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Abstract

Polynomial chaos (PC) representations for non-Gaussian random variables are infi-
nite series of Hermite polynomials of standard Gaussian random variables with deter-
ministic coefficients. For calculations, the PC representations are truncated, creating
what are herein referred to as PC approximations. We study some convergence prop-
erties of PC approximations for L2 random variables. The well-known property of
mean-square convergence is reviewed. Mathematical proof is then provided to show
that higher-order moments (i.e., greater than two) of PC approximations may or may
not converge as the number of terms retained in the series, denoted by n, grows large.
In particular, it is shown that the third absolute moment of the PC approximation for
a lognormal random variable does converge, while moments of order four and higher
of PC approximations for uniform random variables do not converge. It has been pre-
viously demonstrated through numerical study (see [4]) that this lack of convergence
in the higher-order moments can have a profound effect on the rate of convergence
of the tails of the distribution of the PC approximation. As a result, reliability esti-
mates based on PC approximations can exhibit large errors, even when n is large. The
purpose of this report is not to criticize the use of polynomial chaos for probabilis-
tic analysis but, rather, to motivate the need for further study of the efficacy of the
method.
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Convergence Properties of
Polynomial Chaos Approximations

for L2 Random Variables

1 Introduction

Let

X = g(W ) (1)

be a random variable, where W is a zero mean, unit variance Gaussian random variable, and
g : R → R is a deterministic measurable mapping such that X has finite variance. Often,
finite-dimensional series approximations for X, denoted by Xn, are used for calculations. In
this case, it becomes necessary to study the convergence properties of a sequence of random
variables {Xn, n ≥ 1} approximating X. In this document we study the convergence
properties of the polynomial chaos (PC) approximation, a particular class of approximating
random variables. The study is limited to the standard polynomial chaos by Wiener, i.e.,
infinite series of Hermite polynomials of standard Gaussian random variables; the recent
extensions of polynomial chaos to general orthogonal polynomial functions of non-Gaussian
random variables, e.g., [10], are not considered.

It is well-known that PC approximations for L2 random variables exhibit mean-square
convergence [5, 7]. Further, this condition implies that the sequence of PC approximations
{Xn, n ≥ 1} converges to X in probability and in distribution. Mean-square convergence
does not, however, imply anything about the convergence of moments of order greater than
two. Herein, we provide mathematical proof that moments of order greater than two of PC
approximations may or may not converge as n gets large. Three examples are considered.
For example 1, X takes a lognormal distribution and we show that E[|Xn|3] converges to
E[|X|3] as n → ∞. For examples 2 and 3, we consider random variables that do not take
values over the entire real line, and prove that E[|Xn|p] does not converge to E[|X|p], for
p ≥ 4, as n →∞.

The practical effects of these results can be significant. It has been demonstrated through
numerical study (see [4]) that this lack of convergence in the higher-order moments can
have a profound effect on the rate of convergence of the tails of the distribution of the PC
approximation. As a result, reliability estimates based on PC approximations can be in error
even for large n, and the magnitude of these errors remains largely unquantified. Therefore,
an analyst must take care to ensure that n is sufficiently large to accomplish the accuracy
requirements for a given application.
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The purpose of this study is not to criticize the use of polynomial chaos approximations for
probabilistic analysis but, rather, to motivate the need for further study on the convergence
properties of the approach. An explicit connection between the properties of mapping g
defined by Eq. (1) and the rate of convergence of reliability estimates using PC approximation
Xn would be particularly useful.

We review the concepts of convergence as applied to a sequence of random variables in
Section 2. At the end of the section, we present two theorems related to the convergence
of moments of a sequence of random variables. These concepts are then applied to the
polynomial chaos approximation in Section 3; the section concludes with three examples.
Two appendices are provided that include some detailed calculations.

8



2 Convergence concepts

Let X and Xn, n ≥ 1, be real-valued random variables defined on probability space (Ω,B, P ).
The distribution functions of X and Xn are F and Fn, respectively. We review different
modes of convergence, as well as relationships between convergent sequences of random
variables, to facilitate a discussion on the convergence properties of PC approximations in a
later section.

