

SANDIA REPORT

SAND2003-8589
Unlimited Release
Printed September 2003

Smart Sensor Technology for Joint Test
Assembly Flights

K. D. Marx, R. C. Armstrong, N. M. Berry, R. L. Bierbaum, T. J. Deyle,
J. L. Dimkoff, A. B. Doser, C. M. Pancerella, D. A. Sheaffer, and E. J. Walsh

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71305003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Issued by Sandia National Laboratories, operated for the
United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represent that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

- 2 -

mailto:reports@adonis.osti.gov
http://www.doe.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0

SAND2003-8589
Unlimited Release

Printed September 2003

Smart Sensor Technology
for Joint Test Assembly Flights

K. D. Marx*, R. C. Armstrong*, N. M. Berry*, R. L. Bierbaum*, T. J. Deyle†,
J. L. Dimkoff*, A. B. Doser‡, C. M. Pancerella*, D. A. Sheaffer*, and E. J. Walsh*

Sandia National Laboratories

*Livermore, California
and

‡Albuquerque, New Mexico

†University of Nebraska-Lincoln (Omaha Campus)

Abstract

 The world relies on sensors to perform a variety of tasks from the mundane to
sophisticated. Currently, processors associated with these sensors are sufficient only to
handle rudimentary logic tasks. Though multiple sensors are often present in such
devices, there is insufficient processing power for situational understanding. Until
recently, no processors that met the electrical power constraints for embedded systems
were powerful enough to perform sophisticated computations. Sandia performs many
expensive tests using sensor arrays. Improving the efficacy, reliability and information
content resulting from these sensor arrays is of critical importance. With the advent of
powerful commodity processors for embedded use, a new opportunity to do just that has
presented itself.

 This report describes work completed under Laboratory-Directed Research and
Development (LDRD) Project 26514, Task 1. The goal of the project was to demonstrate
the feasibility of using embedded processors to increase the amount of useable
information derived from sensor arrays while improving the believability of the data.
The focus was on a system of importance to Sandia: Joint Test Assemblies for ICBM
warheads. Topics discussed include: (1) two electromechanical systems to provide data,
(2) sensors used to monitor those systems, (3) the processors that provide decision-
making capability and data manipulation, (4) the use of artificial intelligence and other
decision-making software, and (5) a computer model for the training of artificial
intelligence software.

- 3 -

Contents
Abstract...3

Executive Summary...6

Executive Summary...6

I. Introduction..9

II. Electromechanical System 1 (JTA Mockup) ..10

III. Embedded Processor 1..12

IV. Simple Operating State Recognition System ..12

V. Use of a Self-Organizing Map to Classify the Data..15

VI. Computer model of the JTA Mockup system ...18

VII. Electromechanical System 2 (Geophone Grid) ...19

VIII. Embedded Processor 2...20

IX. Sensor Array for Backpropagation Neural Net Data ..21

X. Backpropagation Neural Net Procedures ...21

XI. Single-Channel Backpropagation Neural Net ..22

XII. Nine-Channel Neural Net ..26

XIII. Conclusions ...27

Acknowledgments ..29

References...29

Distribution...30

- 4 -

Figures

Figure 1. Simplified sketch of the JTA Mockup (not to scale). 10

Figure 2. Photograph of the JTA Mockup system. ... 11

Figure 3. Output from the JTA Mockup GUI. As indicated in the lower left of the
figure, the computer code resident on the embedded processor has
detected that the system is in its normal operating state. 13

Figure 4. Output from the JTA Mockup GUI showing the response to the situation
in which an obstacle is impeding the motion of the right side of the bar. . 14

Figure 5. Output from the JTA Mockup GUI showing the response to the situation
in which an obstacle is impeding the motion of the left side of the bar..... 14

Figure 6. Partial output of the clustered SOM.. 16

Figure 7. Partial output of the clustered SOM with different anomalies. 17

Figure 8. Photograph of the processor board assembly. The top board is a
breakout board to route the sensor signals to the DAQ board. The
remaining three boards are (from second to bottom) the DAQ board, the
processor board containing the Crusoe chip, and a power base board.
Only one sensor connection is made in the figure (see the two wires
connected to the breakout board). In the actual GG configuration, nine
connections were made. ... 19

Figure 9. Geophone sensor array. The geophones are laid out in a 3 x 3 grid. 20

Figure 10. Typical data from a single geophone. .. 21

Figure 11. Single-channel backpropagation neural net. There are 30 hidden nodes
in this BPNN. The nine-channel BPNN contains 9 input nodes, 60 hidden
nodes and 5 output nodes... 22

Figure 12. Results of training the single-sensor BPNN 3 times (top 3 plots), 7 times
(middle 3 plots), and 10 times (bottom 3 plots). Note the progressive
improvement in the ability of the neural net to correctly classify footsteps.
.. 24

Figure 13. Screenshot made while running the single-channel neural net on the
embedded processor. Note: Time runs backwards on the plot. I.e., the
earliest time is on the right. The text in the upper left part of the screen
flags those occasions when the net has detected a footstep......................... 25

Figure 14. Typical data from the nine-geophone grid. The footstep was in the
center of the first quadrant (the quadrant encompassed by Geophones 0,
1, 3, and 4). .. 27

Figure 15. Nine-sensor backpropagation neural net output. 28

- 5 -

Executive Summary

The goal of this work was to show that intelligent embedded processors could be

used to advantage to direct the flow of information from sensor arrays such as those used
in Joint Test Assembly (JTA) flights. At the beginning of the project, it was decided that
it would be too difficult and too intrusive to try to base the work on a real JTA system.
Instead, two simple electromechanical systems instrumented with sensors were used as
test beds to mimic JTA instrumentation.

