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Abstract

We address the electromagnetic induction problem for fully 3D geologic me-

dia and present a solution to the governing Maxwell equations based on a power

series expansion. The coefficients in the series are computed using the adjoint

method assuming an underlying homogeneous reference model. These solutions

are available analytically for point dipole source terms and lead to rapid cal-

culation of the expansion coefficients. First order solutions are presented for a

model study in petroleum geophysics composed of a multi-component induction

sonde proximal to a fault within a compartmentalized hydrocarbon reservoir.
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1 Introduction

The primary objective of geophysical well logging for petroleum is to identify potential

reservoir rocks by determining their porosity and permeability, and the nature and

volume of fluids present. Water saturation and porosity measurements can provide

distinguishing traits of hydrocarbon-bearing formations. Archie (1942) developed em-

pirical equations used in petroleum work to relate resistivity measurements of forma-

tions to porosity and water saturation. Formations saturated with oil have a higher

resistivity versus formations saturated with saline water; therefore high resistivity

readings can denote hydrocarbon-bearing formations.

An induction sonde is a tool designed to measure formation resistivity in bore-

holes. A multi-component induction sonde consists of a transmitter and receiver coil,

typically with offsets of one to three meters. For higher resolutions, multiple trans-

mitter and receiver coils may be used. As the induction sonde is lowered into the

borehole and raised at a constant speed, the electromagnetic field produced by the

transmitter coil induces eddy currents in conductive formations. These eddy currents

in turn induce secondary currents measured in the receiver coil. These secondary

currents are direct indicators of the formation conductivity (Telford et al., 1990).

The objective of our modeling study is to investigate the 3D electromagnetic

induction problem for a single transmitter/receiver sonde approaching a fault within

a hydrocarbon reservoir. In this study, we are interested in calculating the change of

the magnetic field strength around the receiver due to a change in conductivity beyond

the fault boundary. We calculate these with a perturbation expansion approach for

rapid on-site analysis of induction log data and present our results in the frequency

and time domains.

2 Sensitivity Computation

For a single medium with a uniform conductivity, we can analytically calculate the

electric and magnetic fields around the receiver from point magnetic dipole sources at

the transmitter (Ward and Hohmann, 1990). However, for an inhomogeneous case as
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in our quarterspace fault model (Figure 1a), the electric and magnetic fields around

the receiver cannot be calculated analytically due to the different conductivities of

the two media.

A quantity of physical interest is the sensitivity ∂H/∂σ, or the variation of the

fields at the receiver due to a conductivity perturbation in the media. The magnetic

sensitivities at the receiver can be obtained by an approximation (the adjoint method)

by solving two boundary value problems (McGillivray et al., 1994). We first calculate

the primary electric field E from a transmitter T , assuming a uniform conductivity

σ0 (Figure 1a). To measure the sensitivity of the x-component of the magnetic field,

we then solve for a adjoint electric field Ẽ, by placing a fictitious magnetic dipole

source located at the receiver R, also pointing in the x-direction, again with uniform

conductivity σ0.

The primary and the adjoint electric fields are then multiplied and integrated over

the quarterspace region of the perturbed conductivity, to obtain a numerical value

for the sensitivity at the receiver,

∂Hx

∂σ

∣∣∣∣∣
R

=
∫
∆σ

Ẽ · E dV. (1)

The new magnetic field at the receiver is given approximately by a Taylor series

expansion:

Hx(σ) ≈ Hx(σ0) +
∂Hx

∂σ
∆σ, (2)

where Hx(σ0) is the magnetic field calculated analytically over the region of conduc-

tivity σ0 and ∂Hx/∂σ is the sensitivity at the receiver calculated at the receiver with

the adjoint method multiplied by the change of conductivity of the quarterspace ∆σ.

The sensitivities of the y- and z-components of the magnetic field around the receiver

are calculated similarly.

3 Algorithm Summary

To design a code to implement this algorithm, we began with a Fortran 77 code

developed for the anisotropic wholespace which calculated the magnetic fields and
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electric current densities for a homogeneous conductivity in the frequency domain

(Moran and Gianzero, 1979).

1. The code was modularized. The driver code and all new modules were written

in Fortran 90.

2. We extended the code to calculate the primary and adjoint electric fields and

then to calculate the sensitivities for a quarterspace fault model. The integra-

tion indicated in Eq.(1) was performed with a fourth order extended Simpson

algorithm (Press et al., 1992).

3. The integration over the quarterspace region was computed from the corner

of the fault boundary to some arbitrary upper limit, ymax (where we took

xmax = ymax = zmax). An adaptive integration algorithm was developed to

automatically determine the minimum upper limit necessary to produce con-

vergent results. From the analytic formulas, the electric and magnetic fields

decay as

E, H ∼ e−r/δ

r
, δ = skin depth ∼ 500

√
ρ

f
, (3)

where r is the radial distance from the origin, ρ is the resistivity and f is the

frequency in hertz. Therefore, the upper limit of the quarterspace integration

is frequency dependent. Low frequencies fall off as ∼ 1/r while high frequencies

fall off rapidly. To automatically determine the upper limit of the region over

which to integrate, the sensitivities are considered to have converged when the

relative error of for two successive values of the upper limit is less than a user-

defined tolerance. This is of practical importance since integration beyond this

minimum distance is computationally expensive, increases run time and adds

little to the value of the sensitivity.