2.1 Modes of convergence

The convergence of the sequence of random variables {Xn, n ≥ 1} to X has various defi-
nitions depending on the way in which the difference between Xn and X is measured. We
refer to these definitions as modes of convergence.

Mode 1 The sequence {Xn, n ≥ 1} is said to converge almost surely (a.s.) to X, written
Xn

a.s.−−→ X, if

lim
n→∞

Xn(ω) = X(ω), ∀ω ∈ Ω \A,

where P (A) = 0.

This is the strongest mode of convergence possible for a sequence of random variables.

Mode 2 Sequence {Xn, n ≥ 1} converges to X in probability (i.p.), written Xn
i.p.−→ X, if

for any ε > 0,

lim
n→∞

P (|Xn −X| > ε) = 0.

For Mode 3, we need the following definition:

Definition 1 Let F (x) = P (X ≤ x), x ∈ R, denote the distribution function of random
variable X; we say X ∈ Lp, p > 0, if

E [|X|p] =

∫
R
|x|p dF (x) < ∞.

Note that for the special cases of p = 1 and p = 2, E[|X|] < ∞ and E[X2] < ∞, meaning
that X has finite mean and variance, respectively.
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Mode 3 Let X ∈ Lp, p ≥ 1, and let {Xn, n ≥ 1} denote a sequence of random variables
such that Xn ∈ Lp, n ≥ 1. If

lim
n→∞

E [|Xn −X|p] = 0,

we say {Xn, n ≥ 1} converges to X in the Lp–sense, or simply {Xn, n ≥ 1} exhibits Lp

convergence (see [9], Section 6.5). We denote this by Xn
Lp−→ X.

We often refer to the special case of p = 2 as mean-square convergence.

Mode 4 The sequence {Xn, n ≥ 1} is said to converge in distribution to X, written Xn
d−→

X, if

lim
n→∞

Fn(x) = F (x),

∀x ∈ R such that F (x) is continuous. Mode 4 is also referred to as weak convergence;
one reason is because, as stated in [9], p. 251, “unlike convergence in probability or Lp

convergence, convergence in distribution says nothing about the behavior of the random
variables themselves and only comments on the behavior of the distribution functions of the
random variables.”

2.2 Connections between modes of convergence

We next summarize some useful well-known relationships between convergent sequences of
random variables.

Connection 1 Xn
a.s.−−→ X implies Xn

i.p.−→ X (see [9], p. 171).

Connection 2 Xn
i.p.−→ X implies Xn

d−→ X (see [9], p. 267).

Connection 3 Xn
Lp−→ X implies Xn

i.p.−→ X and Xn
Lq−→ X, if 0 < q ≤ p (see [9], p. 181).

Connection 4 Xn
Lp−→ X implies convergence of the moments up to, and including, order

p, i.e., limn→∞ E[|Xn|q] = E[|X|q], 1 ≤ q ≤ p.

10



By Connections 2 and 3, Xn
Lp−→ X, for p > 0, implies Xn

d−→ X. The converse is not true
in general. More complex connections between convergent sequences of random variables are
possible; we first need two additional definitions:

Definition 2 For p ≥ 1 and Xn ∈ Lp, n ≥ 1, if

lim
n→∞
m→∞

E [|Xn −Xm|p] = 0,

we say sequence {Xn, n ≥ 1} is Lp–Cauchy.

Definition 3 For p ≥ 1, the sequence {|Xn|p, n ≥ 1} is uniformly integrable (u.i.) if (see
[9], Section 6.5.1)

lim
a→∞

sup
n≥1

E[|Xn|p 1(|Xn|p > a)] = 0,

where 1(A) = 1 if event A is true and zero otherwise.

We make use of the next two theorems in following sections on convergence properties of
PC approximations for non-Gaussian random variables.