The heart of a smart sensor system is the computer processor. In each of the two

systems studied, the processor was chosen for characteristics that would make it
potentially flyable on a JTA flight. These characteristics include small size, light weight,
and an absence of moving parts such as rotating hard drives or fans. Each processor was
equipped with a data acquisition (DAQ) board to acquire signals from the sensor arrays.
No attempt was made to transmit signals over a wireless network. Instead, transmission
was accomplished through Ethernet connections to desktop computers.

The first electromechanical system that was employed consisted of an aluminum

bar mounted on a vibration shaker. The bar was instrumented with two strain gauges,
temperature sensors, and a tachometer to monitor the frequency of vibration. This system
was named the JTA Mockup. The sensor output was connected through the DAQ board
to a 170 MHz PC104 processor with 130 MByte RAM and a 1 GByte flash disk. A
version of the Linux operating system was installed on the processor. Data was taken
from four sensors at the rate of 5120 samples/s/sensor (i.e., 20480 total samples/s).

The capability for recognizing different situations (and hence providing the

opportunity to react to them) was demonstrated by taking fast Fourier transforms (FFTs)
of the two streams of strain gauge data. This made it possible to determine the state of
the JTA Mockup system and to detect the presence of obstacles impeding the motion of
the two arms of the aluminum bar. Performing an FFT on two 512-sample blocks of data
and sending a message to the desktop computer was done approximately 90 times/minute
(1 ½ times/s). This represents a quantitative milestone for the project—demonstrating
that a flyable processor running a full-up operating system could perform FFTs and
report results at this frequency. No attempt was made to optimize this procedure; it is
expected that the frequency of reports could be increased.

At this point, the potential for the use of artificial intelligence (AI) as part of a

decision-making process was explored. The idea was that in a real JTA smart sensor
system, AI modules could learn to (e.g.) determine system operating states, detect
fundamental changes in sensor output, detect equipment failures and then take action to
switch to different sensors, or to diagnose interesting features of the data and of the
failures. The initial attempt to introduce AI involved the use of a type of neural network
(NN) known as a self-organizing map (SOM). One of the key attributes of the SOM is
that the various system states do not need to be defined a priori. Data recorded from the
sensors were used to train a SOM, and the SOM then categorized the data. This

- 6 -

categorization was closely related to the determination of operating states referred to in
connection with the use of the FFT results described above.

The training of the SOM was successful. When run on a desktop computer, the

SOM was capable of recognizing operating states and reporting the results. It was
recognized that the JTA Mockup did not represent a really good application of the SOM,
as the amount of data (four sensors) was limited, and this type of AI is most useful when
used to analyze more complex situations. However, the goal of the project was proof-of-
principle, and this was achieved up to the point of training the SOM and running it
against sensor data. What remained was to install the SOM on the JTA Mockup
computer processor and to demonstrate that such an AI module could run on a flyable
system. This effort was unsuccessful. The problem was that the SOM was written in the
MATLAB language, with the intent that an advertised MATLAB feature could be used to
convert the MATLAB code to C language code and run on the JTA Mockup processor.
It was found that this conversion was not possible due to unanticipated idiosyncrasies of
the MATLAB-produced C code. The project did not have the resources to install
MATLAB on the processor or to rewrite the C code, so this avenue had to be abandoned.

It was then recognized that the computer processor described above was relatively

slow and limited in memory and in flash disk space compared to processors currently (in
2003) available. It was also desired to make another attempt to demonstrate the utility of
AI in smart sensor systems. So an 800 MHz PC104 processor with 500 MByte RAM and
a 2 GByte flash disk was purchased. This processor was embedded in a new
electromechanical system referred to as the geophone grid (GG) system. The GG system
consisted of nine geophones arranged in a 3 x 3 grid on a floor. The geophones are the
sensors in this system, and they generate electrical signals in response to floor vibrations.
The idea was to use the GG system to detect and locate the occurrence of footsteps within
the grid. Data was taken from the nine sensors at the rate of 10,000 samples/s/sensor (i.e.
90,000 total samples/s).

The analysis of the geophone data was done through the use of a neural net

approach known as backpropagation (BPNN). This is a simpler type of NN than a SOM.
A number of experiments were run with the GG/BPNN system which involved training
BPNNs with data from both single geophones and from the 3 x 3 grid. The trained
BPNNs were used to detect the presence of footsteps in the single geophone case, and to
determine the location of footsteps in the 3 x 3 grid. The BPNN proved very capable in
detecting a footstep via a single geophone sensor. However, the determination of
location in the nine-sensor grid was somewhat limited due to lack of experimentation
with preprocessing schemes and due to the lengthy required training times. Additionally,
due to lack of time, the nine-sensor BPNN was run only on a desktop computer.
However, the objective of demonstrating that the single-sensor AI system could be run on
the PC104 processor was a complete success. Furthermore, there appears to be no reason
that the nine-sensor BPNN would not have worked just as well on the embedded
processor as on the desktop computer.

