	0.11	1.87	1.11
		El ochoman	1989	R	41	59	0. 25	0. 08	0.17	0.39	1.16	0.77
		El ochoman	1990									
			AVG		40.5	58	0.135	0.215	0.19	0.25	1.515	0.94
			SD		0.50	1.00	0.12	0.13	0. 02	0.14	0.35	0.17
Turtle Rock	SS	Ri ngol d	I 987	RP	37	47	0.13	0.12	0.14	1.05	0.99	1.11
		Ri ngol d	1988	RP	36	53	0.1	0.09	0.11	0.79	0.67	0.83
		Wells	I 989	RP	37	53	0.12	0. 08	0.16	1.02	0.7	1. 23
			AVG		36.5	50	0.115	0.105	0. 125	0. 92	0.83	0.97
			SD		0.50	3.00	0. 02	0. 02	0. 02	0.13	0.16	0.14
Vancouver	SS	Washougal	1988	RP	49	53			0.01			1.76
		Uashougal	1989	RP	45	52	0.01	0.01	0. 01	1.2	3.64	2.81
			AVG		47	52.5	0.005	0.005	0. 01	0.6	1.82	2. 285
			SD		2.00	0.50	0.01	0.01	0.00	0.60	1.82	0.52
Wells	SS	Uells	1987	RP	37	62	0.01	0	0. 02	1.89	0.48	3.21
		Uells	1987	R	52	53	0.21	0. 08	0.41	1.08	0.41	1.98
		Wells	1988	R	53		0.12	0. 09	0.15	0.59	0.46	0.72
		Wells	1988	RP	38	58	0.01	0.01	0. 02	1.64	0.94	2.21
		Wells	1989	RP	35	60	0.01	0.01	0. 02	1.61	1.02	2.27
		Wells	1989	R	53		0.19	0.13	0. 27	0.94	0.63	1.32
			AVG		44.7	58.3	0.1	0.1	0.1	1.3	0.7	2.0
			SD		8.06	3.34	0. 09	0. 05	0.15	0.45	0.24	0. 78
Yaki ma	SS	Yaki ma	1987	С	52	58	0.11	0. 03	0.19	2.55	0.67	4.49
		Yaki ma	1988	С	50	58	0.12	0.06	0.18	2. 23	0.95	3. 08
		Yaki ma	1989	С	57	58	0.1	0.07	0.14	1.85	0.85	2.82
		Yaki ma	1990	С	55	56	0. 09	0. 09	0. 25	3.55	1.67	4.84
			AVG		53.5	57.5	0.1	0.1	0. 2	2.5	1.0	3. 8
			SD		2.69	0.87	0. 01	0. 02	0.04	0.63	0. 38	0.87

R $\mbox{ \ \ }$ raceway, RP $\mbox{ \ \ }$ rearing pond, C $\mbox{ \ \ }$ circular

. .

......

r -

t nye kangangantananan kara atika ari atika ari atika na ini arianan manananan garan atika katadan

Objective 5.0 Record, Analyze and Report Fish Health Monitoring and Related Data

Monthly monitoring data and specific pathogen testing information was entered into a dBase III+ database program. The flow and density data has been entered into Lotus 123 worksheets.

Objective 6.0 Estimate the Project's Benefits

Task 6.1.1 Severity of Pathogens and Mortality Caused

Viral Pathogens:

At the beginning of the BPA project, data on the status of fish health at WDW Columbia River hatcheries was reviewed. Data on pathogen isolation and identification from 1983 to 1986 is presented in this section.

IHNV was isolated from adult fish at the Cowlitz Hatchery in 1981 and 1982 but is not included in the table.

The incidence of IHNV isolated from each hatchery varied substantially from 1983 to 1985. Results of IHNV isolations are listed in Table 17.

IPNV was isolated from adult summer steelhead from Tucannon and Wells hatcheries. After 1983, the IPNV isolations were only found in adult steelhead at Wells hatchery. The incidence at Wells was less than one percent of the adult fish sampled. The historical isolations of IPNV from WDW Columbia River broodstocks are shown in Table 17.

Juvenile fish were not sampled for replicating viral agents prior to 1986. Samples were not collected from adult or juvenile fish for EIBSV before 1986.

Table 17.Isolation of IHNV/IPNV from WDW Columbia River basin broodstocksfrom 1983 to 1986.

				Year		
Hatchery Location	Species	Stock	1983	1984	1985	1986
Beaver Creek	SCT	Elochoman				
	SW	Elochoman			IHNV	
Chelan	SS	Ringold	NF	NF	NF	
Cowlitz	СТ	Cowl itz				
	SS	Cowlitz				
	SW	Cowlitz				
Lyons Ferry	SS	Lyons Ferry		NF	NF	
Skamania	SS	Washougal	IHNV			
	SW	Washougal	IHNV			
Wells	SS	Wells	IPNV	IPNV		
Yakima	SS	Yakima				
					*	

-- = No virus detected

NF = No fish on facility

.....

Bacterial Pathogens:

No systematic sampling for any bacterial pathogen was done at any WDW facility in either adults or juveniles for 1983 to 1986. Identification of bacterial pathogens has been limited to diagnostic cases and epizootics are listed in Table 20.

Parasites:

Sampling for M. <u>cerebralis</u> was sporadic at WDW facilities in past years. One sample was collected from summer steelhead (Wallowa stock) from Lyons Ferry Hatchery (April, 1985). Sixty fish were sampled to certify them for shipment to Oregon and all were negative for the pathogen.

