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Abstract 

 
This report documents the results obtained during a one-year Laboratory Directed Research and 
Development (LDRD) initiative aimed at investigating coupled structural acoustic interactions 
by means of algorithm development and experiment. Finite element acoustic formulations have 
been developed based on fluid velocity potential and fluid displacement. Domain decomposition 
and diagonal scaling preconditioners were investigated for parallel implementation. A 
formulation that includes fluid viscosity and that can simulate both pressure and shear waves in 
fluid was developed. An acoustic wave tube was built, tested, and shown to be an effective 
means of testing acoustic loading on simple test structures. The tube is capable of creating a 
semi- infinite acoustic field due to nonreflecting acoustic termination at one end. In addition, a 
micro-torsional disk was created and tested for the purposes of investigating acoustic shear wave 
damping in microstructures, and the slip boundary conditions that occur along the wet interface 
when the Knudsen number becomes sufficiently large. 
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Nomenclature 

List of symbols 
Alm Modal coefficient of mode l,m, Pa 
a Acceleration, m/s2 
Ca Damping matrix of fluid 
Cs Damping matrix of structure   
c Acoustic speed in air, m/s 
FRF1a Frequency response function from 

acoustic pressure at Mic 1 to 
acceleration at the measured point on 
the structure 

f Frequency, Hz 
 fcutoff Cutoff frequency, Hz 
j 1−  

)(1 ΩH Sobolov space of order 1 
Ka Stiffness matrix of fluid 
Ks Stiffness matrix of structure 
k Wave number = ω/c, m-1 
kz Wave number in z direction, m-1 
l Number of half-waves in x direction  
Ma Mass matrix of fluid 
Ms Mass matrix of structure 
m Number of half-waves in y direction 
Lx Inner dimension of tube in horizontal 

direction, m 
Ly Inner dimension of tube in vertical 

direction, m 
Lz Length of tube, m  
P0 Amplitude of acoustic pressure, Pa 
Pi Complex amplitude of incident wave, 

Pa 
Pmic Sound pressure at microphone, Pa 
Pr Complex amplitude of reflected wave, 

Pa 
Pt Complex amplitude of transmitted 

wave, Pa 
p Acoustic pressure, Pa 
pi Acoustic pressure due to incident wave, 

Pa 

pr Acoustic pressure due to reflected 
wave, Pa 

S Cross-section area of tube, m2 
S11 Auto-spectrum of acoustic pressure at 

Mic 1 
S12 Cross-spectrum of acoustic pressures at 

Mic 1 and Mic 2 
S13 Cross-spectrum of acoustic pressures at 

Mic 1 and Mic 3. 
S1a Cross-spectrum of acoustic pressures at 

Mic 1 and acceleration at a measured 
point on the structure 

 
T solid/fluid coupling matrix  
 
u  Vector of displacements of structure, m 
t Time, s  
Vspeaker Voltage to loudspeaker as function of 

frequency, V 
x Position along the x axis in the tube, m 

oµ  coefficient of shear viscosity 

oυµ  coefficient of bulk viscosity 

y Position along the y axis in the tube, m 
ZL Impedance of termination, N/(m/s) 
z Position along the tube, m 
zi Position of microphone number-i, m  
zplate Position of plate, m 
φ          Velocity potential of acoustic fluid 

ρ Density of air, kg/m3 
ω  Radial frequency, rad/s 
 

sΩ   Physical domain of solid/structure 

 

fΩ   Physical domain of fluid 

wetΩ∂   “Wet” interface between solid and fluid 
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1.0 Introduction 

Coupled acoustical-structural interactions are commonly found in many engineering 
systems of interest to the weapons community. A few common applications include 
prediction of structural damage of payloads due to intense acoustic fields during launch, 
vibrations of electronic packages due to sounds from jet engines and aerodynamic 
boundary layers, acoustic radiation damping in MEMS1, noise radiation from tires, and 
many other applications. These applications drive the need for predictive simulation 
capabilities and experimental investigations. 
 
Two separate finite element formulations for the coupled structural acoustics problem 
were developed in this project. The first involved an acoustic potential(scalar)-based 
method, while the second was an acoustic vector-based method. In both cases the 
structural equations were solved in terms of displacement. For the latter approach, the 
research areas were to include viscosity and shear effects into the formulation. 
Commercial acoustics codes neglect fluid viscosity and thus cannot simulate shear waves 
in fluid. These waves can lead to significant structural dissipation, especially in MEMS. 
For the potential-based method, the main area of research was the massively parallel 
implementation. 
 
Massively parallel implementation is still an active area of research in coupled structural 
acoustics. Massively parallel simulations are essential in structural acoustic computation, 
since they allow for the possibility of large numbers of degrees of freedom in the models. 
Infinite and semi- infinite acoustic fields, which are present in all of the applications listed 
above, require a large number of elements, and in frequency domain computations the 
number of required degrees of freedom rapidly increases with frequency.  Thus, in order 
to solve realistic structural acoustic problems, massively parallel computations are an 
integral part. 
 
Two experimental investigations were also carried out as part of this project. First, an 
acoustic wave tube was designed and built for the purposes of macroscale acoustic 
experiments. In order to simulate semi- infinite fields, one end of the tube was fitted with 
a built- in anechoic termination, while the other had a loudspeaker for excitation.  A new 
procedure was developed for experimental modal analysis using acoustic (i.e. non-
contact) excitation. A simple case with structural-acoustic interaction was modeled with 
the acoustic formulations developed in this project, and compared with the experimental 
results. A laboratory test was done on a corresponding structure in the tube. As will be 
shown in later sections, the agreement between the model and the test results was very 
good.  
 
Second, in order to observe the effect of acoustic shear wave dissipation on a MEMS 
structure, a prototypical microdisk was designed and tested. A torsiona l spring was 
mounted to the disk, which rested above a flat planar surface. Given an initial angular 
rotation, the disk was allowed to freely oscillate in torsion until the amplitude of 
                                                                 
1 MEMS, or micro electro mechanical systems, are typically a few hundred micrometers in dimension. 
With these small dimensions, air damping becomes very important. 
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oscillation had decayed below a predefined level. In this case, no pressure waves were 
created in the fluid and the acoustic response consisted only of shear waves. In this way, 
the effect of acoustic shear wave dissipation was isolated.  
 
 
 
 
2.0 Finite Element Methods for Structural Acoustics 
 
2.1 Spatial Discretization Techniques 
Spatial discretization techniques for structural acoustics can be divided into two groups: 
potential (scalar)-based methods, and vector-based methods. In the former case, the 
potential could be represented as pressure, velocity potential, or displacement potential. 
In the latter case, a vector wave equation is used for the fluid, and it could be in terms of 
either fluid displacement or fluid velocity.  
 