Theorem 1 For p ≥ 1 and Xn ∈ Lp, n ≥ 1, the following are equivalent (see [9], Theo-
rem 6.6.2):

(i) {Xn, n ≥ 1} is Lp-convergent;

(ii) {Xn, n ≥ 1} is Lp-Cauchy; and

(iii) {Xn, n ≥ 1} is convergent in probability and {|Xn|p, n ≥ 1} is u.i.

Theorem 2 If Xn ∈ Lp and X ∈ Lp for some p ≥ 1, and {Xn, n ≥ 1} converges to X in
probability, the following are equivalent (see [3], Theorem 4.5.4):

(i) {|Xn|p, n ≥ 1} is u.i.;

(ii) Xn
Lp−→ X; and

(iii) lim
n→∞

E [|Xn|p] = E [|X|p] < ∞.

11
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3 Polynomial chaos

Polynomial chaos (PC) representations for non-Gaussian random variables are infinite series
of Hermite polynomials of standard Gaussian random variables with deterministic coeffi-
cients. PC representations remain a topic of continued research because, among other fea-
tures, they provide a framework suitable for computational simulation. For calculations, the
PC representations are truncated, creating what is herein referred to as PC approximations.

3.1 PC Representation

Under the assumption that X has finite variance, the infinite series [5, 7]

X =
∑
k≥0

βk hk(W ) (2)

constitutes the PC representation for X, where βk are deterministic coefficients that must
be determined, W ∼ N(0, 1) is a zero-mean, unit-variance Gaussian random variable, and

hk(W ) =

[k/2]∑
j=0

(−1)j k!

(k − 2j)! j! 2j
W k−2j (3)

are 1-dimensional Hermite orthogonal polynomials, where [n] denotes the largest integer less
than or equal to n. Collection {hk(W ), k ≥ 0} has the following properties (see [2])

E[hi(W )] =

{
1 i = 0,

0 i = 1, . . . , n.
(4a)

E[hi(W ) hj(W )] =

{
i! i = j,

0 i 6= j.
(4b)

E[hi(W ) hj(W ) hk(W )] =


i!j!k!

(s− i)!(s− j)!(s− k)!
i + j + k = 2s; i, j, k ≤ s,

0 otherwise.
(4c)

Assuming E[g(W ) hk(W )] can be calculated term by term for k = 0, 1, . . .,

E[g(W ) hk(W )] = E

[∑
i≥0

βi hi(W ) hk(W )

]
=
∑
i≥0

βi E[hi(W ) hk(W )] = βk k!

13



so that

βk =
1

k!
E[g(W ) hk(W )], k = 0, 1, . . . (5)

The second-moment properties of X are given by

E[X] =
∑
k≥0

βk E[hk(W )] = β0,

E[X2] =
∑
j,k≥0

βj βk E[hj(W ) hk(W )] =
∑
k≥0

β2
k k!,

where it is permissible to interchange sum and expectation since the sums are known to
converge (X ∈ L2).

3.2 PC approximation

Define

Xn =
n∑

k=0

βk hk(W ) (6)

to be the n-term PC approximation for X, where βk is given by Eq. (5). The second-moment
properties of Xn are given by

E[Xn] =
n∑

k=0

βk E[hk(W )] = β0,

E[X2
n] =

n∑
j,k=0

βj βk E[hj(W ) hk(W )] =
n∑

k=0

β2
k k!.

3.3 Mean-square convergence of PC approximations

It is known that, for any X ∈ L2, the PC approximation for X exhibits L2 convergence
[5, 7]. This follows from:

E[Xn X] =
n∑

j=0

∑
k≥0

βj βk E[hj(W ) hk(W )] =
n∑

k=0

β2
k k!

14



so that

lim
n→∞

E[(Xn −X)2] = E[X2] + lim
n→∞

(
E[X2

n]− 2 E[Xn X]
)

=
∑
k≥0

β2
k k! + lim

n→∞

(
n∑

k=0

β2
k k!− 2

n∑
k=0

β2
k k!

)
= lim

n→∞

∑
k≥n+1

β2
k k!

= 0.