- 7 -

In summary, this project has explored the potential that embedded commodity
processors have for enabling smart sensor systems. The principle has been demonstrated,
and quantitative information has been made available from which to proceed with further
development.

- 8 -

I. Introduction

The aim of this project was to demonstrate the utility of employing computer
processors in an instrumented system to control the flow of sensor data. The idea is to
embed one or more processors in an instrumented system and use software running on the
processor to make intelligent decisions. The nature of these decisions is (1) to determine
whether the data taken from sensors is accurate and reliable, and (2) in the presence of
limited transmitter bandwidth, to decide which data to transmit. Although the primary
focus of this work is on Joint Test Assembly (JTA) systems, the ideas are extendable to
other systems that employ sensors.

For example, suppose that a particular subsystem is instrumented with two
accelerometers, but that due to bandwidth restrictions, data from only one of these can be
transmitted. Suppose that an intelligent system (the embedded processor and appropriate
software) is capable of recognizing that data from the selected accelerometer is no longer
reliable. This may be as simple as noting that there is no signal present above some
minimum noise level. However, it could encompass a more complex situation in which
the software is capable of recognizing that even though there is a strong signal from the
accelerometer, the spectrum of the signal indicates that the accelerometer is no longer
mounted securely. Given this information, the software could direct the instrumentation
system to switch from the first accelerometer to the second. One can envision more
complex situations where the software detects a problem in a critical subsystem, and
switches transmitter resources from uninteresting data elsewhere to a previously dormant
array of sensors designed to diagnose such problems.

The following approach was taken in this work:

(1) A simple electromechanical system was constructed and instrumented (see Section
II). The purpose of the system was to provide some JTA-like data for processing. It has
been given the name “JTA Mockup.”

(2) A small, flyable computer processor was acquired and an appropriate operating
system was installed on it (Section III). Data acquisition from the JTA Mockup to the
processor was enabled through appropriate hardware and software.

(3) Software was written to process the data and make decisions based on its
characteristics (Section IV). At first this software consisted of simple C code with
conditional branches. Then a more sophisticated approach was implemented which
utilized a self-organizing map (SOM), a type of artificial intelligence (AI) software
(Section V). Laboratory data from the JTA Mockup was used to train the SOM to
recognize various states of the system. (Note: Due to unforeseen circumstances, it was
not possible to take the final step of running the SOM on the JTA Mockup processor.
This led to Item (6) below.)

(4) A computer model of the JTA Mockup and the sensor system was developed (Section
VI). The purpose of this model was to demonstrate that if a sufficiently accurate model

- 9 -

could be constructed, it could be used to train the SOM, thereby avoiding the necessity
for extensive laboratory testing to perform this function.

(5) A second, more powerful, but still flyable processor was acquired and configured for
smart sensor applications (Section VIII).

(6) A second type of AI module, a backpropagation neural net (BPNN), was tested on a
different electromechanical system using the newly acquired processor (Sections VII, IX-
XII).

 II. Electromechanical System 1 (JTA Mockup)

The JTA Mockup is shown in cartoon form in Figure 1. A photograph is shown

in Figure 2.

Aluminum Bar

Mag. Pickup

Shaker Table

Temp1 Strain2Strain1

Signal
Generator

Power
Amplifier

Temp2

Aluminum BarAluminum Bar

Mag. PickupMag. Pickup

Shaker Table

Temp1Temp1 Strain2Strain2Strain1Strain1

Signal
Generator

Signal
Generator

Power
Amplifier

Power
Amplifier

Temp2Temp2

Figure 1. Simplified sketch of the JTA Mockup (not to scale).

The system consists of an instrumented aluminum bar mounted on a small shaker

table. The dimensions of the bar are 0.5” x 1” x 24”. The shaker table is driven by an
audio power amplifier connected to a signal generator.1 In the present work, the signal
generator frequency has ranged from 40 Hz to 60 Hz, with the nominal operating
frequency set at 50 Hz. The signal amplitude and amplifier gain have been adjusted for
maximum shaker displacement consistent with operational safety and limited noise.

1 The vibration shaker used was an Unholtz Dickie Model 5PM. The signal generator was a Tektronix
SC 502, and the power amplifier was a Mackie FR Series M-1200.

- 10 -

As indicated in Figure 1, the sensors employed on the JTA Mockup consist of
two strain gauges, two temperature sensors, and a magnetic pickup coil2. There are
two separate Wheatstone bridge circuits of which each strain gauge forms one leg.
Precision potentiometers permit the balancing of the bridges. The bridge circuits and
temperature sensors are powered by 9 V and 5 V taps on a DC power supply.

The outputs from the sensors are sent to a signal conditioning board, which

buffers all the signals, filters the strain gauge signals, and converts the magnetic
pickup coil output to a voltage proportional to frequency (i.e., a tachometer signal).
The output from the signal conditioning board is sent to the data acquisition board on
the processor (see below).

It was intended that data from only one temperature sensor will be processed.
Hence, a multiplexer was used to switch from one temperature sensor to the other. The

Figure 2. Photograph of the JTA Mockup system.

2 The strain gauges were Micro-Measurements WK-06-125TQ-10C gauges, and the temperature
sensors were National Semiconductor LM35 Precision Centigrade Temperature Sensors.

- 11 -

purpose of this arrangement was to be able to use feedback from the processor to do this
switching when the sensor in current use failed. However, this feature was never
implemented.