The mathematical formulations for the vector-based methods suffer from the presence of 
spurious zero energy rotational modes in the fluid, and this is the main area of research 
for these methods. The formulations for the potential-based methods are well understood, 
but the parallelization of the coupled structural acoustics problem with these formulations 
is still an area of active research. 
 
Potential-based methods can be further classified into two and three-field formulations. In 
the two-field formulation, the fluid is represented in terms of the pressure, velocity 
potential, or displacement potential, and the structural degrees of freedom are represented 
as displacements (and possibly rotations for shell elements) [Everstine, 1997]. Three-field 
formulations [Felippa et al., 1990, Morand et al., 1979], wherein the structure is also 
represented in terms of displacements but the fluid is modeled using a mixed formulation 
of pressure and displacement potential, have the advantage of matrix symmetry, with the 
disadvantage of a larger system of equations. Although all of these formulations are 
mathematically equivalent, they have different numerical properties, especially in the 
parallel setting. 
 
The three-field formulations were originally developed for interior problems, i.e. elastic 
structures having internal cavities filled with fluid [Felippa et al., 1990, Morand et al., 
1979].  In these formulations, no damping terms were involved. A later work [Pinsky, 
1989] extended these formulations to exterior problems using the simplest possible 
exterior boundary condition, i.e. the first order Sommerfeld condition. When used in the 
context of the (mixed) three-field formulation, this resulted in higher order (i.e. higher 
than 2nd order) systems of equations, rather than the standard second order system of 
equations that is typical of two-field formulations. This is undesirable, since most time 
integrators (Newmark beta and alpha methods) in structural mechanics are based on 
second order systems. Also, higher order systems of equations of this type would require 
special solvers for eigenanalysis. Thus, the current state of the art of three-field 
formulations for structural acoustics appears to be focused on interior problems, with 
limited results for exterior problems. 



 9

 
The vector approach consists of discretizing a vector wave equation for the fluid, rather 
than the standard scalar wave equation [Bermudez et al., 1994, Hamdi et al., 1978, Chen 
et al., 1990, Wilson et al., 1983]. This approach has the advantage of leading to 
symmetric, positive (semi) definite linear systems (for the time-domain), but the 
disadvantage of a large null space. These spurious modes can be eliminated either with 
the introduction of a penalty term, or with the use of Raviert-Thomas elements 
[Bermudez et al., 1994]. An additional approach is to include viscosity in the 
formulation. This approach is described in this report. By including viscosity in the 
vector formulation, both shear and pressure waves in the fluid can be simulated. In many 
applications (especially MEMS), acoustic shear waves in fluid lead to significant energy 
dissipation and thus must be accommodated.  
 
The governing equations of acoustics and coupled structural acoustics vary depending on 
the formulation used for the fluid. For the structure, the unknown is almost always 
displacement. The fluid is always assumed to be compressible. If viscosity and or thermal 
conductivity are to be included, the equations of acoustics can be derived from a 
linearization of the Navier Stokes equations [Aldridge, 2002]. When viscosity and 
thermal conductivity are neglected, the acoustic equations can be derived from a 
linearization of the isentropic Euler equations. In either case, one obtains a system of first 
order hyperbolic partial differential equations. These equations can be combined to form 
wave equations, which are then discretized with the finite element method to obtain semi-
discrete equations of motion. More on this will be given in the following sections. 
 
2.1.1 Compressible, inviscid fluid 
For the isentropic, invicsid fluid, the governing equations for fluid and solid (assuming 
second order equations of motion for the solid, and a scalar wave equation for the fluid) 
are 
 

[ ]Txfu stts ,0Ω=•∇− σρ  
  (1) 

[ ]Tx
c ftt ,00
1

2
Ω=∆− φφ  

 
for the solid and fluid, respectively. Here φ  corresponds to the velocity potential of the 
fluid, and u corresponds to the displacement of the structure. The speed of sound in fluid 
is denoted by c . The subscripts ‘s’ and ‘f’ refer to solid and fluid, respectively. We note 
that, at this point, the equations of motion for the structure in equation 1 are written in the 
most general form, which could include both material and geometric nonlinearities. Later 
these will be specialized to the linear elasticity equations. The equations of motion of the 
fluid are written in the form of a linear wave equation, which assumes linear constitutive 
behavior of the fluid. Using the theory of nonlinear acoustics, one can construct wave 
equations that are nonlinear and that account for such nonlinearities in fluid [Blackstock, 
1998]. In this report nonlinear acoustics will not be addressed.  The boundary conditions 
on the fluid/solid interface (wet interface, which is designated by wetΩ∂ ), are 
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These correspond to continuity of velocity and stress on the wet interface. Thus far we 
have assumed homogeneous (i.e. zero) initial conditions for the structural displacement 
and fluid velocity potential, and their corresponding velocities. This is usually the case, 
and thus we do not address those details here.  
 
The weak formulation of the coupled problem is constructed by multiplying the two 
partial differential equations in equation 1 by test functions, and integrating by parts. This 
results in the following weak formulation.  
 

Find the mapping ( ) [ ] ( ) )()(,0, 131
fs xHHTu ΩΩ→φ  such that 

 
 

ftt
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tt
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∂
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∫
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1

,,,

2 ψ
φ
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σ
σρ

  (3) 

 

( )31 )( sHw Ω∈∀  and )(1
sH Ω∈∀ψ , 

 
where nΩ∂ is the portion of the solid/structural boundary that has applied loads, which 

are denoted by g .  Also, ( )Ts ∇+∇=∇
2
1

 is the symmetric part of the gradient operator. 

We note that, if Dirichlet boundary conditions were applied to part of the structure, or if 
the fluid had a portion of its boundary subjected to Dirichlet conditions, then the Sobolov 

spaces ( )31 )( sH Ω  and )(1
sH Ω  would be modified accordingly to correspond to spaces 

that have those same boundary conditions. We also note that in the integration on the wet 
interface, the normal is defined to be positive going from solid into the fluid. This results 
in the difference in sign in the two wet interface integrals in equation 3. Inserting the 
boundary conditions from equation 2, we obtain the formulation  
 

Find the mapping ( ) [ ] ( ) )()(,0, 131
fs xHHTu ΩΩ→φ  such that 
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( )31 )( sHw Ω∈∀  and )(1
sH Ω∈∀ψ . 