4. Interpolating ymax for intermediate frequencies significantly reduced calculation

time. After a series of runs (Figure 2a) with conductivities in the range from

0.01 to 1.0 S/m (Siemens/meter), we found that the upper limit as a function
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of frequency generally fell into three regions. For example, for a conductivity

of 0.25 S/m the upper limit had the following form:

(1) 0− 1 Hz, all sensitivities converged at 220 m,

(2) 1 Hz - 150 kHz, sensitivities converged from 25− 190 m,

(3) > 150 kHz, all sensitivities quickly converged at 20 m,

from the fault corner boundary. For frequencies from 0 − 1 Hz, we began the

integrations at 220 m. This reduced the number of iterations from 44 to three

and reduced the calculation times by half or more. By plotting a log-log graph

of frequency vs. ymax (Figure 2b), we found that ymax for the intermediate

frequencies 1 Hz - 150 kHz could be interpolated with a power law. This also

reduced the calculation time significantly.

5. We incorporated an inverse digital filter Fourier transform code (Hanstein, 2003)

to examine time domain sensitivities. Instead of using quadratures to compute

the inverse Fourier transform of the sensitivities with respect to temporal fre-

quencies ω (Hz)
∂Hi(t)

∂σ
=

1

2π

∫ ∞
−∞

∂Hi(ω)

∂σ
eiωt dω, (4)

we approximate ∂Hi(t)/∂σ multiplied with a linear filter t, by the discretized

expression

t
∂Hi(t)

∂σ
=

N∑
j=1

wj
∂Hi(ωj)

∂σ
. (5)

In Eq. (5), the filter coefficients wj and frequencies ωj are computed by a least

squares fit to known transform pairs, similar to the algorithms described in

Anderson (1975) and Guptasarma and Singh (1997) for Hankel transforms.

4 Sensitivity Results

For the quarterspace fault model (Figure 1a), sensitivities were calculated for tool

locations above and below the fault boundary. Receiver locations at 0, 30, 45 and

60 degrees respectively from the vertical z-axis were used with a one-meter offset
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between the transmitter and the receiver (Figure 1b). For these cases, we used the

adjoint method by calculating with a z-magnetic directed dipole at the transmitter

and with a x-directed magnetic dipole at the receiver.

Figure 3 shows the frequency domain sensitivity plots above (a) and below (b) the

fault boundary for four different tool locations. We find that the values of sensitivities

peak around 100 kHz, and approach zero for very low or very high frequencies. The

peak values for each tool location increased as the sonde was rotated more towards

the horizontal (i.e. the y-axis).

Figure 4 shows the time domain sensitivity plots above (a) and below (b) the

fault boundary over a dynamic range of four decades of the instrument strength. The

cusps at t < 20 µs indicate a sign change in ∂Hx/∂σ. Note that the magnitude of

the perturbation covers four decades in signal strength. Note, also, that the effect

of the quarterspace is more clearly discerned in the frequency domain (Figure 3) as

expressed by the magnitude of the peak amplitude of the sensitivities.

5 Conclusions

By using fast, closed-form analytic formulae for the uniform wholespace, we have

been able to investigate cases where the conductivity is not homogeneous by using

a perturbation expansion approach. With this method we are able to obtain good

values of the sensitivities. We find that we do not need to integrate very far into

region beyond the fault boundary as the fields fall off rapidly and the sensitivity esti-

mates converge very quickly. By employing an adaptive integration algorithm, we can

automatically determine the upper limit of the region over which to integrate and sig-

nificantly reduced calculation time by interpolating ymax for intermediate frequencies.

Sensitivities calculated in the frequency domain for a quarterspace fault model with

tool locations near the fault corner boundary show peak values around 100 kHz. The

peak value for each tool location increases with the angle of the receiver measured

with respect to the z-direction (the direction of the oscillating magnetic dipole asso-

ciated with the transmitter). The effect of the quarterspace is more clearly discerned
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in the frequency domain as the magnitude of the peak amplitude.

Further worthwhile investigations include: (1) calculating sensitivities for desig-

nated tool locations around the quarterspace to distinguish corner effects; (2) compar-

ing sensitivities computed with the adjoint method with 3D finite difference results

to determine the range of the change of conductivity; (3) calculating sensitivities for

cases with multiple non-interacting regions of different conductivities and (4) calculat-

ing higher order derivatives in the Taylor series expansion using the adjoint method.

Several of these studies are planned for continuing work for a master’s thesis.
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Figure 1: (a) The quarterspace fault model. (b) Sensitivities are calculated for tool locations 
above and below the fault boundary and receivers are located at 0, 30, 45, and 60 degrees 
respectively from the vertical z-direction. 
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Figure 2: (a) Convergence plot of sensitivities above the fault boundary with a z-directed 
magnetic dipole at the transmitter and a x-directed magnetic dipole at the receiver. (b) Con-
vergence plot of sensitivities plotted as a log-log graph.   
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Figure 3: Sensitivities in the frequency domain for the transmitter and the receivers above (a) 
and below (b) the fault boundary.  
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Figure 4: Time domain sensitivity plots for the transmitter and the receivers above (a) and below 
(b) the fault boundary. 
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