III. Embedded Processor 1

The computer processor used in the JTA Mockup system was a 170 MHz PC104

processor with 130 MByte RAM and a 1 GByte flash disk. The primary requirements for
this application were (1) low power, and (2) the capability to employ a flash disk rather
than a hard drive. The implementation of a hard drive would probably be impossible for
a system embedded in a JTA flight because of its size and lack of ruggedness due to its
inclusion of moving parts.

A version of the Linux operating system was installed on the processor. Signal

output from the sensors was acquired by the processor via a data acquisition (DAQ)
board which was included as part of the system.3 Data was taken from four sensors at the
rate of 5120 samples/s/sensor (i.e., 20480 total samples/s).

IV. Simple Operating State Recognition System

In this section, various operating states of the JTA Mockup system will be

described, and output from the sensors will be shown. A simple computer program
written in C and using conditional branches was used to detect the operating states. The
program operates by interrogating the signals from the sensors to detect five different
operating states, as follows: (1) Equipment not operating (power supply not on). (2) No
power to shaker (no significant power delivered from the audio amplifier to the shaker, as
determined from the power in the strain gauge data). (3) Normal operation (significant
power delivered from the audio amplifier to the shaker). (4) Obstacle impeding the
motion of the right arm of the aluminum bar (significant power in the higher harmonics
of the strain gauge signals, and more such power in the signal from the strain gauge on
the right than in that from the strain gauge on the left). (5) Obstacle impeding the motion
of the left arm of the aluminum bar (using the converse of (4)).

Note that detection of states (2)-(5) involve taking a fast Fourier transform of the

data from both strain gauges and making decisions based on the characteristics of the
power spectral density obtained from the transforms. Performing an FFT on two 512-
sample blocks of data and sending a message to the desktop computer was done
approximately 90 times/minute (1 ½ times/s). This is one example of the type of
sophisticated data processing and decision-making that is possible with a computer
embedded in a sensor system.

3 This processor will not be described further here, as the second processor used on the project is more
powerful and more suitable for this application. See Figure 8 for a photograph of the second processor.

- 12 -

A graphical user interface (GUI) was written to display the sensor output and the

detected operating state. The program and the GUI server code run on the embedded
processor. The GUI returns the identification of the operating state to a desktop
computer connected to the processor through an Ethernet connection to the Sandia SON
network. An illustration of the GUI is given in Figure 3. In the case shown, the JTA
Mockup system was in its normal operating state, running at 50 Hz. Note that the
temperature sensor data and the tachometer data (denoted “Oscillator” in the figure) are
time-varying signals with slowly varying DC components. The noise in the temperature
data and the oscillatory signal in the tachometer data are averaged out so that only the
slowly varying components remain when the data is processed. Also, no attempt was
made in the GUI to convert the signals to true temperature, strain, or frequency.

Figure 3. Output from the JTA Mockup GUI. As indicated in the lower left
of the figure, the computer code resident on the embedded processor has
detected that the system is in its normal operating state.

 Examples of the cases in which obstacles impeded the vibration of the aluminum
bar are given in Figures 4 and 5.

Recall from the discussion above that the detection of obstacles depends on a
determination of the power in the higher harmonics of the signal relative to the
fundamental. It can be seen that there is a significant amount of power in higher

- 13 -

Figure 4. Output from the JTA Mockup GUI showing the response to the
situation in which an obstacle is impeding the motion of the right side of the
bar.

Figure 5. Output from the JTA Mockup GUI showing the response to the
situation in which an obstacle is impeding the motion of the left side of the
bar.

- 14 -

harmonics in the “Normal operation” state shown in Figure 3. It is believed that this is
due to the close proximity of the embedded processor power supply to the sensor signal
lines going into the DAQ board. In any case, it is worth noting that it would not be not an
easy matter for a human observer to quickly distinguish between “Normal operation” and
“Bar is encountering obstacle…” in Figures 4 and 5. This illustrates the potential for the
use of embedded processors in smart sensor applications.

V. Use of a Self-Organizing Map to Classify the Data

In this section, the introduction of artificial intelligence into the JTA Mockup

system will be described. As noted above, the data available from the JTA testbed
included measurements from two strain gauges, one temperature sensor and a tachometer.
In order to classify the data, a method was developed, based partially on self-organizing
maps (SOMs). See, e.g., Kohonen (2001). Since they have the advantage of
compressing several dimensions of data into two or three dimensions, while still
preserving the distance relationships present in the original data set, SOMs were useful in
this work. A SOM is a variant of a neural network, but works on the principle of
“unsupervised training”, meaning that it trains itself with no particular regard to what the
output should be, allowing the map to explore the relationships among the data points
free from any biases. After a map is produced, the programmer can designate any labels
to the output that he or she wishes.

The aim was to use SOMs to determine whether the JTA Mockup system was
performing properly, and if not, to pinpoint what the problem in the assembly might be.
In order to use a SOM, a number of data files must be presented to the network in order
to train to a solution. Ideally, the training data should include many examples of all the
anomalies one wishes the network to classify. In addition to normal function, the training
data provided the following examples of anomalies: no power to shaker, dead
temperature sensor, increase in system frequency, decrease in system frequency, shaker
obstruction. In this work, the training data that was available was divided into files of
512 time samples each. With respect to the strain gauges, the critical information was
contained in the frequency content of the data. Keeping this in mind, an FFT was taken
of the strain gauge data before it was handed off to the SOM for training. In addition, the
DC component of the frequency data was irrelevant and was subtracted. Only the first 25
frequency bins were used for each strain gauge, as the higher frequency data had been
found experimentally to contain no useful information. In the case of the temperature
and tachometer measurements, an average value was taken for each parameter over the
course of 512 time samples. Thus each training file presented to the SOM network
consisted of 25 frequency bins for each of the two strain gauges, the average temperature,
and the average tachometer reading, for a total of 52 parameters.