 
Inserting the spatial discretizations iiuu γ∑=  and iiγφφ ∑=  into equation 4 yields the 
following semidiscrete system of equations 
 

 
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s

f

s
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φφρφ 0
0

0
0

 (5) 

 
where sM and fM denote the mass matrices for solid and fluid, and sK  fK  denote the 

stiffness matrices. The coupling matrices are denoted by T  and TT . Damping in either 
the fluid or structure is accounted for by the damping matrices sC  and fC . A subtle point 

regarding the damping terms is that fC  does not completely account for viscous fluid 
damping, since in the case of a viscous fluid the boundary conditions on the wet interface 
change. This will be described more fully in the next section. 
 
This equation can be symmetrized in a number of ways. For example, the second 

equation can be multiplied by 
fρ
1−

. In subsequent equations we use equations of the 

following form.  
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The system is now symmetric, but the matrices are indefinite (but nonsingular). 
 
 

 
2.1.2 Compressible, viscous fluid  
 
Dissipative mechanisms in the fluid, such as viscous loss or heat transfer, fall into the 
category of absorption theory for acoustics [Temkin, 1981]. In the case of a viscous, non-
heat conducting fluid the equations of motion of the fluid can be represented in terms of a 
viscous, vector wave equation. The governing equations, in terms of fluid displacement, 
are 
 

 0)()
3
1

(
1

)( 22 =•∇∇++∇−•∇∇− tootott uuucu µµ
ρ

υ υ  (6) 

 

where u is the fluid displacement, 







+=

o

oo
o µ

µ
ρ
µ

υ υ

4
3

1 , and oo υµµ , are the coefficients 

of shear and bulk viscosity, respectively. We note that equation 6 is a vector wave 
equation, since it is in terms of fluid displacement, and that the latter two terms in the 
equation are dissipative since they involve first order derivatives in time. 
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Coupling equation 6 with the elasticity equations is straightforward since the unknowns 
in both cases are displacement. Due to the presence of viscosity, no-slip or Maxwell type 
of slip conditions can be applied at the wet interface. Slip boundary conditions are 
common in MEMS. 
 
Multiplying by a test function and integrating by parts, using no-slip boundary 
conditions, and inserting the spatial discretizations, we obtain a coupled system of 
equations of the form 
 

 [ ] [ ] [ ] fuKuCuM =++
•••

 (7) 
 

where M, K, and C represent the global mass, stiffness, and damping matrices, obtained 
by combining the element-level matrices from both fluid and solid. A distinctive 
difference between this equation and the coupled equations for the potential-based 
acoustic formulation is the absence of coupling operators in the case of equation 7. In this 
case the coupling from fluid to solid comes directly from the shared degrees of freedom 
on the wet interface, and their contributions from both the structural and acoustic 
element-level matrices. This is an advantage of the vector-based acoustic formulations, 
since the implementation need not deal with coupling matrices. 
 
2.2 Parallel Domain Decomposition 
 
Domain decomposition strategies for coupled structural acoustics have been investigated 
in [Mandel, 2001, Feng, 2000]. For the parallel case, the most common approach is that 
each processor has only one subdomain, and that the subdomains are connected. In that 
case, the most general domain partitioning scheme for coupled structural acoustics would 
result in each processor owning groups of elements as shown in Figure 1. On each 
subdomain there are four possibilities: internal fluid (type I), internal solid (type II), 
mixed fluid/solid (type III), and solid or fluid containing a portion of the wet interface 
(type IV). The first two of these present no complications, because they generate no 
components of a coupling matrix. If the decompositions of the fluid and solid are 
performed independently, subdomains of type III are not generated. In that case, only 
subdomains of types I, II, and IV would be present. Subdomains of type IV could be 
generated regardless of whether the decompositions of the fluid and structure were 
performed independently. Subdomains of type III are advantageous because all the 
coupling matrices are interior to a subdomain. The most general decompositions, as those 
considered in this report, contain all four types of subdomains simultaneously. 
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fluid solid

Subdomains: 4 possibilities

Wet interface

Internal solidInternal fluid boundary 
Fluid/solid

Fluid and Solid

 

Figure 1. Parallel decomposition of the coupled problem -  four possible types of 
subdomains 

 

Rather than place restrictions on how the elements are structured on the subdomains, we 
consider all such decompositions. Allowing this arbitrary decomposition approach for the 
coupled problem is beneficial for many reasons. First, by allowing for arbitrary 
decompositions, we take the most general approach while retaining the option for more 
restrictive decompositions. By eliminating any of the 4 types of decompositions, we 
recover other approaches given in the literature. For example, by eliminating subdomains 
of type III, we recover the same decomposition approach that was given by [Mandel, 
2001].  
 
There are other advantages to the arbitrary decomposition approach. In many problems of 
interest, the fluid is fragmented into many pieces. For example, structures like the W80 
and W76 have an exterior fluid as well as many interior cavities. Complex microsystems 
containing MEMS and surface acoustic wave (or SAW) devices may also fall into this 
category. The arbitrary decomposition approach allows domains like these to be 
decomposed in a single step, without requiring separate decompositions for the fluid and 
structure.   
 
Another advantage is related to the linear solvers for the coupled problem, and 
subdomain aspect ratios. In this work a FETI-DP2 solver was used for solving the 
coupled linear systems. FETI-type solvers have a long history, as documented in the 

                                                                 
2 Contact: Kendall Pierson, Sandia National Laboratories, khpiers@sandia.gov 

Type I Type II Type III Type IV 
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references [Farhat, 1991, Bhardwaj et al., 2000, Farhat et al., 2000, Farhat et al., 2001]. It 
is well known that the convergence rates of FETI methods deteriorate in the presence of 
long, thin subdomains [Farhat et al., 1995]. Domains containing long, thin regions of 
alternating fluid and solid are common, especially in MEMS. By requiring subdomains to 
only have fluid or solid, the resulting domain decomposition would share the topology of 
long, slender pieces, and the resulting convergence rates could suffer.  
 
Perhaps the most important reason for support of arbitrary decompositions is pragmatic. 
Most decomposition tools available to analysts have no capability to select between the 
connection types. 
 
As an example of the arbitrary decomposition approach, structural acoustic simulations 
were conducted on a tire with several different numbers of processors. The goal is to 
demonstrate that the results obtained on the same problem but on varying numbers of 
processors are the same, and thus that the result is invariant with respect to the number of 
subdomains, in the presence of all four types of decompositions. For any given 
decomposition, only some, or all, of the four types of subdomains in Figure 1 are present. 
It is the invariance with respect to the presence of the four different types of subdomains 
that is of interest here. Table 1 shows a comparison of the 30 and 50 processor solutions, 
which shows effectively no difference between the two solutions. 
 