Routine sampling for C. <u>Shasta</u> and PKX was not done at any wow hatcheries prior to 1986. However, ceratomyxosis was diagnosed every year in juvenile steelhead and cutthroat stocks from the Cowlitz Hatchery.

Task 6.1.2 Total number and percent loss of each lifestage of fish species

Lot Production Mortalities

The average egg mortality for the 1989 broodyear was 16.17% with a range of 2.92% at Lyons Ferry (Wallowa stock) to 42.60% at Lyons Ferry (Lyons Ferry stock). The average fry mortality for the 1989 broodyear was 15.68% with a range of 0.07% at the Columbia Basin Hatchery to 73.55% at Cowlitz Hatchery. The resulting egg and fry mortality yielded an overall average mortality from egg to fry of 28.62%. A summary of the egg and fry mortality for the 1983 to 1989 broodyears is contained in Table 18.

Adult Prespawning Mortalities

Adult prespawning mortality data is reported in Table 19.

Task 6.1.3 <u>Number and causative agents of epizootics, type and amount of</u> <u>medication used</u>

Disease outbreaks causing significant mortality occurred at Columbia basin hatcheries between July 1, 1986 and June 30, 1989 (Table 20). When possible, epizootics were treated with medication.

Task 6.1.4 Feed Conversion

Feed conversion for hatchery stocks in the Columbia River basin during the project are listed in Table 21.

Task 6.1.5 Total survival of smolts to adults from index hatcheries

Fish were not tagged for smolt to adult survival during this project,

nat	cneries:	1983 to 1990.		_		met el
Location	Species	Stock	Broodyear	Egg mortality	Fry mortality	Total mortality
Beaver Creek	SS	Skamania	1983 1984 1985 1986 1987	0.22% 7.23% 0.10% 14.53%	8.68% 12.61% 10.55% 12.03%	8.87% 18.93% 10.64% 24.81%
Beaver Creek	SW	Elochoman	1988 1988 AVG SD 1983 1984	5.01% 27.23% 7.76% 0.09 5.24% 26.46%	11.10% 18.89% 10.55% 0.05 52.34% 16.90%	15.55% 40.98% 17.11% 0.12 54.83% 38.89%
			1985 1986 1987	12.26% 14.70%	17.88% 0.19%	27.95% 14.87%
Beaver Creek	SCT	Elochoman	1988 1989 AVG SD 1983 1984	26.88% 13.14% 14.10% 0.09 49.80% 32.86%	1.04% 44.00% 18.91% 0.20 102.59% 14.27%	27.65% 51.36% 30.79% 0.18 101.30% 42.45%
			1985 1986 1987 1988 1989	12.86% 27.97% 38.77% 41.43%	23.95% 10.91% 29.56% 4.92%	33.73% 35.83% 56.87% 44.31%
Chelan	SS	Wells	AVG SD 1983 1984 1985 1986 1987 1988 1989	29.10% 0.16 10.10% 2.40% 3.50% 4.10% 4.90% 5.40% 8.30% 5.53%	26.60% 0.32 8.10% 9.60% 8.40% 6.50% 10.60% 7.50% 8.37%	44.93% 0.28 17.40% 10.20% 12.80% 12.10% 11.00% 15.50% 15.10% 13.44%
Chelan/ Turtle Rock	SS	Wells	AVG SD 1983 1984 1985 1986 1987 1988 1988 1989 AVG	5.53% 0.03 18.60% 6.70% 8.20% 6.30% 29.80% 4.90% 12.42%	0.01 26.70% 38.70% 21.70% 3.70% 4.60% 14.30%	$\begin{array}{c} 13.448\\ 0.02\\ 40.408\\ 38.708\\ 26.908\\ 11.608\\ 9.608\\ 39.808\\ 15.308\\ 26.048\end{array}$
Columbia Basin/ Ringold	នន	Ringold	SD 1986 1987 1988 1989 1990 AVG	0.09 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.12 7.10% 10.20% 11.70% 0.70% 1.90%	0.13 7.10% 10.20% 11.70% 0.70% 1.90% 6.32%

Table 18. Summary of egg and fry mortality at lumbia River basin hatcheries: 1983 to 1990.