The software used for training the SOM was available, without licensing
restrictions, from Helsinki University of Technology. The SOM package was written for
MATLAB, and was free to download from the Helsinki University of Technology

- 15 -

internet site. Five hundred data files, containing various anomalies, were available for
the training and testing of the algorithm. One fifth of the files were selected for training
purposes, and were presented to the SOM software. SOMs use unsupervised training
techniques, which means that they create a mapping without any guidance of the user
desired outcome. The dimensionality of the SOM was selected based on the eigenvalues
of the training data. In this case, the SOM was a 12x8-dimensional matrix. The output
of the SOM does not contain any information regarding the classification of the data. In
order to place membership on the data, postprocessing is required. The classic K-means
clustering algorithm was used for this purpose. It was assumed the data consisted of 7
classes. Initial centroids were chosen at random from the map coordinates.

Upon first trial of this method, it was found the algorithm produced mixed results.
While it correctly identified the cases where there was no power, dead temperature
sensor, and obstruction, it incorrectly identified files with frequency changes as “normal”.
Frequency corrupted files can be identified by a shift in a high frequency component.
Since the magnitude of the component was small compared to the main, low frequency
spike, the SOM tended to ignore the high frequency component when it created its
mapping. However, the frequency shift is predictable in these files. The SOM need only
be forced to pay attention to the high frequency spike. This outcome was achieved by
boosting the FFT magnitude at the location of the high frequency spike. This scheme
produced the desired results.

Figure 6. Partial output of the clustered SOM.

Figure 6 represents the partial output of the clustered SOM. The classes are

coded with different shading in the large regions, and locations of test files are
superimposed as individual cells. In order to reduce confusion with too many shades

- 16 -

included in the plot, only half the test cases are plotted here: normal operational files,
increased frequency, decreased frequency. Since a SOM compacts a feature space into
fewer dimensions, it is necessarily a many-to-one mapping. There is no way to discern
which files produced a given outcome, as one shadeded cell on the map represents the
output of several files. Note how the frequency shifted files are clearly delineated from
each other, as well as the normal files. Also note that the normal files fall into two
separate classes. The artifact is not seen as undesirable, however, as no anomalies fall
within the two normal classes, and the user could always choose to do an off-line merge
of the normal classes.

Figure 7 also represents the output of the clustered SOM, but in this case,

different anomalies are plotted: no power to system, dead temperature sensor,
obstruction. Not only do these anomalies all fall into separate classes, but a comparison
with the previous figure demonstrates that they are separable from the other test cases as
well.

Figure 7. Partial output of the clustered SOM with different anomalies.

The graphing displayed above was done for ease of viewing. In the implemented
algorithm, the output is a single integer number, between 1 and 7, which designates the
class membership of a given test file. This format of output was better suited for near
real-time applications

Unlike a rules-based approach, the hybrid SOM presented here has the advantage

that it can be retrained as new anomalies or significant changes in the system are
observed, without the costly expense of creating new rules. In this application, the
training of the SOM required less than 10 seconds of off-line training on a Pentium 4
laptop.

- 17 -

What remained in the implementation of the SOM was to install it on the JTA
Mockup computer processor and demonstrate that such an AI module could run on a
flyable system. This effort was unsuccessful. The problem was that the SOM was
written in the MATLAB language, with the intent that an advertised MATLAB feature
could be used to convert the MATLAB code to C language code and run on the JTA
Mockup processor. It was found that this conversion was not possible due to
unanticipated idiosyncrasies of the MATLAB-produced C code. The project did not have
the resources to install MATLAB on the processor or to rewrite the C code, so this
avenue had to be abandoned.

VI. Computer model of the JTA Mockup system

One of the goals of this project was to demonstrate that AI modules in a smart

sensor system could be trained with data from a computer model. The idea was to
develop a computer model of the electromechanical system (JTA Mockup in this case)
and the sensor system itself. The use of output from such a model for training is clearly
limited by the accuracy of the model and any failure to include important phenomena.

Such a model of the JTA Mockup was developed using the PSpice electrical

simulation code. Large quantities of data were taken to characterize the sensors in order
to build their respective models. The temperature sensor and tachometer models were
strictly behavioral models; they effectively modeled sensor output without including
underlying physics principles. Due to the limited variation in the output signal for these
two sensors, constructing a behavioral model was straightforward.

 The strain gauge sensors generate more complex and varied waveforms.

Discrimination of these waveforms can yield information on the location and
composition of the obstacle. Information could be extracted from the signal spectrum
(both amplitude and phase), the DC offset, and the amplitude of the signal. By
comparing these attributes of the two strain gauges, it was demonstrated that the location
of obstructions could be determined. In addition to determining on which arm
obstructions were located (left or right), the side of the bar (top, bottom, or side) could be
identified as well. Additionally, the displacement along the bar could be determined, if
only with limited accuracy. It was also possible to determine the existence of two
obstructions under certain conditions, but location information is not discernable with
only two sensors.