Table 1. Comparison of solutions resulting from two arbitrary decompositions. 

  
 

 

 

 
7.76e6 7.76e6 1.13e-9 .205 .205 6.14e-9 

 
 
In a decomposition that only involved subdomains of types I, II, and III, the subdomain 
matrix assembly would be standard, and the coupling matrices would be assembled 
naturally in the subdomains that contain parts of the wet interface. However, including 
subdomains of type IV in the decomposition adds an extra complication. Since FETI-DP 
requires nonsingular subdomain matrices (after removal of corner degrees of freedom), 
the coupling matrices must be handled with care. 
 
For the time domain, we define the dynamic matrices as 
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For the frequency domain, the corresponding matrices would be 
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ω
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We note that these matrices are nonsingular due to the presence of the mass terms. We 
also note that these matrices are not the complete subdomain matrices, but are only the 
fluid and solid portions separated out. 
 
The assembly of the above stiffness and mass matrices for acoustic and structural 
elements proceeds in the standard way. The coupling matrices (i.e. the T  and TT  
operators from equation 5) also assemble in the standard way if the portion of the wet 
surface involved in the coupling lies within the interior of the subdomain. This is true for 
subdomains of types I, II, and III. For subdomains of type IV, the situation is different. 
Since subdomains of type IV involve portions of the wet interface that are also on 
subdomain boundaries, the coupling matrix assembly in this case could proceed in a 
number of different ways, each with different consequences. 
 
There are three options for assembling the coupling matrices for type IV subdomains. We 
first note that these matrices could be assembled from either the fluid or solid regions, 
since both regions own the degrees of freedom involved in the coupling. The first option 
is to assemble both T  and TT from the fluid, and the second is to assemble from the solid 
side. The third option would be to have the fluid elements assemble TT  and the solid 
elements assemble T .   
 
We note that, when assembling both T  and TT  from only one side, all of the degrees of 
freedom involved in coupling do not need to be active on both sides. For example, if both 
are to be assembled from the solid side, then there is no need to have the solid degrees of 
freedom active on the fluid side. Thus, in that case the continuity across subdomain 
boundaries would be enforced only with the Lagrange multipliers for the velocity 
potential. The solid degrees of freedom would then be coupled on the adjacent subdomain 
through the coupling operators.  
 
We now examine the subdomain matrices for the three approaches described above. 
Table 2 outlines the options 
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Table 2. Subdomain matrices for type IV subdomains in coupled structural acoustics. 

Option 1 Option 1 Option 2 Option 2 Option 3 Option 3 
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As can be seen, with the requirement that the subdomain matrices be nonsingular, the 
only option for placing the coupling matrices is option 2. For option 2, the fluid 
subdomain matrix is nonsingular. The solid subdomain matrix for option 2 can be shown 
to be nonsingular by a simple rank argument. A similar argument can be used to show 
that the fluid subdomain matrix in option 1 is singular, and thus that this option is not 
viable.  
 
2.3 Equation Scaling and Preconditioning 
Due to the severe property mismatch between structure and fluid, the global matrices for 
structural acoustics typically have very poor condition numbers, thus placing a high 
burden on the linear solver.  For the example of steel in air, the stiffness and mass ratios 
between solid and fluid are several orders of magnitude, and much worse than typical 
large material mismatch encountered in structural mechanics, such as steel next to foam. 
Scaling and other preconditioning procedures for FETI-DP have been documented in the 
literature [Farhat et al., 2000]. However, these scaling procedures have only been applied 
to the interface matrices, i.e. after the Schur complements on each subdomain have been 
completed. 
 
A symmetric diagonal scaling procedure was recently developed for the coupled 
frequency response problem [Mandel, 2001]. This was different than the standard scaling 
for FETI-DP in that the scaling was applied to the subdomain matrices directly rather 
than to the interface matrices. However, this procedure involved scaling of both the 
subdomain matrices as well as the matrices corresponding to Lagrange multipliers. Since 
the Lagrange multiplier matrices are typically not stored, scaling them can be difficult.  
 
An additional scaling procedure was developed in [Day, 1999] for the purpose of using 
FETI-DP in parallel structural eigenvalue analysis. This procedure only required scaling 
the subdomain matrices. The scaling was chosen such that the Lagrange multiplier 
matrices were invariant to the scaling. While this procedure was only developed for the 
structural problem, it is possible to extend it to the coupled structural acoustics problem, 
provided that the subdomain matrices are defined to include the coupling operators. More 
will be given on this in the following paragraphs. 
 
If we consider the extended linear system corresponding to a FETI-DP domain 
decomposition, and then apply symmetric diagonal scaling on that extended system, we 
have 
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where the Lagrange multipliers λ  enforce continuity across subdomains, and the 
diagonal matrices 1D  are chosen such that the diagonal entries of 11ADD  are unity for 
degrees of freedom that are internal to a subdomain. For shared degrees of freedom, the 
diagonal entries of 1D  are chosen so that the corresponding diagonal entries of 11ADD  
are as close as possible to unity. We note that there are also corner points in the 
decomposition where the inter-subdomain continuity is satisfied exactly, and thus in 
reality equation 10 corresponds to a 3x3 partition rather than a 2x2 partition. However, a 
2x2 is sufficient to illustrate the scaling procedure.   

 

As shown in [Day, 1999], if the scaling matrices are chosen such that TT BDBD =21 , 
then we see that the ‘B’ matrices corresponding to Lagrange multipliers do not need to be 
scaled. This greatly simplifies the solver implementation. 
 
The scaling procedure in [Day, 1999] was developed for the structural eigenanalysis 
problem. In order to apply this procedure to the coupled structural acoustic problem, we 
must include the coupling matrices in the scaling procedure. To demonstrate this, we 
write the full system as 
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where now the linear system involves unknowns for both the structural and acoustic 
unknowns, as well as Lagrange multipliers for these unknowns. 

 
In order to reduce this to the form in equation 10, we group the terms as follows 
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With this grouping, we see that the coupled problem has the same form as in equation 10, 
and thus the same scaling procedure can be applied, provided that the coupling matrices 
are included in the scaling. In the transient case the matrix to be scaled is 
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This implies that, with the 2x2 grouping implied in the above equations, we can apply the 
same scaling procedure to the coupled structural acoustics problem. Note that the 

equation 
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 involves not only the matrices sA  and fA , but also the 

coupling terms T  and TT . Thus, in applying the scaling to the overall linear systems, we 
have to scale the coupling matrices as well.  We thus define the scaling procedure for the 
coupled problem as 
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We note that in the case of transient analysis, the right hand side must also be scaled by 
the diagonal matrix 1D . Also, after solving the linear system the structural and acoustic 
degrees of freedom must be scaled by 1D  in order to recover the final solution. 
 