By Connection 3, {Xn, n ≥ 1} converges to X in probability and in distribution, and by
Connection 4, we have

lim
n→∞

E[|Xn|p] = E[|X|p], 1 ≤ p ≤ 2.

Further, by Theorem 1, {Xn} is L2-Cauchy and {X2
n} is uniformly integrable.

3.4 Convergence of higher-order moments of PC approximations

Through a series of examples, will show that E[|Xn|p] may or may not converge to E[|X|p]
for p > 2. In example 1, X is a lognormal random variable, and we prove that the third
absolute moment of Xn does converge to the third absolute moment of X as n → ∞. In
examples 2 and 3, we consider PC approximations for random variables that do not take
values over the entire real line, and prove that all moments of order greater than or equal to
four of both approximations diverge as the number of terms retained in the approximation
gets large. X has a “reflected Gaussian” distribution for example 2, i.e., X = |W |, where
W ∼ N(0, 1), and X has a uniform distribution on bounded interval [a, b] for example 3. A
new proposition that is needed for examples 2 and 3 is presented prior to example 2; a proof
of the proposition is also provided.

Example 1

Let

X = g(W ) = exp (W ), W ∼ N(0, 1). (7)

By Eq. (7), random variable X has distribution F (x) = Φ(ln x), x > 0, where Φ( · ) denotes
the CDF of a N(0, 1) random variable, and moments E[|X|p] = E[Xp] = exp (p2/2) < ∞,
for 0 ≤ p < ∞. Because E[X2] < ∞, this particular g(W ) admits a PC representation.

15



Let Eq. (6) define the n-term PC approximation for X, where (see [4])

βk =
1

k!
E [exp (W ) hk(W )] =

1√
2π k!

∫ ∞

−∞
exp

(
u− u2

2

)
hk(u) du =

1

k!
e1/2 (8)

are the defining PC coefficients for k = 0, 1, . . . , n. The third absolute moment of the n-term
PC approximation for X is

E[|Xn|3] = E

∣∣∣∣∣
n∑

k=0

βk hk(W )

∣∣∣∣∣
3


=
n∑

i,j,k=0

βi βj βk |E[hi(W ) hj(W ) hk(W )]|

=
n∑

i,j,k=0
i+j+k=2s

i,j,k≤s

e3/2 1

i! j! k!

i! j! k!

(s− i)! (s− j)! (s− k)!

= e3/2

n∑
i,j,k=0

i+j+k=2s
i,j,k≤s

1

(s− i)! (s− j)! (s− k)!

= e3/2

n∑
α=0

1

α!

n−α∑
β=0

1

β!

n−α−β∑
γ=0

1

γ!

where the second line follows because each βk > 0, and the third line follows from Eq. (4c).
Taking the limit, we have

lim
n→∞

E[|Xn|3] = lim
n→∞

e3/2

n∑
α=0

1

α!

n−α∑
β=0

1

β!

n−α−β∑
γ=0

1

γ!

= e3/2 (e · e · e) = e9/2 = E[|X|3].
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The following proposition is needed for examples 2 and 3:

Proposition 1 Let Xn denote the n-term PC approximation for random variable X ∈ L4

and let

an = E
[
(Xn −Xn−1)

4
]

= β4
n E
[
hn(W )4

]
.

If limn→∞ an = ∞, then E[|Xn|p] does not converge to E[|X|p] for p ≥ 4.

Proof:

1. By Theorem 1, sequence {|Xn|4} is not uniformly integrable. This follows because:

• If sequence an does not converge, sequence {Xn} is not L4–Cauchy;

• Any PC approximation exhibits L2 convergence so that, by Connection 3, Xn
i.p.−→

X; and

• Xn ∈ L4 for each n ≥ 0 because it is a polynomial function of W .