SD	0.00	0.04	0.04

30

- • --

Table 18. Sum	unary or e	egg and fry m	ortality Com		Erri r	Total
Location	Species	Stock	Broodyear	Egg mortality	Fry mortality	
Cowlitz	SS	Cowlitz	1983 1984 1985 1986 1987 1988 1989 1990 AVG SD	3.18 7.5% 6.8% 7.9% 7.6% 11.5% 9.3% 7.6% 7.66% 0.07	$\begin{array}{c} 16.2\%\\ 11.2\%\\ 45.7\%\\ 76.2\%\\ 39.8\%\\ 3.65\%\\ 34.34\%\\ 39.83\%\\ 33.37\%\\ 0.22\end{array}$	$18.7 \ 17.9 \ 49.4 \ 78.1 \ 14.69 \ 44.4 \ 14.69 \ 40.46 \ 44.39 \ 38.50 \ 0.20$
Cowlitz	SW	Cowlitz	1983 1984 1985 1986 1987 1988 1989 1990 AVG SD	5.6% 3.8% 7.0% 5.6% 23.3% 7.60% 23.35% 8.07% 10.63% 0.10	27.3% 30.3% 21.9% 28.6% 37.5% 0.66% 37.50% 10.00% 36.29% 0.26	31.4% 33.0% 27.3% 32.6% 52.1% 7.27% 52.09% 18.07% 31.73% 0.14
Cowlitz	SCT	Cowlitz	1983 1984 1985 1986 1987 1988 1989 1990 AVG SD	$\begin{array}{c} 1.4\$\\ 12.4\%\\ 16.3\%\\ 25.4\%\\ 15.5\%\\ 10.74\%\\ 15.50\%\\ 23.98\%\\ 15.17\%\\ 0.15\end{array}$	22.7% 27.1% 37.7% 60.6% 73.6% 4.20% 73.55%	$\begin{array}{c} 0.14\\ 23.8\\ 36.2\\ 47.9\\ 70.6\\ 77.7\\ 14.49\\ 77.65\\ 33.98\\ 47.79\\ 0.23\\ \end{array}$
Cowlitz	LSW	Cowlitz	1983 1984 1985 1986 1987 1988 1989 1990 AVG SD	11. 4% 12. 6% 17. 0% 11. 4% 31. 0% 16. 4% 13. 68% 0.11		14.6% 31.9% 16.4% 0.11
Eastbank	SS	Wells	1989 1990 AVG SD	0.00% 17.40% 8.70% 0.09	$\begin{array}{c} 0.04\\ 0.20\%\\ 10.50\%\\ 5.35\%\\ 0.05\end{array}$	0.20% 26.10% 13.15% 0.13
Lyons Ferry	SS	Wallowa	1983 1984 1985 1986 1987 1988 1989 1990	6.50% 4.20% 7.80% 3.60% 1.10% 4.70% 2.90% 4.30%	7.10% 3.30% 7.10% 2.10% 4.10% 16.30%	13. 10% 7. 30% 14. 30% 5. 60% 5.10% 20. 30% 8. 30% 6. 00%
			AVG SD	4.39% 0.02	5.91% 0.04	10.00% 0.05

Table 18. summary of egg and fry mortality continued

Table 18. sum	mary of e	gg and fry m	nortality con		Farme	matal
Location	Species	Stock	Broodyear	Egg mortality	Fry mortality	
Lyons Ferry	SS	Wells	1983 1984 1985 1986 AVG SD	3.70% 8.90% 4.10% 9.80% 6.63% 0.03	6.80% 9.20% 3.80% 3.90% 5.93% 0.02	$10.20 \ 17.30 \ 7.80 \ 13.30 \ 12.15 \ 0.04$
Lyons Ferry	SS	Lyons Ferry		27.50% 16.40% 12.20% 42.60% 24.68% 0.12	9.10% 4.90% 13.50% 5.10% 8.15% 0.04	34.10% 20.40% 24.10% 45.50% 31.03% 0.10
Naches	SS	Nelson Springs	1983 1984 1985 1986 1987 1988 1989 1990 AVG	9.30% 4.10% 8.00% 7.50% 2.40% 8.50% 6.63%	22.70% 6.30% 52.30% 2.80% 27.20% 20.70% 37.10% 6.00% 21.89%	29.90% 10.10% 56.10% 2.80% 32.70% 22.60% 42.40% 6.00% 25.33%
Skamania	SS	Skamania	SD 1983 1984 1985 1986 1987 1988 1989 1990	0.03 30.9% 22.6% 3.4% 8.0% 17.1% 19.5% 17.1%	0.16 1.0% 21.1% 1.1% 2.7% 8.1% 0.8% 8.1%	0.17 31.6% 38.9% 4.5% 10.5% 23.8% 20.2% 23.8%
Skamania	SW	Elochoman	AVG SD 1983 1984 1985 1986 1987 1988	14.84% 0.10 72.4% 16.2% 3.3% 4.4% 10.0%	5.36% 0.07 4.0% 46.1% 3.1% 1.8% 2.3%	0.12 73.5% 54.8% 6.3%
Skamania	SCT	Elochoman	1989 1990 AVG 5D 1983 1984 1985 1986 1987	19.2% 10.0% 16.94% 0.22 4.0% 10.1% 2.1% 1.8% 7.9%	8.00% 0.14 84.9% 83.9% 12.6% 9.5%	12.0% 23.44% 0.25 85.6% 85.5% 14.4%
			1989 1990 AVG	8.0% 7.9% 5.22%	6.6%	13.92%
			SD	0.03	0.35	0.33

