
SANDIA REPORT 
 

SAND2004-4447 
Unlimited Release 
Printed October 2004 
 
 
A Novel Window Based Method for 
Approximating the Hausdorff in 3D 
Range Imagery 

Mark W. Koch 
 

 
Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 
 
Sandia is a multiprogram laboratory operated by Sandia Corporation, 
a Lockheed Martin Company, for the United States Department of Energy’s 
National Nuclear Security Administration under Contract DE-AC04-94AL85000. 
 
 
 
Approved for public release; further dissemination unlimited. 
 
 
 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71305035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

Issued by Sandia National Laboratories, operated for the United States Department of Energy by 
Sandia Corporation. 

NOTICE:  This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government, nor any agency thereof, nor any 
of their employees, nor any of their contractors, subcontractors, or their employees, make any 
warranty, express or implied, or assume any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represent that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government, any agency thereof, or any of their contractors or subcontractors.  The 
views and opinions expressed herein do not necessarily state or reflect those of the United States 
Government, any agency thereof, or any of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from the best 
available copy. 
 
Available to DOE and DOE contractors from 

U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN  37831 
 
Telephone: (865)576-8401 
Facsimile: (865)576-5728 
E-Mail: reports@adonis.osti.gov
Online ordering:  http://www.osti.gov/bridge  
 

 
 
Available to the public from 

U.S. Department of Commerce 
National Technical Information Service 
5285 Port Royal Rd 
Springfield, VA  22161 
 
Telephone: (800)553-6847 
Facsimile: (703)605-6900 
E-Mail: orders@ntis.fedworld.gov
Online order:  http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online  

 

 

 
 
 
 
 
 
 
 

 
2

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online


SAND2004-4447 
Unlimited Release

Printed October 2004 

A Novel Window Based Method for Approximating the Hausdorff in 3D 
Range Imagery  

 
Mark W. Koch  

Sensor Exploitation Applications 
Sandia National Laboratories 

P.O. Box 5800 
Albuquerque, NM  87185-1163 

 

Abstract 
Matching a set of 3D points to another set of 3D points is an important part of any 3D object 

recognition system. The Hausdorff distance is known for it robustness in the face of obscuration, 

clutter, and noise. We show how to approximate the 3D Hausdorff fraction with linear time 

complexity and quadratic space complexity. We empirically demonstrate that the approximation 

is very good when compared to actual Hausdorff distances. 
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1 Introduction 
In 3D image understanding, we would like to recognize objects such as faces or vehicles in 3D 

range imagery. One approach uses a template from a database of objects and matches it to the 

probe image containing the unknown. Mean square error can determine the goodness of the 

match [2], but it fails for an obscured object or if the probe image has excess clutter. The 

Hausdorff distance can measure the goodness of a match in the presence of occlusion, clutter, 

and noise [5][6]. In this paper we discuss a new and novel method on how to efficiently, in time 

and memory, compute the Hausdorff distance for 3D range imagery. 

1.1 Hausdorff Distance 
The Hausdorff distance was originally designed to match binary edge images [5]. Modifications 

to the Hausdorff distance permit it to handle not only noisy edge positions, but also missing 

edges from occlusion, and spurious edges from clutter noise [5][6]. In edge image matching, we 

can conceptualize an edge image as a list of 2D points, where the points indicate the location of 

an edge. Thus, we can generalize this concept to 3D datasets where a list of 3D points is 

available.  

  For instance, let  represent the set of  points for the template. For edge 

images, is a 2x1 column vector representing the  coordinate of the i

},,{ 1 paaA K= p

ia ),( yx th edge point in the 

template, and for 3D images represents a 3x1 column vector corresponding to 3D points 

located on the object. Similarly, let 

ia

},,{ 1 qbbB K= represent  points for the probe. The 

following equation gives the directed Hausdorff distance : 

q

),( BAh

baBAh
BbAa

−=
∈∈

minmax),(  
(1) 
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where   ⋅  represents the distance between points  and  measured by some norm, for 

example the Euclidean norm . Figure 

a b

2L 1a shows a simple 2D example. The circles represent 

points from the template A, and the squares represent points from the probe B. In Figure 1b we 

show the directed Hausdorff .The first step finds for each point in A the closest point in 

B. The dotted ellipses shown in Figure 

),( BAh

1b denote this pairing. The second step looks at the 

distance for each pairing and determines the largest distance. This largest distance is the directed 

Hausdorff . ),( BAh

{h(A,B)

(b)

-A
-B

(a)
 

Figure 1. Hausdorff Computation Example. (a) A 2D example. Circles represent points 
from the template A and squares represent points from the probe B. (b) Computing the 
directed Hausdorff distance h(A,B). See text for details. 

1.2 Hausdorff Modifications 
The following equation gives a modified Hausdorff distance for handling partial obscurations 

and clutter [5]: 

baKBAh
BbAa

th −=
∈∈

min),( . 
(2) 

This equation uses the thK  rank pairing instead of the largest one. This allows a certain number 

of points from the template A to be obscured and not have a matching point from the probe B. An 
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alternative formulation to (2) that does not require a partial sort computes the directed Hausdorff 

fraction ),( BAφ  [5][6]: 

A

ba
BA Bb

τ
φ

<−
= ∈

min
),( . 