2. By Theorem 2, limn→∞ E [X4
n] 6= E [X4].

3. By the completeness of Lp spaces, limn→∞ E [|Xn|p] 6= E [|X|p], p > 4.

This completes the proof. �

Example 2

Let

X = g(W ) = |W |, W ∼ N(0, 1). (9)

By Eq. (9), random variable X has distribution F (x) = Φ(x)−Φ(−x), x ≥ 0, and moments

E [|X|p] =
1√
2π

∫ ∞

∞
|x|p exp (−x2/2) dx =

2√
2π

∫ ∞

0

xp exp (−x2/2) dx

=
2(p+1)/2

√
2π

Γ

(
p + 1

2

)
< ∞. (10)

By Eq. (10), X ∈ L2 so this particular g(W ) admits a PC representation.
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Let Eq. (6) define the n-term PC approximation for X, where (see Appendix A)

β2k =
(−1)k−1

√
2π 2k−1 (2k − 1) k!

β2k+1 = 0 (11)

are the defining PC coefficients for k = 0, 1, . . . , n. Because all odd coefficients vanish, it is
sufficient to study

X2n =
n∑

k=0

β2k h2k(W ).

In [4], we observed by numerical studies that E[X4
n] did not approach E[X4] for n ≤ 20;

herein, we provide mathematical proof that E[X4
n] does not converge to E[X4] as n → ∞.

To do so, we construct sequence

a2n = E
[
(X2n −X2(n−1))

4
]

= β4
2n E

[
h2n(W )4

]
and show that limn→∞ a2n = ∞; this is sufficient by Proposition 1.

By Eq. (11) and Stirling’s asymptotic relation for n! (see [1], p. 257), we have

β4
2n ∼

(
en

2π 2n−1 (2n− 1) nn+1/2

)4

=
e4n

π4 (2n)4n n2 (2n− 1)4
(as n →∞).

We next apply the Stirling formula to the lower bound for E [h2n(W )4] derived in Appendix C
(Eq. (16)) to show

E
[
h2n(W )4

]
≥ (4n)! ∼

√
π 28n+3/2 n4n+1/2 e−4n (as n →∞).

It follows that

lim
n→∞

a2n = lim
n→∞

β4
2n E

[
h2n(W )4

]
≥ lim

n→∞
β4

2n (4n)!

= lim
n→∞

(
e4n

π4 (2n)4n n2 (2n− 1)4

)(√
π 28n+3/2 n4n+1/2 e−4n

)
=

23/2

π7/2
lim

n→∞

24n

n3/2 (2n− 1)4

= ∞

where the last line follows by application of l’Hôpital’s rule.
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Example 3

Let X have a uniform distribution over [a, b], i.e.,

X = g(W ) = a + (b− a) Φ(W ), W ∼ N(0, 1), (12)

where Φ( · ) denotes the CDF of an N(0, 1) random variable. By Eq. (12), random variable
X has distribution F (x) = (x− a)/(b− a), a ≤ x ≤ b, and moments

E[|X|p] =

∫ b

a

|x|p

b− a
dx =

1

(b− a)(p + 1)

[
sgn(b) |b|p+1 − sgn(a) |a|p+1

]
< ∞, (13)

where sgn(x) = x/|x|, x 6= 0, is the sign of x. Because E[X2] < ∞, this particular g(W )
admits a PC representation.

Let Eq. (6) define the n-term PC approximation for X, where (see Appendix B)

β0 =
a + b

2
, β2k = 0, k = 1, . . . , n

β2k+1 = (−1)k (b− a) (2k)!

22k+1
√

π (2k + 1)! k!
, k = 0, 1, . . . , n (14)

are the defining PC coefficients. Because all even coefficients greater than β0 vanish, it is
sufficient to study

X2n+1 =
n∑

k=0

β2k+1 h2k+1(W ).

We construct sequence

c2n+1 = E
[
(X2n+1 −X2(n−1)+1)

4
]

= β4
2n+1 E

[
h2n+1(W )4

]
and show that limn→∞ c2n+1 = ∞; this is sufficient to prove that E[|Xn|p] does not converge
to E[|X|p] for p ≥ 4 by Proposition 1.

By Eq. (14) and Stirling’s asymptotic relation for n! (see [1], p. 257), we have

β4
2n+1 =

(b− a)4 ((2n)!)4

24(2n+1) π2 ((2n + 1)!)4 (n!)4
=

(b− a)4

28n+4 π2 (2n + 1)4 (n!)4

∼ (b− a)4 e4n

28n+6 π4 (2n + 1)4 n4n+2
(as n →∞).