Scaling the equations of course means that we are not solving all the variables to the 
original accuracy. In the case of a very compliant fluid and a stiff structure, this may 
mean that the relative structural solution accuracy has been reduced. However, this is 
indeed the right thing to do. Otherwise, failure to scale the solution, and inexact iterative 
solves can result in meaningless results in the fluid region. 
 
Figure 2 contains results from a simulation of a transient plane wave scattering from an 
elastic sphere, after applying symmetric diagonal scaling to the coupled linear system. 
For this simulation, 250 time steps were carried out. At later time steps, the number of 
iterations required for convergence to a fixed tolerance decreased significantly, due to the 
multiple right hand side capability in FETI-DP. 
 
Finally, we present some graphical results from two sample problems. The first involves 
scattering of a plane wave on an elastic sphere. The second involves acoustic radiation 
from a tire. Figures 3 and 4 show the results for the two cases. The isocontours of 
velocity potential are shown around the sphere in Figure 3, and in the case of the tire the 
velocity potential around the tire is indicated by the amplitude of the xy plot above the 
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tire.

 
 
 

Figure 2. Acoustic scattering of plane wave on elastic sphere. The number of iterations 
required for convergence, with symmetric diagonal scaling. 
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Figure 3. Scattering of acoustic wave on Elastic Sphere. Isocontours (in grey) are shown. 
Velocity potential shown in (top) xy plot. 
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Figure 4. Coupled acoustic/structural simulation of a tire in air. Velocity potential is 
shown in (top) xy plot. 
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3.0 Planar Wave Tube for Validating Structural Acoustic Simulation 

Background 
Experimental validation of structural acoustic simulations requires experiments that can 
be modeled accurately. The wave tube described in Figure 5 is intended to provide such 
experiments.  Specifically, the tube provides  

• A well-defined test volume that can be controlled and modeled accurately around 
the test object. 

• A traveling plane wave pi = Pi e-jkz that can be generated, measured, and modeled 
accurately. 

• Shielding from external noise.  
• Simple, low-cost construction.  
 

Structural acoustic experiments that can be done in the tube can be modeled accurately 
with Salinas. For example, a planar traveling wave generated by the speaker in 
combination with the tube excites a test object. The dynamic responses of the test object 
are measured and analyzed, as is the acoustic pressure field around the test object. These 
types of experiments can be modeled and simulated with the acoustic formulations 
described in the previous section. Agreement between the measured responses and the 
simulation results can be used as validation of the model and the code. Without the tube, 
it would be difficult to create an experimental condition that can be modeled and 
simulated accurately with finite element codes.  
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Figure 5.  Sketch of wave tube (not to scale).  

 

Principles of Operation  
The principles of operation of the planar wave tube are 
1) Generation of planar wavefronts, and 2) Separation of acoustic pressures into 
measurable forward-traveling waves and backward traveling waves. The first will be 
discussed later. The second is explained below. Suppose that an incident harmonic planar 
wave  
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travels forward down the tube. Reflections in the z direction causes a backward-traveling 
wave  
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The acoustic pressures sensed by the microphones are the sum of the forward traveling 
wave pressure and the backward-traveling ("reflected") wave pressure. Measurement of 
the amplitudes of the fo rward-traveling and backward traveling waves requires two 
microphones and a simple calculation shown below. The acoustic pressure sensed by a 
microphone called Mic 2, positioned at z = z2, is  
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and the acoustic pressure sensed by another microphone, called Mic 3, positioned at z = 
z3, is  
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The above two equations can be solved for the forward-traveling incident wave amplitude  
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and the backward-traveling wave amplitude  
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As a device for validating structural-acoustic finite element calculations, the tube can be 
used to measure frequency response functions from the forward-traveling wave to 
acceleration at a point on the structure.  
 

Design 
The walls of the tube are made of 25.4 mm thick plywood. The dimensions of the inside of the 
tube are as follows:  
Length Lz = 7.23 m, dimension in the y (vertical) direction Ly = 0.3048 m (12 in.), 
dimension in the x (horizontal) direction Lx = 0.3556 m (14 in.). The tube is operated in 
20o C air, where the acoustic speed is c = 332 m/s. A loudspeaker at the source end of the 
tube generates excitation sounds. Microphones are mounted on a traverse. The test object 
to be measured must fit into the cross section, and can be mounted on elastic chords from 
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outside the tube. The other end of the tube is closed with an anechoic termination 
pyramid made of sound absorbing fiber framed in wire.  
 

Non-Planar Modes, Their Cutoff Frequencies, and Their Decaying Ranges 
The most important requirement for the tube is that around the microphones it has only 
planar waves. Waves that are known to be planar are easy to model accurately, and are 
non-dispersive, allowing waveforms to travel down the tube with no distortion. Non-
planar waves exist in the tube in practice. Mode (m,n) has m half-cosines along the x-
direction and n half-cosines in the y-direction. Mode (0,0) is a plane wave, which means 
that in any cross section of the tube the pressure wave is uniform over the entire cross-
section.  
 
If the tube acts as a wave guide where waves travel in only one direction, then the 
acoustic pressure as a function of spatial coordinates and time is the real part of the 
following equation (Kinsler et al., 1982) 
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where the modal coefficients Alm are determined by the excitation from the speaker as a 
boundary condition. The contribution of mode (l,m) = (0,0) to the acoustic pressure field 
is  
 
 ( ) tjzcj eeAtzyxp ωω /

000,0 ),,,( −=  (22) 
 
Since p0,0 does not depend on x or y, the spatial distribution of mode (0,0) is constant over 
the cross section of the tube. Thus, mode (0,0) is termed the planar mode. In equation 21, 
the wavenumber in the z direction, 
 

 ( ) ( ) ( )222 ///),( yxz LmLlcmlk ππω −−=  (23) 
 
determines the propagation of mode (l,m) down the tube. At low frequencies ω < 

c ( ) ( )22 // yx LmLl ππ + , the spatial variation of pl,m along the z direction is  
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which is an exponentially decaying function of z. This means that, at frequencies lower 
than fcutoff(l,m), mode (l,m) will decay exponentially. Numerical examples will show that 
the decay is within a short distance from the speaker. A non-planar mode (l>0,m>0) will 
travel far in the tube only at frequencies higher than the cutoff frequency fcutoff(l,m). The 
cutoff frequency of mode (l,m) is the lowest frequency at which the wavenumber is real. 
In Hz,  
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To allow only planar waves to travel in the tube, the tube must be excited at frequencies 
lower than the cutoff frequency of the lowest non-planar mode. Based on the tube 
dimensions discussed here, mode (0,1) has a cutoff frequency of 467 Hz. The cutoff 
frequencies of the first 18 modes are shown in Table 3.  
 