(3) 

Here, τ  represents the largest acceptable Hausdorff distance and   ⋅  represents cardinality or the 

counting operation. Thus, for each point in A  we find the closest point in  and count the 

number of distances less than the threshold 

B

τ  . We then divide that count by the number of 

points in the set A. This gives the fraction of points from A within a certain distance of points 

from B. 

 The directed Hausdorff distance  is not symmetrical, thus  does not 

always equal . One can view  as a hypothesis generation step and by computing 

 over a limited extent,  becomes a verification step. We usually take the limited 

extent to be a bounding box around the points in A. This reduces mismatches caused by other 

objects or clutter in the image containing the probe B. The same arguments apply to the directed 

Hausdorff fraction 

),( BAh ),( BAh

),( ABh ),( BAh

),( ABh ),( ABh

),( BAφ . Using a limited extent, the undirected Hausdorff distance  is 

defined as . Thus, we require small distances for both the hypothesis and 

verification for point set A to match point set B. In a similar way, we can define the undirected 

Hausdorff fraction  as 

),( BAH

)),(),,(max( ABhBAh

),( BAΦ )),(),,(min( ABBA φφ . 

2 3D Sensors and Data 
To ground the discussion of 3D representations and Hausdorff calculation we use the Minolta 

Vivid 910 ranger scanner. The Minolta Vivid 910 is commercially available and produces a 

640x480 range image and a corresponding 640x480 color intensity image. The Minolta uses a 
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projected laser stripe to acquire triangulation-based range data and has an optimal range depth of 

field of at most 1.2 m with a range resolution of 0.1 mm.  

We verify our approach using a 3D database collected with the Minolta Vivid 900 range 

scanner by the University of Notre Dame. The data comes from Collection D of their biometric 

database [3][4] and contains images of 275 subjects acquired over a thirteen week period. Of the 

275 subjects, 200 participated in more than one session allowing the first image to be used as 

template and subsequent acquisitions to be used as a probe image (test image against the 

template). The faces have an average of 80,000 3D points. 

3 3D Data Representation and Space Complexity 
Representation of 3D data is usually determined by the types of algorithms used to process the 

data and memory requirements for the data structures. We will discuss three data representations 

and their impact on computing the Hausdorff distance. The data representations are: 1) point 

cloud, 2) range image, and 3) voxel.  

The point cloud representation creates a list of the 3D points and their   

coordinates. Assuming 4 bytes to represent the floating point coordinate and 640x480 points, the 

point cloud representation would require at most 3.5 MB. We can reduce the number of points by 

segmenting out the object of interest or not including invalid points (points too far away), and 

thus reducing the amount of memory needed in the point cloud representation. The point cloud 

representation allows us to represent the 3D coordinates at the accuracy of the sensor using 

quadratic space complexity . Note, the “big-Oh” function 

),,( zyx

)( 2nO )(⋅O  or order function 

represents the asymptotic space or time complexity of the data representation or algorithm. For 

the point cloud representation, we implicitly assume that the height and width of image array 
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grows at the same rate. For example, if we double the resolution of the sensor then 640x480 goes 

to 1280x960. 

The range image representation stores the depth of each point in a 2D image array. Each 

 coordinate in 3D space is mapped to an integer  index. The mapping requires some 

quantization of the  coordinates, and will typically depend on the parameters of the 

matching function and the resulting range image size. By quantizing the Minolta data to 640x480 

we do not lose much accuracy, since the Minolta scans to a 640x480 array. The Minolta scan 

pattern is not rectangular, so we lose some accuracy when quantizing.  If we use 4 bytes to 

represent a range value, then a range image requires 1.17 MB. Thus, for a slight loss in accuracy, 

we gain a reduced memory representation, but still at  space complexity. For either the 

point cloud or range image representation we can reduce the memory requirements using a fixed 

point representation, if we can constrain the range of the data or normalize to the distance of the 

object from the 3D sensor. 

),( yx ),( ji

),( yx

)( 2nO

The voxel representation stores a 3D image using a 3D array. Here, each  

coordinate in 3D space maps to an integer  index. Here, the voxel representation has a 

cubic space complexity . Each array element contains a 1 or a 0 indicating whether there 

exists an  coordinate that maps to the corresponding  index or not, respectively. 

Here, one could represent each voxel with one bit. To represent the full resolution of the Minolta 

sensor (1.2 M range with 0.1 mm accuracy and 640x480 spatial size) would require 12000 

ranges bins or 3500 MB to store the 3D array. To reduce the memory requirements, we can 

decrease the range accuracy to 1mm and require 350 MB. 

),,( zyx

),,( kji

)( 3nO

),,( zyx ),,( kji
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4 Hausdorff Computation and Time Complexity 
The speed of computing the Hausdorff distance depends on the representation used to store the 

3D data. Using the point cloud representation, the Hausdorff fraction (2) can be computed with 

quadratic time complexity . Here, we implicitly assume and  (the number of points in )( 2nO p q

A  and ) grow at the same rate. The quadratic time complexity results from having to find the 

closest point in  for every for point in 

B

B A . 