We next apply the Stirling formula to the lower bound for E [h2n+1(W )4] derived in Ap-
pendix C (Eq. (17)) to show

E
[
h2n+1(W )4

]
≥ 2

(2n + 1)5 ((2n)!)5

(n!)6 (n + 1)3
∼ 210n+3 n4n (2n + 1)5 e−4n

(n + 1)3
√

π n
(as n →∞).
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It follows that

lim
n→∞

c2n+1 = lim
n→∞

β4
2n+1 E

[
h2n+1(W )4

]
≥ lim

n→∞
2 β4

2n+1

(2n + 1)5 ((2n)!)5

(n!)6 (n + 1)3

= lim
n→∞

(
(b− a)4 e4n

28n+6 π4 (2n + 1)4 n4n+2

) (
210n+3 n4n (2n + 1)5 e−4n

(n + 1)3
√

π n

)
=

(b− a)4

8 π9/2
lim

n→∞

22n (2n + 1)

n5/2 (n + 1)3

= ∞

where the last line follows by application of l’Hôpital’s rule.

Discussion

The fourth moment of the n-term PC approximation for X, i.e., E[X4
n], is shown in Fig. 1(a)

over 0 ≤ n ≤ 40. Results for both examples 2 and 3 are shown and, as proved above, both
exhibit diverging behavior for large n. Further, E[X4

n] for example 2 grows large at a faster
rate than it does for example 3. For calculations, we set the range of X in example 3 to
[a, b] = [0, 1].

The practical effects of these results are illustrated by Fig. 1(b), which shows estimates
of the corresponding tails of the distributions of Xn at the 1%-upper fractile, i.e., estimates
of P (Xn ≤ F−1(0.99)). Results from 100,000 Monte Carlo samples were used for calcula-
tions. Reliability estimates using the PC approximation for example 2 converge slowly when
compared to the corresponding estimates for example 3; the latter exhibits negligible error
for n > 15, while the former exhibits significant error for n = 20. Together, results illus-
trated by Fig. 1(a) and (b) suggest that, for the examples considered, the lack of converging
fourth-order moments leads to slowly converging reliability estimates. Further, the faster
these moments diverge, the less accurate a reliability estimate will be for a fixed n.
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Figure 1. Plots of: (a) E[X4
n] and (b) estimates of the 1%-

upper fractile as a function of n for examples 2 and 3 (taken
from [4]).
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4 Conclusions

We presented some convergence properties of general real-valued random variables, then uti-
lized these properties to make observations regarding polynomial chaos (PC) approximations
for L2 random variables. Mathematical proof was supplied to show that higher-order mo-
ments (i.e., greater than two) of PC approximations may or may not converge as the number
of terms retained in the series, n, grows large. In particular, it was shown that the third
absolute moment of the PC approximation for a lognormal random variable does converge,
while moments of order four and higher of PC approximations for uniform random variables
do not converge.

It was also demonstrated through numerical study that this lack of convergence of the
higher-order moments can have a profound effect on the rate of convergence of the tails
of the distribution of the PC approximation. Therefore, when using PC approximations for
reliability calculations, one should take steps to ensure sufficient accuracy for the application
is attained.

The purpose of this study was not to criticize the use of polynomial chaos approximations
for probabilistic analysis but, rather, to motivate the need for further study on the conver-
gence properties of the approach. A connection between the properties of mapping g defined
by Eq. (1) and the rate of convergence of reliability estimates using PC approximation Xn

would be particularly useful.
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A PC coefficients for X = |W |

By Eqs. (5) and (9),

βk =
1

k!
E [g(W ) hk(W )] =

1√
2π k!

∫ ∞

−∞
e−u2/2 hk(u) |u| du

=


2√

2π k!

∫ ∞

0

e−u2/2 hk(u) u du, k = 0, 2, 4, . . .

