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Abstract

The accurate computation of the external magnetic field from a permanent
magnet motor is accomplished by first computing its magnetic scalar potential.
In order to find a solution which is valid for any arbitrary point external to
the motor, a number of proven methods have been employed. Firstly, A finite
element model is developed which helps generate magnetic scalar potential values
valid for points close to and outside the motor. Secondly, charge simulation is
employed which generates an equivalent magnetic charge matrix. Finally, an
equivalent multipole expansion is developed through the application of a toroidal
harmonic expansion. This expansion yields the harmonic components of the
external magnetic scalar potential which can be used to compute the magnetic
field at any point outside the motor.

INTRODUCTION

In order to accurately compute the external magnetic field from a permanent-magnet
motor valid for both the near-field and the far-field, a technique which employs
toroidal harmonics is developed. This method is most useful for validating mag-
netic field measurements close to the hull of a cylindrical motor and for accurately
predicting the far-field solution when other methods, such as a finite element analysis,
are not very accurate.

The well-known method of charge simulation, nicely explained in Schwab (1988),
is employed so that the permanent magnet motor may be replaced by its equivalent
charge distribution on an external circular cylinder. This technique was first employed
by Kwon et al. (2004) for studying the external field from a permanent magnet motor.
Kwon implemented this method for a spherical system. However, in order to more
accurately map the geometry of a motor, a circular cylindrical geometry is more
useful.
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FORMULATION

Charge simulation and the magnetic scalar potential

Schwab (1988) describes charge simulation, as it is applied to an electrostatic system,
quite succinctly. He states that: “In the charge-simulation method a configuration
of simulation charges is determined whose potential function Φs(r) approximates the
true potential function of a physical electrode connected to a voltage source(electrode
potential ΦE). In order to find the required configuration, n unknown point charges
q1...qn are positioned inside the electrode, their positions being defined by the user,...”
One can generalize this technique to tackle magnetic systems. In other words, one
can rewrite Schwab’s definition as follows: charge simulation is a general method
by which a configuration of simulation charges is determined, and whose potential
function or field function approximates the true potential or field of the actual electric
or magnetic source. The first type of charge simulation, used in this paper, is that
derived from a known magnetic scalar potential function. The second type of charge
simulation, illustrated in Selvaggi (2005), is that derived from experimental data
such as the normal component of the magnetic flux density measured on a closed
hypothetical cylinder surrounding a real magnetic source.

Using a technique introduced by Kwon et al. (2004) for spherical geometries, a
magnetic scalar potential column vector is computed on a hypothetical cylindrical
grid which encloses the permanent-magnet motor. The potential vector is then used
to compute a fictitious magnetic charge matrix by using charge simulation. Figures
1 and 2 illustrate the method.
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FIGURE 2 Charge simulation

The hypothetical cylinder surrounding any arbitrary magnetic source, shown in Fig-
ure 1, will be designated as the potential cylinder. The basic idea of charge simulation
for a magnetic system is to replace the actual magnetic source with a new source made
up entirely of fictitious magnetic charges which yields the same computed potentials
on the potential cylinder as the original source did. This is shown in Figure 2. The
charge cylinder completely encloses the actual source, but lies inside the potential
cylinder.
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Once the charge cylinder is found which reproduces the correct potentials on
the potential cylinder, one can use the charge cylinder and the magnetic form of
Coulomb’s law (Stratton 1941) to compute the magnetic scalar potential or the mag-
netic field anywhere external to this new source. In contrast to finite-difference and
finite-element methods, the charge simulation method is well suited for unbounded
electromagnetic problems, but can be modified to handle bounded problems. The hy-
pothetical surface used in charge simulation could be any closed surface surrounding
the real source. However, choosing the appropriate geometry that fits the particular
problem may simplify the analysis. The circular cylindrical coordinate system is most
suited to real motor geometries.

The mathematical steps employed in charge simulation are given by Equations
(1) and (2). Equation (1) is simply the matrix-form of Coulomb’s law. The column
vector given on the left-hand side of Equation (1) represents the computed magnetic
scalar potentials, [Φ]. The square matrix shown on the right-hand side of Equation
(1) represents the inverse distance matrix where rij is the distance between the source
point and the observation point.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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Once the [Ω] vector is computed, one can expand the potential of a unit point
charge in terms of the free-space Green’s function expansion given by Jackson (1999),
Smythe (1968), and Bouwkamp and Bruijn (1947). In cylindrical coordinates, the
free-space Green’s function leads to an expression for the inverse distance between
the source point and the field point as shown in Figure 3.
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FIGURE 3 The circular cylindrical model

The inverse distance is given by

1

|r− r0 | =
1q

ρ2 + a2 + z2 − 2aρ cos(φ− φ
0
)
. (3)

This relation for the inverse distance can be written in terms of a Fourier series
expansion whose weighting coefficients are the Legendre functions of the second kind
and of half-integral degree (Lebedev 1965). These are also called toroidal functions
of zeroth order or Q-functions (Snow 1949, 1952) and (Hobson 1900). The expansion
is given by
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Equation (4) can be viewed as a Fourier series expansion of the inverse distance func-
tion whose weighting coefficients are Q-functions. This expansion is also a toroidal

harmonic expansion where ξ = ρ2+ρ
02+(z−z0)2
2ρρ0

> 1. The Neumann factor (Morse and

Feshbach 1953), m is 1 for m = 0, and 2 for all m ≥ 1. It is shown in Selvaggi et al.
(2004) that
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When a magnetic field is produced from an arbitrary source, the application of
charge simulation along with the magnetic form of Coulomb’s law will allow one
to compute the magnetic field external to an equivalent cylindrical source. The
matrix form of Coulomb’s law for hypothetical magnetic charges can be written in
summation-form as

ΦP (ρ, φ, z) =
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, (6)
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where Ωk(ampers · meters) are the hypothetical magnetic charges. The units for
magnetic scalar potential are in amperes.