 We can obtain a faster Hausdorff distance computation of   time by using the voxel 

representation. The reduced time complexity requires using a distance transform (DT) that can be 

computed in linear  time  

)(nO

)(nO [7]. A DT of a voxel image is a new voxel image where every 

voxel gives the distance to the closest voxel containing a 3D point or a “1.” Figure 2 shows an 

example of a 2D image and also the corresponding DT. In the DT image the numbers correspond 

to square L2 norm values. To compute the Hausdorff fraction, we can first compute a DT of the 

probe image B. Using the coordinates of A as an index into the DT of B we can find the distance 

to the closest voxel in B. We then count the number of the distances less than the threshold  

and divide by the total number of points in A to get the Hausdorff fraction 

2τ

),( BAφ . This 

approach gives the overall Hausdorff calculation a complexity of .  )(nO
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(a)                                                           (b) 

Figure 2. 2D “voxel” image and its distance transform. (A) Example of a 2D “voxel” image. 
(B) The corresponding distance transform using the square of the L2 norm. 

Unfortunately, a voxel distance transform image has a large memory requirement. To 

store the distances as a 4 byte float would require 11250 MB or 11 GB for a 640x480 image at 

1mm resolution and a 1.2 M depth of field. Here, the cubic space complexity  causes a 

large increase in memory requirements as we increase the number of bits per voxel. 

)( 3nO

To obtain reasonable speeds at low memory requirements we use the range image 

representation to approximate the Hausdorff distance. Here, we can get linear time complexity 

along with reduced memory requirements. To accomplish this we use the observation that for 

smooth objects, close points in the  plane also tend to be close in  space. Thus for a 

range image, to find the closest point in B to A , we need to compute distances within a 

window of size w centered around B(i,j). To accomplish this we use what we call a distance 

kernel. The distance kernel for a window of size w=5 is shown if Figure 

),( yx ),,( zyx

),( ji

3. Each entry of the 

distance kernel is the square L2 norm to that entry’s position from the center of the distance 

kernel. To find the closest point to  in the template image A, we take the range value stored ),( ji
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at  of the template  and center the distance kernel on top of the  point in the 

probe image B. Let  represent the value in the distance kernel for row  and column  

and similarly we have the corresponding values in the probe image . To compute 

),( ji ),( jizt ),( ji

),( vuk u v

),( vuzp

ba
Bb

−
∈

min  in the Hausdorff fraction we compute: 

)],()),(),([(minmin 2

11
vukvuzjiz pt

w

v

w

u
+−

==
. 

(4) 

This operation has constant time complexity , since is constant and independent of 

the number of points B. The quantity 

)1(O 2ws =

ba
Bb

−
∈

min  has linear time complexity  and grows at 

the rate of the number of points in A. Thus, the time complexity for the Hausdorff fraction using 

the range image representation and the distance kernel is linear . 

)(nO

)(nO

8 5 4 5 8 

5 2 1 2 5 

4 1 0 1 4 

5 2 1 2 5 

8 5 4 5 8 

Figure 3. Example of a distance kernel for a window size of w=5. 

 

The window based Hausdorff approximates the Hausdorff fraction. We can empirically 

estimate the approximation error by matching 3D faces using the window based Hausdorff for 

range imagery and computing the Hausdorff exactly from the point cloud representation. We 

demonstrate the performance of this approach using the University of Notre Dame’s 3D face 

imagery from a 100 people with 2 images per face. We pick one face as the template and the 

other as the probe image. For the Hausdorff fraction (3), we use 3=τ  and a window size of 
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5x5 as shown in Figure 3. Using Parzen density estimation, Figure 4 shows the distribution of 

differences between the window-based approximation of the Hausdorff and the actual Hausdorff 

fraction. The errors are very small with the largest being 0.021. The errors are always positive 

indicating that the window based Hausdorff always over estimates the true Hausdorff fraction. In 

theory, we could subtract the mean of the distribution ~0.01 from the window based Hausdorff to 

give a maximum error of . 01.0±

 

Figure 4. The Hausdorff approximation error using the window based Hausdorff for range 
imagery. 

5 Conclusion 
The 3D Hausdorff fraction can measure the goodness of match in the presence of occlusion, 

clutter, and noise. This paper describes how to efficiently approximate the 3D Hausdorff fraction 

in time and space. The window based Hausdorff has a time complexity of linear  and a 

space complexity of quadratic . Using a distance transform, we can get an exact Hausdorff 

distance in time complexity, but the space complexity increases to cubic . A  

space complexity is impractical for all, but the smallest of 3D images. Using a point cloud 

representation we can achieve an  space complexity, but the time complexity is also 

)(nO

)( 2nO

)(nO )( 3nO )( 3nO

)( 2nO
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)( 2nO . Even though the window based Hausdorff is an approximation, we empirically show that 

the approximation is very good. 
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