0, k = 1, 3, 5, . . .

Let

b2k =

∫ ∞

0

e−u2/2 h2k(u) u du =
1

2k−1

∫ ∞

0

e−v2

h̄2k(v) v dv,

where h̄2k(x) = 2k h2k(
√

2x) is a modified set of orthogonal Hermite polynomials. By [6],
p. 797, Eq. (7.376.2)

b2k = (−1)k 22k−2 Γ(1) Γ(k + 1/2) Γ(1/2) Γ(k − 1/2)√
π 2k−2 Γ(k + 1/2) Γ(−1/2)

= (−1)k−1 2k−1Γ(k − 1/2)√
π

= (−1)k−1 (2k)!

2k k! (2k − 1)

where the last step follows from [6], p. 888, Eq. (8.339.2). Hence,

β2k =
2√

2π (2k)!
b2k =

(−1)k−1

√
2π 2k−1 (2k − 1) k!

which is consistent with Eq. (11).
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B PC coefficients for X uniform on [a, b]

By Eqs. (5) and (12),

βk =
1

k!
E [g(W ) hk(W )] =

1√
2π k!

∫ ∞

−∞
e−u2/2 hk(u) (a + (b− a) Φ(u)) du

=
1√

2π k!

∫ ∞

−∞
e−u2/2 hk(u)

(
b− a

2
erf

(
u√
2

))
du +

b + a

2
√

2π k!

∫ ∞

−∞
e−u2/2 hk(u) du

= I1,k + I2,k

where erf(x) = 2 Φ(
√

2x)− 1 denotes the standard error function. By symmetry arguments,
I1,2k = 0, k = 0, 1, . . ., and

I1,2k+1 =
2√

2π (2k + 1)!

∫ ∞

0

e−u2/2 h2k+1(u)

(
b− a

2
erf

(
u√
2

))
du

=
b− a√

2π(2k + 1)! 2k

∫ ∞

0

e−v2

h̄2k+1(v) erf(v) dv

=
b− a√

2π(2k + 1)! 2k

(
(−1)k (2k)!

2k+1/2 k!

)
= (−1)k (b− a) (2k)!

22k+1
√

π (2k + 1)! k!

Term I2,k is zero for all k except

I2,0 =
b + a

2
√

2π

∫ ∞

−∞
e−u2/2 du =

b + a

2

It follows that

β0 =
a + b

2
, β2k = 0, and β2k+1 = (−1)k (b− a) (2k)!

22k+1
√

π (2k + 1)! k!

which is consistent with Eq. (14).
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C Lower bound on E[hn(W )4]

It follows from the orthogonality properties of Hermite polynomials that (see [2], Eq. (2.3))

hn(x)2 =
n∑

k=0

(n!)2

k! ((n− k)!)2
h2(n−k)(x)

for x ∈ R. Hence, we have

E[hn(W )4] =
n∑

k,l=0

(n!)2

k! ((n− k)!)2

(n!)2

l! ((n− l)!)2
E[h2(n−k)(W ) h2(n−l)(W )]

=
n∑

k=0

(n!)4

(k!)2 ((n− k)!)4
(2(n− k))! (15)

where the last line follows from Eq. (4). We note that all summands are non-negative so
that any term of Eq. (15) provides a lower bound for E[hn(W )4]. For example, the k = 0
term implies

E[hn(W )4] ≥ (2n)!, ∀n ≥ 0, (16)

and this lower bound is sufficient for the proof considered in Example 2. A more stringent
lower bound is required for Example 3 and is given by Eq. (15) with k = (n− 1)/2 assumed
an integer, i.e.,

E[hn(W )4] ≥ (n!)4 (n + 1)!

(((n− 1)/2)!)2 (((n + 1)/2)!)2

or, equivalently

E[h2n+1(W )4] ≥ ((2n + 1)!)4 (2n + 2)!

(n!)2 ((n + 1)!)4
= 2

(2n + 1)5 ((2n)!)5

(n!)6 (n + 1)3
, ∀n ≥ 0. (17)
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