Table 3 Cutoff frequencies of tube.  

Mode sequence 0 1 2 3 4 5 6 7 8 
Mode number 0,0 0,1 1,0 1,1 0,2 1,2 2,0 2,1 0,3 
Cutoff freq, Hz 0 466.8 544.6 717.3 933.6 1081 1089 1185 1400 
 
Mode sequence 9 10 11 12 13 14 15 16 17 
Mode number 2,2 1,3 3,0 3,1 2,3 0,4 3,2 1,4 3,3 
Cutoff freq, Hz 1435 1503 1634 1699 1774 1867 1882 1945 2152 
 
If the speaker excites the air in the tube at a frequency above the cutoff frequency of 
mode l,m, then all modes with lower cutoff frequencies will travel down the tube. The 
wavefront of each mode travels at a phase speed 
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Figure 6 shows that the phase speed ω/kz depends on frequency, except for the planar 
mode (0,0) where ω/kz = c for all frequencies. Also, different modes have different phase 
speeds. This means that if the waves have non-planar modes, the wavefront of the 
acoustic pressure will change shapes as it travels down the tube. Reflections from test 
objects in the tube, if they have components in the non-planar modes, will also be 
distorted as they travel in the tube. This distortion in the wavefront shapes would 
complicate the modeling and would require measurement of acoustic pressure at many 
points over each cross section. This complication is another reason why excitation of 
non-planar modes should be avoided. Thus, the tube should be operated with excitations 
with frequencies lower than the cutoff frequency of the first non-planar mode.  
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Figure 6. Relationship between wavenumber and frequency for the first 17 modes.  

 
Even when the excitation frequency is below the cutoff frequency of the fir st non-planar 
mode, the waves traveling down the tube are planar only after a certain distance from the 
speaker. It is practically impossible for a speaker to produce a purely planar wave 
excitation at z = 0. In the following example, the speaker generates an acoustic pressure 
distribution over the cross section of the tube that can be approximated as  
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where the modal coefficients Alm are 
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(The above coefficients are from the two-dimensional Fourier cosine series expansion of 
the pressure distribution.) This pressure distribution is maximum at the center of the cross 
section, and minimum at the corners. If the excitation is at 400 Hz, which is below the 
cutoff frequency of any non-planar mode, then the contribution of all non-planar modes 
will decay as the pressure wave travels down the tube. The z variation of the first four 
modes at 400 Hz is shown in Figure 7. Only the planar mode travels to the end of the tube 
without decay. Below fcutoff(l,m), the amplitude of non-planar wave mode (l,m) decays 
with z. The distance at which the amplitude of the pressure contribution from mode (l,m) 
decays down to 5% of its original pressure can be estimated by  
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The above calculation and Figure 7 show that the waves in the tube should be essentially 
planar around .75m or more from the speaker.  
 
The distribution of the acoustic pressure amplitude over the cross section is the sum of 
the contributions of all modes. Since most of the modes decay as the wave travels down 
the tube, the shape of the wavefront changes from the original “paraboloid-like” shape at 
the speaker to a practically planar shape at z = 0.75 m, as shown in Figure 8.  Beyond that 
distance, the wavefront is planar throughout the tube until the waves encounter an object 
that causes scattering.  

 
Figure 7. Pressure amplitudes of the first four modes as functions of distance from 

excitation speaker.  
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If the excitation frequency is high enough to propagate non-planar modes, then the 
wavefronts will not be planar even after they travel a long way down the tube. For 
example, at 1200 Hz, the pressure distribution over the cross section will have the shapes 
shown in Figure 9 at the distances mentioned in the previous example. Thus, excitation at 
frequencies higher than the cutoff frequency of the first non-planar mode will result in 
non-planar waves throughout the tube. Additionally, the shape of the wavefront will vary 
as the waves travel down the tube.  
 
The above discussion suggests that the tube should be excited at frequencies lower than 
the cutoff frequency of the first non-planar mode. The resulting planar waves are easy to 
model. Measurement of the acoustic pressures down the tube can be done at any point in 
the cross section since the acoustic pressure does not vary with x or y.  

 
Figure 8. Planarization of pressure waves as they travel down the tube. Excitation 

frequency = 400 Hz.  
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Figure 9. Lack of planarization of pressure waves as they travel down the tube. Excitation 

frequency = 1200 Hz. 
 
To verify that only planar modes reach the microphones, the following procedure can be 
used.  

• Measure acoustic pressures over a cross section at z = 1 m, with microphones at 
five points in this cross section -- one at the center of the cross section, and the 
others close to the four corners of the cross section.  

• Excite the tube with a 0-1250 Hz chirp or random sound.  
• Plot the phases of sound pressure FRF=Pmic/Vspeaker as functions of frequency for 

all five microphones.  
This procedure resulted in Figure 10, which shows that the five points are in phase for 
frequencies below 467 Hz. This means that the wave-fronts do not reverse phases below 
467 Hz. At higher frequencies, non-planar modes cause the pressure at some quadrants to 
be out of phase with the pressures at other quadrants or the pressure at the center. The 
magnitudes of the waves in the four quadrants are shown in Fig. 11, which also shows 
inter-quadrant variations above 467 Hz. This means that at f > 467 Hz the wave fronts are 
no longer planar.  
 
Planar waves at the microphones can be used as the excitation boundary condition for the 
simulation model. For example, this excitation can be represented with a massless rigid 
piston moving at the appropriate velocity. Around the test object, reflections and 
scattering by the test object create a three-dimensional, non-planar acoustic field. The 
non-planar parts of the field die out at a distance from the test object. The microphone 
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must be placed at a sufficient distance from the test object so that the waves at the 
microphone are planar. Part of the validation criteria is the agreement between the field 
measured around the test object and the field resulting from the simulation.  

 

  
Figure 10. Phases of sound pressure FRFs in four quadrants minus phase of sound 
pressure FRF at center of cross section. 
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Figure 11. Magnitudes of sound pressure FRFs in four quadrants compared with 
magnitude of sound pressure FRF at center of cross section. 