Table 18.	summary of eg	gg and fry	mortality cor	tinued Egg	Fry	Total
Location	Species	Stock	Broodyear	mortality	mortality	mortality
Vancouver	 SS	Skamania	1983	8.3%	0.2%	8.4%
Valicouver	55	Diramanita	1984	0.2%	6.5%	6.7%
			1985	10.0%	15.0%	23.4%
			1986	5.8%	9.9%	15.1%
			1987	11.9%	18.3%	28.1%
			1988			
			1989	5.5%	19.4%	23.9%
			1990	0.9%	11.8%	12.6%
			AVG	6.09%	11.58%	16.89%
			SD	0.04	0.06	0.08
Wells	SS	Wells	1983	25.90%	1.20%	26.80%
			1984	9.40%	1.20%	10.50%
			1985	15.60%	2.70%	17.90%
			1986 1987	10.70%	0.50%	11.20%
			1988	8.80% 24.80%	2.00% 5.90%	10.60% 29.20%
			1989	17.80%	1.60%	19.10%
			1990	8.60%	1.00%	9.50%
			AVG	15.20%	2.01%	16.85%
			SD	0.07	0.02	0.07
Yakima/	SS	Ringold	1983	23.20%	6.80%	28.40%
Columbia Ba	.sin/	5	1984	24.60%	22.10%	41.30%
Ringold			1985	16.00%	10.10%	24.50%
-			AVG	21.27%	13.00%	31.40%
			SD	0.04	0.07	0.07
Yakima	SS	Yakima	1986	12.60%	20.00%	30.10%
			1987	25.50%	7.50%	31.10%
			1988	31.10%	7.10%	36.00%
			1989	25.40%	3.70%	28.10%
			1990 NVC	31.60%	18.10% 11.28%	44.00%
			AVG SD	25.24% 0.07	0.07	33.86% 0.06

Table 18. summary of egg and fry mortality continued

Location	Species	Stock	Year	Number trapped	Number dead	Mortality (%)
Beaver Creek Beaver Creek Beaver Creek Beaver Creek Beaver Creek	SCT SCT SCT SCT SCT	Elochoman Elochoman Elochoman Elochoman Elochoman	1986 1987 1988 1989 1990	741 929 553 493	8 23 13	1.1% 2.5% 2.4%
Beaver Creek Beaver Creek Beaver Creek Beaver Creek	SW SW SW SW	Elochoman Elochoman Elochoman Elochoman	1986 1987 1988 1989	1214 553 929 1085	26 13 23	2.1% 2.4% 2.5%
Chelan Chelan Chelan	SS ss ss	Ringold Ringold Ringold	1986 1987 1988	588 394 140	36 153 2	38.8%
Cowlitz Cowlitz Cowlitz Cowlitz Cowlitz	SCT SCT SCT SCT SCT	Cowlitz Cowlitz Cowlitz Cowlitz Cowlitz	1986 1987 1988 1989 1990	1313 508	62	4.7% 9.8%
Cowlitz Cowlitz Cowlitz Cowlitz Cowlitz	55 55 55 55 55	Cowlitz Cowlitz Cowlitz Cowlitz Cowlitz	1986 1987 1988 1989 1990	713 938	87	12.2% 15.7%
Cowlitz Cowlitz Cowlitz Cowlitz Cowlitz	SW SW SW SW SW	Cowlitz Cowlitz Cowlitz Cowlitz Cowlitz	1986 1987 1988 1989 1990	5070	31	2.4% 4.6%
Cowlitz Cowlitz Cowlitz	LSW LSW LSW	Cowlitz Cowlitz Cowlitz	1988 1989 1990			1.0%
Lyons Ferry Lyons Ferry Lyons Ferry Lyons Ferry Lyons Ferry	SS SS SS SS SS	Lyons Ferry Lyons Ferry Lyons Ferry Lyons Ferry Lyons Ferry	1987 1988 1989	1129 1239 2322	35 56 28 82 21	5.0% 2.3% 3.5%
Skamania Skamania Skamania	55 55 55	Washougal Washougal Washougal	1987 1988 1989		0	0.0%

Table 19. Prespawning broodstock mortality at WDW Columbia River basin hatcheries: 1986 to 1990.

ՀՈՒՆ ՀՄՈՒՄ Գ Հ ՅՈՒՆ ՔԻ ՀՀ ԴՆ Ք Բ ԴՆ ՅՈՒՆ ԹՆՈՒՆԻՆԻ Հ ՅՈՒՆ ԻՆԻ ՈՒ ԹԵՅՈՒՆ ՈՒ ԹԵՅՈՒՆ ԻՆԻ ԴՆ ՅՈՒՆ ԻՆԻ ԴՆ ՈՒ ԹԵՅՈՒՆ ԵԽ

Table 19. continued

Location	Species	Stock	Year	Number trapped	Number dead	Mortality (%)
Skamania Skamania Skamania Skamania Skamania	SCT SCT SCT SCT SCT	Washougal Washougal Washougal Washougal Washougal	1986 1987 1988 1989 1990	713 2057 3110 19497	87 104 47 56	12.2% 5.1% 1.5% 3.0%
Skamania Skamania Skamania Skamania	SW SW SW SW	Washougal Washougal Washougal Washougal	1986 1987 1988 1989	493 300	0 0	0.0% 0.0%
Wells Wells Wells Wells Wells	55 55 55 55 55	Wells Wells Wells Wells Wells	1986 1987 1988 1989 1990	650 603 653 725 749	4 2 18 21 15	0.6% 0.3% 2.8% 2.9% 2.0%
Yakima Yakima Yakima Yakima	SS SS SS SS	Yakima Yakima Yakima Yakima	1986 1987 1988 1989	132 80 157 106	12 4 9 11	9.1% 5.0% 5.7% 10.4%