It was also noted that the information as to the mass and hardness of the

obstruction could be found. Harder objects tend to generate more high harmonics than
soft objects. Further investigation of this was not pursued. Instead, a consistent hard
obstruction was used to eliminate this variable.

Building a behavioral model to cover all the above operating conditions was a

formidable challenge. It was decided to limit the strain sensor model to the generation of
a generic (left or right) obstruction due to limited time. This shortage of time and

- 18 -

resources ultimately prevented a demonstration of the utility of the use of model output
for training.

VII. Electromechanical System 2 (Geophone Grid)

At this point, it was recognized that the computer processor described above was

relatively slow and limited both in memory and in flash disk space compared to
processors currently (in 2003) available. It was also desired to make another attempt to
demonstrate the utility of AI in smart sensor systems. The following sections describe a
phase of the project in which these two aspects were addressed by embedding a new
processor in a new electromechanical system referred to as the geophone grid (GG)
system.

Figure 8. Photograph of the processor board assembly. The top board is a
breakout board to route the sensor signals to the DAQ board. The
remaining three boards are (from second to bottom) the DAQ board, the
processor board containing the Crusoe chip, and a power base board. Only
one sensor connection is made in the figure (see the two wires connected to
the breakout board). In the actual GG configuration, nine connections were
made.

- 19 -

VIII. Embedded Processor 2

The computer processor used in the GG system is a Tiny886ULP (Ultra Low

Power) PC/104+ Crusoe Computer from Advanced Microperipherals Ltd. The Crusoe
chip used contained 500 MByte of memory and used a 2 GByte flash disk. Its CPU
speed was 800 MHz. A version of the GNU/Linux operating system was configured on a
separate Linux computer and then copied to the flash disk. A 200 kHz data acquisition
(DAQ) board from Diamond Systems Corporation was included as part of the system.
ld was set at from 500 to 1500. The processor board assembly is shown in Figure 8.

As an aside, it should be noted that the DAQ board has some features that were

not utilized in this work, but may offer interesting opportunities for the implementation of
embedded processors in the future. The board provides for digital inputs to reconfigure
the board “on the fly”. One can change the gain of each analog input channel as well as
the sensor sampling scheme (i.e., the channels to be sampled and the sampling rate).
These capabilities offer a more robust set of responses to the decision-making algorithm.

Figure 9. Geophone sensor array. The geophones are laid out in a 3 x 3 grid.

- 20 -

IX. Sensor Array for Backpropagation Neural Net Data

The sensor array used to take data for the neural nets consists of 9 Model MD-81

Geophones manufactured by Geosource Inc. The geophones were arranged in a 3 by 3
square array with a nearest-neighbor separation of from 39 to 47 inches (see Figure 9).
Each geophone was connected to the DAQ board so that signals could be read into the
processor.

The geophones were excited by stepping on the floor at arbitrary locations within

the 3 by 3 grid. Typical data from one geophone is shown in Figure 10. When excited
by a footstep, the signals from the geophones rang at frequencies of the order of 25-100
Hz.

Figure 10. Typical data from a single geophone.

X. Backpropagation Neural Net Procedures

The BPNNs used in this work were enabled through the use of routines in a

library obtained from the website http://ieee.uow.edu.au/~daniel/software/libneural/.
This library contains code for creating a three-layer backpropagation neural network.
The general features and use of such a neural net is described in Eberhart and Dobbins

- 21 -

(1990) and in Welstead (1994). This material will not be repeated here; the following
sections offer some of the details of our particular application to the identification of
footsteps within the sensor grid described above. It should be noted that extensive coding
in C and C++ was required to adapt the library routines to the present problem.

XI. Single-Channel Backpropagation Neural Net

The use of a backpropagation neural net to process input from just one sensor of

the nine-sensor array will be discussed first. The single-channel BPNN is shown in
Figure 11. This BPNN has one input, corresponding to the single channel of geophone

Figure 11. Single-channel backpropagation neural net. There are 30 hidden
nodes in this BPNN. The nine-channel BPNN contains 9 input nodes, 60
hidden nodes and 5 output nodes.

data. It has two outputs, corresponding to detection of a footstep or of no footstep. These
quantities are determined by the configuration being studied, i.e., the single sensor with
one of two outcomes. It remains to configure the hidden nodes. In general, the number
of layers of hidden nodes in a neural net and the number of nodes in each layer is usually
chosen to optimize the accuracy of the net with a view to limiting the amount of time
required to train the net and to run it. In this project, a single layer with 30 hidden nodes
was used in the single-channel BPNN.

- 22 -

The first step is to obtain a data file from a sensor. This is a single-column file
with the raw-signal data acquired from the DAQ board. Each line of the file is a sample
of geophone data at a single point in time. Coming from the DAQ board, it is not in any
particular units; it was not necessary to convert it to actual voltage for our purposes. The
values of the signal ranged from about -5000 to +5000 in arbitrary units. A program
converts this file to a new file, referred to as a training file, in which a value of 0 or 1 was
appended to each data point, according to whether that data point was classified as
representing a footstep or not. The means of classification are discussed in detail below.
It is important to note that the inputs to neural nets in general must usually be normalized
in order that the nets work properly (Eberhart and Dobbins, 1990). In the present case,
the absolute values of the geophone output (between 0 and 5000 in terms of raw values
from the DAQ board) were normalized to between 0 and 1.