 
Modes (0,1) and (1,0) are odd modes, meaning that they are anti-symmetric and have a 
nodal line in the middle of the cross section of the tube. These anti-symmetric modes are 
not strongly excited since the excitation speaker is mounted exactly at the center of the 
cross section of the tube. Phase reversal between quadrants is not strongly observed until 
the frequency reaches fcutoff(0,2), which is 933 Hz.  
 

Reflection from end 
To facilitate modeling, the tube was designed to create traveling waves with minimum 
reflection from the termination. If the acoustic waves in the tube are planar, the acoustic 
pressure at any position along the z axis (along the length of the tube) can be expressed as 
(Kinsler et al. 1982) 
 

 ( ) tjjkz
r

jkz
i eePePtzp ω+= −),(  (30) 

 
where the wavenumber k = ω/c. For the purpose of cha racterizing the tube, the effective 
reflection coefficient is defined as  
 
 R(f) = Pr(f)/ Pi(f)  (31) 
 
R is a measure of how much of the forward-traveling wave is reflected by the 
termination. If the tube is clear of any object between the speaker and the termination, 
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ideally, Pr = 0. In practice, this condition of perfectly absorbing termination is difficult to 
achieve.  
 
If the end of the tube were left open, that end would approximate a zero-pressure 
boundary condition (at z = Lz,  p(t) = 0 for all t). This boundary condition creates a 
reflected wave with a pressure that is the negative of the pressure of the incident wave, 
since the sum of the two waves must be zero at z = Lz. A termination at the end of the 
tube must be designed not to reflect acoustic waves. The absorbing termination pyramid 
must have a length approximately a half-wavelength at the typical operating frequency. 
At a sound speed of 332 m/s, a few hundred Hz corresponds to a pyramid length on the 
order of two meters. In front of the pyramid, the tube should be filled with fluffy 
materials such as glass wool, with decreasing density towards the test object.  
 
The termination must be tested for its ability to suppress reflection. Any of the following 
procedures can be used.  First, one can launch a short pulse of sound pressure from the 
excitation speaker, and then record the incident and the reflected waves with a 
microphone near the speaker. The difference in the peak magnitude of the first pulse and 
the peak magnitude of the second (reflected) pulse indicates the strength of the reflection 
at the termination. The reflected wave pressure should be at least 30 dB lower than the 
incoming wave pressure.  
 
The second procedure is to obtain frequency response functions (FRFs) from the speaker 
voltage to acoustic pressures at 32 points along the tube. FRF=Pmic/Vspeaker. If the wedge 
is not a perfect absorber, modal analysis of the acoustic field in the tube will show some 
modes, either real or complex.  
 
Third, one can perform a discrete-Fourier-transformation of the above measured 
FRF(ω,z) = Pmic(ω,z)/Vspeaker(ω) into the wavenumber domain FRF(ω,k) = 
Pmic(ω,k)/Vspeaker(ω), and plot the magnitude of the pressures as a function of frequency 
and wavenumber. Any backward-traveling waves will show some magnitude in the 
negative wavenumber region of the graph of P as a function of f and k. A typical result of 
this procedure is shown in Figure 12. Higher reflection coefficients result in more 
pronounced dispersion curves in the negative wavenumber region. The lower right graph 
shows a typical case, where the end termination is more effective in absorbing sound at 
high frequency than at low frequency.  
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(a) 

 
 (b) 

Figure 12. Wavenumber transform magnitudes of acoustic pressures along the tube: 
(a)Two-dimensional view; (b)Three-dimensional view. 
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A fourth procedure is to separate the sound pressure FRFs from the two microphones into 
forward-traveling and backward-traveling waves using the procedure described in 
equations 19 and 20. The termination is a good absorber only if it eliminates almost all of 
the reflections from the end. 
 
For the tube tested in the laboratory, the FRF from speaker voltage to sound pressure at 
Mic 2 and Mic 3 were measured and shown in Figure 13. The above separation procedure 
gave the forward and reflected complex amplitudes, the magnitudes of which are shown 
in Figure 14. The magnitude of this function is a measure of how much the termination 
reflects the forward-traveling waves as a function of frequency. The reflection coefficient  
computed from experimental forward and reflected amplitudes is shown in Figure 15. 
The “rigid” termination is a board made of the same material and thickness as the tube, 
attached to the end of the tube. The “open” end is the unflanged end of the tube without 
added termination. The “ad hoc” termination is a block of acoustic fibers, 0.61m long, 
stuffed at the end of the tube.  
 

 
Figure 13.  FRF from speaker voltage to sound pressure at Mic 2 and Mic 3.  
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Figure 14. FRFs from speaker voltage to forward and reflected wave amplitudes.   

 
Figure 15.  Magnitude of effective reflection coefficient. Various terminations.  
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Using the wave tube  
To fit into the traveling wave tube, the test object may have to be a scaled miniature of 
the structure to be investigated. The thickness of the miniature must be small enough so 
that appropriate resonances are excited by the limited bandwidth of the exciting waves. 
Microphones inside the test objects must be small enough not to disturb acoustic fields 
inside the test object. If larger microphones are used, they must be properly included in 
the model.  
 
The positions of Mic 2 and Mic 3 (z2 and z3 in Figure 5) must be chosen at a distance 
where evanescent modes (modes that decay with distance) have died out and the waves 
are planar. It is also important that the distance between the two microphones, z3 – z2, 
does not cause singularity in equations 19 and 20. For a broadband test with a frequency 
range from 0 to fmax to be free from any singularity, the microphones must be placed to 
satisfy  

 
max

23 2 f
c

zz <−  (32) 

 
We would like to obtain frequency response functions (FRFs) from the forward traveling 
wave to the acceleration at the point on the structure, because this FRF is a property of 
the structure and should be independent of the excitation. Specifically, for code validation 
we could like to measure or obtain  
 

 
)(
)(

)(
ω
ω

ω
i

pa P
a

FRF =  (33) 

 
The forward traveling wave complex amplitude, Pi(ω), cannot be measured directly. 
Therefore, FRFpa must be computed from other FRFs that can be easily obtained with an 
FFT analyzer, such as  
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To obtain the desired FRFpa from the measured FRF2a and FRF23, we use 
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That is, we multiply the measured FRF2a with a “correction” function 
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This function is in turn derived from the measured 
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FRF = . Thus, we are 

able to obtain the FRF from the forward traveling wave to the acceleration at the point on 
the structure. This FRF can be compared directly with the FRF from the simulation, and 
serves as a means for validating the code or the model.  
 