_

,

	, ,			Mortality		Medication
Hatchery	Date :	Species	Disease	No.	olo	Туре
Beaver Creek	May-83	SW	IHN	110,000	NR	Nono
Beaver Creek	Jul-83	CT	Furunculosis	NR	NR	None NR
Beaver Creek	Jul-83	SS	Furunculosis	NR	NR	NR
Beaver Creek	Jul-83	SCT	Furunculosis	NR	NR	NR
Beaver Creek	Jul-83	SCT	IHN	90,500	NR	
	0tt-83	SW		90,500		None
Beaver Creek			IHN	296,000	100.08	
Beaver Creek	Apr-85	SW	Furunculosis	NR	NR	NR
Beaver Creek	May-85	SW	BCWD	NR	NR	NR
Beaver Creek	Aug-85	SCT	Furunculosis	NR	NR	NR
Beaver Creek	Sep-85	SCT	Furunculosis	NR	NR	NR
Beaver Creek	Mar-86	SW	BCWD	NR	NR	NR
Beaver Creek	Mar-86	SW	Furunculosis	NR	NR	NR
Beaver Creek	Jul-86	SW	Furunculosis	NR	NR	NR
Beaver Creek	Jun-87	SW	Furunculosis	NR	NR	NR
Beaver Creek	Jul-87	SCT	Furunculosis	6,100	10.0%	
Beaver Creek	Jul-87	SW	Furunculosis	8,800	2.08	
Beaver Creek	Jul-87	SS	Furunculosis	17,200	6.08	
Beaver Creek	Jul-88	SS	Furunculosis	81,100	19.08	
Beaver Creek	Jul-88	SW	Furunculosis	25,300	6.08	Romet
Columbia Basin	Jun-87	SS	Furunculosis	16,200	5.28	Romet
Cowlitz	90-91"	SW	Ceratomyxosis	738,640	36.68	8 None
Cowlitz	90-91*	SS	Ceratomyxosis	196,345	37.08	None
Cowlitz	89-90*	SW	Ceratomyxosis	788,000	41.08	
Cowlitz	89-90*	SS	Ceratomyxosis	153,000	26.08	
Cowlitz	Jan-83	SS	Ceratomyxosis	NR	NR	NR
Cowlitz	Jan-83	SCT	Ceratomyxosis	NR	NR	NR
Cowlitz	Feb-83	SW	Ceratomyxosis	NR	NR	NR
Cowlitz	May-83	SW	Ceratomyxosis	NR	NR	NR
Cowlitz	Jun-83	SCT	BCWD	NR	NR	NR
Cowlitz	Ott-83	SW	Ceratomyxosis	NR	NR	NR
Cowlitz	Dee-83	SW	Ceratomyxosis	NR	NR	NR
Cowlitz	Jan-84	SW	Ceratomyxosis	NR	NR	NR
Cowlitz	Feb-84	SW	Ceratomyxosis	NR	NR	NR
Cowlitz	Mar-84	SW	Ceratomyxosis	NR	NR	NR
Cowlitz	Nov-84	SS	Ceratomyxosis	NR	NR	NR
Cowlitz	Nov-84	SW	Ceratomyxosis	NR	NR	NR
Cowlitz	Jul-85	SW	BCWD	NR	NR	NR
Cowlitz	Jul-85	SW	BCWD	NR	NR	NR
Cowlitz	Sep-85	SS	Ceratomyxosis	NR	NR	NR
Cowlitz	Sep-85	SW	Ceratomyxosis	NR	NR	NR
Cowlitz	Sep-85	SCT	Ceratomyxosis	NR	NR	
Cowlitz	Nov-85	SCI		NR	NR	
Cowlitz	NOV-85 NOV-85	SCT	Ceratomyxosis	NR	NR	
Cowlitz	Jun-87	SCI SW	Ceratomyxosis IHN	92,600	29.3	
Cowlitz	0tt-88	SW SS	IHN	41,000	3.09	
COMITCZ	ULL-00	ະະ 	LUN 	41,UUU	3.01 	k None
	11					

Summary of epizootics at WDW Columbia River basin hatcheries from January 1, 1983 to June 30 1991. Mortality Medicatio Table 20.

NR - not recorded
* - chronic mortality during rearing cycle

Hatchery	Date	Species	Disease	Mortality No.	•	Medication Type
Gobar Pond	Apr-87	SS	IHN	NR	NR	NR
Lyons Ferry Lyons Ferry Lyons Ferry Lyons Ferry	May-86 Apr-89 Jul-89 Apr-91	55 55 55 55	BCWD IHN IHN BCWD	NR 543,000 291,000	NR 58.0% 100.0%	NR None None None
Nelson Springs	Feb-87	SS	BCWB	700	0.8%	TM-50
Skamania Skamania Skamania Skamania Skamania Skamania Skamania Skamania Skamania	Apr-83 Apr-83 Jan-84 Jun-85 Aug-85 Jun-86 Mar-87 Jul-89 Apr-90 Apr-90	SS SCT SS SCT SS SS SW SW SW SS	IHN IHN BCWD BCWD BCWD IHN IHN IHN IHN	NR 49,000 NR NR NR 24,900 56,000 167,000 156,000	NR NR NR NR 6.9% 100.0% 63.0% 48.0%	None None NR NR NR None None None None
Turtle Rock	Apr-86	SS	IHN	9,000	4.7%	None
Vancouver	Jun-85	SS	Furunculosis	NR	NR	
NR - not record	ed					

Table 20. summary of epizootics continued

Table 21. Summary of feed conversion for steelhead and sea-run cutthroat trout at WDW Columbia River basin hatcheries from 1983 to 1990.