The classification process was complicated by the fact that the footstep
waveforms have zero-crossings in them due to the ringing of the geophone output.
Hence the state of “no footstep” could be viewed as occurring intermittently while a
footstep was actually being recorded. Two different means of classifying the state of
“footstep” or “no footstep” were explored. The first used a threshold value to classify
each data point in the waveform (i.e., the presence of a footstep was attributed to signals
with absolute values greater than some threshold which was set at 500 units). This meant
that the zero-crossings that occurred during a footstep signal were actually classified
during training as “no footstep”. While making the training faster to accomplish, it
seemed to belie the objective of using AI to discriminate complex signal behavior by
incorporating the use of a predetermined threshold. Due to the time limitations of the
project, this was the predominant method of training used.

The second training approach examined used an enveloping process to define the

state, where the entire duration of the footstep (irrespective of whether it was positive,
negative, or zero) was categorized as “footstep”. As expected, this approach required
much more training time because essentially contradictory information was being given
vis-à-vis what constitutes a footstep. However, this approach was also effective in
detecting footsteps.

Once the training file was developed using one of the approaches above, the
BPNN was then trained. The output from this training procedure is a file containing the
weights for the BPNN. The term “weights” refers to the factors by which the output from
the input node and the outputs from the hidden nodes are multiplied to obtain the inputs
to the downstream nodes (see Figure 11).

The training procedure to generate the weights file is a lengthy process. It

typically involves many iterations of passing the training data through the BPNN.
However, this iterative procedure need be done only once. Training is carried out on a
fast desktop computer (it could be done on a supercomputer if necessary) to expedite the
computation.

- 23 -

Figure 12. Results of training the single-sensor BPNN 3 times (top 3 plots), 7
times (middle 3 plots), and 10 times (bottom 3 plots). Note the progressive
improvement in the ability of the neural net to correctly classify footsteps.

- 24 -

Figure 12 shows the results of training the BPNN 3 times, 7 times, and 10 times,
with data from a single geophone. The first (“threshold”) method of training described
above was used to classify the states in this case. In each set of three plots, the first plot
shows the data used for training (the same for all three training runs). The second plot
shows the output from the two output nodes. The upper trace in this plot shows the “No
Footstep” results, and the lower trace shows the “Footstep” results (see Figure 11). The
algorithm specifies that a footstep has occurred when the two traces intersect. These
occurrences are shown in the third plot of each set. Note the way in which the number of
intersections, i.e., the detection of a footstep increases with the number of training runs.
This demonstrates that the ability of the BPNN to obtain the desired result improves as
the number of training runs increases.

Figure 13. Screenshot made while running the single-channel neural net on
the embedded processor. Note: Time runs backwards on the plot. I.e., the
earliest time is on the right. The text in the upper left part of the screen flags
those occasions when the net has detected a footstep.

- 25 -

 Once the weights file is created, it is copied to the embedded processor. There,
the BPNN is run on live data from one of the geophone sensors. An example of this is
shown in Figure 13. Note that the data were sent via an Ethernet connection from the
embedded processor to a “remote” display, emulating the transmission of JTA data to a
ground station.

This simple example illustrated several important concepts for the project:

• Real-time sensor data streams can be captured and analyzed “on-the-fly” using AI

with an embedded processor.
• One can determine states using AI and make decisions based upon those states—in

this case, data were sent to and viewed on the remote display only when the state of
“footstep” was detected.

• The notion of only sending data when it is deemed “interesting” was demonstrated.

XII. Nine-Channel Neural Net

Now, the detection of a single footstep based on a geophone signal exceeding

some threshold is an admittedly trivial example of the application of artificial
intelligence. The same thing could be accomplished in much less time with a simpler
computer code and an empirically adjusted threshold. However, the BPNN example
described above accomplishes the goal of demonstrating that such software can be easily
run on an embedded processor. It also provides useful guidance as to how to proceed
with more complex examples. Such an example will now be presented.

Recall the geophone grid shown in Figure 9. Typical data from all nine sensors
are shown in Figure 14. Data was taken from the nine sensors at the rate of 10,000
samples/s/sensor (i.e. 90,000 total samples/s). In this full GG case, the BPNN contains 9
input nodes corresponding to the 9 sensors. It has 5 output nodes corresponding to the
cases of footsteps in any of the 4 quadrants formed by the 3 x 3 grid of sensors, and to the
case of no footstep. Again, a single layer of hidden nodes was used. For the nine-sensor
case, this layer contained 60 nodes. The training of the BPNN was similar to the single-
sensor case, except that training was done with data taken from footsteps made at 36
different locations within the grid.

An example of nine-sensor BPNN output is shown in Figure 15. This example is for a
footstep in quadrant 3 (the quadrant encompassed by Geophones 3, 4, 6, and 7). The
scale of the neural net output in Figure 15 is from 0 to 4, and the output appears in unit
increments (0, 1, 2, 3, 4). For a footstep in Quadrant 3, the output should read only 3
during the footstep. Note that some false Quadrant 2 and 4 readings appear in the figure.
These false readings are believed due to the following: (1) complications involved in the
definition of what constitutes a footstep (see discussion in Section XI), (2) lack of
sufficient preprocessing of the complex geophone signals to enable the BPNN to

- 26 -

Figure 14. Typical data from the nine-geophone grid. The footstep was in
the center of the first quadrant (the quadrant encompassed by Geophones 0,
1, 3, and 4).

converge more robustly to an acceptable solution, and (3) insufficient training time. The
training challenge is exacerbated in the nine-sensor case because footstep location is now
to be determined by the relative magnitudes of nine data points, each of which is a
sample from a ringing waveform. If time had allowed, the use of low-pass filtering on
the footstep waveforms would have been explored in order to smooth out the ringing and
perhaps make the footstep definition/location and subsequent training more
straightforward.