From (4), (5), and (6), one can compute the corresponding magnetic scalar po-
tential at some observation point given in cylindrical coordinates. This is written
as

ΦP (ρ, φ, z) =
1

4π2
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Ωk√
ρρk

∞X
m=0

mQm− 1
2
(ξk) cos [m (φ− φk)] , (7)

where ξk =
ρ2+ρ2k+(z−zk)2

2ρρk
> 1. The magnetic field intensity at any point in space

external to the charged cylinder can be found from

H = −∇ΦP (ρ, φ, z) , (8)

where the gradient is taken in cylindrical coordinates.

REAL 6 POLE MOTOR

A real 6−pole permanent-magnet brushless DC motor including permanent magnets,
stator iron, winding currents, and endcaps is used to test the toroidal expansion.
Figure 4 shows the finite element model of the 6− pole motor. Details are found in
Kwon’s thesis (2004).

FIGURE 4 Finite element model of 6-pole motor
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Figure 5 represents the pole arrangement of the 6 − pole motor. Employing Equa-
tions (2) and (7), one is able to compute the magnetic scalar potential from a real
permanent magnet motor. Two basic models can be considered. The first assumes
that the motor is perfectly balanced and the second considers various asymmetries
that may exist because of manufacturing tolerances, defects, etc.

Balanced motor

The plot of the total scalar potential for a balanced 6−pole motor is shown in Figure
6
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Figures 7 through 11 represent the various components which contribute to the mag-
netic scalar potential of a real 6− pole motor under full load conditions.
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FIGURE 10 This is the Φ(4)P (ρ, φ, z) component
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FIGURE 11 This is the Φ(5)P (ρ, φ, z) component

Unbalanced motor

The plot of the total scalar potential for an unbalanced 6− pole motor with a 6.5 %
demagnetization of magnet number 4 is illustrated in Figure 12.
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Figures 13 through 15 represent the various components which contribute to the
magnetic scalar potential of the unbalanced motor.
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This analysis yields a simple illustration of how a demagnetized magnet can interrupt
the symmetry that is associated with the balanced motor considered previously.

Consider the case where only a fairly large axial off-set exists. Figures 16 is a plot
of the total magnetic scalar potential when for the 6− pole motor with a 10 % axial
off-set.
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Figures 17 through 19 represent the various components which contribute to the
magnetic scalar potential of the motor.
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One may notice that for the two unbalanced cases considered, a nontrivial dipole
contribution appeared. This was not the case for the balanced motor. In fact, any sort
of motor imbalance such as magnet demagnetization, axial or radial shifts, etc., will
interrupt the symmetry of the balanced motor. This loss of symmetry will ultimately
be reflected in the multipole distribution which describes the motor. This multipole
description could be used to make predictions about the internal structure of the
motor. In other words, by computing the multipole distribution of a real electrical
machine, can one make predictions about what is causing the imbalance? This, of
course, is a difficult question to answer with certainty. However, from the preliminary
work done by the authors, it appears that one can make reasonable predictions, based
upon anlaysis and experience, as to what causes specific motor imbalances and their
corresponding multipole distributions. This would ultimately be a useful diagnostic
tool.
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DISCUSSION AND CONCLUSION

A general technique has been introduced for describing circular cylindrical magnetic
systems. The Fourier series expansion or the toroidal expansion whose coefficients are
the Q-functions can be used to represent a non-cylindrical magnetic source through
the use of a method called charge simulation. The fictitious magnetic charges which
are computed from charge simulation are located on a hypothetical cylinder which
acts as the new magnetic source. Knowing the charge distribution on a cylinder
greatly simplifies the mathematical problem since it allows one to immediately apply
the magnetic form of Coulomb’s law.

The main focus of this paper is to illustrate how the toroidal expansion can be
employed to characterize, for example, a permanent-magnet motor in terms of its
equivalent multipole distribution. It is shown that for a 6−pole balanced permanent
magnet motor, the Q-function formulation predicts that the dominant term in the
expansion is m = 3. Likewise, for a balanced 2n−pole permanent-magnet motor, the
m = Pole Number

2 = n is the dominant contribution to the magnetic scalar potential
or the magnetic field intensity. This is not the case when a motor has an imbalance.
Under unbalanced conditions, things change. Other terms in the toroidal expansion
contribute. This is to be expected, and one must, in general, consider various motor
imbalances on a case-by-case basis for each type of motor that one chooses to study.
However, for the permanent magnet motor that was studied in this paper, many test
cases were performed and the authors have developed a tableau of various motor
imbalances and their corresponding multipole distributions.
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