				E	Broodyea	r		
Facilities	Specie6	Stock	1986	1987	1988	1989	1990	AVG
Beaver Creek	SCT ss SW	Elochoman Washougal Elochoman	1.73 1.23	1.14 0.65 1.19	1.22 1.23 1.20	1.19 1.37 1.29		1.18 1.25 1.23
Chelan Chelan - Turtle Rock Col. Basin\Yakima - Ringold	ss SS ss	Wells Mixed Mixed	1.01 1.25 1.57	1.25 1.12 1.36	1.14 1.12 1.47	1.16 NF 1.35	1.47 1.31	1.14 0.99 1.41
Cowlitz	SCT ss SW LSW	Cowlitz Cowlitz Cowlitz Cowlitz	2.09 3.44 1.29	3.58 2.98 2.14	1.52 1.45 1.52 NF	1.41 1.95 2.10 1.52	1.41 1.95 2.10 1.41	2.00 2.35 1.83 1.38
Eastbank Lyons Ferry	SS SS SS SS	Wells Lyons Ferry Wallowa Wells	NF 1.03 1.44 1.49	NF 1.25 1.28 NF	1.11 1.47 NF	NF 0.96 NF	1.21 1.07 1.19 NF	0.53 0.89 1.27 0.30
Naches - Neleon Springs	SS	Mixed	0.77	1.53	1.07	1.14	1.46	1.19
Skamania	SCT SS	Washougal	1.08	1.12	1.25	1.35	1.35	1.23
Vancouver Wells Yakima	SW 88 88 88 88	Washougal Elochoman Washougal Wells Yakima	1.39 1.25 1.13 1.32 1.16	1.33 1.34 1.19 1.36 1.00	1.25 1.25 0.90 1.45 1.18	1.35 1.35 1.47 1.37 1.07	1.35 1.35 1.24 1.40 1.53	1.34 1.31 1.19 1.38 1.19

NF = No fish on station

•

--

•

Discussion

The BPA Augmented Fish Health Monitoring Project enabled WDW fish health specialists and hatchery managers to gain a greater understanding of fish diseases at the Columbia River facilities. During the five-year project we were able to expand the fish health program by adding a biologist and an additional fish pathologist. This increased our time available for field work and provided laboratory back up. Bonneville Power Administration funding also allowed us to purchase state of the art equipment for field and laboratory use. The microscopes provided greatly enhanced our field diagnosis capabilities. The computers and software allowed us to begin a database to provide easy access to fish health information.

The knowledge that we gained through this project assisted us in justifying changes in management at hatcheries such as increasing cleaning frequency and improving disinfection practices. The information obtained by hatchery managers from monitoring by pathologists and their own sampling allowed them to make monthly assessment of fish cultural needs.

Discussion of fish diagnostic techniques at the Technical Steering Committee meetings and training workshops helped us to refine our diagnostic capabilities and to develop a consistency in sampling among the agencies. The project also provided a means for improving communications between the fish health labs in Washington, Oregon, and Idaho. It is now easier to obtain historical information about a hatchery from the computerized databases. Overall, communication and awareness about fish health issues has improved at hatcheries and laboratories.

Results of the specific parameters monitored also provided insight into fish health problems. The organosomatic index results were less desirable than normal and highly variable at the Cowlitz Hatchery where fish suffered yearly infections of <u>C. Shasta</u>. Of the fish reared at Cowlitz, the LSW had the best growth, condition factor, and hematocrit level. The results for LSW were also more consistent between years than those of the SW, SS, and SCT. The LSW are spawned in May and held on well water throughout most of their hatchery impoundment, whereas the other three stocks are held on river water much longer. The SS and SW indices varied greatly from year to year with 1987, 1988, and 1989 having the smallest fish. These findings do not correlate with low water temperature for those years but are attributed to chronic ceratomyxosis. The data collected from smolts reared at the Wells Hatchery were very consistent between the years. Chronic diseases are not a problem at Wells because the fish are reared on well water.

Hematocrit values, condition factor, and weight were much lower in all stocks at Cowlitz in comparison to the stock examined at Wells. This difference is attributed to ceratomyxosis in the smolts at Cowlitz and healthy smolts at Wells.

Viral assays of the WDW Columbia River broodstocks were consistently positive for IHNV at the Cowlitz Hatchery. All other hatcheries had variable results for replicating viral agents. The Cowlitz Hatchery broodfish are held on Cowlitz River water and re-use water from the juvenile fish. The hatchery intake is also downstream of the WDF Cowlitz Salmon hatchery. Spring chinook salmon, fall chinook salmon, and coho are spawning at the WDF hatchery, and in the Cowlitz River, during the time SS, SCT, and SW are being trapped and held at the Cowlitz Trout Hatchery. These salmon stocks are also historically

38

-

. _____

.

positive for IHNV. The upstream fish may provide a reservoir for the pathogen. This coupled with the poor water quality in the adult holding ponds could promote infection of the broodfish with IHNV. The potential also exists for steelhead and searun cutthroat to be trapped with a latent IHNV infection.

Infectious pancreatic necrosis virus was isolated from SS broodfish at Tucannon SS in 1983, Yakima SS in 1991, and Wells Hatchery SS from 1988 to 1990. The number of pools found to be positive were very low and no pathological changes were found in adults. Eggs from the fish in the positive pool were destroyed. Infections pancreatic necrosis virus has never been isolated from juvenile fish at the facilities.