4 Experimental Validation of Model 
 
 
In the following example, the finite element mesh modeled the air in the tube with 
acoustic elements, and the plate with hexshell elements. Hexshell elements have the 
topology of solid 3D elements, but with a very similar bending behaviour as shell 
elements. The excitation was accomplished with a prescribed velocity boundary 
condition near the acoustic sources. This condition is a Neumann boundary condition for 
acoustic excitation, and produced plane waves in the tube. First order absorbing boundary 
conditions were placed at the far end of the tube.  
 

 

Figure 16.  Mesh Used in Validation. Looking from Bottom of Tube.  
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The planar wave tube was used for validating the finite element calculation. For this 
purpose, the plate was mounted near the middle of the length of the tube, at an angle of 
30o from the cross section. Accelerometers were placed at the “lower-near” corner (see 
Figure 5), the center of the plate, and at the “upper far” corner (diagonally opposite the 
lower near corner). Frequency response functions were recorded. Equation 33 was then 
used to obtain the frequency response functions from the complex amplitude of the 
forward-traveling wave to the plate velocity. The result for the center of the plate is 
shown in Figure 17 and compared with the FRF from the simulation. Two figures are 
shown in Figure 17. The first (a) shows the direct experiment/simulation comparison, 
whereas the second (b) shows the results after a scaling by a factor of two (applied to 
either the experiment or simulation results). It appears that the results differ by a factor of 
two, though at the time of this writing, the authors do not know whether this additional 
scaling factor is associated with an error in the simulation results or the experimental 
measurement. 
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(a) without factor of 2 scaling 

 
(b) with factor of 2 scaling 

Figure 17.  Frequency Response Functions from Forward Wave Complex Amplitude to 
Acceleration at Center of Plate. Dashed Line = FEM, Solid Line = Experiment.  
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The experiment was repeated at a point near the lower-near corner shown in Fig. 5. The 
comparison between the FRF from the Salinas simulation and the measured FRF is 
shown in Figure 18. Lastly, for the upper-far corner, the comparison between the FRF 
from the simulation and the measured FRF is shown in Figure 19. We note that no factor 
of 2 scaling was applied in generating the comparisons in Figures 18 and 19.  
 

 
Figure 18.  Frequency Response Functions from Forward Wave Complex Amplitude to 
Acceleration near “Lower Near” Corner. Dashed Line = FEM, Solid Line = Experiment.  
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Figure 19.  Frequency Response Functions from Forward Wave Complex Amplitude to 
Acceleration near “Upper Far” Corner. Dashed Line = FEM, Solid Line = Experiment.  

 
 
 
4.0 Micro-Torsional Disk Experiment 

In many micromechanical devices, a significant amount of energy is lost due to fluid 
damping. This can hinder the performance of the device by requiring larger amounts of 
power, reduced sensitivity, or slow structural response. These losses are often classified 
into two categories - 

squeeze-film damping and  
damping due to lateral oscillations. 

Squeeze-film damping occurs when a fluid is pressed between two surfaces. This 
pressing produces fluid motion that gives rise to viscous flow and energy loss. This 
category of energy loss has been well studied using both numerical and closed form 
analysis.  

Damping due to lateral oscillations occurs due to the shearing of fluid and is far less 
studied. In recent work, [Y. Cho et al., 1993, 1994] showed that a viscous wave approach 
could be used to describe this type of energy loss. They produced enhanced predictions of 
damping in a vibrating comb drive by coupling the motion of the drive to a viscous wave 
solution. In another investigation, [Wenzel, 1982] also used this type of approach to 
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account for energy losses in a flexural plate wave sensor operating below coincidence. 
Neglecting edge effects, [Wenzel, 1982] solved for the coupling between the plate and 
fluid in closed form. Later, [Dohner, 1998] expanded upon Wenzel’s analytical work by 
including edge effects. He was able to show that a fluid/structure resonance occurs near 
to coincidence. This resonance can draw enough energy from the plate as to render a 
sensor nonfunctional. Nevertheless, his analysis assumed that existing theory for viscous 
wave propagation was valid at the micro level. 

To further understand the effects of viscous wave propagation on micro devices, test 
structures were manufactured using SUMMiT VTM technology. Figure 20 illustrates one 
of these structures. This structure consists of an annular disk of 400um radius at a fixed 
distance above the substrate. The center of the disk is connected to a torsional spring. 
Two micro disks were considered - one with a gap of 10.5um above the substrate and the 
other with a gap of 2.0um above the substrate. 
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Figure 20. Micro-torsional disk for acoustic shear wave experiment. 

The free response of these test structures were obtained by winding the annular disk using 
a micro probe and recording the response using a high-speed camera connected to a 

spring 

gap 



 

 46

microscope. The recorded response was then compared to numerical models constructed 
using relatively mature theory. It was found that theory did not match experiment. 

In Figure 21, the free responses of the 10.5um and 2.0um disks are shown. From existing 
theory, the 2.0um disk should have had an over damped response. Instead, the damping 
coefficient was about 0.1 –closely resembling the response from the 10.5um disk. The 
10.5um response was closer to what was expected.  

Existing theory should have predicted both responses quite closely, however, the 2.0um 
disk results were over an order of magnitude off – surprisingly, in the direction of 
damping reduction. We consider this a very positive result in that a reduction of damping 
in a device it is far more difficult to obtain than an increase. The difficulty is now to 
explain why it occurred. 
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Figure 21. Response of microdisk for two different gap thicknesses. 

 
 
 
 
 

5.0 Conclusions  
 
In this report, two acoustic formulations for coupled structural acoustics have been 
described and implemented. For the computational work, a viscous acoustic formulation, 
and a massively parallel implementation were the main areas of research. Results from 

Response from 10.5um disk 
Response from 2.0um disk 
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the simulations compared well with experimental results from wave tube experiments. 
The experimental portion of this work consisted of an acoustic wave tube, and a micro 
disk for acoustic shear wave experiments. The acoustic wave tube was developed from 
inexpensive laboratory components and was shown to be an effective means of testing 
coupled structural acoustic interactions. The wave-guide theory used to derive analytical 
expressions for the wave tube assumed that the walls were rigid, and that there was no 
structural-acoustic coupling between the air and the tube walls. This report also provided 
guidelines for designing and using an acoustic plane wave tube. The limitations of the 
technique and the validity of the assumptions must be carefully determined by testing the 
tube before using it. The micro-torsional disk was designed and tested for the purposes of 
examining acoustic shear wave dissipation in MEMS. The results, which contradicted 
existing theory, indicated that the damping factors did not depend on the gap thickness. 
This issue warrants further investigation. 
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