XIII. Conclusions

During the course of this LDRD, numerous technical opportunities and challenges
were explored through the use of two sensor arrays. These and some ideas for future
work are highlighted below.

- 27 -

Figure 15. Nine-sensor backpropagation neural net output.

Technical Opportunities

• The use of real-time AI and subsequent decision-making was clearly demonstrated.
• Commodity embedded processors that meet the stringent volume and power

constraints for JTAs appear to have the potential to support these applications.
• Two different sensor systems (each generating real-time data streams with bandwidth

commensurate to that needed for JTAs) were successfully developed.

Technical Challenges

• Use of either SOMs or BPNNs require generation of training data that is complete in

the sense of encompassing all possible normal and anomalous behaviors that might be
observed.

• Training of the neural network for the Geophone Grid was problematic due to the
nature of the ringing signal. Preprocessing of signals may be necessary to ensure
unambiguous state determination.

• One of the major technical hurdles in this project for both sensor systems was
installation of the operating system on the embedded processor. This involved
extracting the needed elements from a robust Linux kernel, recompiling, loading, and

- 28 -

making it bootable on the embedded processor. Although conceptually
straightforward, it proved to be a time-consuming task. This should become easier as
processors with increased capability become available.

Future work

• Utilize more JTA-like sensors and signals, with attention to JTA bandwidths.
• Work to overcome the challenges presented by both types of artificial intelligence

modules and procedures.
• In the actual application of the type of smart sensor system described here, risks will

be incurred—specifically, there will be the risk of making incorrect decisions and
sending the wrong data. This implies that before entrusting JTA data to such a system,
a careful risk analysis should be carried out.

Acknowledgments

 We would like to thank the following for useful discussions and for their support
during the completion of this project: P. E. Nielan, K. E. Washington, D. R. Henson, K.
R. Hughes, E. P. Parker, J. S. Wagner, P. W. Dean, M. L. Koszykowski, D. E. Rhodes,
and S. R. Parker. Many thanks go to J. F. Stamps for providing a crucial fix to the signal
conditioning board.

References

Eberhart, R. C., and Dobbins, R. W., “Neural Network PC Tools: A Practical Guide,”
Academic Press, San Diego (1990).

Kohonen, T., “Self-Organizing Maps,” Springer, Berlin (2001).

Welstead, S. T., “Neural Network and Fuzzy Logic Applications in C/C++,” Wiley, New
York (1994).

- 29 -

- 30 -

Distribution

1 T. J. Deyle
 6241 S. 170th St.
 Omaha, NE 68135

1 MS 0323 LDRD Office (D. L. Chavez, 1011)
1 MS 1188 J. S. Wagner, 15311
1 MS 1188 A. B. Doser, 15311
1 MS 1188 E. P. Parker, 15311
1 MS 9003 K. E. Washington, 8900
1 MS 9003 J. L. Handrock, 8960
1 MS 9007 D. R. Henson, 8200
1 MS 9012 P. E. Nielan, 8964
1 MS 9012 C. M. Pancerella, 8964
1 MS 9012 E. J. Walsh, 8964
1 MS 9013 R. E. Oetken, 8231
1 MS 9013 D. A. Sheaffer, 8231
1 MS 9036 W. G. Wilson, 8230
1 MS 9102 A. L. Hull, 8233
1 MS 9102 P. Y. Yoon, 8235
1 MS 9103 J. F. Stamps, 8111
1 MS 9202 K. R. Hughes, 8205
1 MS 9202 R. L. Bierbaum, 8205
1 MS 9202 S. L. Brandon, 8205
1 MS 9202 J. L. Dimkoff, 8205
10 MS 9202 K. D. Marx, 8205
1 MS 9915 M. L. Koszykowski, 8961
1 MS 9915 R. C. Armstrong, 8961
1 MS 9915 N. M. Berry, 8964

3 MS 9018 Central Technical Files, 8945-1
1 MS 0899 Technical Library, 9616
1 MS 9021 Classification Office, 8511 for Technical Library, MS 0899, 9616

DOE/OSTI via URL

	Abstract
	Executive Summary
	I. Introduction
	II. Electromechanical System 1 (JTA Mockup)
	III. Embedded Processor 1
	IV. Simple Operating State Recognition System
	V. Use of a Self-Organizing Map to Classify the Data
	VI. Computer model of the JTA Mockup system
	VII. Electromechanical System 2 (Geophone Grid)
	VIII. Embedded Processor 2
	IX. Sensor Array for Backpropagation Neural Net Data
	X. Backpropagation Neural Net Procedures
	XI. Single-Channel Backpropagation Neural Net
	XII. Nine-Channel Neural Net
	XIII. Conclusions
	
	Technical Opportunities
	Technical Challenges
	Future work

	Acknowledgments
	References
	Distribution