Smolts from Cowlitz, Skamania, and Gobar Pond were positive for IHNV in some years. All these facilities are supplied with surface water for rearing. Adult anadromous fish migrate above the intakes at Cowlitz and Skamania and may provide the reservoir for infection. The SS/SW smolts at Gobar originated from the Skamania Hatchery. It is possible that the smolts were infected with IHNV prior to transfer. Epizootics of IHNV occurred in juveniles at Skamania, Cowlitz, and Beaver Creek. All stations are fed by surface water and adult anadromous fish are allowed above the intake at Cowlitz and Skamania. Adult passage may have occurred prior to the outbreak at Beaver Creek during repair of a passage barrier screen. IPNV was not isolated from smolts or juveniles.

Methods of identification of EIBSV were significantly different in 1986-87 from the last three years of the project and so cannot be compared. The only broodfish with EIBSV were found at Wells Hatchery SS in 1990-91. During the 1988-91 period 6 of the 31 stocks of smolts tested were positive for the inclusions: Beaver Creek (SCT - 3 years), Chelan(SS - 2 years), Cowlitz (SW -1 year), Eastbank (SS - 2 years), Ringold (SS - 3 years), and Dayton Pond (SS - 1 year). Pathological changes were not associated with the identification of the viral inclusions. Steelhead and anadromous cutthroat trout appear to be resistant to the pathogen and disease.

Renibacterium salmoninarum was identified by DFAT in low numbers in several broodstocks. The highest prevalence was 8% of the 60 fish sampled at Lyons Ferry in 1989. Overall, 1986 and 1987 both had 7 positive stocks; 1989 had 6 positive stocks; and 1990 and 1991 both had 2 positive stocks. Assays of smolts showed 11 positive stocks in 1991. The 1991 samples were read by different technicians than the previous four years and may have contributed to the higher prevalence of positive samples. The highest prevalence was found at Wells Hatchery (8%). Sea-run cutthroat were assayed midway through the rearing cycle. In 1987 all stocks were positive for R. salmoninarum but in 1988 only one stock was positive (Skamania) and the following two years were negative for the pathogen. In general, the infection rate was very low and bacterial kidney disease was not observed. Data from the project indicates that R. salmoninarum is not a serious pathogen for steelhead or sea-run cutthroat trout.

<u>Ceratomyxa Shasta</u> and <u>Ichthyopthirius multifilis</u> were the only parasites at **WDW Columbia River basin hatcheries to cause significant losses**. Ichthyopthiriasis can be controlled through frequent chemotherapy when water

temperature exceeds 60 F. Treatment with formalin is expensive and while it ameliorates the impact it does not eliminate the parasite. Mortality is frequently not attributed to ichthyopthiriasis but to secondary infections that plague the stressed fish. Ceratomyxosis caused severe losses at the Cowlitz Hatchery during this project. No method of control is known for this pathogen except avoidance. Organosomatic analysis will be performed over the next few years and compared with the BPA project data for an evaluation of the effect of the recently installed ozone water treatment plant.

Flow index and density index data revealed that water flow is the limiting factor at our WDW Columbia River hatcheries. Density index data indicated that space is rarely a problem. Fish disease outbreaks did not correlate with high flow index (>1.5) but we would suggest that more data is needed to show whether low mortality health problems are related (i.e., fin erosion, bum eye, tail rot, etc.).

Egg and fry mortality varied greatly from hatchery to hatchery. The percentage of this mortality at a hatchery was also highly variable between years. The average egg mortality reached 29% at the Beaver Creek Hatchery in the SCT but averaged 12.94% for all hatcheries. Lack of ripe males at the time of spawning or overripe or green eggs may have decreased fertilization. Fungal infections on the eggs still cause high losses on occasion. Eggs from IHNV positive parents are culled at all stations except the Cowlitz Trout Hatchery. All eggs were water-hardened in an iodophore solution (100 ppm; 1 part eggs/2 parts solution) for one hour to minimize transfer of pathogens. As no trend (increasing or decreasing) in mortality is seen with the hatcheries over the years it is assumed that the mortality is a combination of the factors listed above.

The mean fry mortality was highest in the Cowlitz SCT with 37.43%. The mean for all hatcheries was 15.08% mortality. Bacterial coldwater disease, environmental gill disease, and coagulated yolk are the most common pathogens "fry in the hatchery. Visceral mycosis is seen occasionally. Management practices are aimed at minimizing these common conditions but even with close monitoring the problems can blossom overnight in this size fish. Overall mortality from spawn to ponding averaged 20.43%.

Prespawning broodstock mortality was typically low and ranged from 0.8 to 38.8% of the fish trapped. Winter-run steelhead mortality was frequently not recorded as fish were in spawning condition upon arrival. This was also true of SCT. Summer-run steelhead are held four to eight months prior to spawning and incurred the highest mortality. The 38.8% mortality was found in Chelan SS and was attributed to a <u>Saprolegnia</u> infection and, to a lesser degree, <u>Ichyopthirius multifilis</u> and <u>Henneguya</u> salmonicola. Losses are usually due to <u>Saprolegnia</u> infections and are exacerbated by the practice of reusing water from juvenile fish for the adults.

There were few epizootics at the hatcheries throughout the project. The causative agents of the epizootics that occurred were <u>C.</u> Shasta, Myxobacteria, (BCWD), <u>Aeromonas salmonicida</u>, and IHNV. Coldwater disease and furunculosis were treated with Terramycin or Romet. Fish with ceratomyxosis were removed from the pond when moribund or dead. Fish with IHN as juveniles were destroyed. Smolts with IHN from Skamania were planted in the hatchery drainage and the excess destroyed. The monthly monitoring made possible by this BPA project has helped to keep fish healthier through prophylactic treatments and preventive measures.

The feed conversion for all stocks but Cowlitz ranged from 0.65 to 3.58. Conversions at Cowlitz reached as high as 3.58 due to the emaciation caused by ceratomyxosis.

Even though the BPA project has been completed, WDW plans to maintain monthly fish health monitoring at the hatcheries. Sampling for bacterial and parasitic pathogens will be conducted if indicated by necropsy and historical occurrence. Assays for <u>R. salmoninarum</u> will be performed for certification purposes only as project data indicates the prevalence of the pathogen is low and the occurrence of BKD even lower. Assays of broodfish and smolts for EIBSV inclusions will be carried out on an as needed basis only as the occurrence in steelhead and sea-run cutthroat was found to be very low during this project. All stocks of broodfish and many stocks of smolts will be sampled for replicating viral agents. Smolt sampling will be based on the history of the station, water source, and stocking plans. The organosomatic index analysis of smolts will be continued at the Cowlitz Hatchery as part of the evaluation of the ozone water treatment plant that has just been installed.

The knowledge gained from this project has been invaluable to WDW. The status of fish health will continue to improve from the information, training, and equipment provided by BPA for the Augmented Fish Health Monitoring Project.

Overall the BPA Augmented Fish Health Monitoring project gave us the opportunity to monitor the fish with the frequency necessary to see how and why fish diseases occur. It is obvious that fish reared on surface water suffer more disease and require more monitoring to keep them healthy. Facility design was also shown to have an impact on the health of the fish with raceways and some rearing ponds providing a much better rearing environment than circular ponds. Even at facilities with older ponds and a poor water source, the project helped us plan management practices and prophylactic treatments to maximize fish health. The understanding of fish health problems at WDW has been enhanced through the augmented fish health project made possible by BPA.

Literature Cited

- Amos, Kevin H., editor. 1985. Procedures for the Detection and Identification of Certain Fish Pathogens. 3d ed. Fish Health Section. American Fisheries Society. Corvallis, OR.
- Bartholomew, J.L., J.S. Rohovec, and J.L. Fryer. 1989. Ceratomyxa Shasta, a Myxosporean Parasite of Salmonids. Fish Disease Leaflet 80. U.S. Fish and Wildlife Service,. Kearneysville, W.V.
- Gearheard, J., S. Roberts, D. Chase, and B. Bolding. 1987. Augmented fish health monitoring for Washington Department of Wildlife, 1986 Annual Report. BPA Project No. 86-54.
- Goede, Ron. 1988 Fish Health/Condition Assessment Procedures. Utah Division of Wildlife Resources, Logan UT.
- Holt, R. A. and S. Piacentini. 1989. Erythrocytic Inclusion Body Syndrome, Informational Report 1. Pacific Fish Health Protection Committee.
- Piper, Robert G., etal. 1982. <u>Fish Hatchery Management.</u> U.S. Department of the Interior, Fish and Wildlife Service, Washington. D.C.
- Roberts, S., W. Brunson, and D. Chase. 1987. Pathology of fish diseases and promotion of fish health. Progress Report, D-J Project F-56-R-19.
- Yasutake, W. T. 1986. Standardization of Stain Used For Diagnosing Erythrocytic Inclusion Body Syndrome (EIBS). Research Information Bulletin. No. 86-85. National Fishery Research Center. Seattle, WA.

- - .

Acknowledgements

We would like to thank the Bonneville Power Administration for their financial support of this project. We would also like to express our appreciation of Joan Thomas, Jennifer Hulett and Shelly Evans of the Washington Department of Fisheries virology laboratory, for their efforts in testing collected samples for viral agents. Our gratitude, also, to the secretarial staff for their hard work on this manuscript - especially Sharon Barker. Thanks, also, to Sally Zeylmaker for her review of this manuscript. We are highly appreciative of the effort put forth by the personnel at the Washington Department of Wildlife Columbia basin hatcheries. Without their cooperation this project could not have been completed and so we thank the hatchery personnel listed below.

Vancouver -	Rick Stilwater Mike DeNar Don Parker Jim Muse	Chelan -	Steve Robards Mike Lewis Dan Bell Laurie Baskala
Skamania -	Ulf Rasmussen Mitch Combs Gary Vaughn	Yakima -	Jim Lee Terry Erion
	Jack McCoy	Wells -	Steve Miller Keith Duke
Beaver -	Stan Woody Aaron Roberts Ron Ballard		Stewart Mitchell Cory Morrison
	Tom Philpot	Lyons Ferry -	Butch Harty Tim Holder
Cowlitz -	Vince Jansen Art Brown Dan Niemi Mike Rolfe Mike Conci		Jeff Wendt Gary Griffin Steve Jones Ruth Gates
	David Harty Paul Downing	Eastbank -	John Penny Doreen Yates
Tucannon -	Bill Hubbard Doug Maxey	Columbia Basin	Clarence Hayes Mike Holm Ken Westrope
Ringold Springs	Bruce Walters		